
MODELING AND POPULATING VIRTUAL
CITIES: AUTOMATIC PRODUCTION OF
BUILDING MODELS AND EMERGENCY

CROWD SIMULATION

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bİlkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Oğuzcan Oğuz

September, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Çetin

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

MODELING AND POPULATING VIRTUAL CITIES:
AUTOMATIC PRODUCTION OF BUILDING MODELS

AND EMERGENCY CROWD SIMULATION

Oğuzcan Oğuz

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

September, 2008

In this thesis, we present an automatic building generation method based on

procedural modeling approach, and a crowd animation system that simulates a

crowd of pedestrians inside a city. While modeling the buildings, to achieve com-

plex and consistent geometries we use shape grammars. The derivation process

incorporates randomness so the produced models have the desired variation. The

end shapes of the building models could be defined in a certain extent by the

derivation rules. The behavior of human crowds inside a city is affected by the

simulation scenario. In this thesis, we specifically intend to simulate the virtual

crowds in emergency situations caused by an incident, such as a fire, an explosion,

or a terrorist attack. We prefer to use a continuum dynamics-based approach to

simulate the escaping crowd, which produces more efficient simulations than the

agent-based approaches. Only the close proximity of the incident region, which

includes the crowd affected by the incident, is simulated. In order to speed up

the animation and visualization of the resulting simulation, we employ an offline

occlusion culling technique. During runtime, we animate and render a pedestrian

model only if it is visible to the user. In the pre-processing stage, the navigable

area of the scene is decomposed into a grid of cells and the from-region visibility

of these cells is computed with the help of hardware occlusion queries.

Keywords: Procedural modeling, emergency, crowd simulation, crowd animation,

occlusion culling, from-region visibility.

iii

ÖZET

SANAL ŞEHİR MODELLEME VE NÜFUSLANDIRMA:
OTOMATİK BİNA MODELİ ÜRETİMİ VE ACİL
DURUMLAR İÇİN KALABALIK SİMULASYONU

Oğuzcan Oğuz

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Uğur Güdükbay

Eylül, 2008

Bu tezde, yordamsal modellemeye dayalı bir otomatik bina üretim sistemi ve sanal

şehirler içinde kalabalık simülasyonu sağlayan bir simülasyon sistemi sunulacaktır.

Binalar modellenirken, detaylı ve tutarlı geometrilerin üretilebilmesi için şekil

gramerleri kullanılmıştır. Model üretme süreci belli noktalarda olasılıksal olarak

işleyerek, gerekli çeşitlilikte bina modellerinin üretilmesine olanak sağlamaktadır.

Bina modellerinin üretim süreci sonunda sahip olacağı geometri, türetme ku-

ralları tarafından belirlenmektedir. İnsan kalabalıklarının şehir içi davranışları,

simülasyon senaryosuna bağlıdır. Bu tezde, şehir içindeki insan kalabalıklarının,

özellikle yangın, patlama ya da terörist saldırı sonucunda meydana gelebilecek acil

durumlardaki davranışlarının simülasyonu amaçlanmaktadır. Kaçışan insan kala-

balıklarının simülasyonunda kullanılan akışkan mekaniğine dayalı yaklaşım diğer

yaklaşımlardan daha verimli olmaktadır. Simülasyon, sadece acil duruma sebe-

biyet veren olaya yakın bölgelerde yapılmaktadır. Elde edilen simülasyonların

canlandırılmasını ve görüntülenmesini hızlandırmak amacıyla, kapatılan alan-

lar önceden hesaplanarak depolanmaktadır. Simülasyonun gorüntülenmesi

sırasında, kullanıcı tarafından gorülemeyecek insan modellerinin canladırılması

ve görüntülenmesi engellenmektedir. Önişlem aşamasında, şehir modeli içinde

dolaşılabilecek alanlar, birbirine eş hücrelere bölünüp, bu hücrelerin bölgeden

görülme bilgileri grafik işlemci ünitesinin kapatılan bölge sorguları yardımıyla

hesaplanmaktadır.

Anahtar sözcükler : Kural bazlı modelleme, acil durum, kalabalık simulasyonu,

kalabalık animasyonu, kapatılan alanların ayıklanması, bölgeden görüş.

iv

Acknowledgement

I wish to thank all those who helped me. Without them, I could not have com-

pleted this thesis.

I would like to acknowledge Assoc. Prof. Dr. Uğur Güdükbay who not only served

as my supervisor but also encouraged and guided me throughout my academic

program.

I would like to thank my jury members Prof. Dr. Özgür Ulusoy and Prof. Dr.

Enis Çetin for their invaluable comments to improve this thesis.

I especially want to thank my family for their love, support and motivation to

me. I want to thank my friends for their endless supports.

I would like to thank Ateş Akaydın for his help in the development of Crowd

Simulator. Thanks to Dr. Türker Yılmaz for his help and valuable comments.

Building model generation part of this research is a joint work with him.

This work is supported by the Scientific and Research Council of Turkey

(TÜBİTAK) under Project Code 104E029. Vienna2000 Model is courtesy of

Peter Wonka and Michael Wimmer. Pedestrian models are courtesy of CAL3D

Character Animation Library.

v

Contents

1 Introduction 1

1.1 Building Generation . 2

1.2 Crowd Simulation in Emergency Situations 2

1.3 Outline of the Thesis . 4

2 Background 6

2.1 Procedural Modeling of Buildings 6

2.2 Crowd Simulation . 7

2.3 Emergency Simulation . 8

3 Procedural Modeling of Buildings 10

3.1 Building Model Generation . 10

3.2 Shapes . 11

3.3 Rules . 13

4 Emergency Simulation in Urban Areas 18

vi

CONTENTS vii

4.1 Human Crowd Behavior during Emergency Situations 18

4.2 Crowd Simulation in Emergency Situations 21

4.2.1 Continuum Crowds . 22

4.2.2 Navigable Space Extraction 25

4.2.3 Local Continua using Active Grid 27

4.2.4 Normal Crowd Behavior Before the Incident 28

4.2.5 Emergency Behavior . 29

4.3 Crowd Rendering . 34

4.3.1 Occlusion Culling . 34

4.3.2 View Frustum Culling and the Levels of Detail 37

5 Results 38

5.1 Building Generation . 38

5.2 Emergency Simulation . 40

6 Conclusion 49

Bibliography 52

List of Figures

3.1 A simple portion of a city ground plan. Since the system generates

each facade of a building by handling each edge of the building

ground plan at a time, ground plans could be any kind of polygon. 11

3.2 A building facade that is composed of the same type of floors. It

should be noted that this may not always be the case. 12

3.3 A very basic terminal shape that could stand for a balcony. 13

3.4 A random split rule called Split. It is defined to split the tem-

porary object called Floor. Face is the constructed object when

the rule is applied. There could be other rules defined within the

Floor block. These rules apply to object named Floor. 15

3.5 The application of a random split rule to a temporary object, called

Floor, resulting in the creation of three terminal shapes, called F. 15

3.6 A simple fixed split rule, called Window, defined for the shape Face.

The proportions of the size of the rows and columns to be formed

are defined as attributes. The children of the <Element> tag are

the shapes, which could be terminal shapes or temporary shapes,

constructed when the split rule is applied. 16

viii

LIST OF FIGURES ix

3.7 A series of applications of various fixed split rules. The series is

initiated with a temporary shape called F. The derivation process

ends when all the temporary shapes are transformed to terminal

shapes. 17

4.1 The simulation algorithm executed for each time step. 25

4.2 Non-navigable cells occupied by two differently aligned instances

of the same building. The red cells are rendered non-navigable by

the buildings. 26

4.3 A configuration of the active grid. The green cells are the navigable

border cells of the active grid. The agents are inserted at and

directed to the navigable border cells of the active grid. 28

4.4 The vector field that the agents would follow if all the border cells

are defined to be goals with equal priorities. Some agents would

go through the incident region (filled circle) in order to take the

shortest path to a border cell. 30

4.5 The ideal vector field that the agents should follow when an inci-

dent occurs at the filled circular region. 30

4.6 The emergency simulation algorithm. 34

5.1 Generated building models. 39

5.2 A building model covered with textures. 40

5.3 The extracted navigable space for Vienna2000 city model. 41

5.4 Still frames from a normal crowd behavior simulations. 42

5.5 Still frames from an emergency crowd behavior simulations. The

agents in the scene try to get away from the orange square. 43

LIST OF FIGURES x

5.6 Still frames from an emergency crowd behavior simulations. The

agents in the scene try to get away from the orange square. 44

5.7 (a) A crowd scene captured at the ground level. Occluded agents

are not drawn. (b) Top view of the scene. The viewer is located

at the red colored region. The portions of the active grid that are

occluded by the buildings are colored in purple. The agents in the

purple colored regions are culled. 46

5.8 The total number of agents, the number of culled agents, and the

number of rendered agents are plotted. The culled agents are either

occluded by the buildings or out of the frustum. 47

5.9 Depending on the structure of the environment and the nearby

crowd distribution, escaping agents in the green colored area may

take a path through the street that is closer to the incident than

the other street. 48

Chapter 1

Introduction

Modeling and visualization of large and complex environments is a popular re-

search area in computer graphics. Recent developments in processors and graph-

ics cards, the amount of available memory, and the development of computer

graphics modeling and rendering techniques facilitate to run high quality simu-

lations. To this end, virtual cities should be modeled in order to be used in such

simulations. One major component of a virtual city that affects the realism is

the building models. In a virtual city, building models should have a high level

of geometric detail and be consistent with the architectural style of the virtual

environment. The other major component of a virtual city is the pedestrian and

vehicle population. In a large urban environment like a city, there would be a

large number of pedestrians that would really slow down an application unless

the proper techniques are applied to simulate and animate the crowd.

In this thesis, we propose a continuum dynamics based emergency simulation

system. Simulations take place in outdoor environments. We also propose a

procedural modeling system that is used to generate building models to be placed

in a city model.

1

CHAPTER 1. INTRODUCTION 2

1.1 Building Generation

Most countries have ground plans of the actual cities in the digital format. There

has been more and more research in the last 10 years about generating 3D models

using 2D ground plans and visualizing of these models. For instance, Google re-

leased a geographical visualization system, named Google Earth, which combines

the satellite photos with the 3D models obtained using city plans to generate 3D

city models [10]. Currently, generated city models consist of only a few cities,

mostly in US. A similar application named CitySurf was developed in Turkey [32].

The visual modeling of large and complex systems has a long tradition in

computer graphics. Improvement of machines and algorithms that are able to

run high quality simulations, more virtual environments are needed. Today’s

machine capabilities facilitate the visualization of both large and complex 3D

models. Applications cover a large spectrum, from military training and city

planning to video games and tourism. Modeling exactly existent cities to be used

in such applications can be tedious and is not intended in this work. Modeling

each and every building in detail by hand is inefficient, even the use of aerial

images or airborne laser scan data requires a great deal of manual work.

The original motivation for this work is to generate 3D city models using 2D

city ground plans consistent with the real shapes of the buildings as much as

possible and to visualize the city models in real time. City ground plans are used

to produce city models by generating every building using its 2D ground plan.

Generated models are then transferred to the visualization algorithm so that real

time visualization is performed.

1.2 Crowd Simulation in Emergency Situations

Crowd animation is a crucial problem in computer graphics and animation since

the crowds are a major component of a virtual scene such that without crowd

animation or with an unsuccessful application of it, a virtual scene would not be

CHAPTER 1. INTRODUCTION 3

realistic at all whatever the qualities other components might have. Many appli-

cations of computer graphics such as computer games, virtual reality applications

and animated films require high quality crowd animation. Moreover physically

correct crowd simulations also have applications outside of computer graphics in

psychology, transportation research, and architecture.

The requirements of a crowd simulation might be application-specific. For

instance, computer games require a crowd simulated in real time, and so would

sacrifice some of the characteristics of the crowd animation that affects realism

whereas process of producing animated films have the required time and com-

putational power to aim a more sophisticated simulation. For all of the appli-

cations, crowd animation need to be controllable. Virtual crowds should exhibit

the intended behavior in computer games and animated films. In transportation

research, the virtual crowd needs to be initialized by some statistical data to

produce a realistic simulation.

A crowd animation should have the characteristics of real crowds. However,

real crowds show very complex behaviors making the problem of crowd anima-

tion difficult. A surprising and difficult to model characteristic of real crowds

is that in even very dense regions, people are able to move towards their desti-

nation smoothly and very few collisions occur. Additionally, people that move

in the same direction tend to form lanes when they face other people moving

in the opposite direction. The formation of lanes reduces the amortized area a

single pedestrian seen by the people moving in opposite direction. Almost all

the techniques to animate crowds were agent-based. In agent-based approaches,

every single agent has its own computation of future behavior. Path planning and

collision avoidance is performed for each agent in the scene. This approach is the

most natural one since it is the way that real crowds work: each human makes his

own motion decisions according to only the information he has, such as visibility,

information about the destination, and proximity. However, this approach has

the disadvantage that when animating a large group of people, it requires large

computational time. Agent-based models have the flexibility to add any intended

variation to the animated crowd, since each agent can be modeled differently but

it needs expertise to model every agent consistently.

CHAPTER 1. INTRODUCTION 4

Recently, another approach to crowd animation problem has been proposed

that is inspired by continuum mechanics. This approach treats the crowd as a

continuum and animates the crowd flow by the help of a set of equations tailored

to simulate crowd motion realistically. Continuum perspective unifies global path

planning and collision avoidance since the continuum equations takes the goals,

obstacles and other pedestrians into account when predicting the motion of a

pedestrian.

One of the uses of crowd simulation is simulating emergency behavior of

crowds. Emergency situations frequently arises in cities. Incidents, such as fires,

explosions, or terrorist attacks, can stagger an emergency situation. Training

animations, video games, and animated movies may make use of emergency sim-

ulations. If the simulation is realistic and sufficiently flexible, then the results

would be foreseeing the possible problems that may arise in an emergency simu-

lation.

In the outdoor environments of a city, an emergency situation causes the

nearby crowd to show complex behaviors. Due to the incident, the people in the

crowd would be in panic and would behave a lot different than normal. During

an emergency situation, decisions of people are mostly reflex-based and do not

vary greatly from a person to another; most people try to escape and hide in

reaction to an incident. Some people may have tendency to show mass behav-

ior. In contrast to the simulation of a normal crowd behavior, the simulations

aiming emergency situations requires an approach that supports directly the sim-

ulation of homogeneous behavior. Continuum crowds approach perfectly fits this

requirement.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 reviews related work

about reconstruction of city models, and crowd simulation. In Chapter 3, we

CHAPTER 1. INTRODUCTION 5

introduce our method to procedurally generate building models. Chapter 4 de-

scribes our crowd simulation system to simulate and visualize the behavior of a

pedestrian crowd in emergency situations. We present the experimental results

in Chapter 5. Chapter 6 gives conclusions.

Chapter 2

Background

2.1 Procedural Modeling of Buildings

One promising approach to the reconstruction of city models is the use of aerial

imagery to extract the buildings and streets, using computer vision methods [16,

17, 34, 35]. Another promising approach is to use range scanning with the help

of laser airborne scanning and other remote sensing methods [11, 18]. Both of

these approaches aim to get the models of the real cities. There were obtained

quite successful results, however, there are also some problems related with these

methods. One of the problems is that these methods are not fully automated.

They cannot identify all of the geometric structures in a city because of the high

geometric variation of the buildings. Another problem is that city models with

high level of geometric detail can only be constructed if, for every building in the

city, specific data is acquired and processed. However, photographing or scanning

every building in a city would be quite labor intensive.

Grammars, mainly L-systems, were applied to the modeling of streets [28].

The derivation of general detailed buildings using split grammars was demon-

strated to be highly successful [38]. Split grammars are a composition of set

grammars and shape grammars. Split grammars split or transform 3D shapes

to sub shapes that are included in the volume of the parent shape. Derivation

6

CHAPTER 2. BACKGROUND 7

ends when terminal shapes are derived which represents the building design. This

derivation is steered by the attributes, so specific building designs and architec-

ture trends could be achieved. During derivation, a parameter matching system

is invoked that allows the user to specify multiple high-level design goals and con-

trols randomness to guarantee a consistent output. An idea of control grammars

was introduced that are simple context free grammars which handle the spatial

distribution of design ideas not randomly, but in an orderly way that corresponds

to architectural principles. CGA Shape Grammar is an improvement over split

grammars [21]. CGA Shape presents context sensitive shape rules and can make

use of complex mass models. Resulting buildings have underlying consistent mass

models and high level of geometric detail. CGA Shape Grammar rules can be

created from building images to generate a model of an existent building [22].

2.2 Crowd Simulation

Most of the work about crowd animation was agent-based in which each agent

plans its motion individually. The agent-based approaches could get quite com-

plex when one wants to consider cognitive aspects, such as knowledge, learning

and emotional states [9]. The visibility and path planning was added to the

Funge’s work by Terzopoulos and Shao [33]. Later in 2006, production quality

software, Massive Software, was proposed giving the animator full responsibility

to define each agent’s behavior [19]. However, Massive Software requires consid-

erable effort to come up with sufficiently realistic large groups of people.

Hughes was the first one to view a crowd as a continuum and derive the set

of equations to simulate large crowds [15]. Hughes defines the crowd as a density

field and uses differential equations to derive the motion of the crowd. The density

field is driven towards the goal by the help of a potential function; density follows

the direction of gradient vector of the potential function. The model proposed

by Hughes was later confirmed with real crowd data [14].

CHAPTER 2. BACKGROUND 8

An inspiration from Hughes’ model resulted in continuum crowds [36]. Con-

tinuum crowds approach makes the simulation of crowd flows possible by trans-

forming Hughes’ continuous crowd field into a particle representation. Treuille et

al. made numerous improvements to Hughes’ model to make the simulation able

to exhibit a number of visually interesting and empirically proven behavior.

Chenney defines flow tiles for representing and designing velocity fields eas-

ily [6]. Once the flow tiles are defined between the buildings, congestion avoidance

can be achieved easily since the flow tiles are divergence free. However, the flow

tiles approach does not address all the concerns of a crowd animation; for exam-

ple, we can not assign goals to a single pedestrian or a group of pedestrians.

2.3 Emergency Simulation

Most of the research on pedestrian behavior in reaction to an emergency situation

has been carried out by social psychologists [5, 8]. Panicking people have found

to show maladaptive escaping behaviors different than normal socially-controlled

behaviors [20]. In the case of bottlenecks such as doors and exits for a building,

these panic behaviors cause jamming and overcrowding [8].

Most of the emergency simulation related computer models aim indoor evac-

uation scenarios [3, 27, 29, 30, 31]. Since most building evacuation situations in-

clude jamming and overcrowding, high congestion simulations are aimed to avoid

the limitations proposed by grid resolution [12, 13, 30]. Helbing views and simu-

lates the crowd as a self-driven many-particle system [13]. In this model, crowd

dynamics of pedestrians are driven by a mixture of psychological and physical

forces. Based on Helbing’s model of social forces, Adriana et al. propose a model

in which the virtual agents are endowed with different attributes and individuali-

ties [3]. Their model involves alarm and danger propagation which are important

concepts for building evacuation simulations. Pelechano et al. simulate the agents

in a continuous space with a forces model; the movement of the agents are driven

by a set of attractors while the agents avoid the obstacles and the other agents in

CHAPTER 2. BACKGROUND 9

the scene [30]. In their model, agents may have varying personalities and roles,

and the communication between the agents provide information sharing about

the hazards and exit routes in the building.

Chapter 3

Procedural Modeling of Buildings

In this chapter, we propose a shape grammar-based approach for procedurally-

generating building models to construct city models [25, 26]. The work presented

in this chapter is a joint work with Türker Yılmaz and also presented in his Ph.D.

Thesis [39].

3.1 Building Model Generation

We use Data eXchange Format (DXF) of AutoCAD as the file format to store

building geometry. DXF format is known to be common divisor of all 3D model

formats since it is very simple, standardized, and is accepted by the community.

The system outputs final building models in DXF file format. City plans are

given in DXF format as input to the system and the system extracts individual

building ground plans to derive individual buildings (see Figure 3.1).

The generated building models are composed of several facades, one for each

edge of the ground plan. Each edge of the ground plan is handled at a time. A

facade that corresponds to an edge of the ground plan is composed of a number

of floors. A facade could be composed of multiple copies of the same type of floor

or different type of floors.

10

CHAPTER 3. PROCEDURAL MODELING OF BUILDINGS 11

Figure 3.1: A simple portion of a city ground plan. Since the system generates
each facade of a building by handling each edge of the building ground plan at a
time, ground plans could be any kind of polygon.

A facade is split into floors. Floors are actually 2D floor face objects. Floor

objects are then split by the pre-defined split rules in order to generate new 2D

temporary objects (see Figure 3.2). This process goes on until all the paths end to

a terminal object. All the terminal objects, such as windows, walls or balconies,

are predefined in DXF format and they are transformed by translation, rotation

and scaling. Finally, they are output to the model file in DXF format at the

end of the facade generation process. When all edges of the ground plan are

transformed to a corresponding facade, a building model is generated.

3.2 Shapes

There are two types of objects defined in the system:

Terminal Shapes: These are the shapes that are defined in a DXF file and

stand for the basic shapes that are designed by a 3D design program best.

Terminal shapes are composed of any number of planar surfaces, defined by

CHAPTER 3. PROCEDURAL MODELING OF BUILDINGS 12

Figure 3.2: A building facade that is composed of the same type of floors. It
should be noted that this may not always be the case.

CHAPTER 3. PROCEDURAL MODELING OF BUILDINGS 13

Figure 3.3: A very basic terminal shape that could stand for a balcony.

3DFACE entities in DXF format, and has unit dimensions to be able to be

scaled (see Figure 3.3).

Temporary Shapes: These are the shapes that are split into other temporary

shapes or terminal shapes by the rules that are defined in the configuration

file in the XML format. The derivation process is initiated by a floor object.

All the temporary shapes are attached an arbitrary number of attributes.

These attributes are used to steer the splitting process by excluding some

of the rules that do not apply to the temporary object. Temporary shapes

are simple rectangular surfaces in 3D.

3.3 Rules

Until all the objects are terminal, all temporary objects are split by the rules.

The rules guide the derivation process to construct a building model. All the

temporary shapes have a set of rules that apply only to it. All the rules are

attributed; i.e., an arbitrary number of attributes are attached to each rule. These

CHAPTER 3. PROCEDURAL MODELING OF BUILDINGS 14

attributes play an important role in the split rule selection for a temporary object.

Within the set of rules that apply to a temporary object, only the rules that have

attributes with appropriate values could be applied to the object and one of them

is selected randomly. Furthermore, all the rules could be given a probability if

some rules to be selected more frequently. There are two types of split rules:

random split and fixed split.

Random Split: Given a temporary shape, a random split rule splits the object

into a 2D grid that is composed of randomly-placed rows and columns. The

minimum width of a column and the minimum height of a row are given

by the rule. All the rows are of [minHeight , 2 ∗ minHeight], and all the

columns are of [minWidth, 2 ∗ minWidth] at the end. In a random split,

all the newly-created objects are of the same type of shape, which could

be a terminal shape or a temporary shape. In Figure 3.4, an instance of

random split is shown. In Figure 3.5, an application of a random split rule

is demonstrated.

Fixed Split: Fixed split rules split the given object into a certain number of rows

and columns whose proportions of lengths are defined in the rule. When

a temporary object is split by a fixed split rule, the sizes of the rows and

columns that formed are directly proportional to the width and height of

the temporary shape. When a fixed split rule is selected to be applied to

a temporary shape, the number of newly created shapes is fixed, and the

type and attributes of every newly created shape are defined in the rule.

When the fixed split rules are applied to a temporary object, the newly-

created shapes obtained could be terminal shapes or temporary shapes. An

example fixed split rule is shown in Figure 3.6. In Figure 3.7, a series of

applications of various fixed split rules is demonstrated.

CHAPTER 3. PROCEDURAL MODELING OF BUILDINGS 15

<Floor>

<Split Balcony="0 0" Window="+">

<Random minWidth="2" minHeight="3">

<BaseFace Balcony="0 0" Window="1 1"></BaseFace>

</Random>

</Split>

. . .

</Floor>

Figure 3.4: A random split rule called Split. It is defined to split the temporary
object called Floor. Face is the constructed object when the rule is applied.
There could be other rules defined within the Floor block. These rules apply to
object named Floor.

Floor F FF

Figure 3.5: The application of a random split rule to a temporary object, called
Floor, resulting in the creation of three terminal shapes, called F.

CHAPTER 3. PROCEDURAL MODELING OF BUILDINGS 16

<BaseFace>

<Window Window="+">

<Fixed>

<xProportions x1="1" x2="4" x3="1"></xProportions>

<yProportions y1="3" y2="4" y3="2"></yProportions>

<Elements>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

<Window></Window>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

</Elements>

</Fixed>

</Window>

<BaseDoor>

<Fixed>

<xProportions x1="1" x2="4" x3="1"></xProportions>

<yProportions y1="8" y2="2"></yProportions>

<Elements>

<Wall></Wall>

<Wall></Wall>

<BaseDoor></BaseDoor>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

</Elements>

</Fixed>

</BaseDoor>

</BaseFace>

Figure 3.6: A simple fixed split rule, called Window, defined for the shape Face.
The proportions of the size of the rows and columns to be formed are defined as
attributes. The children of the <Element> tag are the shapes, which could be
terminal shapes or temporary shapes, constructed when the split rule is applied.

CHAPTER 3. PROCEDURAL MODELING OF BUILDINGS 17

F
Top

Cornice Cornice

Wall

Middle

Cornice

Middle

Wall

W W

Figure 3.7: A series of applications of various fixed split rules. The series is
initiated with a temporary shape called F. The derivation process ends when all
the temporary shapes are transformed to terminal shapes.

Chapter 4

Emergency Simulation in Urban

Areas

In this chapter, we give a description of our system for simulating and rendering

human crowds in emergency situations. The intended animation is to capture

the behavior of a crowd in an outdoor environment of a city. First, we men-

tion some reactions of a crowd to an emergency situation to capture and point

out the differences between outdoor and indoor emergency behaviors of crowds.

Then, we describe our approach of simulating the crowd. Finally, the techniques

that provide efficient animation and rendering of the simulated pedestrians are

discussed.

4.1 Human Crowd Behavior during Emergency

Situations

In this section, we explain how people react to an incident that occurs in a city.

We are only interested in the movement behaviors of people and we exclude

the gestures. At any instant, the movement of an agent could be defined by a

direction vector and a speed scalar. We define the movement behavior of an agent

18

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 19

as changes in its movement under the effect of continuously changing conditions

in the nearby environment. The affecting conditions include type and position of

incidents, the nearby agents and their movement, and the structure of the city.

By emergency situations, we mean catastrophic events that may harm nearby

pedestrians, such as a fire, an explosion, or a terrorist attack. The incidents need

to be located in a well-defined area of the city and would only harm the people

that are sufficiently close to an incident so that the reactions of the human crowd

to escape and/or hide would be meaningful.

Most of the research on the simulation of emergency behavior of human crowds

are focused on indoors [3, 27, 29, 30, 31]. They try to capture the movement of

people in escape panic during a building evacuation. The resulting simulations

help to foresee and examine any possible problems that may occur during emer-

gency evacuations. The problems include any design deficiencies in the escape

paths of buildings, possible decoration choices that may cause jamming, and the

coordination issues of groups. Helbing summarizes characteristic features of es-

cape panics as follows [13]:

1. People try to move considerably faster than normal, sometimes unnecessar-

ily.

2. Individuals start pushing each other, and interactions among people become

physical in nature.

3. Moving and, in particular, passing of a bottleneck becomes uncoordinated.

4. At exits, arching and clogging are observed.

5. Jams build up.

6. The physical interactions in the jammed crowd add up and cause dangerous

pressures up to 4, 450Nm−1, which can bend steel barriers or push down

brick walls.

7. Escape is further slowed by fallen or injured people acting as ’obstacles’.

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 20

8. People show a tendency towards mass behavior; i.e., they do what other

people do.

9. Alternative exits are often overlooked or not efficiently used in escape situ-

ations.

The features listed above apply to most indoor escape panics. Also, a specific

type of outdoor escape panics shows all the listed characteristics: the escape pan-

ics occurring in the places like indoors, which have well defined exits, gateways or

bridges. These include overcrowdings occurred at stadiums and at Mina during

the Stoning of the Devil ritual. However, since the outdoor space of a city would

have much larger area per each agent compared to the indoors of a building, some

of the listed features would not apply to our case. In a typical city environment,

there would be streets and open spaces but no bottlenecks like doors or gate-

ways. So, no matter how crowded the region is, there would not be any jams or

clogging during an emergency situation in a city. Still, the items 1, 2, 7 and 8

are in common for the two cases. Additionally, in an open space, some people

may tend to choose the escape paths farther away from the emergency region

or point. During an emergency, the choices made are dependent on the agents’

personalities and so would vary from an agent to another. So, some people may

prefer to show mass behavior rather than running farther, since they feel safer

that way and some people may try to hide in a nearby building. A common fea-

ture that is independent of an agent’s personality, would be increasing tolerance

to overcrowding with respect to normal situations. Additionally, people would

not only walk on the sidewalks, they would be running on the roads.

During an emergency situation, in addition to escaping people, there would

be a group of people whose duty is intervening the incident. These may be

firefighters, policemen, etc. To be able to intervene the incident, these people try

to get close enough to the emergency region or point. Some may try to get to

the injured people or to the people that need help to get away.

These features of escape panics occurring outdoors of a city are merely obser-

vations. They are not based on any related psychological or sociological research

or experiments. Surely, there are numerous distinct movement behaviors shown

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 21

by people due to an incident. To capture and simulate all those behaviors can

only be achieved by modeling each and every agent in the scene distinctly. This

approach would result in a very complex development process. Besides, it would

be hard to make the whole system consistent and stable. For these reasons, we

consider only the most generalizable distinct features of an escaping crowd such

that we can divide the whole crowd into a small number of behavior groups. Given

a small number of behavior groups we simulate each group within a constant time

and get a amortized cost for each agent in that group.

4.2 Crowd Simulation in Emergency Situations

In crowd simulations based on the agent-based approach, each agent has its own

computation of future actions. The agent-based approach is an approximation

to the real life crowds and so it is a more natural way of simulating a crowd

than particle motion based approach. In an agent-based crowd simulation, each

agent can behave and react uniquely as its artificial intelligence model may be

driven by its unique parameters. Each agent can have its own decisions and

reactions, pursue its goals and interacts with the other agents. However, in an

emergency situation, people generally show more homogeneous behaviors: they all

try to escape some way. Additionally, there would be fewer interactions between

the agents if the incident occurs outside ,as in a building, people may show a

more organized behavior due to the past evacuation practices. For these reasons,

we take a continuum dynamics-based approach [36]. In a 2D grid, the agents

are considered to be particles and their flow is driven by dynamic vector fields.

Crowd can be divided into a small number of behavior groups; the vector fields of

each group are computed based on minimizing a potential function at every time

step. Computational cost is mainly dependent on the grid size and the number

of groups. Since we compute a vector field for each group at each time step and

move all the agents in the group accordingly, the cost per agent is amortized.

Indoors emergency situations would involve jams and clogging caused by

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 22

bottlenecks like doors. People would push each other in panic. So, to effec-

tively simulate indoor emergency situations, self driven many particle systems

are used [13]. Particles are driven by a force model which assume a mixture of

socio-psychological and physical forces that influence the behavior in the crowd.

However, during an emergency situation at the outdoors of city, the crush of peo-

ple is not crucial and would not affect the way the crowd move. So, our system

does not involve any interaction forces. Additionally, we do not perform any col-

lision detection since the continuum approach takes care of collision of agents as

far as the resolution of the gird permits: a cell of the grid could include only one

agent at any time. In our case, this limitation is not crucial since there would

not be any jams requiring high congestion simulation. Helbing’s model does not

involve any global path planning, which is essential for an outdoors simulation. In

contrast, the continuum approach involves global path planning to make agents

reach their goals and local path planning to avoid congestion at the same time.

Now, we briefly describe how the continuum crowds work.

4.2.1 Continuum Crowds

The continuum crowds approach is useful and efficient when large homogeneous

groups of people are moving in order to reach specific goals. At a time step,

motion planning is computed for each group people consisting of the agents that

have the same destination. This characteristic meets our requirements since we

can define the agents that are all trying to reach same specific goals in the same

way as a group. The amortized cost per agent is substantially reduced if groups

include lots of agents. We need a mathematical model, which is derived from the

hypothesis about the virtual crowd, to simulate crowd dynamics [36].

The first hypothesis is that each person is trying to reach a geographical goal

in the scene. When an agent tries to leave the scene, we assign a portion of the

scene boundary to it as the geographical goal. The second hypothesis is that the

people move at maximum possible speed f at its location for a certain direction θ.

The velocity for a person at location x moving in direction θ is expressed as:

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 23

ẋ = f (x, θ) nθ, (4.1)

where nθ is the unit vector in direction θ.

The next hypothesis is that agents try to avoid going through the locations

that have higher discomfort value. A discomfort field g exists such that, all

things being equal, people would prefer to be at the point where the discomfort

is minimal.

At the end, people choose paths that minimize a weighted linear combination

of the following terms:

• the length of the path,

• the amount of time to the destination, and

• the discomfort felt, per unit time, along the path.

So, an agent would choose the path P minimizing

α
∫

P
1ds︸ ︷︷ ︸

Path Length

+ β
∫

P
1dt︸ ︷︷ ︸

Time

+ γ
∫

P
gdt︸ ︷︷ ︸

Discomfort

(4.2)

Here α, β and γ are the weights for individual terms. ds and dt are related

by ds = fdt, where f is the speed. Then, we may rewrite the equation as

α
∫

P
1ds + β

∫
P

1

f
ds + γ

∫
P

g

f
ds, (4.3)

which can be simplified to

∫
P

Cds, where C ≡ αf + β + θg

f
(4.4)

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 24

is the unit cost field.

We describe how the agents find the optimum paths according to the above

metric. A potential function is defined over the scene such that the potential

function at a location is equal to the cost of the optimal path to the destination.

For an agent, the strategy is to move in the negative direction of the gradient of

the potential function. Intuitively, the potential function is defined to be zero at

the goal locations and the norm of the gradient of the potential function is equal

to the cost in the direction of the gradient everywhere else:

‖∇φ (x)‖ = C (4.5)

So, the velocity of an agent at point x is defined as the velocity in the op-

posite direction of the gradient of the potential field scaled with the maximum

permissible speed:

ẋ = −f (x, θ)
∇φ (x)

‖∇φ (x)‖ (4.6)

Once the potential function is computed, the locations of all of the agents

related with that potential can be updated according to equations above. At

every step, it is sufficient to compute a potential field for each group since all

agents in the group tries to reach the same geographical goals and have the same

environment variables such as discomfort field and weights for the terms in the

unit cost definition. The requirement of equality of environment variables inside

a group may seem a restriction but inside a portion of the city it is perfectly

acceptable that some of the pedestrians have the same limitations.

Maximum permissible speed is a density-dependent term. At low densities,

the speed is dominated by the terrain whereas at high densities, the speed is

dominated by the movement of the nearby people, preventing an agent from

trying to move in the opposite direction of the movement in a very dense region.

At medium densities, the speed is computed by interpolation. This definition

of permissible speed supports lane formation between the agents moving in the

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 25

1. Convert the crowd to a density field.

2. For each group:

2.1 Construct the unit cost field C.

2.2 Construct the potential field and its gradient.

2.3 Update the people’s locations.

2.4 Enforce the minimum distance between people.

Figure 4.1: The simulation algorithm executed for each time step.

same direction.

To simulate the model, the model should be discretized. At each time step,

the algorithm in Figure 4.1 is executed. The discretization is done by defining

the scene area as a grid and store the scalar and vector values properly. The

density value ρ for each grid cell is computed such that density for every agent

is splat to the four grid cells surrounding the agent. The grid cell that the agent

lays gets the highest contribution. To estimate the permissible speed in highly

dense regions, an average velocity v is computed for each grid cell by summing

and scaling the velocities of the agents that are inside or near to that cell.

Once the permissible speed and the unit cost is computed at every cell in each

of the four directions for every group, potential field need to be computed again

for every group. This step of the algorithm is the most time consuming part of

the system. To overcome this burden, fast marching method is used. In order

to prevent agents going through the buildings in the scene we do not take the

building regions into account when computing potential field by defining them as

boundaries. After computing the potential fields, gradient of potential function is

computed and scaled with the permissible speed to get velocity values for agents.

Then, all of the agents are updated for a timestep.

4.2.2 Navigable Space Extraction

In order to employ continuum approach on a city environment, we need a distinc-

tion between the navigable grid cells and non-navigable grid cells. Non-navigable

cells can be the cells occupied by a building or a road. Agents cannot penetrate

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 26

Figure 4.2: Non-navigable cells occupied by two differently aligned instances of
the same building. The red cells are rendered non-navigable by the buildings.

to non-navigable cells so we do not need potential functions to be computed at

non-navigable cells. By excluding non-navigable cell from potential functions

computation, we prevent continuum flow from going through the boundary cells.

Essentially, we prevent the agents from passing through the non-navigable cells

which saves the need for any collision detection.

Navigable space needs to be extracted as accurate as possible. However,

the maximum accuracy of extraction is determined by the resolution of the grid

used since we must define a cell either as navigable or not. In order to get the

ground level cells that intersects with a building, we test each cell against all the

primitives of the buildings. Here, the only assumption about the scene is that

the buildings need to be composed of triangle primitives. Tested cells are called

seed boxes and seed testing is based on the approach in [40]. Redundant tests are

avoided by testing a cell only against the buildings whose bounding boxes intersect

the tested cell. After the seed testing is done, only the cells that intersects the

primitives are extracted. However, the cells that reside in the buildings are also

non-navigable. So, we set the cells that have no connection with the cells that

are certainly navigable, as non-navigable.

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 27

Non-aligned building faces with the x and y axes of the navigation grid causes

a higher degree of information loss than the aligned buildings would cause during

navigable area extraction (see Figure 4.2). This kind of information loss is more

crucial and apparent at narrow streets since a higher proportion of the navigable

area is lost which could make some sufficiently narrow streets non-passable. The

best we can do is to choose an alignment for the grid that the buildings would

agree most. Increasing the resolution of the simulation grid would surely help

but that would cause an increase in the computational cost of crowd simulation

also.

4.2.3 Local Continua using Active Grid

In the continuum crowds approach, the cost of computing a potential function

that is specific to a group of agents, is only dependent on the resolution of the

2D regular grid. The potential function is computed everywhere on the grid,

and any number of agents, wherever they are positioned on the grid, can be

moved according to the gradient of the potential function. If we have a large

grid that covers the entire city area or a large portion of the city area, then

it would be too costly to compute potential functions of all the groups across

the grid. Besides, in a city, a viewer can only see a tiny portion of the whole

city due to the occlusion caused by the nearby buildings. Thus, computing the

potential functions everywhere would be redundant. The viewer would not see the

simulated agents that are out of the interest area. To avoid high computational

costs and redundancy to simulate crowds in a large city, we only care about the

grid that covers the interest area. That is, the potential functions are computed

and the agents are simulated only in a small grid the which we call the active

grid.

Due to aligned streets in a city, the grid that covers all the regions that can

be seen from a view point can be huge; so, the active grid cannot be defined to

cover all the visible regions. Instead, we define the active grid as a fixed-size grid

that has the viewpoint at its center. This definition has some drawbacks. Not

simulating the agents that are out of the active grid degrades the continuity: the

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 28

Figure 4.3: A configuration of the active grid. The green cells are the navigable
border cells of the active grid. The agents are inserted at and directed to the
navigable border cells of the active grid.

user cannot follow and view an agent if the agent leaves the active grid. However,

since we aim to simulate and demonstrate the behavior of the crowd during

emergency situations, travel of a single agent is not crucial. Another drawback

is that we can only animate and render the simulated agents so the agents that

enter or leave the active grid would pop in or pop out. However, if the viewer

is located on the ground, the viewer would be surrounded by agents and if the

active grid is large enough, the user would not notice popping artifacts since they

would be far and occluded. In the case of fly-through scenarios, the active grid

needs to be defined large enough to cover whole region that can be seen.

4.2.4 Normal Crowd Behavior Before the Incident

In order to demonstrate the effect of an incident on the surrounding crowd, we

need to simulate the normal crowd behavior before the incident. This simulation

may span a small period of time and the crowd switches to the emergency behavior

when the incident occurs. Since we have an active grid of fixed size and we only

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 29

simulate the agents in it, we need to maintain a pedestrian flow inside the active

grid. New agents are continuously added to the active grid to prevent the grid

from becoming empty as some agents leave the grid. It is necessary to add agents

at navigable cells and direct them to sensible goals so that they contribute to the

crowd flow. We set the goals for an agent as the cells that are distant to the cells

to which the agent is added, so that the agent travels through most of the active

grid. To minimize pop-in and pop-out artifacts, we add new agents at the border

cells of the grid and direct them to some distant border cells. Furthermore, the

cells to which the agents are added and directed, need to be navigable cells. We

define entrance region for the agent groups as some group of cells located in one

or two side of the active grid. The goal region for a group is accordingly defined

as the sides that are opposite to the entrance regions (see Figure 4.3). More

complex flows can be defined as we define more groups of agents but that will

also increase the computational cost.

4.2.5 Emergency Behavior

In our system, there are two major reactions to an incident. One is getting away

from the incident and the other is getting close to it. As the incident occurs, the

agents inside the active grid try to get away from it. After some time passed,

police, firemen, or some interested people may try to get close to the incident.

Since the active grid can be placed anywhere on the city, the orientation of

the navigable and non-navigable cells inside the active grid tends to differ greatly.

This structure inside the active grid affects the behavior of the people. For

instance, if we place the active grid in an open space in the city, everywhere would

be navigable and people could run to any direction. In contrast, if the incident

occurs in a street, people that try to get away would run to either ends of the

street. To adapt all of the structure conditions, we place the goals for the escaping

groups only at the navigable border cells of the active grid (see Figure 4.3). In

this way, the agents try to find their way out of the active grid. However, this

behavior is not sufficient since an agent may run through the incident region to

minimize the potential function when it is less costly to take a path going through

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 30

Figure 4.4: The vector field that the agents would follow if all the border cells
are defined to be goals with equal priorities. Some agents would go through the
incident region (filled circle) in order to take the shortest path to a border cell.

Figure 4.5: The ideal vector field that the agents should follow when an incident
occurs at the filled circular region.

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 31

the incident region (see Figure 4.4). This configuration only makes sense if the

incident is placed at the center of the active grid. For this reason, we take the

position of the incident into account and favor the distant goals. In Figure 4.5,

we want the agents to follow the vectors; moving outwards from the incident.

What we do actually is defining an incident point as a local maximum inside the

active grid.

The original continuum crowds approach sets the potential values of all the

goals to zero initially for every time step, and then, to compute potential function

across the grid, computes the level sets radiating from the goal cells using the

fast marching method to compute the potential function across the grid [36, 37].

After the computation is done, an agent moves in the direction of the gradient of

the potential function, which minimizes the cost for achieving one of the goals.

So, if an agent has two goal cells at equal cost distance, the agent may choose

to go to either goal cells depending on the iteration order. This is because the

potential of the goal cells are also equal (they are both set to zero). In the light of

this fact, we set the potential values of a goal cell in proportion to its Euclidean

distance to the incident origin. If we assume a continuous domain and care only

the Euclidean distance as a cost, this configuration will provide us with a vector

field with vectors going outwards from the incident region.

At the center of the incident region, we want all the paths, every one of which

is a shortest path to a goal cell, to minimize the potential value for the cell at

incident center. The cost of a shortest path to a goal cell from the incident cell is

computed by summing the unit cost through the path (cf. Equation 4.4). Let the

potential value of the incident cell be zero. Then, if we consider only the distance

as a cost, a goal cell that have d Euclidean distance to the incident cell would

have its potential value set as −αd, where α is the weight for the path length in

Equation 4.2.

However, the unit cost also have the speed and discomfort components that

depend on the environment state at the time of computation. Initially, they

cannot be known for sure. In order to get a more close approximation for the po-

tential values of the goal cells, we may assume an average value for the maximum

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 32

permissible speed through the path. Thus, the potential value of a goal cell that

have d Euclidean distance to the incident is:

φ = −d(α +
β

Δf
), (4.7)

where Δf is an average value for maximum permissible speed f . The average

discomfort component is not included in the equation since we do not want the

agents to favor the paths that introduce higher discomfort cost.

On the other hand, for the cases with more than one incident, we can not take

the shortcut of defining a goal value in proportion to the distance to the incident.

If the goal values are not set properly, an agent may run into an incident region

while escaping from another incident. In order to set the potential values at

the border cells, we run the fast marching algorithm from the emergency regions

towards the border regions this time. We set a potential value for each emergency

region and compute the potential values at the border cells using the constant unit

cost value in Equation 4.8. Some incidents in the scene can be favored by setting

their potential values lower than the potential values of the other incidents.

Cp = α +
β

Δf
(4.8)

Since the unit cost definition of continuum crowds approach should include

varying components, such as time span and felt discomfort, agents would take

paths different than the ideal outwards paths under some conditions, like in the

case of high congestion. Even though the agents should avoid high congestion and

to take alternative paths to the goals, they should not go through the incident

region in any case. Additionally, we increase the unit costs of moving from one

cell to another if the destination cell is closer to the incident. The closer an

agent is to the incident, the more challenging would it become to move closer to

the incident. Thus, the unit costs of getting closer to the incident are scaled in

proportion to the distance of the start and destination cells to the incident. The

unit costs of getting away from the incident stay the same. The scale factor for

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 33

the cost of moving from the cell A to the cell B is

SA→B =

⎧⎨
⎩

c
dB,I

dA,I
if dB,I < dA,I

1 otherwise
(4.9)

where dA,I and dB,I are the Euclidean distances of the cells A and B to the

incident region, respectively, and c is the weight.

Given that the largest active grid has the dimensions maxx and maxy, we

precompute the possible unit cost coefficients and the goal values to be set in the

case of an incident. Since, during the simulation, the incident can be positioned

anywhere on the active grid we compute the unit cost coefficients and the goal

values for a (2 ∗maxx− 1) ∗ (2 ∗maxy− 1) grid that has the incident as its center

cell.

We define two behavioral groups that make the escaping crowd. The above

unit cost scaling is done for both groups as they try to avoid getting closer to

the incident. One group’s goals are defined to be the navigable border cells, as

explained above. The agents in it try to get away from the incident as quickly as

possible. The other escaping group’s goals are the building entrances. The agents

try to hide in a building. The goals at the building entrances are also scaled by

the distance of the goal cell to the incident cell.

The crowd trying to get closer to the incident is composed of two different

groups: the people that got interested in the incident and the people that are on

duty, like police and firemen. Unit costs for these groups are not scaled and goals

are set to be the incident regions.

When the emergency situation arises, the maximum traveling speed fmax of

the agents increases and their tolerance to discomfort is increased by scaling γ in

the unit cost definition (cf. Equation 4.4). Furthermore, agents are permitted to

move into the roads. The simulator algorithm is given in Figure 4.6.

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 34

For each timestep:

1. If the view point’s distance to the active

grid’s center is above some threshold:

1.1 Reposition the active grid according to the view point.

1.2 For each group:

1.2.1 Clear all the goals.

1.2.2 Set new goal values according to the new position

of the incident with respect to the active grid.

2. Add new agents to the crowd.

3. Convert the crowd to a density field.

4. For each group:

4.1 Construct the unit cost field C.

4.2 Construct the potential field and its gradient.

4.3 Update the people’s locations.

Figure 4.6: The emergency simulation algorithm.

4.3 Crowd Rendering

Once we simulated the crowd, we need to visualize the agents. In our system, we

use a skeletal animation library [4] to animate the agents. For each agent to be

drawn, a pose is computed and the resulting mesh is rendered. However, not all

the agents are seen by the user: a simulated agent may be occluded by buildings

or it may be out of the view frustum. At a frame, if an agent is not visible to the

view point, we do not only avoid the rendering computation but also the pose

update computation.

4.3.1 Occlusion Culling

The simulation happens in a city so there would be lots of buildings that may

cause a great amount of occlusion, especially at the ground level viewing positions.

In contrast, the occlusion of an agent by the crowd is not crucial except for very

dense regions. For this reason, we only care about the buildings as occluders.

Since all the buildings are static, their occlusion effect can be computed offline.

Offline computation of visibility requires a from-region visibility approach. In

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 35

from-region visibility approach, the scene is decomposed into a number of view

cells at which the view point can be located. Since it is more like an open space,

we prefer a uniform grid of view cells at the outdoors of a city whereas it is

more appropriate to define the rooms as the view cells connected to each other

with portals in a building. The visibility information for each navigable view cell

is pre-computed; that is, all the objects seen at every point in the view cell is

extracted and stored. However, we aim to compute visibility of the agents which

are dynamic objects and their position cannot be known for sure. Therefore, we

define a uniform grid of target cells which are essentially 3D boxes with the height

of an agent and placed at ground level. Occlusion information of each target cell

for each view cell can be used as follows: the skeleton pose is computed for an

agent and the resulting mesh is rendered, only if the agent is in a target cell that

is visible to the view cell in which the view point resides.

A view cell theoretically includes infinite number of view points so it is im-

possible to sample the visibility at every point inside a view cell. There has been

several geometric and image-based solutions proposed for this [2, 23]. The ap-

proach we take is based on the notion of occluder shrinking [7]. By shrinking the

occluders present in the scene and sampling the visibility at discrete locations in

a view cell, conservative occlusion culling can be achieved. If the occluders are

shrunk by the maximum distance traveled in a view cell, sampling at the center of

the view cell would retain conservativeness. Shrinking prevents any object that is

occluded at the point of sampling, from becoming visible as the view point moves

to any point in the same view cell.

Once the shrunk version of every occluder in the scene is computed, we need

to check the visibility of every target cell for each navigable view cell. In this

process, we make use of hardware occlusion queries. For a navigable view cell, a

target cell is tested against all the buildings by drawing the shrunk versions of

the buildings first and then issuing an occlusion query for the target cell. Since

all the shrunk buildings are drawn prior to the occlusion query, occluder fusion

is achieved. However, hardware occlusion queries are dependent on the limited

viewport resolution and prone to sampling and precision errors. A visibility infor-

mation calculated by using hardware occlusion queries is certainly conservative

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 36

for the configuration in which hardware occlusion query is issued. However, the

calculated visibility can be erroneous for a different configuration in which the

clipping window covers a smaller area of the scene. For a different configuration,

a far away target cell that did not generate a fragment before may generate a

fragment, and so, it may become visible. Additionally, due to sampling and the

limited viewport resolution, a target cell that was completely occluded before

may become visible. In order to get a visibility information as precise as possi-

ble, the viewing parameters are adjusted during the visibility computation for a

target cell so that the target cell is zoomed to the maximum extent.

Due to the structure of a city, nearby buildings would occlude most of the

target cells for a view cell. In the light of this fact, the number of occlusion

queries issued for a view cell can be reduced by computing visibility information

for a coarser-grained grid first. We make use of region quadtrees for this purpose.

Firstly, a region quadtree that partition the entire scene area is constructed. A

node of the quadtree can be tested for visibility by testing a 3D box whose height

is equal to an agent’s height, which covers the area of the node. Then, we calculate

the visibility information of the scene up to resolution of the quadtree. In this

way, the queries for target cells that are completely inside of a non-visible node

of the quadtree are avoided.

Once the visibility information is computed, the extracted information need

to be stored in main memory during runtime. If we store the visibility of every

target cell for every view cell, the memory space needed to store the visibility

information would be on the order of Θ (v2 ∗ t2), where v is the number of view

cells and t is the number of target cells. Even though it is enough to store a

byte for each view cell-target cell pair and we only store visibility information

for navigable view cells, the required memory space can be huge, depending on

the resolutions of the view cells and target cells grids. For this reason, we store

the quadtree, which is used in the visibility calculation, for each navigable view

cell, and we store the visibility information for target cells inside in the visible

leaves of the quadtree. In this way, the required memory space is remarkably

reduced. Storing a quadtree for the view cells would propose an overhead due to

querying the quadtree to get visibility information for a view cell. However, since

CHAPTER 4. EMERGENCY SIMULATION IN URBAN AREAS 37

the depth of the stored quadtree is fixed and is not very high, the query overhead

would not be crucial.

4.3.2 View Frustum Culling and the Levels of Detail

In addition to occlusion culling, we perform view-frustum culling. If an agent is

visible, then its bounding box is tested against the view frustum. The agent’s

pose is computed and the resulting mesh is rendered, only if its bounding box

intersects the view frustum.

For every agent, three levels of detail of mesh geometry are pre-computed and

stored [4]. During the simulation, switching between the three discrete LODs are

performed based on the Euclidean distance of the agent to the view point.

Chapter 5

Results

The proposed algorithms were implemented using C++ Programming Lan-

guage. The simulated crowd and the city environment are visualized using

OpenGL libraries. Hardware-based occlusion culling is performed with the help

of GL NV occlusion query extension of OpenGL, provided by NVIDIA Corpo-

ration [24]. Skeletal animation of the simulated pedestrians are computed using

Cal3D. In order to get a higher performance for the priority queue used in the

potential function computation, we use the p queue structure of LEDA [1]. All

the preprocessing and simulation tests are run in a 2GHz Centrino Duo with an

NVidia GeForce Go 7400 graphics card.

5.1 Building Generation

Generated building models could be seen in Figure 5.1. In Figure 5.2, a building

model covered with textures is shown. Generated models could then be visualized

by the visualization algorithm that performs three graphic acceleration techniques

(occlusion culling, view frustum culling, hidden surface removal).

Building models that are produced by using only height information and floor

plans neither have enough details nor reflect the architectural style of the actual

38

CHAPTER 5. RESULTS 39

(a)

(b)

(c)

Figure 5.1: Generated building models.

CHAPTER 5. RESULTS 40

Figure 5.2: A building model covered with textures.

building. The proposed method allows fast generation of building models that

are of intended architectural style.

5.2 Emergency Simulation

The city model used is the Vienna2000 Model, which is model of the city of

Vienna. The city model is composed of 805 buildings and a total of 23K triangles.

The extracted navigable space in ground level is defined on a 1000x817 grid and

shown in Figure 5.3. The extraction of the navigable space take less than 15

minutes. The navigable space grid is used as the simulation grid used to simulate

the human crowd. If the cell size of the simulation grid need to be different than

of the navigable space grid, we query the navigable space grid to see if a cell

in the simulation grid is navigable. However, this process would result in some

information lost. The best is to extract and have the navigable space information

for several grids with differing resolutions, and to use the navigable space grid

that have the same resolution with the simulation grid.

CHAPTER 5. RESULTS 41

Figure 5.3: The extracted navigable space for Vienna2000 city model.

CHAPTER 5. RESULTS 42

(a)

(b)

(c)

Figure 5.4: Still frames from a normal crowd behavior simulations.

CHAPTER 5. RESULTS 43

(a)

(b)

Figure 5.5: Still frames from an emergency crowd behavior simulations. The
agents in the scene try to get away from the orange square.

CHAPTER 5. RESULTS 44

(a)

(b)

Figure 5.6: Still frames from an emergency crowd behavior simulations. The
agents in the scene try to get away from the orange square.

CHAPTER 5. RESULTS 45

The size of the view cells to be used in from-region occlusion culling is not

dependent on the cell size of the simulation grid. The view cell size need to be

defined according to the size of the occluders in the scene. If the view cell is set to

be too large, then the occluders would be shrunk extensively and their occlusion

effect would be mostly lost. On the other hand, if we set the view cell size to

be too small, then the preprocess to compute from-region visibility information

would take too long, and the memory space requirement to store the visibility

information would be too high. The size of the target cells should be defined

according to the structure of the urban environment. We either cull or process

all the agents inside a target cell according to the visibility of the target cell.

So, large target cells would preclude fine occlusion culling. On the other hand,

too small target cells would result in a higher number of target cells, and thus

requiring longer preprocess time and larger memory space requirement. Also,

making the target cells too small would waste the benefits of spatial coherence of

visibility. In our tests, the view cells grid and the target cells grid are both set to

have 170x130 resolution. Cell-to-cell visibility computation for this configuration

take less than 20 minutes. The memory space required to store the visibility

information is 48 MB. The use of calculated visibility information is shown in

Figure 5.7.

We ran a series of simulations with varying active grid size, of total 5600

frames. Simulations are initiated without any emergency situations. Until an

emergency situation is introduced, normal crowd behavior is simulated. When

an emergency situation happens, the configurations of the agent groups are set to

emergency mode, and all the agents behave in reaction to the emergency situation.

Since we simulate four behavioral groups for emergency situations to capture the

uniform emergency behaviors of all the agents, an agent can easily switch to an-

other behavior by being transferred to another group. In Figures 5.4, 5.5, and 5.6,

agents can be seen before and after the occurrence of the incident. The simu-

lator runs at 60 frames per second on the average. The number of frames are

not equal to the crowd simulation steps taken, since we decouple the renderer

from the crowd simulator. The renderer interpolates the pose and the position

of the agents between the two adjacent simulation steps. The crowd simulator

CHAPTER 5. RESULTS 46

(a)

(b)

Figure 5.7: (a) A crowd scene captured at the ground level. Occluded agents are
not drawn. (b) Top view of the scene. The viewer is located at the red colored
region. The portions of the active grid that are occluded by the buildings are
colored in purple. The agents in the purple colored regions are culled.

CHAPTER 5. RESULTS 47

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

Frames

N
u

m
b

er
 o

f
A

g
en

ts

Total Number of Agents in the Scene
Number of Culled Agents
Number of Rendered Agents

Figure 5.8: The total number of agents, the number of culled agents, and the
number of rendered agents are plotted. The culled agents are either occluded by
the buildings or out of the frustum.

is made to run at 5 frames per second, which makes the simulation step size 0.2

seconds. Please note that the frame rates for the simulations are affected by the

time required to draw the geometry of the urban scene. In order to reduce this

effect, we use a city model with a simple geometry. Furthermore, the visualiza-

tion of the geometry of the city incorporates a high level of occlusion culling for

the building models. In Figure 5.8, the total number of simulated agents, the

number of culled agents, and the number of agents that are rendered during a

simulation are depicted in a graph. The culled agents are either occluded by the

buildings or out of the frustum.

In the simulation tests of emergency behavior, we observed that the agents

follow smooth and efficient paths while escaping from the incident. In some con-

figurations of the nearby structures and the crowd distribution, complex behaviors

emerge. For instance, escaping agents do favor but do not always take the paths

that are composed of the points that are strictly growing away from the incident

CHAPTER 5. RESULTS 48

Figure 5.9: Depending on the structure of the environment and the nearby crowd
distribution, escaping agents in the green colored area may take a path through
the street that is closer to the incident than the other street.

region. In Figure 5.9, some of the agents that are in the green colored region may

take a path through the street that is closer to the incident, rather than a path

through the distant street. This behavior is more frequent at the regions that are

far away from the incident since coming closer to the incident is harder in the

close proximity of the incident due to unit cost scaling (cf. Equation 4.9).

Chapter 6

Conclusion

In this thesis, we propose a method capable of procedurally generating building

models to be placed in virtual city models and a system to simulate pedestrian

crowds in emergency situations.

The proposed building generation method makes it possible to generate build-

ing models with a high level of geometric detail. The desired number of building

models to be placed in a city model can be generated within minutes. The build-

ing models are generated stochastically by means of the building footprints and

shape grammars. The building generation takes the polygonal footprints of the

buildings that are to be generated, and generates building models that sit on the

given footprints. The building footprints can be found in the ground plans of the

actual cities or, for a syntactic city area, footprints can be generated too. The

other inputs of the system are the end shape designs and the building derivation

rules. The system procedurally generates the buildings in the guidance of the

derivation rules. The system initially creates a set of objects that represent the

aimed building models, and then, the objects are separated into subparts accord-

ing to the rules defined. Finally, the building model is generated using the end

shapes. The end shapes stand for the basic building blocks of a model, such as

windows and doors, that incorporates a high level of geometric detail and are

hard to be procedurally generated. Since the model derivation process is steered

by the derivation rules, consistent styles for the generated building models can

49

CHAPTER 6. CONCLUSION 50

be achieved. The desired geometric variation in the generated models is achieved

by incorporating randomness in the derivation process. The originality of a gen-

erated building model depends on the given end shapes and the rule set that

will be used in the derivation process. With the help of the proposed method, a

city of thousands of buildings can be generated without any manual processing.

In the future, we plan to produce class libraries that are capable of modeling

different styles of architectural constructions. Then, it will be possible to model

cities in a more realistic way. At this point, it is necessary to emphasize that our

aim is not to model the actual cities in a way remote sensing techniques do; our

approach enables the buildings to appear in a more realistic way with higher level

of geometric detail.

The proposed crowd animation system simulates the agents with a continuum

dynamics-based approach applied to the crowd model of Hughes [15, 36]. In

this approach, pedestrians are represented as a continuous density field. The

system is driven by an evolving potential function defined so as to guide the

density field optimally towards its goal. Instead of an agent-based approach,

this continuum dynamics-based approach is more appropriate for the outdoors

crowd simulations since the crowd flow is computed for the entire grid and the

cost per agent is amortized. We represent the most generalizable behaviors of

the pedestrian crowds in the emergency situations by the behavior groups. At

each step, the potential function is computed for every behavior group, and the

positions of the agents are updated accordingly. For the city model in which the

simulation takes place, we first extract the navigable space and render all the cells

occupied by the buildings as non-passable for the agents. In a large city model,

we only simulate the near proximity of the viewer by defining and maintaining

an active grid around the view point. The potential field is computed only for

the active grid. The emergency behavior in reaction to the incidents inside the

active grid is achieved by placing the goals for the escaping crowd at the navigable

border cells of the active grid. In order to achieve a crowd flow radiating outwards

from the incident points, we set the goal values at the navigable border cells of

the active grid by running the fast marching algorithm with the initial potential

values at the incident points. The unit cost for this potential function is mostly

CHAPTER 6. CONCLUSION 51

based on the distance metric (cf. Equation 4.8). Thus, when the simulation is

running with the proper goal values set at the border cells of the active grid,

the crowd would move in the direction of the gradients of the contours that are

radiating from the incident points. Still, depending on the configurations of the

surrounding environment and the other pedestrians, an agent may choose to move

through the incident regions. To prevent this type of behavior, additionally, we

scale the unit costs used in the potential value calculation of the simulation. The

unit costs of getting closer to an incident are scaled up to make it harder to move

into a grid cell that is closer to an incident. In our simulation tests, we observed

that the agents escape from the introduced incidents in a sensible way. The agents

find escape paths through the streets and the spaces in the city avoiding passing

through the incident regions.

We also propose a from-region occlusion culling method to avoid the animation

and rendering costs of the simulated pedestrian models that are occluded by the

buildings. First, we decompose the space that the view point can be located into

a uniform grid of view cells. Then, another uniform grid of target cells in which

the agents could reside is formed. The cell-to-cell visibility information between

the view cells grid and the target cells grid is computed with the help of the

hardware-based occlusion queries. We query the visibility of each target cell for

each view cell. By shrinking the occluders in the scene by the maximum distance

traveled in a view cell, and sampling the visibility at the center of the view cells,

conservative occlusion culling is achieved. During the simulation, the pose of

the pedestrian model is computed and the resulting mesh is rendered only if the

target cell that contains the agent is visible to the view point. Used together with

view frustum culling, the proposed occlusion culling method enables animation

of the simulated crowd at high frame rates, with detailed pedestrian models.

Bibliography

[1] Algorithmic Solutions Software GmbH, LEDA. Available at

http://www.algorithmic-solutions.com/index.htm, Accessed at

August 2008.

[2] J. Bittner, J. Prikryl, and P. Slavik. Exact regional visibility using line space

partitioning. Computers & Graphics, 27(4):569–580, Aug. 2003.

[3] A. Braun, B. E. J. Bodmann, and S. R. Musse. Simulating virtual crowds

in emergency situations. In Proceedings of the ACM Symposium on Virtual

Reality Software and Technology (VRST), pages 244–252, 2005.

[4] CAL3D Character Animation Library. Available at

http://home.gna.org/cal3d/, Accessed at August 2008.

[5] D. Canter. Fires and Human Behaviour. David Fulton Publishers, Ltd, 2nd

edition, May 1990.

[6] S. Chenney. Flow tiles. In Proceedings of the ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 233–242, 2004.

[7] X. Décoret, G. Debunne, and F. Sillion. Erosion based visibility prepro-

cessing. In Proceedings of the Eurographics Workshop on Rendering, pages

281–288, 2003.

[8] D. Elliott and D. Smith. Football stadia disasters in the United Kingdom:

learning from tragedy? Organization Environment, 7(3):205–229, 1993.

52

BIBLIOGRAPHY 53

[9] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: knowledge, rea-

soning and planning for intelligent characters. In ACM Computer Graphics

(Proceedings of SIGGRAPH ’99), pages 29–38, 1999.

[10] Google Incorporated, Google Earth. Available at

http://earth.google.com/, Accessed at August 2008.

[11] N. Haala and C. Brenner. Extraction of buildings and trees in urban en-

vironments. ISPRS Journal of Photogrammetry & Remote Sensing,

54(2-3):130–137, July 1999.

[12] D. Helbing, I. Farkas, P. Molnar, and T. Vicsek. Simulation of pedestrian

crowds in normal and evacuation situations. In Pedestrian and Evacuation

Dynamics, pages 21–58, 2002.

[13] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape

panic. Nature, 407:487–490, 2000.

[14] L. Hongwan, F. Wai, and C. Chor. A study of pedestrian flow using fluid

dynamics. Technical report, 2003.

[15] R. Hughes. A continuum theory for the flow of pedestrians. Transportation

Research, Part B: Methodological, 36(6):507–535, July 2002.

[16] F. Jung, B. Jedynak, and D. Geman. Recognizing buildings in aerial images.

In Proceedings of the Workshop on Automatic Extraction of Man-Made Ob-

jects from Aerial and Space Images (Ascona’97), pages 173–182, 1997.

[17] Y. Liow and T. Pavlidis. Use of shadows for extracting buildings in

aerial images. Computer Vision, Graphics, and Image Processing (CVGIP),

49(2):242–277, Feb. 1990.

[18] H.-G. Maas and G. Vosselman. Two algorithms for extracting building mod-

els from raw laser altimetry data. ISPRS Journal of Photogrammetry and

Remote Sensing, 54(2/3):153–163, July 1999.

[19] Massive Software - Artificial Life Solutions. Available at

http://www.massivesoftware.com, Accessed at August 2008.

BIBLIOGRAPHY 54

[20] D. L. Miller. Introduction to Collective Behavior and Collective Action.

Waveland Press, 2nd edition, Feb. 2000.

[21] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool. Procedural

modeling of buildings. ACM Transactions on Graphics (Proceedings of SIG-

GRAPH ’06), 25(3):614–623, 2006.

[22] P. Müller, G. Zeng, P. Wonka, and L. Van Gool. Image-based procedural

modeling of facades. ACM Transactions on Graphics (Proceedings of SIG-

GRAPH ’07), 26(3), Article no. 85, 2007.

[23] S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility culling. In

Proceedings of the 13th Eurographics Workshop on Rendering (EGRW ’02),

pages 191–202, 2002.

[24] NVIDIA Corporation, NV occlusion query. Available at

http://www.opengl.org/registry/specs/nv/occlusion_query.txt,

Accessed at August 2008.

[25] O. Oğuz, M. E. Aran, T. Yılmaz, and U. Güdükbay. Automatic produc-

tion and visualization of urban models from building allocation plans. In

Proceedings of the Brazilian Symposium on Computer Graphics and Image

Processing (SIBGRAPI’06), 2006.

[26] O. Oğuz, M. E. Aran, T. Yılmaz, and U. Güdükbay. Bina tahsis planlarından

3-boyutlu şehir modellerinin üretilmesi ve görüntülenmesi (in Turkish). In

IEEE Sinyal İşleme ve Uygulamaları Kurultayı (SIU’06), 2006.

[27] M. Owen, E. R. Galea, and P. J. Lawrence. The Exodus Evacuation Model

Applied to Building Evacuation Scenarios. Journal of Fire Protection Engi-

neering, 8(2):65–84, 1996.

[28] Y. I. Parish and P. Müller. Procedural modeling of cities. In ACM Computer

Graphics (Proceedings of SIGGRAPH ’01), pages 301–308, 2001.

[29] N. Pelechano and N. I. Badler. Modeling crowd and trained leader behavior

during building evacuation. IEEE Computer Graphics and Applications,

26(6):80–86, 2006.

BIBLIOGRAPHY 55

[30] N. Pelechano and A. Malkawi. Comparison of crowd simulation for building

evacuation and an alternative approach. In the 10th International Build-

ing Performance Simulation Association Conference and Exhibition, Beijing,

China, Sept. 2007.

[31] N. Pelechano and A. Malkawi. Evacuation simulation models: Challenges in

modeling high rise building evacuation with cellular automata approaches.

Automation in Construction, 17(4):377–385, May 2008.

[32] Piri Reis Data Processing Tech. Eng. Software Education Trade. Ltd., City-

Surf. Available at http://www.citysurf.com.tr/english/indexe.htm,

Accessed at August 2008.

[33] W. Shao and D. Terzopoulos. Autonomous pedestrians. In Proceedings of

the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,

pages 19–28, 2005.

[34] L. Spreeuwers, K. Schutte, and Z. Houkes. A model driven approach to ex-

tract buildings from multi-view aerial imagery. In Proceedings of the Work-

shop on Automatic Extraction of Man-Made Objects from Aerial and Space

Images (Ascona’97), pages 109–118, 1997.

[35] V. Steinhage. On the integration of object modeling and image modeling

in automated building extraction for aerial images. In Proceedings of the

Workshop on Automatic Extraction of Man-Made Objects from Aerial and

Space Images (Ascona’97), pages 139–148, 1997.

[36] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. ACM Transac-

tions on Graphics (Proceedings of SIGGRAPH ’06), 25(3):1160–1168, 2006.

[37] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE

Transactions on Automatic Control, 40(9):1528–1538, Sep 1995.

[38] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture.

ACM Transactions on Graphics (Proceedings of SIGGRAPH ’03), 22(3):669–

677, 2003.

BIBLIOGRAPHY 56

[39] T. Yılmaz. Visualization of Urban Environments. PhD thesis, Department

of Computer Engineering, Bilkent University, 2007.

[40] T. Yılmaz and U. Güdükbay. Extraction of 3D navigation space in vir-

tual urban environments. In Proceedings of 13th European Signal Processing

Conference (EUSIPCO ’05), 2005.

