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ABSTRACT

COMMUNICATION MODELS FOR
CROWD SIMULATION

Kurtuluş Küllü

Ph.D. in Computer Engineering

Advisor: Uğur Güdükbay

July 2017

Modeling and animation of behaviorally plausible virtual crowds are important

problems of crowd simulation research. We propose a communication model in

order to equip virtual agents with the ability to autonomously communicate with

each other. We investigate whether such a communication model would improve

the plausibility of the simulated crowds. Initially, our efforts were towards a

model that is as human-like as possible and towards combining this model with

an agent architecture that contains psychological attributes. Early experimental

results showed that when we look at a crowd, the influences such as different

agent personalities causing different communicative behavior are hardly visible.

Besides, achieving these effects introduces complexity. Thus, a generic and easy-

to-use communication model instead of a human-like one became the target and

psychological agent attributes were dropped.

The proposed communication model and its application in several scenarios are

presented in this dissertation. As a second contribution, one of the application

scenarios led us to develop a planning algorithm for an agent in an unknown

environment. Simulation results are analyzed both visually and by using various

measurements and metrics. Our conclusion is that in addition to improving

observed behavioral variety, the effects of employing the communication model are

clear in the quantitative results and these effects are in line with our expectations

in each scenario.

Keywords: Crowd simulation, communication model, agent communication,

Foundation for Intelligent Physical Agents (FIPA), Agent Communication Lan-

guage (ACL).
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ÖZET

KALABALIK SİMÜLASYONLARI İÇİN

İLETİŞİM MODELLERİ

Kurtuluş Küllü

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Uğur Güdükbay

Temmuz 2017

Davranışsal olarak inandırıcı sanal kalabalıkların modellenmesi ve canlandırılma-

sı, kalabalık benzetimi araştırmalarının önemli problemleridir. Tez çalışmamızda,

sanal bireyleri, otonom olarak birbirleriyle iletişim kurma yeteneği ile donatmak

için bir iletişim modeli önerilmiştir. Böyle bir iletişim modelinin, benzetimi ya-

pılan kalabalıkların inandırıcılığını artırıp artırmayacağı araştırılmıştır. Başlan-

gıçta çabalarımız, mümkün olduğunca insana benzer bir modele ve bu modeli

psikolojik nitelikler de içeren bir sanal birey mimarisiyle birleştirmeye yönelikti.

Erken deneysel sonuçlar, kalabalığa baktığımızda, farklı sanal birey kişiliklerinin

farklı iletişimsel davranışlara neden olması gibi etkilerin fazla görünür olmadı-

ğını göstermiştir. Ayrıca, bu etkilerin başarılması karmaşıklığı artırmaktadır.

Bu yüzden, insan benzeri bir iletişim modeli yerine genel ve kullanımı kolay bir

iletişim modeli hedeflenmiştir ve psikolojik sanal birey niteliklerinin modellenme-

sinden vazgeçilmiştir.

Önerilen iletişim modeli ve çeşitli senaryolarda uygulanmasının sonuçları bu

tezde sunulmaktadır. İkinci bir katkı olarak, uygulama senaryolarının birinde

ihtiyaç duyulması sonucunda, bir sanal bireyin bilmediği bir ortamda planlama

yapmasını sağlayan bir algoritma geliştirilmiştir. Benzetim sonuçları hem görsel

olarak hem de çeşitli ölçümler ve metrikler kullanılarak analiz edilmiştir. Vardı-

ğımız sonuç, gözlenen davranışsal çeşitliliğin iyileştirilmesine ek olarak, iletişim

modeli kullanıldığında etkilerin sayısal sonuçlarda da gözlemlendiği ve bu etkilerin

gerçekleştirilen senaryolarda beklentilerimizle uyumlu olduğu yönündedir.

Anahtar sözcükler : Kalabalık simülasyonu, iletişim modeli, aracı iletişimi, Akıllı

Fiziksel Aracılar Kuruluşu (İng. FIPA), Aracı İletişim Dili (İng. ACL).
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Chapter 1

Introduction

Virtual crowd simulation is a research topic related to the fields of computer

graphics and artificial intelligence (AI). The simulated crowd consists of individ-

uals that are often called agents, which can stand for people or other entities.

Crowd simulation algorithms and the resulting simulations are commonly used

in virtual environments. They are also widely used to generate plausible effects

in computer animation and games. Other areas of application are the predic-

tion of pedestrian movement in evaluating structural and urban designs [1] and

navigation of robots among people [2].

A simulation’s similarity to the corresponding real-world event is called fidelity.

A high-fidelity simulation reproduces a real-life scenario better than a low-fidelity

one. This does not mean that high-fidelity simulations are always more useful [3].

Especially for simulations with entertainment and educational purposes, low-

fidelity simulations can produce better focus and results. However, for some

simulations, such as those targeting safety evaluation, high-fidelity is a desired

property. As a result, automatically simulating behaviorally plausible crowds

is one of the primary aims of the research in this field. The plausibility is often

achieved by improving heterogeneity of the crowd and agents displaying emergent

behaviors [4, 5]. There are numerous works [4, 6, 7, 8, 9] studying these points

and suggesting cognitive, behavioral, and psychological models for improvement.
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1.1 Motivation

Increased fidelity through behavioral realism is particularly important for safety

engineering applications. Human population grows every day and crowds are a

part of daily life, especially in large cities. Despite regulations about buildings,

emergency situations, and event organizations, recent history is full of tragic

events involving crowds. The Hillsborough Stadium crush in England in 1989 (96

casualties), the 9/11 attacks on U.S. in 2001 (near 3000 casualties), the Station

nightclub fire in Rhode Island in 2003 (100 casualties), the Love Parade disaster

in Duisburg in 2010 (21 casualties), the Sewol Ferry Disaster in South Korea in

2014 (approximately 300 casualties), the Mina stampede in Mecca during the

Hajj in 2015 (over 2000 casualties), and the recent Grenfell Tower fire in London

(over 80 casualties) are only some well-known examples.

A common characteristic of all these incidents is that loss of lives did not

happen at an instant but over a time interval. As a result, whether lives could

have been saved with better crisis management is a question that is always asked.

For example, the Grenfell Tower residents remained in their homes because of

a ‘stay put policy’, which is now being questioned. Behaviorally realistic crowd

simulations can help in foreseeing such problems so that precautions can be taken

before lives are actually lost.

This dissertation is motivated by a simple observation: Individuals in real-

world crowds communicate. Consider concert or sports event spectators or peo-

ple evacuating a building. The information shared between the individuals can

naturally influence the behavior and movement of the crowd. For example, an

evacuating person can talk with others nearby, or read signs; a herd member can

warn the others about a predator; a driver should use signals to inform others

when turning or changing lanes. In some cases, a leader in a crowd, such as a

police chief or a fire marshal, can inform the people to manage an incident, such

as guiding the evacuation from a dangerous location. These examples show that

communication can be important for an individual in a crowd in order to make

decisions. Despite this fact, information exchange between the agents has not
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received much attention in the crowd simulation field. Our work mainly deals

with modeling deliberate inter-agent communication in virtual crowd simulations

and analyzing the effects of such communication to the overall crowd behavior.

Focusing only on deliberate communication is necessary because taking com-

munication as a broader concept makes our task very difficult, if not impossible.

If a broader definition of communication, such as “transfer of information”, is

used, then almost everything can be thought as “communication”. For instance,

perception can be considered as information being transferred from the environ-

ment to the agent [10], and therefore, perception can be regarded as one form of

communication. To prevent such complexities, we focus on deliberate inter-agent

communication. Overall, we do not take into account phenomena that can be

considered as unintentional communication. Yet, an agent following other agents,

which, in an informal context, commonly regarded as unintentional/indirect com-

munication, is taken into account as part of the agent navigation.

1.2 Contributions of the Thesis

A novel way to simulate inter-agent communication in the context of virtual

crowd simulation is proposed. The impact of communication on the behavior of

the simulated crowd is evaluated. A simplified adaptation of a message struc-

ture specification from the multi-agent systems (MAS) community, known as

Foundation for Intelligent Physical Agents (FIPA) Agent Communication Lan-

guage (ACL) Message Structure Specification [11], is used. FIPA is a standards

organization operating under IEEE, which aims to produce software standards

specifications for agent-based systems and MAS. The proposed communication

approach can handle human-like, inter-agent message exchange in a virtual crowd.

We make no assumptions about agents’ (local or global) navigation capabilities;

our approach can be combined with any preferred navigation implementation.

The novel contributions of our work are:

3



1. A model to facilitate inter-agent communication in a crowd simulation sys-

tem that

(a) is designed as a separate module in the agent architecture,

(b) requires some form of perception capability,

(c) separates low- and high-level tasks in a modular manner, and

(d) can be easily extended and used in arbitrary scenarios and/or can

support different forms of communication.

2. A high-level planning algorithm to simulate the evacuation behavior in new

or unknown environments where the agents do not have a priori knowledge

about their environment. We demonstrate that the agents autonomously

communicate to navigate more effectively in such scenarios based on our

communication model.

Applications of the communication model in various scenarios to facilitate de-

liberate inter-agent communication are provided in this dissertation. First, it

is used in facilitating hollow communications, i.e., communications with no im-

portant information transfer. We measured the pedestrian flow both with and

without communication and compared the results with those from other simula-

tors. Then, we combined the communication approach with the high-level evac-

uation planning algorithm so that its application in enabling meaningful agent

interactions is highlighted. We analyzed the effects on pedestrian evacuation

times and trajectories. Finally, a comparison using the vfractal metric [12] is

provided between trajectories extracted from a real crowd video and simulated

agent trajectories with/without communication. The proposed communication

model can be combined with any crowd simulation method and does not signifi-

cantly increase the complexity. Crowds consisting of tens or hundreds of agents

can practically be simulated at interactive rates on current desktop systems.

4



1.3 Organization of the Thesis

The organization of the rest of the dissertation is as follows. In the next chapter,

a comprehensive summary of related literature on crowd simulation, communica-

tion models in general, communication of virtual agents, and the vfractal metric

is provided. The agent architecture is described next in Chapter 3. Then, the

communication model is discussed and explained in Chapter 4. In Chapter 5,

various preliminary experiments that led to a change of direction in our work are

discussed. We used the scenarios described in Chapter 6 in evaluating our final

model and highlighting the performance. Lastly, we conclude and discuss the

limitations of our work and possible future extensions in Chapter 7.
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Chapter 2

Related Work

As described in Introduction, our primary aim is to incorporate a communication

model for autonomous agents in a virtual crowd. There are several efforts for

which the main aim is to give a computer controlled autonomous agent the ability

to communicate. We will discuss some of these works in detail but before doing so,

we would first like to provide a summary of crowd simulation and communication

literatures.

2.1 Crowd Simulation

We found two comprehensive overviews of crowd simulation algorithms, one by

Ali et al. [13] and the other by Thalmann and Musse [14]. Pelechano et al. [5]

provide another survey of common crowd simulation methods and existing crowd

simulation algorithms and systems. Additionally, the authors’ three part simula-

tion system (CAROSA + HiDAC + MACES) is explained to a certain detail.

In general, virtual crowd simulation approaches are commonly grouped into

two classes: macroscopic and microscopic. The focus of macroscopic approaches

is not the individuals in a crowd but the crowd as a whole. In an opposing

sense, the behaviors and decisions of individuals, as well as their interaction with
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each other, are considered more important in microscopic approaches. Other

classifications with names such as fluid-dynamic or gas-kinetic models [15], social

force models [16], cellular automata models [17], velocity-based methods [18], and

biomechanic models [19] are also used.

There has been a need to populate virtual environments with crowds for movies

and animations. The “boids” (bird-oid objects) by Reynolds [20] are one of the

earliest and most popular solutions to this need. For movies and animations,

crowd simulation can be accomplished by offline techniques. More recently, a

similar need has emerged for games and virtual or augmented reality environments

but this time there is a real-time constraint [21]. Additionally, there is a desire

for agents to react to events in real-time which calls for agent autonomy.

Some crowd simulation efforts [22, 23] concentrate on producing visually plau-

sible crowds whereas others [24, 4, 25, 26] concentrate on producing behaviorally

plausible crowds [27]. There are many cases in which a concept from psychology

or cognitive literature is applied to simulating crowds. For instance, three ele-

ments, namely, personality, emotion, and mood, are incorporated into an agent

model in [6]. Turkay et al. [28] use information theoretical concepts in building

analytical maps. Then, they use these maps in adaptively controlling agent be-

havior. All such efforts aim to enhance the plausibility of the crowd with adding

as little complexity as possible. Kim et al. [9] claim that a common property of

methods using such behavioral or psychological models is that dynamic behav-

ior changes are not directly possible. Based on this observation, they suggest a

method to achieve such dynamic behavior changes. Their algorithm is based on

General Adaptation Syndrome and models dynamic behaviors in a virtual crowd.

The algorithm involves simulation events called stressors. Agents accumulate

stress from these stressors and their decision-making processes are affected by

the level of stress.

In [29], Silverman and colleagues make use of performance moderator functions

(PMFs) from behavioral literature to improve the realism of socially intelligent

agents. Their overall system, called PMFserv, is claimed to integrate PMFs on

physiology and stress; personality, cultural and emotive processes; perception;

7



social processes, and cognition. The second part of their work described in [30]

consists of integrating the PMFserv framework into a commercial game engine

to test whether it can improve the realism of autonomous characters.

Jaros et al. [27] analyze the behavior of real pedestrians in a train station

and use their observations to create a three-level behavioral model for virtual

pedestrians in a similar environment. The aim of their simulations is to provide

a testing environment for building designers to evaluate space utilization. Narain

et al. [31] propose a hybrid method to solve the collision avoidance problem for

dense crowds in a scalable fashion. Their continuum-based method makes it

possible to simulate a hundred thousand agents at near-interactive rates. Qiu

and Hu [32] present a framework to model group behaviors in a simulated crowd.

Their model enables easy modeling of different types of group structures and

their experiments show that different group sizes, intra-group structures, and

inter-group relationships significantly influence crowd behaviors.

The Agent Development and Prototyping Testbed (ADAPT) [33] and Menge

(German for “crowd”) [34] are two recent extensible modular frameworks aimed

at simulating virtual agents. ADAPT framework includes facilities for character

animation, navigation, and behavior. Its primary focus is on animation, in par-

ticular, on the seamless integration of multiple character animation controllers. It

couples a system for blending arbitrary animations with static (path finding) and

dynamic (steering) navigation capabilities for human characters. It also includes

an authoring structure so that new behavior routines can be integrated.

The primary focus of ADAPT is animation. In order to allow multiple ani-

mation controllers act on a character simultaneously, they are implemented as

modular components, called choreographers, each of which works on its own in-

visible copy of a character skeleton (shadow). A coordinator performs a weighted

blend of choreographers to produce a final pose.

Navigation is handled with navigation meshes and a predictive goal-directed

collision avoidance mechanism. Controlling agent behaviors is achieved via

parametrized behavior trees (PBTs) [35]. When they are used in a centralized

8



way, they also allow coordination of multiple agent interactions. PBTs invoke

agent’s navigation and animation capabilities like GoTo(), GazeAt() with three-

dimensional (3D) space positions as parameters.

Menge, developed by Curtis et al. [34], is another extensible modular frame-

work but here, the primary focus is on crowd movement. The crowd simulation

problem is decomposed into four subproblems, each of which is to be solved for

every agent in the crowd: goal determination, planning, facilitating reactive be-

havior, and agent motion. Although these names suggest general abstractions of

possibly complex concepts, Menge’s concentration on crowd movement reduces

them to different stages of motion planning. For example, given a goal for an

agent which is to go to a particular position, second subproblem (planning) re-

duces to finding a path avoiding static obstacles and third subproblem (reactive

behavior) reduces to following that path avoiding dynamic obstacles. In addition

to the built-in implementations of existing solutions for each subproblem, new

solutions can be integrated into the framework via its plug-in architecture.

When using Menge, the details of a scenario can be specified as an Extensible

Markup Language (XML) document. Two options are available for visualizing

Menge’s result. The first one is a simple, interactive 3D visualizer included with

the package. The other option is to export agent trajectories and behaviors for

use with external visualizers.

Agent behavior is modeled with Behavioral Finite State Machines (BFSMs)

that govern goal determination and planning subproblems. States in a BFSM are

referred to as FSM-states, which are different from agent states. Menge considers

two parts to an agent’s state. The position and the velocity of an agent together

forms the a-state (agent state) and the collection of all other properties of an

agent is called the b-state (behavior state). This is, again, an indication (and

a result) of the fact that the main problem being tackled is motion planning.

Agents are independent entities in Menge, i.e., centralized agent controls are

mostly avoided. The only major centralized part is the handling of spatial queries

(such as proximity checks). Simulations are parallelized at the agent level. The

efficiency of the parallelization method is evaluated in [36].
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Both frameworks are modular and extensible but there are some important

differences. ADAPT focuses on skeletal animation blending while Menge’s focus

is on agent trajectories. Also, due to the visualization complexities preferred

and ADAPT’s focus on articulated character animation, the number of agents it

can simulate at interactive rates is much less than Menge’s. ADAPT is reported

to achieve interactive frame rates approximately up to 150 agents. Most of the

computational cost result from the animation system (choreographers’ complexity

in particular). The Menge technical report lists some example simulations in one

of which (battle simulation) 32000 agents are simulated.

2.2 Communication

Communication is an extremely broad area that is often studied from the per-

spectives of other disciplines. It is claimed in [37] that although there is a large

body of literature and investigation about communication, an identifiable field of

communication theory does not exist. Yet, we are provided with various commu-

nication models.

Shannon and Weaver developed one of the earliest communication models [38].

Their aim was to mirror the workings of radio and telephone technologies. There

were four main components to their initial model: sender, channel, receiver, and

noise. Many researchers, such as Berlo [39], later extended this initial model.

These are generally called transmission models of communication. Eight compo-

nents are commonly considered in transmission models:

• Source;

• Message;

• Transmitter;

• Signal;

• Channel (Carrier);

10



• Noise;

• Receiver; and

• Destination.

The advantages of transmission models are that they are simple, general, and

quantifiable. They have been the base for and heavily used in telecommunications.

However, when the aim is to model real-world human communications they are

considered inadequate. Some of their inadequacies are listed by Chandler in [40].

For example, one inadequacy is that they do not allow for differing interpretations.

A different view of communication was provided by Wilbur Schramm [41],

whose works are mainly related to mass communication and its effects. This

view particularly indicates that desired or undesired impact of messages on the

target should be examined. In some sense, Schramm’s model tries to incorporate

human behavior into the communication process.

In Schramm’s model, communication is composed of at least three components:

source (individual, publishing house, and so on), message (in the form of ink on

paper, sound waves, and so on), and destination (such as an individual listening

or reading, or lecture audience). In order to communicate, the source encodes

her/his message, i.e., puts the information (or feeling) into a form that can be

transmitted. A key observation at this point is that the message is independent

of the source once it is encoded and sent. The message must be decoded for the

communication to be complete.

A communicator can be both an encoder and a decoder, i.e., can both transmit

and receive. A communicator receives a signal in the form of a sign. If that sign

was learned, then certain responses was also learned with it. Schramm calls

these responses mediatory responses and takes them as the meaning of the sign

for the individual. Mediatory responses are learned but they are also affected

by the current state of the individual. These responses, in turn, trigger learned

reactions again subject to the current state. Meaning extracted from decoding

induces a new encoding process. What is encoded depends on available response
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Figure 2.1: The reciprocal model of communication, redrawn from original in [41].

choices suitable for the situation that the individual is in. This encoding in return

can result in a new communication or an action. This circular process that the

individuals are constantly engaged in is shown in Figure 2.1.

The description up to this stage is in line with the model of communication by

Shannon and Weaver but, Schramm’s model introduces two major novel concepts:

feedback and field of experience (FoE). The return process of the circular view of

communication described in the previous paragraph is called feedback. This tells

an individual how her/his message is interpreted. A communicator often modifies

her/his messages according to what is decoded from the feedback. The FoE is

a representation of a communicator’s beliefs, values, and experiences as well as

learned meanings both as an individual or part of a group.

A strength of the model by Schramm is the concept of FoE. The justification

for this concept is the intuitive fact that a receiver and a sender must be in

tune for communication to be successful. The concept is not very crucial for

telecommunication since receivers and senders are often devices that can be tuned

(e.g., a radio receiver can be set to the same frequency with the transmitter). On

the other hand, it is complicated when we are considering human communication.
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Figure 2.2: Fields of Experience in communication, redrawn from original in [41].

Figure 2.2 is a redrawing from Schramm’s original article. The ellipses drawn

around represent the accumulated experience of the two individuals trying to

communicate. An individual can encode or decode only in terms of her/his own

accumulated experience. A classic example would be the primitive tribesman

thinking that the camera device captures and imprisons the soul. If a person has

never seen, heard, or read about a camera or something similar, and in addition

(s)he sees one functioning, (s)he can initially only decode with respect to her/his

experiences in life. If the ellipses do not meet, then communication will not be

possible. The larger the intersection area is, the easier communication becomes.

Schramm’s model is much more human communication oriented compared to

Shannon and Weaver’s model. It considers even more complex issues than what

is briefly summarized here such as feedback from one’s own messages and multi-

channel message sending.

A more recent model developed by Barnlund [42] emphasizes parallelism in

the communication process. In this model, communication is modeled as simul-

taneous sending and receiving of messages (and/or feedback). Models summa-

rized above and similar ones are often challenged particularly from social sciences

perspective. Some arguments used to argue that communication is much more

complex are:

• How one communicates determines the interpretation of the message.

• Information is separate from the communication itself.
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• Personal filters of sender and receiver can vary (different cultures, genders,

and so on.)

Communication is an extremely broad area that is often studied from per-

spectives of different disciplines. Especially when we delve into disciplines like

psychology or social psychology, the abundance of related theories become over-

whelming for someone from another discipline. In his highly cited work [37],

Robert Craig claims that communication theory as an identifiable research field

has not been established. He bases this claim on the following arguments:

• Researchers operate on separate domains.

• Books and articles on communication theory seldom mention others except

within narrow (inter)disciplinary specialties and schools of thought.

• No general theory or no common goals exist to which all refer.

In order to support these arguments, he denotes Anderson’s work [43], which

analyzed seven communication theory textbooks and found that they contained

249 distinct theories 195 of which appeared in only one book (just 22% appeared

in more than one book). Moreover, only 18 of 249 (7%) were included in more than

three books. In addition to his claims emphasizing the problem, he suggests how

a unified, central theory of communication can be established. He also sketches

what he calls seven traditions of communication theory briefly as follows:

• Rhetorical : practical art of discourse;

• Semiotic: intersubjective mediation by signs;

• Phenomenological : experience of otherness, dialogue;

• Cybernetic: information processing;

• Sociopsychological : expression, interaction, and influence;

• Sociocultural : (re)production of social order;

• Critical : discursive reflection.
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2.3 Communication and Virtual Agents

Embodied Conversational Agents (ECAs) is a field of research that is concerned

both with communication and virtual agents [44]. ECA research tries to address

all aspects of conversation because the main aim is to develop computer con-

trolled agents that can carry out a conversation directly with a human. There

are two popular approaches to developing such agents: linguistics oriented and

animation oriented [45]. Linguistics oriented approach focuses on the content and

form of the conversation, while animation oriented one focuses on facial expres-

sions and gestures. In the first group, the primary concern is what the agent is

saying, both words used and underlying meaning. Efforts in the second category

are also valuable because actions such as head or eye movements are important

components of conversations in real life. Animating these kinds of behaviors for

virtual agents greatly improves the realism of a simulation. The works on ECAs

are not directly related to our work because they focus on agents communicating

with real people through specific forms such as speech, whereas our focus is on

inter-agent communication not in a specific form but at an abstract level.

A framework to distribute dialogs among virtual crowd agents is presented

in [45]. Their virtual crowd simulations involve (unscripted) conversations that

are initiated and guided by agents’ attributes and the environmental context.

A set of scenario dependent conversational archetypes, such as simple asking-

answering, friendly chatting, bargaining, and arguing, is used in a three stage

dyadic conversation model. In addition, situation types (postural state of

agents when starting a conversation), relationship types (family members, friends,

strangers, etc.), and a representative set of environment contexts (street, restau-

rant, library, etc.) are also used. Five classes of agent attributes facilitate agent

heterogeneity. These attributes are grouped as static (age, gender, personal-

ity, culture), temporal (calendar), relational (friends, family members, coworkers,

seller, customer, supervisor, teacher-student), dynamic (emotion and mood), and

behavior and constraint (hands are occupied with a cell phone or coffee). Our

work differs from this one in that the dialogs here are only for visual improvement

and they do not include information sharing that could affect behavior.

15



The three part system (CAROSA + HiDAC + MACES) by Pelechano et

al. [5] includes is a simple communication model between agents. It is applied in

an evacuation scenario and the communication capability is as follows. A Cell-

Portal Graph (CPG) structure captures the connectivity of the building to be

evacuated. Some agents, called trained agents, have complete information about

the building (i.e., they have the full CPG), whereas others know only parts they

visited (i.e., they have a subgraph of the full CPG). Agents’ communication is

modeled as a partial sharing of their subgraphs. The sharing is partial in order to

make the agents’ behavior closer to real humans. The authors preferred to limit

information sharing to two levels of adjacency from current cell because people in

real life are unable to give detailed information about all of the structure. Also,

a panicking agent may get disoriented and lose part or whole of its information

about the environment.

Partial information sharing and panicking agents obviously make the commu-

nication more realistic, but the amount of information exchanged between agents

can still be considered as static with respect to communicating agent’s knowl-

edge. Agents can have different amounts of environmental knowledge but they

are always capable of communicating a standard part of it. Whether we could

make this amount dynamic was a question that led us to this dissertation. A

stressed agent in the real world may not be able to communicate efficiently. It

may even be the case that an agent gives incorrect information due to high levels

of stress. As a result of these considerations, we were curious whether an agent-

based simulation model could be established in which agents’ attributes influence

their communication capability.

Oijen and Dignum designed a system in which believable human-like com-

munication could be established [46]. In this work, the agents exist in a MAS

cognitively. A model for effective agent communication at the cognitive level is

proposed. While communicating intents, agents also display believable behavior.

The communication signal types are not restricted in the model. Some possible

types are speech acts, meta-conversational signals (e.g., turn taking), and affec-

tive signals like emotional state. It is argued by the authors that if the aim is to

simulate human-like agent interactions, then using MAS standards such as FIPA

16



ACL are not adequate. They introduce an intermediate layer that coordinates

the MAS’s capabilities and services with a game engine produced virtual environ-

ment. Therefore, separating the mind and body of an agent is the main concern

of this work. This separation allows agents to express behaviors, interpret intents

of others, and monitor and interrupt scheduled communication.

Park et al. [47] consider formation and sustainability of small groups in a larger

crowd to enhance realism. The cohesiveness of these small groups is sustained

with member agents’ communication. Using this common ground theory based

simulation and user studies, the authors show that the animation plausibility is

improved through agents’ communicative and social interactions.

Henein and White [48] fuse simulation of human factors such as information

discovery and communication with a cellular automata crowd model. A large-

room evacuation scenario that includes abundant exits is used. Environmental

information is represented with a static field and a dynamic one. Heterogeneity

is achieved by authoring a set of static fields (called views) instead of a single

one and individuals using different views. Communication happens only when

another agent is occupying the cell current agent wants to move to. It consists

of communicating agent sharing its view of the environment (static field it uses)

and blocking agent changing its own accordingly.

FIPA is a standards organization operating under IEEE Computer Society.

FIPA aims to produce software standards specifications for agent-based systems

and MAS. It should be noted that, although philosophically related, the usage

of term “agent” in AI and software communities differs. In the AI context, an

agent is defined as something that acts but also has some attributes to distinguish

it from a mere computer program such as autonomy, perception or adaptation

capability [49]. On the other hand, in the software context, an agent is considered

as a program that acts on behalf of its user [50]. In our work, we mostly adopt

the general meaning in the AI context. However, FIPA organization focuses on

developing standards for agent-based software. Therefore, to explain the ACL

specification in this section, the term is generally used to refer to software agents.
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Parameter Description
performative type of the communicative act
sender agent sending the message
receiver agent to receive the message
reply-to agent that the replies should be sent to
content content of the message
language language of the content
encoding encoding of the content expression
ontology ontology(s) required to understand content
protocol interaction protocol sender is employing
conversation-id conversation identifier
reply-with identifier that should be used in replies
in-reply-to the message this one responds to
reply-by time by which replies should be received

Table 2.1: Parameters in FIPA ACL Message Structure Specification [11]. The
message structure in our approach uses the parameter subset indicated by the
parameter names in italic. The message structure defines what is actually ex-
changed between the agents and it can be extended as needed.

ACL [11] specification is one of the most widely adopted standards of FIPA.

It is a standard language for software agent communications similar to but su-

perseding Knowledge Query and Manipulation Language (KQML) [51]. Both

languages are based on the speech act theory by Searle [52].

FIPA ACL Message Structure Specification standardizes the message form.

Table 2.1 shows the list of message parameters in the specification that can be

extended by specific implementations according to the requirements of the appli-

cation. The parameters that are included in a message are application dependent.

The only mandatory parameter is performative but most messages are expected

to also contain sender, receiver, and content parameters.

The performative parameter defines the type of the communicative act. A list

of possible values for this parameter is suggested in the FIPA Communicative

Act Library (CAL) Specification (see Table 2.2). The sender, receiver, and reply-

to parameters can take values that stand for a participant in communication.
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The content parameter is simply the content of the message. In some cases,

such as a cancel message, the content is implicit and this parameter is not used.

The language, encoding, and ontology parameters are all possible fields that can

be used to describe the content when necessary. The remaining parameters,

namely, protocol, conversation-id, reply-with, in-reply-to, and reply-by, are all

about communication management.

The CAL list in Table 2.2 is given as an example. We do not directly adopt

these communicative acts but instead build up a list of our own according to

the needs of our applications. Yet naturally, our needs intersect with the CAL

list and same or specific versions of these communicative acts such as failure,

direction request, and inform (about path information), are employed. There are

several additional FIPA ACL specifications each standardizing a different aspect

of agent communication.

In summary, FIPA has various specifications that are aimed at standardizing

software agent communications as a whole. Java Agent Development Framework

(JADE) [53] is a well-known example framework to develop agent applications

that are FIPA compliant. Although research on software and AI agents rarely

meet at common points, our belief is that inter-agent communication in virtual

crowds can become one such point.

2.4 Metrics

A metric we use in our evaluations is the vfractal estimation for movement tra-

jectories. The term vfractal [12] refers to a collection of methods that estimate

the fractal dimension [54] for animal movement trajectories. This estimation is

a measure of the straightness/crookedness of the trajectories. Theoretically, the

vfractal values range between one and two, one for a straight trajectory and two

for a trajectory so tortuous that covers a plane. Biology-related literature uses

vfractals commonly for animal movement paths. They have also been used to
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Communicative act Description
accept-proposal accepting a previously submitted proposal
agree agreeing to perform some action
cancel sender no longer wants receiver to perform some

action
cfp calling for proposals to perform some action
confirm informing the receiver that a proposition is true (re-

ceiver is uncertain about it)
disconfirm informing the receiver that a proposition is false (re-

ceiver believes it to be true)
failure informing the receiver that an attempted action

failed
inform informing the receiver that a proposition if true
inform-if macro action informing the receiver either propo-

sition is true or false (depending on what sender
believes)

inform-ref macro action informing the receiver about an ob-
jects reference to a descriptor

not-understood informing the receiver that an action it took (e.g.,
a message it sent) was not understood

propogate requesting the receiver to forward the embedded
message (final receivers know the original sender)

propose submitting a proposal
proxy requesting the receiver to forward the embedded

message (final receivers know the receiver)
query-if asking whether or not a proposition is true
query-ref asking for an object reference
refuse refusing to perform an action
reject-proposal rejecting a proposal to perform an action
request requesting the receiver to perform an action
request-when requesting the receiver to perform an action when

a proposition becomes true
request-whenever requesting the receiver to perform an action each

time a proposition becomes true
subscribe requesting to be informed whenever an object ref-

erence changes

Table 2.2: Communicative Act types in FIPA Communicative Act Library Spec-
ification.
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evaluate agent-based simulation methods [55] and pedestrian evacuation behav-

ior [56]. A trajectory is divided into pairs of fixed size steps for the estimation.

Same values are calculated for randomly selected steps and they are averaged to

obtain estimation results at that step size. Estimations are repeated similarly for

varying step sizes. It is possible to calculate confidence values for the estimations

made, which is an advantage of vfractal estimators.
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Chapter 3

The Agent Architecture

In our final model [57], there are three major components to an agent: percep-

tion, communication, and navigation (see Figure 3.1). The main contribution

of our work is the communication component in this architecture. Other parts

are mainly what is required to apply the communication model in our example

scenarios. Agents’ need to move around is satisfied by the navigation component.

The perception component provides services that are used both by the commu-

nication and navigation components. Each component contains subcomponents.

The perception component contains two further subcomponents, namely hear-

ing and sight. A spherical volume around the agent is used to represent the

hearing range and a pyramid shape in front of the agent represents sight volume

(cf. Figure 3.2). Important objects such as other agents, doors, or signs that are

in sight and/or hearing range are continuously tracked by these subcomponents.

The primary task of these subcomponents is to provide this tracking data to other

components when requested. The arrows from the perception subcomponents to

the other components in Figure 3.1 shows this relationship.

Both perception subcomponents function via collision detection methods. Ev-

ery object of interest in the scene, such as a door or an agent, has an attached

invisible convex volume, called a collider, which encloses the object and is as
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Figure 3.1: The agent architecture with its three major components: communica-
tion, navigation, and perception. The internal structure of components and their
relationships are also shown. The subcomponents of perception, namely sight and
hearing, track objects (e.g., doors) and other agents in sight and hearing range re-
spectively. Navigation consists of three layers: a local collision avoidance solution
(Reciprocal Velocity Obstacles; RVO), a global path planning solution (navigation
mesh), and a higher-level, scenario-dependent planning part. Planning can be as
simple as deciding a single target position at the beginning or it can be a complex
algorithm to simulate decision-making during evacuation (cf. Figure 6.3). Naviga-
tion does not require the communication component but cooperates with it when
it is enabled. Communication separates message/scenario-dependent (high-level,
FoE) tasks from those that are message/scenario independent (low-level, Audio-
visual, cf. Figures 4.2 and 4.3). The green color indicates the novel components
of our approach.
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Figure 3.2: The visualization of hearing and sight volumes.

close to its visible shape as possible. The volumes in Figure 3.2 representing the

perception subcomponents are in fact also colliders. Collisions of these colliders

are constantly checked by the game engine’s background mechanisms. We define

the tasks to be carried out when an object’s collider collides with the perception

collider and when an existing such collision ends. These tasks are simple list

management tasks. Both hearing and sight subcomponents keep lists of objects

of interest that lie within the representing volume.

The perception component does not have strong dependencies with the com-

munication component or navigation component. It provides services (lists of

objects of interest) that are used by the other components as needed. A major

and constant consideration during design and development has been the fact that

the current perception implementation could be changed, replaced, or extended.

For example, a user of our communication model might want to combine it with a

different hearing model or to include a smell capability for agents. In such cases,

the required modifications in navigation and communication components will be

minimal. Additionally, these modifications will almost always take place inside

the higher level subcomponents.

The navigation (i.e., path planning) problem, in general, consists of reaching

a given goal position from an initial position. The environment may contain only
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stationary obstacles in which case, it is called a static environment or, it may be

dynamic, meaning that it contains moving obstacles. In a dynamic environment,

navigation involves both calculating a collision-free path to the goal position and

following this path successfully without collisions with moving obstacles.

It is a common solution to consider navigation in a dynamic environment in

two stages as global and local navigation. The global navigation considers only

the static obstacles in the environment. Its task is to calculate a path to the

goal avoiding the static obstacles. Graph-based roadmap methods are popular

solutions to this problem [58]. Directly following the path calculated by the

global navigation solution is likely to result in a collision with a moving obstacle.

Therefore, the local navigation stage applies collision prediction and avoidance

techniques. The path is followed while nearby dynamic obstacles are taken into

account and avoided.

Our navigation component splits the task similarly and makes use of well-

known existing methods. The global navigation, which is the middle subcom-

ponent in the navigation component in Figure 3.1, uses a precomputed static

navigation mesh [59] to calculate static obstacle avoiding paths. The navigation

mesh is a mesh of convex polygons and defines the navigable areas of the envi-

ronment. This structure can also be considered as a graph with each polygon as

a node. Two nodes are connected if the corresponding polygons are adjacent. A

path can be calculated by graph search methods such as A* [60]. The static nav-

igation meshes for our example environments are generated automatically from

the scene geometries by specifying some parameters related to agent shape and

movement such as agent and maximum step heights.

The bottommost, local navigation subcomponent uses Reciprocal Velocity Ob-

stacles (RVO) [18] for avoiding dynamic obstacles (i.e., other agents). RVO ex-

tends the Velocity Obstacles (VO) method [61], which was developed for a robot

in a dynamic environment where dynamic obstacles are passive. When the dy-

namic obstacles are other agents that are also avoiding collisions, VO has some

drawbacks. In order to overcome these drawbacks, RVO assumes that the dy-

namic obstacle is active, i.e., it is capable of similar collision avoidance reasoning.
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A third navigation layer at the top in Figure 3.1, called the planning layer,

controls the use of this two-layer navigation capability. This planning layer is

scenario dependent. In some scenarios, planning is simple and straightforward

such as only specifying a final destination. In other scenarios, on the other hand,

it can involve more computation. For example, intermediate targets are used

instead of calculating a path from the current location to the destination when

we want to simulate exploration in the case that an agent has no knowledge about

the building.
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Chapter 4

The Communication Model

We focus on deliberate (i.e., intentional) communication. This boundary is nec-

essary because it can easily become difficult to decide whether an interaction is a

communication or not. The definition of communication according to the Oxford

dictionary [62] is:

“the imparting or exchanging of information by speaking, writing, or

using some other medium.”

This definition appears to be clear at first; however, it is easy to get confused

when one begins to consider what it includes. Let us consider a hypothetical

scenario. Two people, A and B, are situated in a room and A watches as B

stands up and turns towards the door. During this, at some point in time,

A will understand that B is going to exit, however, this new information was

not specifically exchanged. It could be said that there is no communication in

this example. But, what if it was actually B’s intention that A will understand

the situation? With this consideration, it becomes possible to say that there

is communication here as B is sending a message to A by her/his actions. This

simple scenario tells us that whether an interaction in real-world is communication

or not may be difficult to answer and that real-world communication is a complex
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Layer Function
7. Application Contains variety of protocols commonly needed by users
6. Presentation Data representation, encryption and decryption, converts

machine dependent data to machine independent data
5. Session Inter-host communication and session management between

applications
4. Transport End-to-end connections, reliability and flow control
3. Network Path determination, logical addressing, and routing
2. Data link Transforms a raw transmission facility into an error free line
1. Physical Transmitting raw bits over a communication channel

Table 4.1: Open Systems Interconnection communication model layers.

concept. Moreover, we have experienced that descriptions such as direct/indirect

or implicit/explicit communication are not well-defined, i.e., they are sometimes

used to refer to different concepts. We do not have the expertise and are not

attempting to provide a better definition for communication. However, because

of the problems described here, for our purposes, we limit ourselves by only

considering deliberate communication. It should be noted that when we say

communication or information, we are not referring to a particular form such as

speech. We are considering these concepts at an abstract level as communicative

intentions and meanings in our minds.

Layered network protocols (e.g., Open Systems Interconnection (OSI) and

Transmission Control Protocol/Internet Protocol (TCP/IP)) used for computer

networks can be considered as successful applications of transmission models of

communication. These layered architectures have become world wide standards

for their well-known advantages in implementation [63]. First of all, layers reduce

the complexity of the design. Each layer provides services to the higher layers

while hiding the implementation details of those services. Well-defined interfaces

between the layers make it simpler to modify or completely replace a layer’s im-

plementation. When we consider an agent in a virtual environment, a layered

architecture can also be useful. Let us consider the layers of OSI model shown in

Table 4.1.
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Each layer in OSI (as in other communications system models) provides ser-

vices to the layer above and uses the services of the layer below. Commonly,

Layers 1-3 are called media layers and Layers 4-7 are called host layers. In our

context of an agent in a virtual environment, we can match this distinction with

the embodiment and the mind of the agent. A layered architecture will have

similar advantages in this context. Cognitive (mind) layers can be responsible for

cognitive skills such as interpretation of messages or choosing how to communi-

cate a particular message. On the other hand, embodiment layers can represent

body related issues such as perceiving or actuating of signals.

We presented our communication model in its early stages at The 27th Con-

ference on Computer Animation and Social Agents (CASA’14) [64]. The initial

design at the time contained three layers. Our aim at these early stages was

to make the communication model as human-like as possible and to use it with

a more complex agent architecture. It was realized that the human-like com-

plexities, such as agent personality affecting communication capability, were not

clearly observable when viewing a crowd. Therefore, instead of making the model

as human-like possible and using a complex agent architecture that includes per-

sonality, we started working with a simplified agent architecture and targeting a

generic communication model. By generic, we mean a model that can be used in

new scenarios and combined with different agent architectures with as little effort

as possible. Currently, we have a two-layer communication model. Compared to

the aforementioned paper, currently, a more realistic simulation environment and

improved (3D) visualization are used and a more formal evaluation is provided.

When considering the actual layers within embodiment and cognitive cate-

gories, our aim is not to maintain a one-to-one similarity with OSI but to keep

the architecture as simple as possible and only introduce layers that we think are

necessary. Table 4.2 shows the initial three-layer architecture we employed. The

middle N-log layer was later dropped to reach the current two-layer design.

Out of these three layers, only the lowest, Audiovisual (AV) one was thought

as an embodiment layer. The other two layers were considered as cognitive layers.

We tried to keep the number of layers as low as possible (compared to a model like
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Layer Function
Field of Experience (FoE) Encoding and decoding with respect to the field of

experience
N-log Controls dialogs (or multilogs) between agents
Audiovisual (AV) Perceiving or producing of auditory or visual sig-

nals

Table 4.2: The initial three-layer architecture of our communication model. The
N-log layer is in italics because it was later dropped to obtain the current two-
layer design.

OSI). For example, we did not include any layers corresponding to the Network

and Data Link layers of the OSI. The main reason for the first one is that when

we, as humans, receive a message to be routed, we go through the interpretation

process before routing. Hence, we believe that routing tasks, when they occur,

should be handled by the decision making processes. The reason for the second

one (not having a layer corresponding to Data Link layer of OSI) is that including

phenomena such as unclear messages that include errors or missing parts due to

noise in the environment will further complicate the implementation attempt.

As a result, we ignored such phenomena and did not need error detection and

correction facilities. Nevertheless, the model can easily be extended with another

layer for this purpose. We want to emphasize that the layers we include are not

taken as complete or final. It is possible to easily extend the model.

The N-log layer was for slightly higher level tasks such as maintenance

of dialogs (or multilogs) from their beginning to finalization, which can span

short/long durations. Its aim was to control initiation, continuation, and final-

ization of dialog (or multilog) instances. However, the example applications of

the model requires only a few simple dialogs. Therefore, this layer was removed

and its responsibilities were handled by the FoE layer in our examples. If the

model is to be used in new scenarios and different types of or flexible dialogs

are needed, N-log layer can be reintroduced. Its implementation allows agents to

establish sessions between them. This involves dialog control, i.e., keeping track

of whose turn it is to send a message. The reason we called it N-log, not Dialog, is

that communications among more than two agents may also be needed. However,

it is much easier to implement facilities for dialogs. One way to handle multilogs
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is to treat them as multiple dialogs. Whether this treatment is satisfactory or

issues regarding its limitations are not topics we engaged in our work.

With the removal of the N-log layer, the communication process is only simpli-

fied by a two-layer design. The two layers separate high-level and low-level tasks.

The high-level tasks are those that depend on what the message is. On the other

hand, the low-level tasks are independent of the message type. We named the

upper layer after the FoE concept in Schramm’s communication model as FoE

layer and the lower layer is called the AV layer. Responding to a direction request

is an example FoE task. On the other hand, turning towards the receiver when

sending a message, moving closer if (s)he is not close enough, signaling from a

distance to catch attention are examples of AV tasks.

When considering real communication, it is more accurate to consider signal

creation, transmission, and reception as the lowest-level tasks. However, as we

mentioned before, we take communication at an abstract level, and hence, signal

creation and reception phenomena are not simulated. Two AV tasks, namely

transmit and receive, simply fill in for these signal-related concepts. We assume

that when an agent’s transmit routine is called, the given message is sent, and

similarly, when an agent’s receive routine is called, the message is perceived.

Through this abstraction, same mechanisms should work for different forms of

communication such as speech, writing, signaling, and others.

Having AV and FoE layers separates the high-level communication intentions

from the low-level mechanisms making communication possible. The communi-

cation model becomes more generic through this separation. In other words, the

layered design makes it easy to apply the communication model in new scenarios

and to combine it with different agent architectures. When new message types

are needed in a new scenario, the modifications will be local to the FoE layer.

Similarly, for example, if the agent architecture is to include a different perception

capability, the required changes will mostly be in the AV layer.

We also sometimes use the terms meaningful and hollow communications.

These terms allow us to treat communication instances that have an influence
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on behavior as a special case. Meaningful communication is used to refer to the

type of information exchange that can influence behavior. For instance, agents

communicating about exit routes in an evacuation scenario is meaningful com-

munication. Hollow communication refers to the type of communication where

there is no exchange of important information that affects agent behavior. For

example, in a scenario with pedestrians on a street, agents may talk with each

other without any information exchange to affect behavior. In both meaningful

and hollow communication instances, same low-level routines can be used as a

result of having separate FoE and AV layers. Only in the FoE layer, the difference

between the two types of communication will be apparent.

The complex notion of communication or a specific form of communication

such as a language becomes easier to deal with when we consider the syntax,

semantics, and pragmatics for that notion. Developers of ACL and similar lan-

guages mostly specify the syntax and semantics for their language but they also

employ some ideas observed in natural language pragmatics. Specification of a

common and extensible syntax is often the first task. In our model, the syntax

is defined by the message structure. Semantics is more about the underlying

meaning. Our message types are the core elements of the semantic specification.

Pragmatics is about the relationship between the context and meaning. The fun-

damental pragmatics elements in our model are the high-level (message/scenario

dependent) protocols used.

The form of exchanged information, i.e., the syntax, is specified by the message

structure. We partially adopted the ACL (see Table 2.1) parameters of FIPA ac-

cording to our needs. What we call message types in our model is the same as the

performative parameter options in FIPA ACL. Moreover, source, destination,

and content parameters are also made use of. The types of messages we used

in our example scenarios were created as necessary. The present collection of

applied message types, which corresponds to the semantics in our model, are:

• Wave: the type of message that is used when the sender wants to attract

the receiver’s attention; this message type will be necessary when the sender

is in receiver’s sight but not in hearing range;
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• Chat: the type of message that is used to simulate hollow communication;

• Direction Req: the message type that is used in asking about direction;

a target location can be included in the message content;

• Path: a message type that is used in responding to a Direction Req;

message content includes a full path;

• Final and Near Target: a second possible response to a Direction -

Req; message content only includes a final and a nearby intermediate target

location;

• Exit Through: a third possible response to a Direction Req; message

content includes a particular navigable object such as a door or staircase;

• Failure: the type of message that is used when a meaningful response

cannot be given.

When our communication model is to be used in a new application, new mes-

sage types can be added to this collection as needed. One of the advantages of the

layered architecture in our application is that the highest level communication

intentions are abstracted away from the modules facilitating the communication

between agents. Our agents will very likely have different reasons for commu-

nicating in different scenarios. For example, in a building evacuation scenario,

agents need to communicate information regarding exit routes. But in a different

scenario, this particular communication intention may be inessential and others

may be needed. The layered architecture allows us to treat these highest level

intentions in a similar way with communication requests of different applications

on a computer system. A file transfer application sends and receives very different

messages compared to a video teleconferencing application, but they make use

of same lower levels in the TCP/IP protocol. In short, in the proposed layered

architecture, it is easy to introduce new message types at the FoE layer as they

are needed by new scenarios.
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4.1 Audiovisual (AV) Layer

This layer represents the low-level sending and reception capabilities that are in-

dependent of the message type. An agent sending a message needs to realize a

speech act or gesture. Also, each agent is required to be aware of its surround-

ings in order to receive messages. This layer mainly deals with simulation of

these phenomena, therefore, it relates to the perception components of the agent

architecture and the AV layers of other agents.

The main responsibilities of the AV layer are to deal with transmitting a mes-

sage passed from the upper layer to the destination and to handle an incoming

message. However, simulating a human-like perception and expression capability

for agents (the major issue driving the field of ECAs) is not a contribution of

our thesis. Speech recognition or synthesis are not topics we deal with. Trans-

missions in both directions are essentially implemented with simple method calls

and animation of the virtual character. Here, the animation is only for viewer’s

visual understanding of the act and not taken as a communicative act by other

agents. Other agents only consider the message sent via the method call.

If the communication is directed to a specific agent, then the AV layer tries

to locate that agent. Whether the message is sent directly or not depends on

the position of the sender with respect to the receiver and the orientation of the

receiver. We assume a spherical area around an agent for hearing and a pyramid

shaped area in front of the agent for seeing as was shown in Figure 3.2. A top-

down view of this perception model is given in Figure 4.1. The diagram shows

the perception areas of a receiver that is at the center of the circle.

A message to be sent can be a gesture such as waving or a spoken question. If

a sender is both inside the hearing range and sight of a receiver (i.e., in Area I),

then message sending can directly take place no matter what the message is.

If the sender is in Area II then speech is the only option, while gesture is the

only option if the sender is in Area III. In each of these cases, to continue the

communication after the initial message, agents may need to move or the receiver
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Figure 4.1: A top-down view of perception areas. The receiver agent is at the
center of the circle. The circle represents hearing range and the conical area in
front represents sight range.

agent may need to turn towards the sender changing its orientation. If the sender

agent is in Area IV or V according to the receiver, then it has to move towards

other areas in order to send the message. When the sender is in a location that

makes gesturing or speaking possible, then the receive method of the receiving

agent is called. It is also possible that a message is passed down to the AV layer

to be broadcast. In this case, the receive methods of all nearby agents are

called. Animations are invoked properly together with these method calls so that

communication behavior is visible to an observer of the simulation.

The flowchart in Figure 4.2 summarizes the implementation for low-level mes-

sage sending tasks in the AV layer. Assume that when an agent wants to send

a spoken message to another agent, we are at the Start node. The sender first

checks whether the receiver is in sight. The agent needs to explore its surround-

ings if the answer is no (i.e., when the receiver is not in sight). Otherwise, the

sender should determine whether the receiver can hear her/him or not. The spo-

ken message can be sent when the sender is within the receiver’s hearing range.

When the sender is outside the hearing range, (s)he needs to move towards the

receiver. There are two possibilities in this situation. If the sender is in sight

of the receiver despite being outside the hearing range, then (s)he can Wave to

attract the receiver’s attention and then move. The Wave message causes the

receiver to stop if (s)he is also moving and prevents a possible communication

failure. In the second possibility, the sender is both outside the hearing and sight

ranges and the only thing (s)he can do is to move towards the receiver.
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Figure 4.2: The flowchart for the Audiovisual layer message sending procedure.
When there is a spoken message to be sent, the sender agent begins from the
Start node. Message/scenario type is irrelevant. There two possible results after
following this routine. The message is sent, or the agent failed to do so.

Our communication component is implemented as a push-down automaton

(PDA) [65]. There are two reasons for this design decision. The first reason

is that it is natural and straightforward to represent an agent’s communicative

situation at any point as a communication state. The second reason is that in

some situations, an agent needs to backtrack to the previous state. For example,

after attracting attention, a sender agent needs to roll back so that it can send

the original message. PDA’s stack structure facilitates recording state changes;

as a result, it enables rolling back when needed. The PDA states for the AV

layer, together with the mathematical abbreviations we use, are:

• Not Communicating (qNC),

• Wants to Communicate (qWtC),

• Found Comm Target (qFCT),

• In Hearing Range of Target (qIHRoT),

• Waiting for Transmission (qWfT),

• Waiting for Transmission Moving Closer (qWfTMC),

• In Sight of Target (qISoT),

36



• Moving Closer (qMC),

• Not in Sight or Hearing Range (qNiSoHR),

• Received a Message (qRaM), and

• Attention Caught (qAC).

Most state names themselves explain the states’ purposes. There are two states

that are used when the receiver of a message is busy: Waiting for Transmis-

sion and Waiting for Transmission Moving Closer. The state diagram

for the AV layer part is shown in Figure 4.3. Any State is a placeholder to

represent all other states. Each transition to a state S from Any State actually

stands for the set of transitions to S from every state. For instance, the transition

to Attention Caught from Any State allows an agent to successfully receive

a Wave message no matter what state (s)he is in. The transition conditions are

not given in the figure for clarity. They are often natural conditions expected for

that state change. For example, the transition to In Sight of Target from

Found Comm Target state happens with the condition that this agent (the

sender) is in sight of the receiver agent that was found previously.

Formally, a PDA M is traditionally defined as a septuple M = (Q,Σ,Γ, δ, q0,

Z0, F ) whereQ is a finite set of states, Σ is a finite set of input symbols, Γ is a finite

set of stack symbols, δ is the transition function with δ : (Q×Σ×Γ) → (Q×Γ∗),

q0 is the starting state, Z0 is the initial stack symbol, and F ⊆ Q is the set

of accepting states. We use the ∗ symbol to indicate the Kleene closure for a

set. The PDA that we use has some differences. State changes are triggered by

certain conditions rather than the user input. Therefore, it is more appropriate

to call Σ as a condition set but mathematically there is no difference. The other

difference is that our PDA is not intended to recognize strings or accept certain

situations but rather to control agent actions. Hence, instead of accepting states

(F ), we need a set of actions A and an action function, α : Q → A∗. As a result,

our PDA M ′ can formally be defined as an octuple M ′ = (Q,Σ,Γ, δ, q0, Z0, A, α).

The elements are:
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Figure 4.3: The Audiovisual layer state diagram. Transition conditions are omit-
ted for clarity. Any State is a placeholder representing all other states. Towards
the left, we have the states that are mostly related to message reception, while
on the right, we have those that are related to message sending (cf. Figure 4.2).

• Q, the state set, is a union of the AV layer states QAV = {qNC, qWtC, . . . ,

qAC} listed above and the FoE layer states (cf. next section), i.e., Q =

QAV ∪QFoE;

• Σ, the finite set of conditions, contains boolean values representing var-

ious situations such as another agent being in sight or the target of

communication being busy, Σ = {CommunicationNeed, SomeoneInSight,

TargetCanHear, TargetCanSee, TargetBusy, MessageSent, IncomingMes-

sage, WavedAt, MessageProcessed};

• Γ, the stack symbols, are same as the states, i.e., Γ = Q;

• δ, the transition function, is given in Table 4.3;

• q0 = qNC is the starting state;

• Z0 = qNC is the initial stack symbol;
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qNC qWtC ↓ - - - - - qRaM ↓ qAC ↓ -

qWtC - qFCT ↑↓ - - - - qRaM ↓ qAC ↓ -

qFCT - - qIHRoT ↑↓ qISoT ↑↓ - - qRaM ↓ qAC ↓ -

qIHRoT - - - - qWfT ↑↓ qNC ↑ qRaM ↓ qAC ↓ -

qWfT - - - - - qNC ↑ qRaM ↓ qAC ↓ -

qWfTMC - - qWfT ↑↓ - - qNC ↑ qRaM ↓ qAC ↓ -

qISoT - - qIHRoT ↑↓ - qWfTMC ↑↓ - qRaM ↓ qAC ↓ -

qMC - - qIHRoT ↑↓ qISoT ↑↓ - - qRaM ↓ qAC ↓ -

qNiSoHR - qFCT ↑↓ qIHRoT ↑↓ qISoT ↑↓ - - qRaM ↓ qAC ↓ -

qRaM - - - - - - - qAC ↓ qNC ↑

qAC - - - - - - qRaM ↓ - -

Table 4.3: The transition function (δ) of the push-down automaton. The rows
correspond to different states and the columns correspond to different conditions.
Each table entry gives the next state and the stack operation(s) for a particular
state transition. An up arrow (↑) indicates a stack pop() operation and a down
arrow (↓) indicates a stack push(name) operation where name is the name of the
new state.

• A = {stop(), turnToTarget(), transmit(), wave(), moveCloser(),

wait(), turnToSource(), resume()} is the set of actions; and

• α : Q → A∗, the action function, is given in Table 4.4.

4.2 Field of Experience (FoE) Layer

Going up the hierarchy, the FoE layer represents individual encoding and decod-

ing tasks. In Schramm’s communication model (cf. Section 2.2), encoding and

decoding happens with respect to a communicator’s FoE (its knowledge, expe-

riences, beliefs, and so on). It is the responsibility of the FoE layer to turn a

communicative intent into a message (or vice versa) according to the state of

the agent. The message and/or scenario dependent protocols used in this layer

specify the pragmatics.
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State Action
qNC resume()

qWtC -
qFCT stop(), turnToTarget()
qIHRoT transmit()

qWfT wait()

qWfTMC moveCloser(), wait()
qISoT wave(), moveCloser()
qMC moveCloser()

qNiSoHR moveCloser()

qRaM stop(), turnToSource()
qAC stop(), turnToSource()

Table 4.4: The action function (α) of the push-down automaton

There can be various communicative intentions among many different scenar-

ios. This layer will evolve as new scenarios are developed and new information

that agents can share is introduced. There is an analogy here with new protocols

being required and developed in computer networks as new applications making

use of the network emerge. For the time being, we only consider the fact that

the data to be communicated will be coming from (or going to) the components

of the agent state or the decision making processes. Therefore, one key issue is

about recognizing what the message is about.

The PDA described in the previous section is actually extended by the FoE

layer. There will be additional communication states, transitions, and actions

needed in an application scenario by the FoE layer tasks. FoE layer states were

not included in the description for brevity and generality. In our application

scenario examples, we used two FoE layer states. These are Direction Re-

quested and In Chat states. It should be obvious that these states are scenario

and message type dependent.
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Chapter 5

Preliminary Experiments and a

Change of Direction

The initial layered design was different from our final model. It was meant to be

combined with a more complex agent architecture. The agent attributes consid-

ered at the time are given in Table 5.1. The static psychological attributes are

collectively known as the OCEAN model of personality or the Big Five Person-

ality Traits. They have been successfully applied in crowd simulations to achieve

agent heterogeneity [6]. The rest of the attributes can be easily understood from

their names. The static physiological agent attributes represent physical capabil-

ities of an agent such as how fast it can move, stop, or turn and how far it can

see or hear. The dynamic attributes represent parts of the agent state which can

change during a simulation. Preferred speed is the magnitude of the velocity that

the agent prefers to move with when there are no constraints on movement, i.e.,

when there are no imminent collisions. Stress and fatigue represent the mental

and the physical tiredness of the agent respectively. “Is Injured” attribute is a

boolean value to simulate a major deterioration of agent capabilities.

Various preliminary experiments were carried out in order to test the influence

of such agent attributes on communication. These are grouped under three dif-

ferent experiment sets explained in sections below. We concentrated on varying
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Psychology Physiology
Static Openness

Conscientiousness
Extraversion
Agreeableness
Neuroticism

Maximum Speed
Maximum Acceleration
Minimum Acceleration
Maximum Angular Speed
Hearing Range
Sight Range

Dynamic Stress Preferred Speed
Fatigue
Is Injured

Table 5.1: Agent attributes for the earlier agent design

only a small subset of attributes among agents so that the effects can be noticed

more clearly. The static physical attributes are kept the same for all agents and

stress is not simulated. Depending on the particular set and a particular scenario

in that set, the static psychological attributes and/or fatigue are varied or not.

5.1 Experiment Set I

Three experimental simulation scenarios formed the main discussion of our first

paper [64] during the early stages of our work. A single floor building with two

exits was used in an evacuation scenario. None of the agents knew the building

at start. The connectivity of the building parts were represented with a CPG [5].

Each agent has its own CPG to represent its knowledge of the building. This

personal copy can be any subgraph of the full building CPG. In the experiment,

an agent’s personal CPG, initially only includes the cell (room) the agent is

in and the cells that are one-adjacent to that cell. The evacuation behavior is

summarized in the flowchart in Figure 5.1. Here, the key point connecting agent

attributes and communication (initiation) is the probability calculation. The

more extrovert and social an agent is, the higher the probability, and hence, the

more likely the agent is to ask for directions.

Another probability is calculated when an agent receives a message. Again,

personality values influence this probability. At this point, receiving agent decides
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Figure 5.1: The flowchart describing the evacuation behavior. This is an earlier
and simpler version of the high-level planning algorithm we developed for an
agent in an unknown environment (see Figure 6.3).

whether it will evaluate and respond to the message properly. The more introvert

the agent is, the more likely it is to directly respond in a negative way and cut

short the attempted dialog. Here, we observe a case in which agent attribute

affects communication progression (and hence, conclusion and outcome).

In the first of three simulation scenarios, agent personalities are not varied,

i.e., all agents have the same, medium (in terms of introversion/extraversion)

personality parameters. The simulation is carried out until all agents evacuate

the building with no specific events occurring (cf. Figure 5.2a). It is not quite

possible to demonstrate the communications taking place over the course of the

simulation with few images. Therefore, in Figures 5.2a and 5.2b, we provided a

top-down view of the simulation to demonstrate path planning and evacuation

behaviors.

To be able to show the effect of fully autonomous communication capabilities

of agents, the second simulation scenario involves a hazardous event. The main

door of the building malfunctions 20 seconds into the simulation so that it cannot

be used by agents afterwards. Everything else is the same as the first simulation.

It is observed that the agents decide completely autonomously to recalculate their

paths and share information with others (cf. Figure 5.2b).
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(a) Scenario 1

(b) Scenario 2

Figure 5.2: Still frames (frames 1, 91, 181, 271, 361 and 451 left to right, top to
bottom) from the simulation. Agents have the same average personality. (a) No
events. (b) The main door becomes unusable after 20 seconds.
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Finally, in order to show the effect of personality to communication, the last

simulation scenario involves varying personalities for agents. The female charac-

ters are assigned extrovert personalities (0.9 in the scale [−1, 1]) whereas male

characters are assigned introvert personalities (−0.9 in the scale [−1, 1]). Every-

thing else is the same as the second simulation scenario. A figure is not provided

for this case as it will be very similar to the previous one and as it will not

demonstrate much.

5.2 Experiment Set II

A second group of experiments involved agents starting in a specific formation

in an open environment without any obstacles. The only type of communication

used is chatting, which does not involve any information passing (i.e., hollow

communication). Our aim here was to evaluate attributes’ effect only on com-

munication initiation. All communications were standard in terms of duration.

We were interested in the mean number of interactions (x̄i) for all agents in a

simulation run and the standard deviation (σ) for this distribution.

There are two different scenarios in this experiment set that differ in the initial

and final formations of the crowd (see Figure 5.3). In Scenario 1 experiments, the

agents are placed regularly on the circumference of a circle. In these setups, each

agent’s goal position is the antipodal position (i.e., the opposite of start position

with respect to the center of the circle). In other words, the ideal path for each

agent is the diameter from the starting point. All ideal paths meet at the center

of the circle. In Scenario 2 experiments, the agents are regularly placed in two

opposing rectangular areas and the goal position for an agent is given as the same

position within the opposite rectangle.

Experiments in both scenarios are carried out for differing number of agents.

Scenario 1 is simulated for 24, 60, and 120 agents, whereas Scenario 2 is sim-

ulated for 50, 72, 98, and 128 agents. For each of these cases, there are two

settings: one in which all agents have standard personality and personality has
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(a) Scenario 1 (b) Scenario 2

Figure 5.3: The two scenario formations used for agent placement and goal posi-
tion assignment.

# agents 24 60 120
¬P P ¬P P ¬P P

x̄i 1.75 1.75 1.3 1.33 1.56 1.7
σ 0.53 0.68 0.53 0.57 0.58 0.66

Table 5.2: Scenario 1 experiment results for mean number of communications
(x̄i) and standard deviation (σ).

.

no effect on communication (¬P ) and the other one (P ) with varying personal-

ities and personality affecting communication initiation probability. The results

are summarized in Tables 5.2 and 5.3.

# agents 50 72 98 128
¬P P ¬P P ¬P P ¬P P

x̄i 0.68 0.68 0.61 0.53 0.69 0.63 0.55 0.40
σ 0.68 0.82 0.52 0.56 0.56 0.62 0.54 0.55

Table 5.3: Scenario 2 experiment results for mean number of communications
(x̄i) and standard deviation (σ).

.
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5.3 Experiment Set III

In the third set of experiments, our aim is to simulate a possible effect of dy-

namic agent attributes. The communication routine is modified so that a single

dynamic attribute, namely fatigue, could alter communication initiation proba-

bility. Fatigue represents the physical tiredness for an agent and its effect is that

the more tired an agent is, the less likely it is to communicate.

Each agent is assigned a random fatigue value in the range [0, 1] at the begin-

ning of the simulation. During the simulation, fatigue increases at a standard rate

(an exaggerated rate of approximately 0.0017 units per frame is used below). In

order to observe the outcome, active number of conversations are counted during

a simulation with five second intervals. We used the same start and stop for-

mations as Scenario 1 of Experiment Set II. Simulations are executed with three

different settings for agents.

1. NoPersNoFtg : Agent personality and fatigue has no effect on communica-

tion initiation.

2. PersNoFtg : Agent personality affects communication initiation, but fatigue

does not.

3. PersFtg : Both agent personality and fatigue has effect on communication

initiation.

We perform ten simulation runs for each case and the number of commu-

nications measured at five second intervals are averaged. The graph given in

Figure 5.4 summarizes the results.
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Figure 5.4: The average number of active conversations among ten simulation
runs at five second intervals.

5.4 Discussion

It can be observed in the visual simulation results for Experiment Set I Scenario 2

that when the main door becomes unusable, the agents who were targeting this

door autonomously begin to form a discussion group. They share information

about a new exit route and each individual leaves the group to execute its own

plan. When personalities are varied between female and male characters in Ex-

periment Set I Scenario 3, it is observed that the females tend to communicate

more, whereas males appear to be eager to leave the discussion group quickly.

The values for the average number of interactions per agent and the standard

deviation of these values among agents are given for Experiment Set II in Ta-

bles 5.2 and 5.3. The main reason to include varying attributes for agents and

simulate their effect on communication is to achieve a level of heterogeneity for

communication behavior. In other words, we wanted agent personalities to influ-

ence communication, for example, some agents to be more talkative and some to

be more reluctant to talk. In our results, although the mean values vary due to

the pseudo-random settings and decisions, there is a visible tendency in standard
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deviation values. For both scenarios, there is an increase in the standard devi-

ation when the personality is varying and effecting communication as compared

to the case where the personality is fixed and not effecting communication. This

means that when we vary the personalities, the number of interactions vary more

among agents. This is a correlation we expected to observe.

In the final set of experiments, we investigate the effect of a single dynamic

attribute, fatigue, to communication. When we compare the results for NoPer-

sNoFtg and PersNoFtg cases with the PersFtg case, we observe that PersFtg

values generally remain below, particularly as simulation time increases. This

observation is in line with our expectations because agents become more tired in

time and tired agents prefer to communicate less.

Overall, some or perhaps all of these preliminary experiment settings and sce-

narios may be considered unrealistic. However, this should not be a concern as

they are mainly designed to observe and test whether the intended effects are

achieved. We have mainly experimented with the attributes’ effect on communi-

cation initiation. In general, our results seem to approve that static attributes’

effect on communication can enhance heterogeneity and dynamic attributes’ effect

can be used to add dynamic changes in communicative behavior. However, it is

important to ask whether the improvement in heterogeneity and the introduction

of dynamic changes can enhance the user-perceived realism.

A key realization at this point was that justifying the usefulness of intended

communication model and its validation are more crucial issues than constructing

a complex model. In other words, there is no point in developing a complex model

if its contribution to the perceived realism is to be minor. Therefore, our primary

concern has become a search for ways to justify the use of a communication model.

In our efforts to do so, two issues turned out to be the major focus points.

1. Various realistic scenarios are required to justify and validate the model as

well as to see how it can be improved.

2. To the best of our knowledge, there is no crowd simulation work that focuses
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on inter-agent information exchange and its effects on behavior but we still

need some form of comparison with existing crowd simulation techniques.

As a result of these issues, we backtracked to look at agent communication

standards of MAS community and existing crowd simulators. In particular, we

backtracked to FIPA ACL. Earlier, this standard was not considered directly

related as it was criticized to be insufficient to simulate human-like interactions.

However, we began to be concerned more about evaluation and less about the

communication model being human-like. As a result, FIPA ACL specification

and KQML that it superseded were explored.

Another problematic issue was the fact that in scenarios we developed, the

simulation environments were often unrealistic. Modeling a complex and large

environment in detail requires architectural skills and considerable amount of

time (especially for the untrained and/or untalented). Acquiring such models is

also difficult but thanks to an friend, Architect Mete Sezer, a realistic, large, and

complex school building model was obtained. Figure 5.5 shows a simple rendering

of this school building model. The actual structure does not exist currently but

it is planned to be constructed in the near future.

Prior to using this realistic building, CPGs were used to keep the building

connectivity information. It was used in global path planning and most of the

communication acts used personal agent CPGs. The CPG for the new building

would be large and complex and its creation was found to be very time consuming.

Figure 5.6 shows only a small part of the full CPG, which roughly constitutes

one fifth of only a single structural level. The automation of the procedure was

attempted but the results were unsatisfactory. Due to the lack of CPGs, the global

path planning was changed in such a way that it uses a navigation mesh and the

contents of inter-agent communication were modified not to include CPGs.

An important question is “How is our work justified and what use will it be?”

After the preliminary experiments, there has been a change in how we answer this

question. Early on, the intention was to develop a communication model that

was going to allow agents to communicate as human-like as possible so that the
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(a)

(b)

Figure 5.5: Rendered images of the school building model: (a) a top-down view
of the whole model and (b) a view from inside showing the details.
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Figure 5.6: A subgraph of the building’s Cell-Portal Graph that only shows one
adjacency level from the main entrance and the lower part of the main entrance.
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realism of the simulated crowd would be improved. Then, it became apparent

that considerable improvement in realism will not stem from trying to imitate

the complexities of real world human communication. As a result, a divergence

from the original intention became necessary. The most important aspects of the

target communication model are considered to be the following two notions:

• The model should be complex enough just to facilitate externally observable

information passing between agents.

• The model should not be complicated by capabilities which result in very

little or no observable difference in simulations.

These new boundaries for the communication model caused some changes in

research direction. An example is the way we consider FIPA ACL. We became

aware of this standard early in our research. But, it was not considered because it

was criticized for being inadequate to simulate human-like interactions between

agents. When the intention for the communication model became not to be

as human-like as possible, FIPA ACL was reevaluated for usefulness. Making

the agents FIPA ACL compliant or adopting a subset of FIPA ACL to regulate

messaging mechanisms was found to provide some advantages.

A second question that is persistently difficult to answer in crowd simulation

research is “How can we validate the results?” The general aim of the field is

to simulate visually and/or behaviorally ever realistic crowds of as many agents

as possible as fast as possible. The number of agents and the simulation frame

rates are quantitative properties, and therefore, easy to compare. The visual

realism is difficult to quantize as well but the hardest property to validate is the

behavioral realism. Efforts on automated analysis of real-world crowd videos and

comparison attempts of virtual with real crowd behavior exist but a generally

applicable validation method currently does not.

A more common method in the field is to use comparisons between simu-

lations. Generally, simulations generated using the novel approach in question

are compared with others generated using alternative approaches. In the case
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that an alternative does not exist, the comparison is carried out with simulations

generated by disabling the novel approach. In fact, one of the motivations for

developing crowd simulation frameworks such as ADAPT and Menge reviewed in

Section 2.1 is to facilitate meaningful and better controlled comparisons between

different approaches.

Various scenarios can be authored to show the effect of the communication

model but how will we evaluate the realism of resulting simulations? The options

are (i) to compare quantitative simulation results with real world data, (ii) to

analyze quantitative simulation results and look for conformances with existing

theories, and (iii) to analyze visual simulation results and look for similarities with

real crowds. The first two options are more objective and scientifically correct

whereas the last one is more subjective.

There exist several works aimed at extracting data from real crowd videos

such as [66], [67], [68], and [69]. The extracted data are often the movement

trajectories of the individuals in the video. The problem (in terms of the first

evaluation option) is that it is not clear how the effect of communication can be

understood from trajectories.

Realizing the second evaluation option has proven even more difficult. We have

browsed psychology and sociology literature to a certain degree but were unable

to locate a general work on effects of intra-group communication on group be-

havior. Nonetheless, the search has not been completely useless. It was learned

that people generally panicking in crowd situations is a popular but false as-

sumption [70]. On the contrary, individuals experiencing a crowd incident mostly

behave rationally but inadequate information is often a factor in most incidents.

The third option for evaluation appears to be the most applicable one. Al-

though subjective in nature, it is still useful to show the effect of an applied

technique or a new model. In particular, when the crowd simulation’s main focus

is not navigation but to incorporate a human factor, this third option becomes

the major evaluation method.
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Chapter 6

Simulation Scenarios and

Evaluation

The final version of our communication model is shown in action by four example

scenarios (cf. Figure 6.1) described below. There is only hollow communication

in the first two scenarios. The evacuation of a realistic building model forms

the third scenario. Here, the simulated communications are meaningful instances

in the form of asking and answering about exit routes. In the last scenario, we

compare simulated agent trajectories with real pedestrian trajectories extracted

from a video. We used the UnityR© Game Engine [71] to realize all these simulation

scenarios.

It was previously mentioned that the lower parts of the navigation component

in Figure 3.1 are scenario independent. This means that it does not make a differ-

ence whether the destination given by the high-level planning is an intermediate

target or a final one. An agent moves from her/his current position to any loca-

tion by querying the static and global navigation mesh and then locally avoiding

collisions while following the calculated path. We make use of the built-in game

engine tools to achieve these. The preferred speed is the only agent attribute

related to these tasks.
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(a) Bidirectional flow (b) Passageway

(c) Evacuation (d) Chat

Figure 6.1: Simulation screenshots from the four example scenarios used. There
is only hollow communications (i.e., communications without important informa-
tion sharing,) in the bidirectional flow, passageway, and chat scenarios. Meaning-
ful communications by which agents share environment and exit route take place
in the evacuation scenario.
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The communication component of our agent architecture also has both

scenario-dependent and scenario-independent parts as described in the previous

chapter. General and low-level tasks constitute the AV layer whereas scenario-

dependent tasks are in the FoE layer. Essentially, when one wants to use our

communication model in a new scenario, the primary task is to define the nec-

essary parts in the FoE layer. In particular, the new message types and the

corresponding high-level behavior for each such type should be determined.

6.1 Bidirectional Flow and Passageway

Scenarios

These two relatively simpler scenarios required a straightforward high-level plan-

ning in navigation. It merely constitutes of a single destination computation.

In the bidirectional flow scenario (cf. Figure 6.1a), an agent at one end of the

street calculates a destination position at the other end. All agents in the pas-

sageway scenario (cf. Figure 6.1b) try to reach a location at the other side of the

passageway a little further down the short corridor.

Both of these scenarios include only hollow communication. Therefore, Chat

is the only FoE layer message type. In order to apply the communication model

in these scenarios, we determined the related high-level behavior. This involves

when and how a Chat message will be sent by an agent and what a receiver

will do upon receiving one. These mechanisms involve two parameters, namely

communication probability (pc) and walk and talk ratio (pr). These are used to

control when and how aChatmessage is sent. When the following four conditions

are satisfied, an agent starts a communication with probability pc.

i) This agent (the sender) is not already communicating;

ii) There is some other agent in the hearing range (called the receiver below);

iii) This agent did not communicate with the receiver before;
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iv) The receiver is not currently communicating.

When these four conditions are satisfied, the agent sends a Chat message with

probability pc. This is achieved by pseudo-randomly generating a value in the

[0, 1] range and using a less-than-or-equal-to comparison of this pseudo-random

value with pc. In the case that the comparison is true, the second parameter pr

which is also in the range [0, 1] becomes important. pr is the tendency for an

agent to talk while walking. When 0, agent always prefers to stop and talk and

when 1, agent always prefers walking and talking. Intermediate values represent

intermediate likelihoods. A second pseudo-random value is used in the same

manner but this time using pr. When walking and talking is preferred, the receiver

needs to be walking in approximately the same direction. If all these conditions

are satisfied, the agent forms a Chat message, adjusts its speed according to

the receiver’s, and AV layer takes control to send the message. On the other

hand, agents communicate by first stopping and turning towards each other if

the comparison with pr returns false.

We collected flux data in the passageway scenario so that a comparison can

be made with the data in [72]. This dissertation proposes a psychological and

sociological perspective of human behavior in emergencies and includes develop-

ment of a system called MASSEgress. Pan repeats the passageway scenario of a

previous work using Simulex [73] for validation. In this scenario, 100 agents are

positioned in a 5m×5m area and there is a single passageway to exit. By varying

the passageway, the flux rates are recorded. The results are compared with those

acquired earlier using Simulex. In our simulation, the flux rates are recorded

in the same manner for a similar comparison. At each width, the simulation is

carried out twice: once with no communication, and then, with communication.

Figure 6.2 presents the results.

As the passageway width increases and exiting becomes easier, the flux values

converge towards values that depend on the preferred speeds instead of increasing.

This is because they are computed with the number of exiting people per second

and per unit width. All simulation results display the same convergence behavior

towards the right side of the chart in Figure 6.2. The results differ more on the left
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Figure 6.2: The passageway scenario flux comparison. It should be noted that the
values are flux values (persons/(m× sec)), not flow rates (persons/sec). The flux
does not increase as the passageway width increases because it is calculated as
‘per unit width’. Instead, it converges to a preferred speed-dependent value. Our
results are labeled as No Comm and Comm. The results from [72] are labeled as
Simulex and MASSEggress.
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side of the chart when the passageway width is small. Congestion becomes worse

with a narrow passageway and this amplifies the effect of using different local

collision avoidance methods. Nonetheless, the results are overall not very different

from the results obtained in MASSEgress and Simulex. It is also important to

note that communication did not influence and change the flux marginally.

6.2 Evacuation Scenario

There are important differences between the evacuation scenario (Figure 6.1c) and

the other scenarios. One of these differences is in the high-level planning logic of

the agents’ navigation components. This part contains a secondary contribution

of this dissertation, which is an algorithm to model the evacuation behavior for

an agent that does not know the environment. Figure 6.3 describes the plan-

ning algorithm. Whether an agent knows the environment is represented with a

boolean attribute. An agent that has prior environment knowledge can directly

choose the best emergency gathering area. Notion of one area being better than

another can be described by having a shorter path to it. When this is the case

for an agent, (s)he will not ask others about how to exit but others can initiate

a communication with her/him. In the opposite case, i.e., when the agent has

no prior information about the environment, the first option is to go for a seen

exit if there is one. We found direction sign following to be the next appropriate

agent behavior. It should be noted that the implementation allows us to enable

the effect of direction signs when starting a simulation run. Communication with

other agents becomes the next best option when either direction signs are dis-

abled or no signs are in sight. Yet, unless communication is possible, navigation

continues to be in control. The planning algorithm also considers following be-

havior. This becomes a frequently used method when communication capability

is turned off. An agent initiates exploration when none of the aforementioned

actions are possible.

As long as the agent is in Not Communicating or Wants to Communi-

cate states, the planning algorithm in Figure 6.3 is in control. But the navigation
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Figure 6.3: The high-level planning algorithm developed for the evacuation sce-
nario. A boolean agent attribute represents whether (s)he knows the environ-
ment. Use of direction signs can be enabled/disabled. Communication is not a
requirement for this planning algorithm. Agents without a priori environment
knowledge can display plausible evacuation behavior based solely on this algo-
rithm. But, combining this with the communication component allows us to
simulate meaningful communication.
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is temporarily stopped and the communication component takes control when the

agent finds a target for communication or when a message is received. The com-

munication instance will finalize possibly causing a change in agents’ knowledge

and the navigation component will regain control.

We initiate a simulation run by positioning a given number of agents randomly

on the building’s navigable areas. There are six different simulation settings we

used.

• Only Nav (Know=0): Both agent communication and use of direction signs

are turned off. Agents’ navigation capability is the only mechanism for them

to evacuate. Agents do not have apriori environment knowledge. This

setting can be considered as the worst case in terms of efficient evacuation.

• Only Nav (Know=0.5): Differs from the previous setting at only one point.

This time, each agent has 0.5 probability to have environment knowledge

when being initiated (compared to 0 probability in the previous setting).

The net effect is that stochastically 50% of the agents know the building.

• Comm: Again there is a single difference with the previous setting. Agent

communication is enabled. Direction signs are still turned off and environ-

ment knowledge probability is 0.5.

• Sign: This time, the effect of direction signs are enabled but agent communi-

cation is turned off. The probability for an agent to have prior environment

knowledge is still 0.5.

• Comm&Sign: In this setting, we turn on both direction signs and agent

communication. The environment knowledge probability is same as the

previous three settings, which is 0.5.

• Only Nav (Know=1): This setting is similar to the first two settings in the

sense that both direction signs and agent communication are turned off.

The difference of this setting is that the probability for an agent to have

environment knowledge is 1. This means that all agents know the building.

So, this setting in a way represents the best case.
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Figure 6.4: Average evacuation times measured in the evacuation scenario for 50
randomly placed agents. There are six different simulation settings: Only Nav
(Know=0), Only Nav (Know=0.5), Comm, Sign, Comm&Sign, and Only Nav
(Know=1). The simulation is carried out five times for each setting. Avg. evac.
time (blue) is the average of all agents’ evacuation times over all five executions.
Avg. of worst 5 (orange) is the average of the five largest (i.e., worst) evacuation
times. The setting names are explained in the text in detail.

Our measurements for agent evacuation times are summarized in Figures 6.4,

6.5, and 6.6. We used the blue marks to show the evacuation time averaged over

all agents after carrying out the simulation five times using each setting. The

orange markers show the average of the five largest (i.e., worst) evacuation times.

What we meant by worst and best case for the simulation settings is clear from

the leftmost and rightmost values in all graphs. Remember that in the Only Nav

(Know=0) setting, agent communication and direction signs are disabled and

none of the agents know the building. As a result, their evacuation planning is

based on seeing an exit, following others, and exploration. In the first columns of

all three charts, the average evacuation times (blue) are high as expected meaning

that it takes agents longer to evacuate. The same is also valid for orange values

(the averages of the five largest evacuation times). On the opposing end, the

Only Nav (Know=1) setting means that everyone knows the ideal path to exit

the building. Hence, it is natural to see in the last columns that both averages

are relatively small.
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Figure 6.5: Average evacuation times measured in the evacuation scenario for
100 randomly placed agents. Same as Figure 6.4, except the number of agents.

Figure 6.6: Average evacuation times measured in the evacuation scenario for
200 randomly placed agents. Same as Figures 6.4 and 6.5, except the number of
agents.
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In all other intermediate settings, stochastically 50% of agents have prior envi-

ronment knowledge. As a result, the values are in between those on each side. Our

expectations are apparent in the difference of values between different settings.

To begin with, it is observed that in general, the evacuation times increase as the

agent count is increased. This is expected as more agents cause more congestion.

Secondly, Sign setting appears to produce relatively smaller evacuation times.

This is also expected since direction signs help agents to evacuate. Thirdly, the

Comm setting results, especially the orange values, seem to be relatively larger

which means that evacuation times are increased due to agent communication.

This is also natural as agent communication requires agents to occasionally stop

and talk.

We can test whether stopping and talking is truly the reason for this increase

in evacuation times by looking at the travel distances. If travel distances in the

Comm and Comm&Sign settings are not significantly greater than those in the

Only Nav (0.5) and Sign settings, then we can say that the increase is due to

stopping and talking. The ten longest trajectories in each setting were measured

(cf. Figure 6.7). The values with Comm and Comm&Sign settings turned out

to be not larger but smaller compared to those with (Only Nav (0.5) and Sign)

settings. These average lengths together with the previous average evacuation

times proves that when agent communication is turned on, agents travel less but

their evacuation times increase.

Some running time measurements for the evacuation scenario with varying

number of agents are given in Table 6.1. These measurements were recorded

while simulations were carried out on a PC with an Intel Xeon E5-2643 3.3GHz

processor, 48GB RAM, and a Nvidia Quadro 4000 graphics processor. The small-

est and largest values for the time in between two consecutive frames are given as

minimum and maximum frame times. Additionally, the frame rate (the number

of frames per second; fps) is averaged over the simulation run and these values are

presented in the last column. It was realized that although the exact contribution

varied depending on what falls into camera view, rendering (drawing) was often

responsible for most of the computation. To account for this fact, performance

measurements are carried out when there are zero agents in the simulation and
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Figure 6.7: The average lengths of ten longest trajectories in each simulation
setting.

these measurements are included in the table. Zero agents mean no perception,

navigation, or communication calculations. The average frame rate was 27.42 fps

even when there were no agents. The values measured when there are agents

should be evaluated with respect to these baseline values for zero agents.

6.3 Chat Scenario

We use this final scenario in order to compare the trajectories and behaviors

generated by our algorithm with those from a real-world scenario. A video that

involves pedestrians occasionally chatting (cf. Figure 6.8a) is chosen from a real

crowd video data collected by the Movement Research Lab at the Seoul National

University [66]. We extracted the movement trajectories of the pedestrians from

the video. We also constructed a 3D model of the environment observed in the

video in Unity (see Figure 6.8b). We place agents at positions corresponding

to the initial positions in the real video. We carry out simulations both with

and without agent communication. Agents continuously choose random targets
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#agents Min frame Max frame Avg. frame
time (sec) time (sec)* rate (fps)

0 .016558 .325687 27.42
50 .016566 .333333 25.12
100 .016559 .333333 21.61
200 .026999 .333333 13.53

Table 6.1: Some performance measurements with different number of agents in
the evacuation scenario. The values indicate the computational cost of agent
architecture (navigation, perception, and communication together) when consid-
ered relatively against those in the first row. The first row with no agents should
be taken as a baseline that gives a clue about the rendering cost of the environ-
ment. The results are recorded using the Comm setting. (*) There is a limit on
maximum frame time in Unity game engine to prevent freezing. 0.333333 values
correspond to this limit, which ensures three fps.

and navigate to these locations. We extracted the simulated agent movement

trajectories by recording positions at one second time intervals.

In order to compare the real and simulated trajectories, we used vfractal es-

timation [12]. The range [0.1, 10] is divided into 100 different step sizes with 0.1

increments. The unit of length here is the size of a video pixel. We scaled all sim-

ulation coordinates (and therefore lengths) to match this unit. Floor geometry

enabled us to compute the scaling parameters for both coordinate dimensions.

Same vfractal calculations are carried out for (i) the real video trajectories

(blue), (ii) the simulated trajectories with no agent communication (red), and

(iii) the simulated trajectories with agent communication (green). Figure 6.9

summarizes the results of the estimations. It is observed in the results that for

both the estimations (solid lines) and the confidence in these estimations (dashed

lines), the green values are closer to the blue values than the red values are to the

blue values. This means that the straightness/crookedness of the simulated agent

movement trajectories better match that of real trajectories when agent commu-

nication is turned on. Lastly, the averages of vfractal values and confidences over

different step sizes are computed to summarize our results (see Table 6.2).
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(a) Real video (b) Simulation

Figure 6.8: Chat scenario: a still frame from (a) the real video and (b) the virtual
simulation scene.

Figure 6.9: Vfractal estimations and confidence bounds for real video pedestrian
trajectories (blue), simulated trajectories when agents do not communicate (red),
and simulated trajectories when agents can communicate (green). The estimated
fractal dimension (d) is the vertical axis and the step size (scale) used in the
estimation is the horizontal axis. The actual estimations are represented with
the solid lines and the confidence bounds in these estimations are shown with the
dashed lines.
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Trajectory Average vfractal Confidence
Real 1.0209 ±0.0871
Simulated (Comm) 1.0178 ±0.0521
Simulated (NoComm) 1.0150 ±0.0421

Table 6.2: Mean vfractal estimations and confidences calculated by averaging the
values in Figure 6.9 over the range of different step sizes.

6.4 Analysis

We can observe plausible autonomous behaviors in simulations. Clearly, when

agents not only walk around but also autonomously communicate with each other,

the behavioral variety is enhanced. Our model only considers communication be-

tween two agents at a time but multiple such communications occasionally happen

at the same time and it looks like discussion groups are formed autonomously.

This is in line with with the recent understanding that people in a crowd mostly

move as a group rather than as individuals [74]. The evacuation simulation was

important for simulating meaningful communications. The measurements carried

out in this scenario showed us that the influence of communication on behavior is

consistent with the expectations. In the last scenario, the vfractal results showed

that the straightness/crookedness of the simulated trajectories fit the real trajec-

tories better when agents communicate.

Other than the perception component, our additions to agent architecture to

enable communication are simple enough and they contribute little to the com-

putational cost. The current implementation for the perception subcomponents

function like collision detection methods. These affect the computation time con-

siderably. However, it should be possible to improve and optimize the perception

implementation Also, with the application of space partitioning or level-of-detail

techniques, it should be possible to achieve interactive rates for higher number of

agents.
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Chapter 7

Conclusion

A primary aim in the field of virtual crowd simulation is to obtain plausible au-

tonomous behavior. One cannot deny that communication takes place in the

real-world crowds. As a result, we set out to model deliberate inter-agent in-

formation exchange in virtual crowds and investigate its effects on virtual crowd

behavior. We stayed away from having to deal with subtleties of human behav-

iors and languages. To achieve this, we took communication and information

concepts at an abstract level, not in specific forms such as speech or sentences.

A message structure based on the FIPA ACL message structure is used in

our communication model. Realizing communication behavior is achieved with a

PDA implementation. By combining the communication model with a perception

and navigation implementation, the development was employed in four example

scenarios. The dissertation shows example visual simulation outputs as well as

providing an overview and emphasizing important issues.

An important aim for us was to come up with a design which is easy to apply

in new scenarios. In order to achieve this, a layered design where the low-level,

message type and scenario-independent tasks (AV layer) are separated from those

that are high-level and scenario-dependent (FoE Layer), is preferred. When a user

wants to apply this model in a new scenario, the only requirement is to define
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the necessary scenario-specific message types and high-level behavior related to

sending and receiving these types of messages.

We not only showed visual simulation outputs, but also provided various quan-

titative measurements (flux, evacuation times, trajectory lengths, and trajectory

shapes) and base our evaluation on these measurements. The improvement in

behavioral variety and example plausible behaviors can be observed by watch-

ing the visual outputs. We draw two conclusions from the flux comparison in

the passageway scenario. First, it is shown that the navigation mechanisms we

used behave similarly to the existing systems. Second, communication does not

disturb the passageway flow in any significant way.

An evacuation scenario was used in order to simulate meaningful communi-

cation, i.e., communication that influences behavior. A separate algorithm was

needed to model the evacuation behavior for an agent that does not know the en-

vironment. Our expectations were not contested by the average evacuation time

measurements. When agents use direction signs, they evacuate faster however,

when they communicate with each other, they slow down. On the other hand,

the lengths of the longest trajectories, showed a decrease in travel distance with

agent communication. The logical combination of these two results is that when

asking and answering about direction is simulated, agents traveled less but took

more time to evacuate.

We carried out vfractal estimations in the final chat scenario so that simulated

trajectories can be compared with real trajectories extracted from a video. We

saw in this set of results that simulation trajectories are closer to real trajectories

in terms of straightness/crookedness when agent communication takes place.

Through some time measurements, we showed that the additional cost of sim-

ulating agent communication is not significant with respect to the the overall cost

of multi-agent simulation. Moreover, it was realized that the perception model

we used was responsible for most of this overhead. Improvements to the percep-

tion implementation are possible and the good news is that changes made to it

should not affect the communication model much as a result of modular design.
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In addition, space partitioning and/or level-of-detail techniques could improve

the performance even further.

There are some issues that we could not investigate but remain as possible

extensions to this dissertation. One issue is that user studies can be used to

compare the plausibility of the video outputs with and without communication.

A second method for better evaluation can be to develop similarity metrics for

comparing crowd behavior and making use of these metrics to compare simula-

tion results and real crowd videos. Other possible extensions are improving the

efficiency of the perception component, introducing a new intermediate commu-

nication layer responsible for dialog management, combining the communication

model with more sophisticated agent architecture, and applying the model in

other scenarios. We plan to investigate some of these possible extensions.
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