FAST STEREOSCOPIC
VIEW-DEPENDENT
VISUALIZATION OF TERRAIN
HEIGHT FIELDS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

by
Turker Yilmaz

June, 2001

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ugur Giidiikbay (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof.Dr. Biilent Ozgiic

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ugur Dogrusoz

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Science

i

ABSTRACT

FAST STEREOSCOPIC VIEW-DEPENDENT
VISUALIZATION OF TERRAIN HEIGHT FIELDS

Tiirker Yilmaz
M.S. in Computer Engineering
Supervisor: Assist. Prof. Dr. Ugur Giidiikbay
September, 2001

Visualization of large geometric environments has always been an important
problem of computer graphics. In this thesis, we present a framework for the
stereoscopic view-dependent visualization of large scale terrain models. We
use a quadtree based multiresolution representation for the terrain data. This
structure is queried to obtain the view-dependent approximations of the terrain
model at different levels of detail. In order not to loose depth information,
which is crucial for the stereoscopic visualization, we make use of a different
simplification criterion, namely distance-based angular error threshold. We
also present an algorithm for the construction of stereo pairs in order to speed
up the view-dependent stereoscopic visualization. The approach we use is the
simultaneous generation of the triangles for two stereo images using a single
draw-list so that the view frustum culling and vertex activation is done only
once for each frame. The cracking problem is solved using the dependency
information stored for each vertex. We eliminate the popping artifacts that can
occur while switching between different resolutions of the data using morphing.
We implemented the proposed algorithms on personal computers and graphics
workstations. Performance experiments show that the second eye image can be
produced approximately 45 % faster than drawing the two images separately
and a smooth stereoscopic visualization can be achieved at interactive frame

rates using continuous multi-resolution representation of height fields.

Keywords: Stereoscopic visualization, terrain height fields, multiresolution

rendering, quadtrees.

il

OZET

ARAZI YUKSEKLIK VERILERININ STEREOSKOPIK
BAKISA GORE HIZLI GORUNTULENMES]I

Tirker Yilmaz
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Yrd. Dog. Dr. Ugur Giidiikbay
Hagziran, 2001

Genig geometrik ortamlarin etkilesimli olarak goriintiilenmesi bilgisayar grafik-
leri ile ugrasanlar icin devamli olarak bir problem olmustur. Bu caligmada
genig arazi verilerinin stereoskopik ve ¢ok ¢oziiniirliiklii olarak goriintiilenme-
si icin bir yapr sunulmustur. Arazi verilerinin temsili i¢in kullanilan dortlii
agac yapisi, arazinin bakiga gore degisken olarak cok c¢oziiniirliiklii modeli-
nin elde edilmesi icin sorgulanmistir. Derinlik bilgisini kaybetmeyen mesafe
temelli agisal sadelegtirme kriteri ile birlikte, stereoskopik olarak goriintiilemeyi
hizlandiran “Uggenlerin Aynmi Anda Uretilmesi” ad1 verilen yeni bir yontem
geligtirilmigtir. Bu yontemde, birinci goz goriintiisii igin cizilecek tiggenler
iiretildikten sonra, ikinci goz goriintiisiinii elde etmek icin cesitli doniigiimlere
tabi tutulmakta, boylece iglemci zamanini alan ii¢genlerin bakig piramidinin
diginda kalanlarinin ayiklanmasi ve koselerin aktif hale getirilmesi iglemleri iki
g6z goruntiisii icin bir defa yapilmaktadir. Arazi tizerindeki kirilma problemi
bagimlilik iligkileri kullanilarak ¢ozilmiigtiir. Farkli ¢oziiniirliikler arasindaki
atlama etkileri bagkalagim yontemi kullanilarak giderilmistir. Onerilen algorit-
malar bir goriintiileme sistemi haline getirilmis ve kisisel bilgisayarlar ile grafik
is istasyonlarinda uygulanmistir. Performans olciimleri sonucunda, arazinin
diizglin ve cok coziiniirliiklii stereoskopik goriintiileri, her iki gozii ayri ayri

iretmeye gore % 45 daha hizh olarak elde edilmistir.

Anahtar Sozciikler: Stereoskopik goriintiileme, arazi yiikseklik verisi, ¢ok

¢oziintirliiklit modelleme, dortlii agaclar.

iv

Turk Silahli Kuvvetleri’ne
ve

Aileme.

ACKNOWLEDGMENTS

At the end of this study, I am very grateful to my supervisor, Assist. Prof.

Dr. Ugur Giidiikbay, for his invaluable support, guidance and motivation.

I also would like to thank my thesis committee members Prof. Dr. Biilent
Ozgﬁg and Assist. Prof. Dr. Ugur Dogrusoz for their valuable comments to
improve this thesis. I would like to thank Prof. Dr. Biilent ©zgii(; for his
invaluable guidance and imagination improving approach during the lectures.
[am very grateful to Assist. Prof. Dr. Ugur Dogruséz for his comments on

the development of the thesis.

I would like to mention some people who helped me during this study in
different ways. I would like to thank Captain Murat Akbay for his invaluable
comments on earlier drafts of this thesis. I would also like to thank Second
Colonel Ziya Ipekkan for making Modeling and Simulation Laboratory available
for me to make some performance tests on graphics workstations. I would like
to thank to Major Hakan Maras for his invaluable support on digital terrain
elevation data formats. I would also like to thank to SGI Istanbul, for providing

me the liquid crystal shutter glasses.

I really would like to thank my brother, Lawyer Tibet Yilmaz for helping

me to have a well equipped personal computer to develop the code on.

Finally, I cannot forget my love and my wife, Canan Yilmaz. I would like

to thank her for invaluable moral support and love.

This thesis was partially supported by TUBITAK (Turkish Scientific and
Technical Research Council) under Grant 198E018. Grand Canyon Data is

obtained from The United States Geological Survey (USGS), with processing
by Chad McCabe of the Microsoft Geography Product Unit.

Contents

Introduction

1.1 Simplification Criteria
1.2 Multiresolution Representation
1.3 Stereoscopic Visualization
1.4 Contributions

1.5 Outline of the Thesis

Related Work
2.1 View-dependent Visualization of Terrain Height Fields

2.2 Stereoscopic Rendering and Visualization

Multiresolution Modeling

3.1 Data Structureso
3.2 Terrain Representation
3.3 Approximation Criterion
3.4 View Frustum Culling

3.5 Vertex Activation

Vil

3.6 Handling Cracks
3.7 Valid Triangulation of the Mesh
3.7.1 Triangle Construction
3.7.2 Triangle Drawing

3.8 Morphing

Stereoscopic Visualization

4.1 About Stereoscopy
4.1.1 Stereoscopic Image Perception
4.1.2 Retinal Disparity
4.1.3 Parallax
4.14 TypesofParallax
4.1.5 Focusing and Convergence Relationship
4.1.6 Crosstalk (Ghosting)

4.2 Stereoscopic Projection System Used

4.3 Simultaneous Generation of Triangles

Empirical Study
5.1 Definition of the Test Platform

5.2 Performance Results

Conclusion and Future Work

6.1 Conclusions

viii

35

35

35

36

36

37

39

40

41

42

48

48

49

63

6.2 Future Work 64

A The User Interface 66
Al Overviewo L 66
A2 Viewing Area 67
A3 Commands Area 68

A.3.1 Culling Techniques Block 68
A.3.2 Visual Properties Block 69
A.3.3 Navigation Block 69
A.3.4 Stereo Control Block 70

B Types of Stereoscopic Displays 73
B.1 Anaglyph Method L 73
B.2 Squished Side-by-Side Method 74
B.3 Polar Method 74
B.4 Shutter Glasses 7

B.4.1 Page Flipped Methods 7
B.4.2 Line Alternate Methods 78
B.4.3 Disadvantage of Page Flipped Methods : Flicker 78

C OpenGL 80

D GLUI User Interface Library 82
D.1 Overview o o 82

X

D.2 Background 83

D.3 Properties 84
D.3.1 Programming Interface 84

D.3.2 Full Integration with GLUT 85

D.3.3 Live Variables oL 85

D.3.4 Callbacks 86

D.3.5 APL 86

E Performance Graphics 88

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

Data structureso
Quadtree structure
Numbering scheme for the quad blocks
Screen-space error metric. L.
Angular error threshold representation for vertex removal.

The distance ¢ between original and removed positions of the

tested vertex.
View frustum culling algorithm
Frustum checking algorithm
Vertex Activation Algorithm
Crack prevention
Dependency relationships of center and border vertices.
Notifying parents
Locking the vertex dependents
Naming of the vertices in a quad block.

The first step of the vertex activation value assignment.

xi

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

The first phase of the second step of vertex activation.
The second phase of the second step of vertex activation.
The first phase of the third step of vertex activation.
The second phase of the third step of vertex activation.
The first phase of the last step of vertex activation.
The second phase of the last step of vertex activation.
Construction of the draw-list
Triangulation algorithm

A sample execution of the triangulation algorithm for a quad
block.

The morphing algorithm,

Types of parallax.
Off-axis projection.
Loss of data in on-axis projection.
Elimination of disadvantages of on-axis projection..

Producing the same result for on-axis projection with one trans-

lation.
Using the draw-list constructed for the right eye.
Stereoscopic drawing using the SGT algorithm

The algorithm that calls VFC and activation procedures.

Still frames from a monoscopic walkthrough

xii

41

47

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Al

A2

B.1

B.2

Another set of still frames from a monoscopic walkthrough. . . . 52

Still frames from a stereoscopic walkthrough, showing terrain in

wire-frame. 53

Comparison of the frame rates of different types of visualizations
(SMOOTHED). 54

Number of polygons for the experimental visualization (SMOOTH-
ED) . 54

Comparison of the frame rates for visualization types with dif-
ferent morphing/culling options (SMOOTHED) (a). 55

Comparison of the frame rates for visualization types with dif-
ferent morphing/culling options (SMOOTHED) (b). 56

Comparison of the frame rates for visualization types with dif-
ferent morphing/culling options (SMOOTHED) (c¢). 57

Comparison of different culling schemes for each type of visual-
ization (SMOOTHED) (a). 58

Comparison of different culling schemes for each type of visual-
ization (SMOOTHED) (b).. 59

Comparison of different culling schemes for each type of visual-
ization (SMOOTHED) (¢). 60

Comparison of different culling schemes for each type of visual-

ization (SMOOTHED) (d).. 61
Results of emboss change. 69
Graphical user interface of the system 72
Types of anaglyph method. 75
Squished Side-by-Side method. 76

xiii

B.3

B.4

B.5

D.1

E.1

E.2

E.3

E.4

E.5

E.6

E.7

E.8

E.9

Polar display equipment. L. 76
Examples of shutter glasses. 7
Line alternate display method. 78
A sample GLUI window. 84

Comparison of the frame rates of different types of visualizations
(ACTUAL). 89

Number of polygons for the experimental visualization (ACTUAL) 89

Comparison of the frame rates for visualization types with dif-
ferent morphing/culling options (ACTUAL) (a). 90

Comparison of the frame rates for visualization types with dif-
ferent morphing/culling options (ACTUAL) (b). 91

Comparison of the frame rates for visualization types with dif-
ferent morphing/culling options (ACTUAL) (¢). 92

Comparison of different culling schemes for each type of visual-
ization (ACTUAL) (a). 93

Comparison of different culling schemes for each type of visual-
ization (ACTUAL) (b). o o o 94

Comparison of different culling schemes for each type of visual-
ization (ACTUAL) (¢). o oo o v 95

Comparison of different culling schemes for each type of visual-
ization (ACTUAL) (d). 96

xXiv

List of Tables

5.1 Performance Results

XV

List of Symbols and Abbreviations

LOD
TIN
LCS
VR
fps

quadtree

-
Al

Vact

(minge)
(maxact)

VFC
deferred VFC
corner vertex
border vertex
center vertex
sub-center
sub-border
sub-sub-center
activevertex
10D

parallax

SGT

Normal Stereo

: Level of Detail

: Triangular Irregular Network

: Liquid Crystal Shutter

: Virtual Reality

: Frames per Second

: A tree structure holding the data in a quadruple way

: Number of nodes at the bottom level of the quadtree

: Number of vertices in a line of the terrain

: Number of levels in the quadtree

: Number of nodes in the quadtree

: Distance between the vertex and the viewer

: Elevation difference between the border vertex and the corners
: Angular threshold

: Tangent of the angular threshold

: Vertex activation distance

: The distance, that at least one vertex should be activated

: The distance, that all vertices should be activated in the block
: View Frustum Culling

: VFC done at predefined intervals

: One of the vertices on the four corners of a quad-block

: One of the vertices between the corner vertices of a quad-block
: Vertex located at the center of the quad-block

: Center of a child of the corresponding quad-block

: A border vertex of the child of the corresponding quad-block

: A center vertex at the two levels below of the quad-block

: Vertex that is selected to be a part of a triangulation

: Inter-Ocular Distance

: Distance between the stereo pairs on the screen

: Simultaneous Generation of Triangles

: Stereoscopic visualization done by a naive approach

xVvi

Chapter 1

Introduction

Modern graphics workstations allow rendering of millions of polygons per sec-
ond. Although the power of these systems increases greatly, it cannot catch up
with the quality demand needed for graphics systems used for visualizing com-
plex geometric environments since the data that needs to be processed increases
quite fast as well. In general, geometry processing is the main bottleneck of all
graphics applications. Even high-end graphics workstations have the ability to
draw only a very small fraction of triangles needed to draw large complex scenes
at interactive frame rates. Furthermore, virtual reality applications need twice
the processing power as needed for their monoscopic counterparts. Therefore,

the surface has to be approximated up to a certain threshold.

1.1 Simplification Criteria

The most common way to approximate a surface is to use algorithms based on
screen-space error threshold that provide suitable heuristics for the approxima-
tion. However, one of the most important disadvantages of using screen-space
error threshold as a simplification criterion is the loss of depth information,
which is crucial in stereo visualizations. Besides, the correctness degrades
at the peripheries although the human eye compensates for this. However,

this degradation should be prevented and the simplification criteria should be

CHAPTER 1. INTRODUCTION 2

defined adaptively to real life situations, especially in flight simulator like ap-
plications because pilots use peripheral views when landing and taking off,
while they focus their attention towards the center of the view. To solve these
problems, we propose a distance-based angular error threshold criterion that
preserves depth information of the terrain data during the simplification pro-

cess.

1.2 Multiresolution Representation

In order to visualize complex scenes, such as terrain height fields, at interactive
frame rates, efficient data structures need to be used. Quadtree representation
perfectly fits into grid elevation data. Generally, triangles are used as mod-
eling primitives for complex scenes. The triangulation must be adaptive in
order to reduce the number of polygons to be processed and make efficient
use of the limited memory sources. This means that high frequency elevation
changes should be triangulated with more triangles than low frequency regions.
While doing this process, the artifacts that can occur on the terrain should be

minimized as much as possible.

1.3 Stereoscopic Visualization

In stereoscopic visualization, the two views must be generated fast enough to
achieve interactive frame rates. It is apparent that there will be some lim-
itations in terms of the features that could be incorporated to increase the
realism of the visualizations as compared to monoscopic visualizations. Since
the amount of data that can be processed decreases drastically, complex visu-
alizations, such as the visualization of urban scenery over the terrain, cannot
be done easily. Our goal in this work is to decrease the time needed for gener-
ating the second eye image so that complex stereoscopic visualizations can be
possible. For this purpose, an algorithm is proposed to speed up the generation
of stereo pairs for stereoscopic view-dependent visualizations. The algorithm,

called Simultaneous Generation of Triangles (SGT), generates the triangles for

CHAPTER 1. INTRODUCTION 3

the left and right eye images simultaneously using a single draw-list, thereby

avoiding the need for performing the view frustum culling and the vertex acti-

vation operations twice.

1.4 Contributions

The contributions of the thesis can be summarized as follows:

A traversal algorithm on the quadtree representation of the terrain data
that is preventing the formation of cracks using dependency information

between the vertices.

A distance-based angular error metric for view-dependent refinement of
the terrain data that preserves the depth information of the terrain data
during simplification process, which is necessary for correct stereoscopic

view.

An algorithm to speed-up the generation of the stereo pairs for stereo-
scopic view-dependent visualizations, namely Simultaneous Generation

of Triangles.

Several strategies to optimize the view frustum culling process that are
user-specifiable and can be switched according to navigation character-
istics while the program is running: coherency utilization between the
frames of a visualization, deferred view frustum culling that culls at
predefined intervals, view frustum culling based on the deviation of the
viewer location that culls when the user moves a prespecified distance
from its position, and culling with respect to the far plane whose dis-

tance is determined based on the altitude of the viewer.

A morphing technique that works in the same manner for both refining

and coarsening operations while visualizing the terrain data.

CHAPTER 1. INTRODUCTION 4

1.5 Outline of the Thesis

In the next chapter, we describe related work on both multi-resolution model-
ing of terrain data and stereoscopic visualization. Our quadtree based multi-
resolution modeling approach and distance based angular error threshold as
the approximation criterion are explained in Chapter 3. A short information
about stereoscopic projections and algorithms that we propose to speed-up the
generation of second eye image for stereoscopic visualization are explained in
Chapter 4. Chapter 5 discusses the performance of the proposed algorithms
in terms of processing speed and quality of the visualizations. Conclusions are

given in Chapter 6.

In Appendix A, we describe the user interface of the developed system. In
Appendix B, we give brief overview about stereoscopic visualization formats. In
Appendix C, a short introduction to OpenGL is given. In Appendix D, descrip-
tion about the user interface library we used is given. Finally, in Appendix E,

the unsorted graphical results of our proposed algorithms are presented.

Chapter 2

Related Work

In this chapter we give an overview of the previous work that has been produced

in this area.

2.1 View-dependent Visualization of Terrain
Height Fields

In [12], a dynamic approach is presented for level of detail (LOD) construction
of terrain data. In this work, grid elevation data was used to represent height
fields and to visualize terrain at real time. The simplification hierarchy is
represented using a quadtree structure. During simplification process, block
based tests are done first to select discrete levels of detail for blocks of the
quadtree. After this coarse level of simplification, a fine-grained simplification
is performed in which individual vertices are considered for removal. To check
a vertex for removal, the difference between the projections of a vertex when
it is active and inactive is compared to a prespecified pixel threshold. If this

value is smaller than the threshold then the vertex is removed.

In [17], a framework for monoscopic visualization of regular grid elevation
data is proposed. The framework that addresses different problems of visual-

izing terrain data represented as a quadtree structure is as follows: In order to

CHAPTER 2. RELATED WORK 6

achieve a valid triangulation, the basic quadtree construction scheme has been
turned into a restricted one by applying a dependency relation between the ver-
tices. Every vertex is dependent on the two other vertices of the same or the
next higher level in the quadtree hierarchy. This means that if a vertex is se-
lected for triangulation then the dependents must also be selected. A breadth-
first search is performed in the quadtree for progressive mesh construction.
For triangle strip construction, the quadtree is traversed using Hamiltonian
paths. Blending is used to prevent popping effects. A windowing mechanism
is used for large terrains by applying spatial database access in order not to
load the whole terrain data into the memory. The Euclidean distance between

the vertices is used as simplification criterion.

In [9], regular grid data is first approximated with minimum error and the
triangulation is converted into a triangulated irregular network (TIN) model.
Later, the blocks are simplified step by step for each LOD and simplification
steps are recorded to construct hierarchical representation of the terrain. While
switching between different resolutions, morphing is used to eliminate popping
artifacts. The pixel threshold that is used to control the simplification process

is adjusted according to the frame rate defined.

Grid elevations and quad cells are also used in [11]. The lowest acceptable
rendering speed is chosen and the appropriate LOD for that rendering speed is
selected. Elevation differences are taken into account for simplification and a
distance based polygon resolution technique is used for simplification. Texture
binding is used for large texture mapping. Although the swapping cost is very
high, this is necessary if large textures are to be used. To hide the appearance
of cracks, each crack is closed by an additional triangle. Although this scheme
produces a stepped view on cracked regions this appearance is decreased by

the use of textures.

Other techniques, which decrease the number of polygons to be processed,
hence optimize CPU usage, include view frustum culling, back face removal,
and occlusion culling. In [4], some methods are proposed to speed up view
frustum culling by using bounding boxes. They use movement coherency dur-
ing visualization based on the properties of axis aligned and oriented bounding

boxes.

CHAPTER 2. RELATED WORK 7

Some other work use special capabilities of the underlying graphics system.
In [5], selection buffer mechanism of OpenGL is used for view frustum culling.
This mechanism is very effective in determining which quad blocks are in the
view frustum and eliminates the need to make intersection tests. However, the
bounding boxes must be drawn to the selection buffer as filled polygons and
back face culling should not be performed. Otherwise, it is possible that the
viewer is completely inside of a box and the selection buffer may not create a
hit although the block is in the viewing frustum. Besides, culling tests bring
additional overhead if it is needed to distinguish between the blocks that are
completely inside and the blocks intersecting with the view frustum since a hit
produced cannot differentiate between these cases. For occlusion culling, they

use OpenGL’s stencil buffer mechanism.

2.2 Stereoscopic Rendering and Visualization

Stereoscopic visualization systems are used in many applications, such as sim-
ulators and scientific visualization. These systems can be used with suitable
hardware designed for this purpose. One of the most commonly used hardware
is the time multiplexed display system that is supported by liquid crystal shut-
ter (LCS) glasses and virtual reality (VR) glasses. In this work, we chose to use
LCS glasses since they are less expensive and many users can simultaneously
see the results of a visualization application in stereo. Detailed information
about these systems can be found in [7] and [8]. Most of the applications sup-
port stereoscopic display by completely generating the two images for the left
and right eye views separately. Parallel processing is very suitable for this type
of stereoscopic visualization. Except large-scale simulator applications such as
flight simulators, there are not many applications for low-end systems, espe-
cially personal computers, that allow the user to navigate freely over the data.
In our work, we propose algorithms to reduce the overhead for stereoscopic

visualization while the user is navigating over the data.

For stereoscopic viewing, the application must support a kind of display
technique to make each eye see the image generated for it. In visualization

with LCS glasses, when the left eye view is drawn onto the screen, the right

CHAPTER 2. RELATED WORK 8

eye of the glasses dims to occlude the left eye image from the right eye. The
same procedure is applied when the right eye image is drawn onto the screen.
Average refresh rate of a real-time visualization application should be around
25 frames per second (fps) for monoscopic view. However, since two images
should be generated for each frame in stereoscopic visualization, the appli-
cation should be able to generate 50 or more images per second to achieve
the same frame rate as the monoscopic correspondent. This means that when
you convert a monoscopic application to stereo without any improvement, the

frame rate decreases by half.

The algorithms developed for speeding-up stereo rendering generally make
use of the mathematical characterization of an image that change when the
eye-point shifts horizontally and a recognition of the characteristics that are
invariant with respect to the eye-point, like the scan-lines to which an object
project as stated in [7]. In [6], the authors present a visible surface ray-tracing
algorithm that infers a right-eye view from a fully ray-traced left-eye view and
this algorithm is further improved in [3]. In [1], a non-ray-tracing algorithm
is described to speed up the second eye image generation for polygon filling,
hidden surface elimination and clipping. In [2], methods that take advantage
of the coherence between the two halves of a stereo pair for ray traced volume
rendering are presented. In [22], the authors present an algorithm using seg-
ment composition and linearly-interpolated re-projection for fast direct volume
rendering. Hubbold et al. [10] propose extensions of a direct volume renderer
for use with an autostereoscopic display in radiotherapy planning. Since the
terrain data do not have any mathematical characterization, mentioned algo-

rithms cannot be adapted easily to stereoscopic terrain visualization.

Chapter 3

Multiresolution Modeling

In this chapter we describe the methods we applied to construct multiresolu-
tion models of the terrain. At first we give the data structures we used in
the implementation. Next we describe the terrain representation. In the later
sections we describe how we achieved the properties of a proper terrain visual-
ization system by dealing with simplification functions, crack prevention and

morphing to prevent popping artifacts.

3.1 Data Structures

Here, we present the data structures used in our implementation. To allow
morphing and crack prevention, the elevation structure has to be equipped
with suitable fields. The elevation data structure stores elevation data, the
distance at which the vertex will be activated, the state of the vertex (active
or inactive), indices of its dependent vertices, morph field indicating at which
stage the vertex is, a precalculated value showing the distance between active
and inactive states of the vertex, and a morph lock flag to prevent the morph
field from being decremented again by other neighboring vertices at the same

frame (see Figure 3.1).

In the quad structure, minimum and maximum elevations and minimum

and maximum activation distances for a quad block are stored. Flags indicating

9

CHAPTER 3. MULTIRESOLUTION

MODELING 10

struct elevation {
short int elevation;

//

int activation; //
int dependent [4] [3]; //
float morphdistance; //
char morph; //
unsigned activestate:1; //
unsigned morphlock:1; //

//

};

elevation in meters

vertex activation distance
array of dependents

distance for morphed vertex
level of morphing

keeps activation locks

flag to prevent another quad
decrement the morph value

struct elevation Terrain[COL][ROW]; // terrain data

struct quad {
short int elevmin, elevmax;//
int minact, maxact; //
int rcenter, ccenter;//
char activated; //
char culled; //
char childactivated[4];

};

struct quad QuadTree [NODECOUNT];

{

center;
leftborder
bottomleft
bottomborder
bottomright
rightborder
upperright
upborder
upperleft

struct
char
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

s

struct tag

tag

e v

e

e we we

e

-

EyeBlock [NODECOUNT] ;

minimum and maximum elevations
min and max enabling distance
indices of the center vertex

if the cell is activated

if the cell is previously culled

// quadtree array

Figure 3.1: Data structures

CHAPTER 3. MULTIRESOLUTION MODELING 11

whether or not the quad block is activated, previously culled, and its children

are activated are also stored in this structure.

For a terrain with n? vertices, the Terrain structure holds 60n? bytes. The
structure can be modified to reduce the amount of storage required by calculat-
ing the dependent vertices on the fly, which reduces the storage requirement at
the expense of some processing overhead. However, dependent blocks for a ver-
tex must be determined using a search process in the preprocessing phase since
there is no straightforward way of determining the neighbors of an arbitrary
quad block [19].

The QuadTree array occupies 26 bytes per node. Since each lowest level
quad block (highest detail) contains four vertices, the quadtree contains N =
((n — 1)/2)? nodes at the most detailed level. Given L = log,N levels and

Ty = X F =1 47~ nodes, the quadtree structure occupies 26Ty bytes.

The tag data structure stores flags to indicate the activated vertices for
the quad blocks and uses up two bytes for each node. This information is used

while drawing the second eye image.

3.2 Terrain Representation

The quadtree structure is represented as a one-dimensional array (Figure 3.2).
In this tree, each level represents a different level of detail on the terrain.
We use the quadtree to store the indices, minimum and maximum elevations,
and minimum and maximum activation distances for the vertices. Activation
data for the vertices are not stored in the quadtree. In addition, we use an
array-based representation of the quadtree to eliminate the need for pointer
manipulation. The numbering scheme for the quadtree structure when it is
stored in a one-dimensional array is illustrated in Figure 3.3. The root is labeled

as 0 and the rest is numbered recursively in counter-clockwise direction.

CHAPTER 3. MULTIRESOLUTION MODELING 12

AN AN AN AN

Figure 3.2: Quadtree structure

68; 67

65; 66

56 55

53! 54

52 51

49 50

40! 39

3738

Figure 3.3: Numbering scheme for the quad blocks

CHAPTER 3. MULTIRESOLUTION MODELING

13

Tested vertex Tested vertex

a) b) ©)

Figure 3.4: Screen-space error metric. (a) Side view of a quad block. (b)
Top view of the same block. (c) Edge removal by screen-space error based
algorithm.

3.3 Approximation Criterion

As mentioned previously, screen-space error criterion for approximating the
terrain is not sufficient in order to achieve a correct stereoscopic view. This is
illustrated in Figure 3.4. Elevation differences are taken into account to evalu-
ate a vertex for removal when screen-space error metric is used. The number of
projected pixels for the vertex is calculated for this purpose. If this number is
greater than the pre-specified pixel tolerance then the vertex is kept, otherwise
it is removed. The problem here is that if the eye is above a quad block then
its projection to the camera plane will be very small yielding to the elimina-
tion of the candidate vertex. This problem can be illustrated by an example.
Assume that we are looking at a tower from above and we use screen-space
error tolerance. Since the projection of the elevation difference will be very
small with respect to the position of the eye, tested vertices will be removed.
Therefore, although the screen-space error metric is suitable for monoscopic

view, it degrades the stereo effect and results in incorrect stereoscopic vision.

Elevation and distance of objects from the viewer are two important criteria
that make us feel the depth and differentiate between objects. Therefore,
the threshold value must be specified adaptively so that it takes into account
both of these parameters to reflect the correct depth information. For this
purpose, we specify our distance based angular error threshold for simplification
as follows. We accept the eye to be in the center of a sphere. The candidate

vertices tested for the elimination are located on the surface of the sphere.

CHAPTER 3. MULTIRESOLUTION MODELING 14

Threshold degree’'s Threshold degree(T)
tangent value (A’) «
A

Elevation A
difference

if vertexis
removed (A)y

>
vertex to be
tested (v) v
eye position (e)

»
distance (d)

Figure 3.5: Angular error threshold representation for vertex removal.

Our threshold value at a vertex location is computed by using the prespecified
angular threshold value and the radius of the sphere. The greater the radius
of the sphere (i.e., the distance from eye to the vertex) is, the larger the size
of the threshold will be. We can derive the elevation threshold by taking the
tangent of the angular threshold at the given distance. Figure 3.5 illustrates

our angular error metric for evaluation of a vertex for removal.

The distance from the eye position to the vertex is

d= \/(ex —vy)2 4 (e, —vy)? + (e, — v,)2. (3.1)

The distance between the original and removed positions of the vertex (Fig-

ure 3.6) is

5 <leftcorne7"z + rightcornerz> ‘
= |v, — .

2

The tangent value of the angular threshold in degrees is given by
A" = tan(T) d.

CHAPTER 3. MULTIRESOLUTION MODELING 15

Right Corner

~~~.1 Left Corner

Figure 3.6: The distance d between original and removed positions of the tested

vertex.

Hence, our rule for enabling or disabling a vertex is

if 6 < A’ then
disable vertex
else

enable vertex

Our aim is to find a distance at which the threshold value does not exceed

the elevation difference (9). So

§ =tan(t) d

(3.3)
(3.4)

(3.5)

The vertex activation distance v, = d/tan(7) is a pre-computable value.

So the rule for enabling or disabling a vertex can be restated as;



CHAPTER 3. MULTIRESOLUTION MODELING 16

if v, < d then
disable vertex
else

enable vertex

When the quadtree is built, v, values for each vertex are computed. In ad-
dition, the maximum distance necessary for at least one vertex to be activated
(ming) and the minimum distance necessary for all vertices to be activated
(max,.) are precomputed for each quad-cell. If the distance is greater than
min,., then the lowest resolution block is drawn. If it is less than max,.;, then
the full resolution block is drawn without checking internal vertices. Otherwise,

vertices are considered individually.

3.4 View Frustum Culling

An efficient view frustum culler (VFC) is crucial for interactive frame rates.
While the quadtree is traversed, the nodes are checked against the viewing frus-
tum and flags for the nodes in the quad block are cleared and set accordingly.
To speed-up frustum culling, frustum tests are done using bounding spheres

enclosing the quad blocks.

In VFC, several optimizations can be performed as listed below.

e One of the most important optimizations is to utilize the coherence be-
tween two frames when the user navigates through the terrain. If the user
moves forward then there is no need to cull the whole terrain again since
the terrain is already culled in the previous frame. So, previously culled
blocks can be used for the current frame. This method is applicable if

the VF is not culled according to the far plane.

e Another method is deferred VFC. By deferred VFC, we mean that VFC
is not done for every frame but at predefined intervals. In this way, the

overhead brought by the VFC step can be decreased. One problem with



CHAPTER 3. MULTIRESOLUTION MODELING 17

this approach is the navigation speed. If the user moves very fast involv-
ing rotation and backward motion then the screen may not refresh itself

on time. This is suitable for slow motion walkthroughs of the terrain.

e As another approach, VFC depending on the deviation of the viewer
location is used. Deviation based culling is very suitable for walkthroughs
in which the viewer navigates through the terrain very fast. Here, we run
the VFC only if the user moves a prespecified distance from the previously

culled position.

o If the terrain is large then we have to test for the far plane too. In this
case, an altitude-based scheme is used for far plane distance determina-
tion. If the altitude of the viewer is at lower levels in the terrain, the far
plane is brought closer to the viewer in proportion to the altitude of the
viewer because it is not possible to see farther distances. This approach
establishes a balance between the frustum distance and the terrain reso-

lution.

All of the optimizations mentioned above are user-specifiable and can be
switched on/off while the program is running. Besides, it is possible to see
the performance differences during fly-through. In deferred VFC and VFC
depending on the deviation of the viewer location, the VFC is not done for every
frame. The algorithm that controls the VFC operation is given in Figure 4.8,
in Chapter 4.

In view frustum culling algorithm (Figure 3.7), the quadtree is traversed in
preorder. If the viewer moves forward, the algorithm checks only the previously
culled blocks. In this way, we make use of frame coherency. If the movement
is not a forward movement then all quad blocks are to be checked. Since, our
scene construction is not graph based, we do not use rotation coherency as
in [4].

In frustum checking part (Figure 3.8), we test whether the block is com-
pletely inside, intersecting or completely outside of the view frustum. If the
block is intersecting with any of the planes then the children of the block are
checked further and its index is returned to view frustum culling function. Oth-

erwise, we conclude it is completely inside or outside the frustum and there is



CHAPTER 3. MULTIRESOLUTION MODELING

18

Algorithm ViewFrustumCulling;
while (nodes are not finished) {
if (viewer moves forward)
(check only previously culled blocks)

else {
(check all nodes for culling)
clear previous frame flags
node=CheckFrustum(node)

}

node=sibling(node)

Figure 3.7: View frustum culling algorithm

Algorithm CheckFrustum;
QuadTree[node] .activated=test (node)
if (QuadTreel[node] .activated==intersecting) {

increment hits
mark the node as intersecting
return child(node)

}

else
if (QuadTree[node].activated==inside) {

increment hits
mark the node as inside
mark all children as inside
return sibling(node)
}
node=sibling(node)
return node

Figure 3.8: Frustum checking algorithm




CHAPTER 3. MULTIRESOLUTION MODELING 19

no need to check the children. If the block is completely inside the frustum
then the flags of all children of the checked block are cleared and marked as

inside.

3.5 Vertex Activation

Vertex activation takes place after view frustum culling. In this module (Fig-
ure 3.9), the quadtree is again traversed in preorder but only do we traverse
the nodes that are in the view frustum. In this step, the distance from the
viewer position to the center of the quad block is calculated and this value is
compared with the vertex activation value of the block. Since the maximum of
the activation values in the block is assigned to the activation value of the cen-
ter vertex, block selection decision requires only a comparison of the distance

from the quad-center to the eye-point and the activation value of the block.

If the distance is smaller than the maximum activation distance, it means
that the viewer is close enough to the quad block and all vertices in the quad
block should be activated. Since the maximized activation values are assigned
to higher level quad blocks, it is not necessary to check the children of the quad
block and can safely be activated without further investigation. If the distance
falls between the minimum and maximum activation distances then we check
each border vertex individually, measuring the eye-point and vertex distances
and comparing with their activation distances. If the activation distance is
greater than the distance measured then it means that the viewer is close
enough and the vertex should be activated. While activating a vertex, it is

also necessary to activate its dependents.

3.6 Handling Cracks

Cracks are one of the artifacts on the geometry when the two neighboring quad

blocks differ in level of detail. There are several approaches to crack handling.



CHAPTER 3. MULTIRESOLUTION MODELING 20

Algorithm ActivateVertices;
node=0 //start activation from the root
if (hits!=NIL)
while (all view frustum culled nodes are not finished) {
if (QuadTreel[node].culled==YES) {
d=(eye_x-vertex_x)**2 +
(eye_y-vertex_y)**x2 +
(eye_z+vertex_z) **2
if (((QuadTree[node] .maxact*QuadTree[node] .maxact)>=d)){
// If the viewer is closer than all vertices’
// activation distance, lock all vertices down
// the quadtree without checking them individually.
for all quadblocks including this one do {
LockDependents (centervertex)
LockDependents (bottombordervertex)
LockDependents (rightbordervertex)
LockDependents (upbordervertex)
LockDependents (leftbordervertex)
}
node=sibling(node)
}
else // the distance is in uncertainty section
if ((QuadTree[node] .minact*QuadTree[node] .minact)>=d){
LockDependents (centerrow,centercol)
for all border vertices do {
d=(eye_x-vertex_x)**2 +
(eye_y-vertex_y)**x2 +
(eye_z+vertex_z)**2
if (Terrain[borderrow] [bordercol].activation>=d)
LockDependents (borderrow,bordercol)
}
node=child(node)
}
else // the block will not be activated
node=sibling(node)
}
else
node=sibling(node)

Figure 3.9: Vertex Activation Algorithm



CHAPTER 3. MULTIRESOLUTION MODELING 21

a) b) <)

Figure 3.10: Crack prevention: a) crack formation, b) activate the center vertex
in the higher level block, and ¢) use it in the triangulation to eliminate the
crack.

These include drawing another triangle patch in the cracked position [11], tri-
angulation of the gapped position [16], or not allowing crack formation by using

the dependency relations [17].

In order to prevent cracks without causing discontinuation, dependency
relations are imposed between vertices. If a border vertex is activated in a
block then a triangle including that vertex is drawn. If a neighboring block is
not on the same level of detail then no triangles including the common border
vertex will be drawn for the neighboring block. This causes the formation of
a crack. In such a case, the dependency relation works. If any of the border
vertices is activated then the neighboring quad-center vertex at the same level is
activated as well. Since this newly activated quadrant will include the common
border vertex in its draw-list, a triangle including the common border vertex
will be drawn for the neighboring block (Figure 3.10). For this purpose, the
dependency relationships over the data are generated and used. As shown in
Figure 3.11, center vertices are dependent on the four corner vertices, and if
they are activated then the dependents are activated accordingly. Likewise,
the border vertices are dependent on the center vertices of the two neighboring
blocks at the same level. If a border vertex is activated then its dependent
vertices are activated as well. The dependencies of the vertices are stored in

the elevation structure.

During the vertex activation process, vertex dependents are locked by call-

ing the dependency locking procedure (Figure 3.13) when a vertex is activated.




CHAPTER 3. MULTIRESOLUTION MODELING

Figure 3.11: Dependency relationships of center and border vertices.

22

Algorithm NotifyParents(node);
childno=node-child(parent(node)) // find the quadrant #
while (node) {

node=parent (node)
if (QuadTree[node].childactivated[childno]l==N0)
QuadTree[node] .childactivated[childno]=YES
else
break // exit since the rest of the parents already
// know that the quadrant is already activated
childno=node-child(parent (node))

Figure 3.12: Notifying parents




CHAPTER 3. MULTIRESOLUTION MODELING 23

Algorithm LockDependents(row, col, node);
Terrain[row] [col] .activestate=YES
for (i=0; i<4; i++) {
if (Terrain[row] [col].dependent[i] [0]!=NIL) {
if (Terrain[Terrain[row] [col].dependent[i] [0]]

[Terrain[row] [col] .dependent[i] [1]].activestate==N0){

NotifyParents (node)

LockDependents (Terrain[row] [col] .dependent[i] [0],
Terrain[row] [col] .dependent [i] [1],
Terrain[row] [col] .dependent [i] [2])

}
else
break // exit without checking the rest

Figure 3.13: Locking the vertex dependents

This procedure activates the related vertex by turning its flag on. The depen-
dent vertices are located sequentially in the dependent slots. A vertex can
have at most four dependent vertices. If the vertex is a border vertex then the
number of the dependent vertices is two. Therefore, the procedure checks if
the dependent vertex is null or not; and if not, it informs its parents that the
corresponding quad block is activated. It then calls itself recursively to further
lock the dependents of the dependent vertex. It is important to stop the lock-
ing process if the dependent vertex has been enabled previously because this
means that locking has already been done and there is no need to go further.
Figure 3.12 gives the algorithm for notifying the parents of a node. In this
algorithm, parents are notified in order not to generate a triangle towards the
location of the activated child block. The notification process is stopped if the
location of the child block in the quad was marked before, which means the

higher level quad blocks have already been notified.



CHAPTER 3. MULTIRESOLUTION MODELING 24

border cor ner
vertex vertex
! \\\ ! /// :
| N | / |
sub-border ‘ AN | L, I
vertex . v center - :
|
. vertex |
I N 7 ‘
| // | \\ :
| Va I N |
] / | \\ |
| | N
: sub<center : N :
I
I
| : !

veértex

Figure 3.14: Naming of the vertices in a quad block.

3.7 Valid Triangulation of the Mesh

3.7.1 Triangle Construction

In order to prevent cracks on the terrain, a valid triangulation should be main-
tained. Our distance-based vertex activation scheme accomplishes this by using

the activation values assigned to each vertex at preprocessing phase.

In this part, a corner verter refers to one of the vertices on the four corners
of a quad block; border vertex refers to the vertex between the corner vertices
on the same edge of a quad block; center vertex refers to the vertex located
at the center of the quad block; sub-center vertex refers to the center vertex
of the sub-quad (see Figure 3.14). The activation values are assigned starting
from the level just above the lowest level in the quadtree structure as explained

below:

e (Calculate the activation values for each border vertex of the quad blocks
(Figure 3.15).

e Find the activation distances for the sub-center vertices by taking into
account the diagonals based on the position of the sub-center in the quad

block (Figure 3.16) and assign the maximum of its four border activation



CHAPTER 3. MULTIRESOLUTION MODELING 25

distances and the calculated value as the sub-center vertex activation

distance (Figure 3.17).

After finding the activation distances for this level, we go up one level in the
quadtree and the activation distances for the higher level nodes are calculated
similarly. However, there are minor differences for the calculations at higher

level nodes as explained below.

¢ ®
® ® {
¢ ®
® ® l
¢ ®
STEPL: Find"@".

Figure 3.15: The first step of the vertex activation value assignment.

e Calculate activation distance values for border vertices for each edge (Fig-
ure 3.18) and assign the maximum of the sub-border vertex activation
distances on the same edge and the calculated value as the border vertex

activation distance (Figure 3.19).

e Find activation distances for sub-center vertices by taking into account
the two corner vertices (based on its position in the larger quad block)
(Figure 3.20) and assign the maximum of nine values to the centers
(maximum of four sub-subcenter, four sub-border and the calculated
value)(Figure 3.21).

This process is repeated going up until the root of the quadtree is reached.

At the root, only the activation distance of the center vertex is calculated.



CHAPTER 3. MULTIRESOLUTION MODELING 26

sTeP2(a): Find "Il

Figure 3.16: The first phase of the second step of vertex activation values
assignment: Calculate activation distances for subcenter vertices.

STEP 2(b): Assign maximum of four " @" and " K
to the subcenter vertices.

Figure 3.17: The second phase of the second step of vertex activation values
assignment: Maximum operations on the center vertices.



CHAPTER 3. MULTIRESOLUTION MODELING 27

STEP 3(a): Find" O".

Figure 3.18: The first phase of the third step of vertex activation values as-
signment: Calculate activation distances for border vertices.

NN NN

o ran\ °- o ran\ °-

A/ A/
STEP 3(b): Assign max of the border valuesto" O".

Figure 3.19: The second phase of the third step of vertex activation values
assignment: Maximum operations on the border vertices.



CHAPTER 3. MULTIRESOLUTION MODELING 28

* N * * N *

STEP 4(a): Find " [_]".

Figure 3.20: The first phase of the last step of vertex activation values assign-
ment: Calculate activation distances for subcenter vertices.

®
—

STEP 4(b): Assign maximum of nine values to center
vertices.

Figure 3.21: The second phase of the last step of vertex activation values
assignment: Maximum operations on the sub-center vertices.



CHAPTER 3. MULTIRESOLUTION MODELING 29

Algorithm ConstructDrawList(eye);
node=0
while (nodes are not finished) {
if (Terrain[centerrow] [centercol].activestate==YES) {
EyeBlock[node] . center=YES
// process bottom left quadrant
if (canIdrawbottomleft(node)==YES) { // no subquads act.
if (canIdrawupperleft(node)==NO) // above subquad act.
EyeBlock[node] .leftborder=YES
EyeBlock[node] .bottomleft=YES
if (canIdrawbottomright(node)==N0) // next subquad act.
EyeBlock[node] .bottomborder=YES

if (canIdrawbottomborder(node)==YES) // neighbor quadrant
EyeBlock[node] .bottomborder=YES // centers are inact.
// & border is act.
// process bottom right quadrant

TriangulateBlock(node,eye)
node=child(node)

}

else
node=sibling(node)

Figure 3.22: Construction of the draw-list



CHAPTER 3. MULTIRESOLUTION MODELING 30

if

Algorithm TriangulateBlock(node, eye);
center_elevation=Morph(centerrow,centercol)
// triangulate the bottom left quadrant
if (EyeBlock[node].bottomleft) { // it can be triangulated

(EyeBlock[node] .leftborder) { // left border activated
PutVertex(eye,centerrow,centercol,center_elevation)
border_elevation=Morph(centerrow,minc)
PutVertex(eye,centerrow,minc,border_elevation)//1.border
border_elevation=Morph(minr,minc)

PutVertex(eye,minr,minc,border_elevation) //b.1l.cor.

+

if (EyeBlock[node].bottomborder) { // bottom border act.
PutVertex(eye,centerrow,centercol,center_elevation)
border_elevation=Morph(minr,minc)
PutVertex(eye,minr,minc,border_elevation) //b.1l.cor.
border_elevation=Morph(minr,centercol)
PutVertex(eye,minr,centercol,border_elevation)//b.bor.

+

else

if (EyeBlock[node].bottomright) { // can be triangulated
PutVertex(eye,centerrow,centercol,center_elevation)
border_elevation=Morph(minr,minc)
PutVertex(eye,minr ,minc,border_elevation) //b.l.
border_elevation=Morph(minr,maxc)
PutVertex(eye,minr,maxc,border_elevation) //b.r.

// triangulate the bottom right quadrant

Figure 3.23: Triangulation algorithm




31

which is called from the draw-list construction algorithm, is
activated

)

In the draw-list construction algorithm (Figure 3.22), each block is checked
when the eye is closer than the minimum activation distance of the quad block),

whether its center vertex is activated or not. If it is activated (i.e., the case
the quadrants of the block are checked for triangulation. In order to triangulate
a quadrant no children should be active in that quadrant. Otherwise, overlap-
ping triangle patches may exist in that area. This is guaranteed for a block by
checking the fields showing the activation status of its children. The triangu-
given in Figure 3.23. A sample triangulation of a quad block resulting from an

CHAPTER 3. MULTIRESOLUTION MODELING
3.7.2 Triangle Drawing
execution of the triangulation algorithm is illustrated in Figure 3.24.

lation algorithm

deactivated

-4-_:.:1'-_:!
21
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T
[ T
| -
[ T
| .|
[ T
T
[ T
T
[ T
T
[ T
T
[ T
T

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7]

-r
f
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i
W
T
UHHHHHHHHHHHHA

W,
;.I|||||||||||s‘.

NISI0I999999%;
TR
AR

H i R eI 000000 090999900909,

HlpPI9 0 090090909009009990994
iy R AR RAREI IR RRRAIRIR
R
TR
QB
ORI RIIKIIIRIIRIIKIINRIIRK)
iR
AR
iR
A
R
I
R
iR
RN
RN,
RN,
R AR AR I AR RARII R

/VDPDPbbbbbbbbbbbbbbbbbbbbb’b&

S HHHFHHHHHHH

o

[/Q upper left quadrant upper right quadrant

el el ey ey e sV
7]
7
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A

deactivated

S

o

8
&
=
=
&

bottom right quadrant

bottom left quadrant

A sample execution of the triangulation algorithm for a quad

Figure 3.24:
block.



CHAPTER 3. MULTIRESOLUTION MODELING 32

3.8 Morphing

One of the important issues while visualizing complex geometric environments
using a multiresolution representation is that there should be no popping ar-
tifacts while switching between different levels of detail. The best way to
achieve this is with a smooth morphing of the geometry between successive
frames. Blending, which is a less expensive solution for eliminating popping

artifacts, cannot be used in stereo visualizations.

The proposed morphing scheme works as follows. The distances between
active and deactive states of the vertices are precalculated. A prespecified
morph-segment value is used to decide at how many steps should the enabling
or disabling vertex reach its new position. If this value is specified to be too
large then the vertices being morphed do not reach their new positions when
navigation is very fast. In order to get the morphing state of each vertex, a
field is kept for each elevation on the terrain. At each frame, the morph value
of a vertex is modified and the calculated distance is used as the new elevation
for that point. If the morph-segment value is modified more than once by the
neighboring quad blocks while drawing a frame, then gaps may occur between
the neighboring quad blocks. In order to prevent the formation of such gaps, a
flag is used to lock the vertex morphing at each frame. The morphing algorithm

is given in Figure 3.25.

This approach provides a uniform morphing scheme for both refinement
and coarsening operations during the navigation. A positive morph value is
set, if the vertex is to be enabled and a negative morph value is set for a vertex
to be disabled. While the viewer gets closer to the terrain, vertices are enabled
and morphing is started. As soon as the viewer begins to get away from the

terrain, morphing for the coarsening vertices starts.

The determination of the morph segment value is very important. This is
due to the fact that the terrain does not come to its new state on time if the
viewer moves very fast and the morphing lasts too long. On the other hand,
if the morph segment value is too small then a popping-like appearance may

result. Our experiences show that morphing should not last more than one



CHAPTER 3. MULTIRESOLUTION MODELING 33

Algorithm Morph(cr, cc)
if (MORPHING==0N) {
emorph=Terrain[cr] [cc] .morph
// if vertex is disabled, corrected elevation is taken
if (Terrain[cr][cc].activestate==DISABLED)
morphed_el=Terrain[cr] [cc].elevation -
Terrain[cr] [cc] .morphdistance
else
morphed_el=Terrain[cr] [cc].elevation
if (emorph) {
// if elevation is above its deactivated state
// morphdistance > 0
// if elevation is below its deactivated state
// morphdistance < 0
morphdist=(emorph*
(Terrain[cr] [cc] .morphdistance/MORPHSEGMENTS) )
if (emorph<0) { // the vertex is coarsening
morphed_el=morphed_el -
Terrain[cr] [cc] .morphdistance -
morphdist
if (!Terrain[cr] [cc] .morphlock) { // is not locked
(Terrain[cr] [cc] .morph) ++
Terrain[cr] [cc] .morphlock=YES

}
}
else { // the vertex is refining
morphed_el=morphed_el-morphdist
if (!Terrain[cr] [cc].morphlock) { // is not locked
(Terrain[cr] [cc] .morph) -~
Terrain[cr] [cc] .morphlock=YES
}
}
}
return morphed_el

¥

Figure 3.25: The morphing algorithm



CHAPTER 3. MULTIRESOLUTION MODELING 34

second. The morph segment value can be determined adaptively according to
the frame rate when frame budgeting is implemented. Frame budgeting is not
implemented in our work because our main purpose is to see how fast we can

generate the second image needed in stereoscopic visualization.

The morphing scheme imposes approximately ten to thirty percent overhead
on the frame rate due to clearance of the morph flags for the vertices going out
of the view frustum when the user moves fast. Non-zero morph values are taken
into account while drawing the next frame since taking only activated center
vertices as the starting point of the triangulation is not correct for coarsening
vertices. Therefore, these out-of-frustum vertices need to be cleared at each
view frustum culling operation to make them ready for the next frame. The

overhead comes from the traversal of the out-of-frustum nodes.

This morphing scheme is used when the culling is done for every frame. We
also propose another morphing scheme that is used when the culling is not done
on every frame. This approach is used for deferred VFC and the VFC based
on the deviation of the viewer location. In this approach, the vertex activation
and the view frustum culling processes will not run for every frame. This way,
the frame rate is increased considerably and flickering in stereo visualization
due to the insufficient frame rate is eliminated. This approach has another
advantage in terms of the reduced number of morphing vertices. That is the
morph locking flags will not be cleared when the VFC is not running. The
distance between activated state and deactivated state of any vertex will be
divided to morph segments and no morphing may take place without user
navigation. As opposed to the continuous vertex morphing, there will be no

vertex movement while the viewer is not moving.



Chapter 4

Stereoscopic Visualization

In this chapter we give information about stereoscopic visualization. Next
we describe the projection system that we chose for the implementation, and

explain our approach to the generation of the stereo pairs.

4.1 About Stereoscopy

4.1.1 Stereoscopic Image Perception

Up to 19" century, mankind was not aware that there was a separable binocular
depth sense until relatively recently. Through the ages, people like Euclid and
Leonardo understood that we see different images of the world with each eye.
It was Wheatstone [25] who explained to the world, that there is a depth
sense that is named as stereopsis, produced by retinal disparity. Wheatstone
explained that the mind fuses the two planar retinal images into one with

stereopsis (solid seeing).

A stereoscopic display is an optical system whose final component is the
human brain. It functions by presenting the mind with the same kind of left

and right views that the person sees in the real world.

35



CHAPTER 4. STEREOSCOPIC VISUALIZATION 36

4.1.2 Retinal Disparity

In order to explain the presence of the retinal disparity one can try this ex-
periment: hold your finger in front of your face. When you look at your finger
and try to see the finger in detail, your eyes start to converge on your finger.
That is, the optical axes of both eyes cross on the finger. There are sets of
muscles which move the eyes to accomplish this by placing the images of the
finger on each fovea, or central portion, of each retina. If you continue to
converge your eyes on your finger, paying attention to the background, you
will notice that the background appears to be double. Now try to focus on
the background and you will see that when your see the background in detail,
your finger, because of the retinal disparity, will now appear to be double. If
we could take the images that are on your left and right retina and somehow
superimpose them as if they were a slide, you would see two almost overlapping
images - left and right perspective viewpoints - which have what physiologists
call disparity. Disparity is the distance, in horizontal direction, between the
corresponding left and right image points of the superimposed retinal images.
The corresponding points of the retinal images of an object on which the eyes

are converged, will have zero disparity.

Retinal disparity is caused by the fact that each of our eyes sees the world
from a different point of view. On the average the eyes are two and a half
inches or 64 millimeters apart for adults [21]. The disparity is fused by the
brain into a single image of the visual world. The minds ability to combine
two different, although similar, images into one image is called fusion, and the

resultant sense of depth is called stereopsis.

4.1.3 Parallax

A stereoscopic display is able to display parallax values. This makes stereo-
scopic display different from a monoscopic display. Disparity in the eyes pro-

duces parallax, and this provides the stereoscopic cue.

Electro-stereoscopic displays provide parallax information to the eye by



CHAPTER 4. STEREOSCOPIC VISUALIZATION 37

using a method related to that employed in the stereoscope. In a stereoscopic
display, the left and right images are alternated rapidly on the monitor screen.
When the viewer looks at the screen through shuttering eye-wear, each shutter
is synchronized to occlude the unwanted image and transmit the wanted image.
Thus each eye sees only its appropriate perspective view. The left eye sees
only the left view, and the right eye only the right view. If the images (the
term fields is often used for video and computer graphics) are refreshed fast
enough (often at twice the rate of the monoscopic display), the result is a
flickerless stereoscopic image. This kind of a display is called a field-sequential

stereoscopic display.

When you observe an electro-stereoscopic image without eye-wear, it looks
like there are two images overlayed and superimposed. The refresh rate is so
high that you cannot see any flicker, and it looks like the images are double-
exposed. The distance between left and right corresponding image points
(sometimes also called “homologous” or “conjugate” points) is parallax, and

may be measured in inches or millimeters.

Parallax and disparity are similar entities. Parallax is measured at the
display screen, and disparity is measured at the retinal. When wearing eye-
wear, parallax becomes retinal disparity. Retinal disparity produces parallax,
and parallax in turn produces stereopsis. Parallax may also be given in terms
of angular measure, which relates it to disparity by taking into account the

viewers distance from the display screen.

Since parallax is the entity which produces the stereoscopic depth sensation
we give a classification of the kinds of parallax one may encounter when viewing

a stereoscopic view.

4.1.4 Types of Parallax

Four basic types of parallax are shown in Figure 4.1 [21]. In the first case,
zero parallaz (Figure 4.1(a)), the homologous image points of the two images
exactly correspond or lie on top of each other. When the eyes of the observer,

spaced apart at distance IOD (the interpupillary or interocular distance, on



CHAPTER 4. STEREOSCOPIC VISUALIZATION 38

average two and a half inches), are looking at the display screen and observing
images with zero parallax, the eyes are converged at the plane of the screen. In
other words, the optical axes of the eyes cross at the plane of the screen. When

image points have zero parallax, they are said to have zero parallax setting.

Figure 4.1: Types of parallax: (a) zero parallaz; (b) positive parallaz; (c) di-
vergent parallaz (a kind of positive parallaz); (d) negative parallaz.

In one type of positive parallaz (Figure 4.1(b)), the axes of the left and right
eyes are parallel. This happens in the visual world when looking at objects that
are at a great distance from the observer. For a stereoscopic display, when the
distance between the eyes (I0D) equals the parallax, the axes of the eyes will
be parallel, just as they are when looking at a distant object in the visual world.

Experiences show that having parallax values equal to IOD, or nearly IOD, for



CHAPTER 4. STEREOSCOPIC VISUALIZATION 39

a small screen display will produce discomfort. Any uncrossed or positive value
of parallax between IOD and zero will produce images appearing to be within
the space of the cathode ray tube (CRT), or behind the screen. We say that
such objects are within CRT space.

Another kind of positive parallax is shown in Figure 4.1(c), divergent par-
allaz, in which images are separated by some distance greater than IOD. In
this case, the axes of the eyes are diverging. This divergence does not occur
when looking at objects in the visual world, and the unusual muscular effort
needed to fuse such images may cause discomfort. There is no valid reason for
divergence in computer-generated stereoscopic images. Objects with negative
parallaz (Figure 4.1(d)), appear to be closer than the plane of the screen, or be-
tween the observer and the screen. We say that objects with negative parallax

are within viewer space.

4.1.5 Focusing and Convergence Relationship

The left and right image fields must be identical in every way except for the
values of horizontal parallax. The color, geometry, and brightness of the left
and right image fields need to be the same or to within a very tight tolerance, or
the result will be eye fatigue for the viewer. If a system is producing image fields
that are not suitable in these respects, there are problems with the hardware
or software. It will never be able to produce good-quality stereoscopic images
under such conditions. Left and right image fields congruent in all aspects

except horizontal parallax are required to avoid discomfort [13].

The eyes converge on the objects in the real world. But in stereoscopic
visualization, it is assumed that the eyes converge on the screen not on any
specific object, and this convergence does not show up any change. This dif-
ferentiation of real world and stereoscopic visualization causes some people
depart from their natural feeling and those people may experience an unpleas-
ant sensation when looking at stereoscopic images, especially images with large
values of parallax. Experiences show that its better to use the lowest values
of parallax possible for a good depth effect in order to help to reduce viewer

discomfort. But the parallax value specification and visual discomfort should



CHAPTER 4. STEREOSCOPIC VISUALIZATION 40

be adjusted so that while providing a good depth effect visual discomfort is

minimized.

The goal when creating stereoscopic images is to provide the deepest effect
with the lowest values of parallax. This is accomplished in part by reducing
the IOD. As a rule, parallax values should not exceed 1.6° [23]. Also the
distance of the viewer from the screen should be kept in mind when composing

a stereoscopic image.

4.1.6 Crosstalk (Ghosting)

Crosstalk in a stereoscopic display results in each eye seeing an image of the
unwanted perspective view. In a perfect stereoscopic system, each eye sees
only its assigned image. In particular, there are two reasons for crosstalk in
an electronic stereoscopic display: departures from the ideal shutter in the
eye-wear, and CRT phosphorus afterglow [14]. A third reason of ghosting is
non-matching perspective projection for both eyes. This may occur when a

point is projected for an eye and is not projected for the other.

In an ideal field-sequential stereoscopic display, the image of each field,
made up of glowing phosphor, would vanish before the next field was written,
but thats not what happens. After the right image is written, it will persist
while the left image is being written. Thus, an unwanted fading right image
will persist into the left image (and vice versa). The term ghosting is used
to describe perceived crosstalk. Stereoscopists have also used the term leak-
age to describe this phenomenon. The perception of ghosting varies with the
brightness of the image, color, and — most importantly — parallax and image
contrast. Images with large values of parallax will have more ghosting than
images with low parallax. High-contrast images, like black lines on a white
background, will show the most ghosting. Given the present state of the art of
monitors and their display tubes, the green colored phosphor has the longest

afterglow and produces the most ghosting effect.



CHAPTER 4. STEREOSCOPIC VISUALIZATION 41

X
L. Eye
Projection
- »7
R. Eye
Projection
Left eye projection Stereo region _ Right eye projection

Figure 4.2: Off-axis projection.

4.2 Stereoscopic Projection System Used

Now, we need to explain the stereoscopic projection system we used. In gen-
eral, stereo projections are divided into two: on-azis and off-axis [7]. A sample
illustration of Off-axis projection is shown in Figure 4.2. As it can be seen
from the figure this kind of stereo projection requires the implementation of
asymmetric parallel view frustum projections. By using off-axis projections, a
more accurate stereo view can be achieved in terms of reduced ghosting effect
in the peripheries cause by non-matching projections. However, it has a disad-
vantage in terms of execution speed because control of the center of projection
is not implemented in hardware for most low-end systems. Therefore, on-axis
projection, which modifies the data with translations and rotations, has an im-
portant advantage over off-axis projections in terms of speed. However, on-axis
projections causes loss of data in both sides of the view frustum. The data loss
is caused by translations of the data for right and left eye projections and is

illustrated in Figure 4.3.




CHAPTER 4. STEREOSCOPIC VISUALIZATION 42

The disadvantage of on-axis projections, namely ghosting effect at the pe-
ripheries, is eliminated with our simple correction: we operate on the data that
is in the view frustum, plus the data on the left and right of the view frus-
tum in half of the inter-ocular distance for each eye. The refinement process
of stereoscopic view and comparison with the off-axis projection is shown in
(Figure 4.4).

With the correction of the ghosting effect, the coverage of the stereoscopic
area is the same as the stereoscopic area in off-axis projections. Besides, this
ensures that each element in the view frustum is in stereo. Since the inter-
ocular distance projection is very small with respect to the terrain, elimination

of the ghosting effect does not cause significant processing overhead.

There is another way to prevent ghosting effect on the stereo view. This
can be achieved by first culling and projecting the data with respect to right
eye view and translating it with IOD to the left for the left eye view. This
scheme may produce faster results in terms of processing speed because of a
single translation for the left eye instead of two translations. However, it makes
parallax control impossible and makes it suitable only for static stereoscopic
image generation and viewing applications where parallax control is not needed.
Since our platform is dynamic and makes navigation over the terrain possible,
using the previous approach for on-axis projection does not cause any addi-
tional overhead for the application because we have to make two translations

for the data in anyway. The approach is shown in Figure 4.5.

4.3 Simultaneous Generation of Triangles

Terrain data is huge with respect to the inter-ocular distance (IOD). In order
to prevent the ghosting effect that can occur in on-axis projections, we add
the necessary data to the view frustum by enlarging it by half the distance
of IOD in both sides. Besides, we do not make occlusion culling since it does
not increase the performance significantly for the terrain data [9]. Therefore,
left and right eye views may operate on the same view frustum culled data

safely. The critical point here is that necessary flags should be cleared during



CHAPTER 4. STEREOSCOPIC VISUALIZATION 43

morphing and vertex activation processes without bringing too much overhead.

The second eye image is generated during the draw-list construction for the
first eye. In the EyeBlock array, the flags indicating the activated vertices in
the quad block are stored. For the second eye drawing interval, we do not repeat
the view frustum culling and vertex activation processes. Furthermore, we do
not clear any flags for morphing because the same state will apply to the left eye
view as well. We only traverse the draw-list constructed for the right eye and
do not make any modifications on the data created previously, while the left eye
view is drawn. This is achieved by modifying the algorithm for construction
of the draw-list given in Figure 3.22 as in Figure 4.6. Stereoscopic drawing
algorithm using the SGT approach is given in Figure 4.7. The algorithm that
decides when vertex activation and frustum culling operations should be done

according to different culling schemes is given in Figure 4.8.

We could do several other optimizations that can be used in stereoscopic
visualization. In general, many algorithms designed for speeding up second
stereo pair use the mathematical characterization of the data when the eye
point shifts horizontally. However, since the subject includes navigation over
the data and there is not a mathematical characterization for the terrain but
only the elevation data, it is not possible to shift the right eye data to the left
only by its x-coordinates. We also tried to calculate the correct positions of the
second eye vertices, but since the translations are implemented in hardware the
approach of using the same draw-list resulted in faster draw times with respect
to calculating projected vertex coordinates of the second eye. We could also
use the frame buffer data drawn for right eye view for producing the left eye
image by copying the right buffer to the left and shifting the data by the IOD.
However, this would result in divergent parallax, which is very hard to visualize

in stereo and may cause eye fatigue.



CHAPTER 4. STEREOSCOPIC VISUALIZATION 44

(c) (d)

Figure 4.3: Loss of data in on-axis projection: (a) view frustum data; (b)
translated data for right eye view; (c) translated data for left eye view; (d)
resultant stereoscopic view.



CHAPTER 4. STEREOSCOPIC VISUALIZATION 45

v

v
v

v \

a) b) 0

v

Figure 4.4: Elimination of disadvantages of on-axis projection: (a) Off-axis
projection, (b) on-axis projection, (¢) elimination of the ghosting effect.

X X X
Ly Lefteye ¥ S Lefteye

e View frustum /ﬁﬁ o View frustum -

Right eye Right eye

Figure 4.5: Producing the same result for on-axis projection with one trans-
lation: (a) right eye projected data; (b) translated data for left eye view; (c)
resultant stereoscopic projection which is the same with previous on-axis pro-
jection.




CHAPTER 4. STEREOSCOPIC VISUALIZATION 46

Algorithm ConstructDrawList(eye);
node=0
while (nodes are not finished) {
if ((eye==left_eye)&& (LISTTRANSFER==0N))
if (EyeBlock[nodel].center) {
TriangulateBlock(node,left_eye)

ClearEyeBlock
node=child(node)
}
else
node=sibling(node)
}
else

Figure 4.6: Using the draw-list constructed for the right eye in generating
triangles for the left eye image in the SGT algorithm

Algorithm SGTStereo {
// Draw right-eye view.
SelectRightBuffer
ClearBuffer
Calculate the view transformation for the right eye
Draw(right_eye)

// Draw left-eye view.

SelectLeftBuffer

ClearBuffer

Calculate the view transformation for the left eye
ConstructDrawList(left_eye)

Figure 4.7: Stereoscopic drawing using the SGT algorithm



CHAPTER 4. STEREOSCOPIC VISUALIZATION 47

Algorithm Draw(eye)
if (DEFERREDCULLING == ON) {

time = gettime()

if (time - frustumtime) > DEFERRINGTIME || rotating) {
ViewFrustumCulling
ActivateVertices
rotating = no
frustumtime = time

else
if (DEVIATIONCULLING == ON) {
d = sqrt((current_x - old_x)**2 +
(current_y - old_y)**2 +
(current_z - o0ld_z)**2)
if (d > DEVIATIONDISTANCE || rotating) {
old_x = current_x

old_y = current_y
old_z = current_z
ViewFrustumCulling
ActivateVertices
rotating = no
}
}
else

// dynamic morphing is on, or
// the viewer is moving while dynamic morphing is off
if (CullingNeeded) {
ViewFrustumCulling
ActivateVertices
}

ConstructDrawList (eye)

Figure 4.8: The algorithm that calls view frustum culling and activation pro-
cedures depending on the culling scheme used



Chapter 5

Empirical Study

This chapter is devoted to the performance study of the proposed algorithms.

5.1 Definition of the Test Platform

The proposed algorithms were implemented on personal computers and graph-
ics workstations using C language with OpenGL! [15] (see Appendix C). We
name this system as Stereoscopic View-Dependent Terrain Visualization Sys-
tem. In the visualization experiments, approximately 4,000 polygons were ren-
dered for each eye on the average at each frame. Number of polygons were
almost the same in corresponding frames for the different types of visualiza-
tions. Our terrain is a part of Grand Canyon that has very sharp ridges in
it, with 513x513 vertices, in other words 526,338 triangles. The elevations are
stored in a gray-scale image, in which each value represents a discrete eleva-
tion representation of 10 meters. The elevation values were doubled, in order
to make the test platform more challenging. Besides, the test flights included
texture and lighting calculations. The threshold value is taken as 1 degree
which correspond to approximately 17.8 meters at 1 kilometer distance. The
results were obtained on a personal computer with Intel Pentium? III — 550
Mhz CPU and 64 MB of main memory with 32 MB of graphics memory. The

'OpenGL is a registered trademark of Silicon Graphics, Inc.
2Pentium is a registered trademark of Intel Corporation.

48



CHAPTER 5. EMPIRICAL STUDY 49

user interface was created using GLUI library (see Appendix D).

5.2 Performance Results

We prepared a flythrough of the terrain with approximately 5,000 frames.
Screen shots from the monoscopic flythrough is shown in Figure 5.1 and Fig-
ure 5.2. Figure 5.3 contains screen shots from the stereoscopic flight in which
different visualization techniques are used. The number of polygons rendered

during the flythrough is shown in Figure 5.5.

All figures given in this chapter are modified in order to have a better in-
formation about the results of the empirical study. The values are put into
a regression function and smoothed. The figures representing real values are
given in the Appendix E. Figure 5.4 shows the performance comparisons of
different types of visualization techniques by using different morphing, culling
and rendering techniques at different parts of the flythrough. It gives a general
overview about the performance of the visualization techniques. In this test,
the average frame rate of the proposed SGT approach is 17.65 fps whereas the
frame rate of the monoscopic visualization is 25.05 fps. Performance compari-
son of the visualization methods with different types of culling, morphing and
rendering techniques are given in Table 5.1. In this table, theoretical perfor-
mance gain is calculated as the performance gain when the normal stereoscopic
rendering speed is taken as half of monoscopic rendering speed. Practical per-
formance gain is calculated by using the performance results obtained for nor-
mal stereoscopic visualization. These results show that the best performance
in stereo is achieved when deviation-based culling is used without morphing
with the proposed SGT approach. In this case, the average rendering speed for
SGT is 27.48 fps where its monoscopic correspondent is 43.25 fps. The largest
performance gain is achieved when SGT approach is used with dynamic culling
without morphing. In this case, a performance gain of 43.27 % over normal

stereo implementation is achieved.

In Figures 5.6, 5.7 and 5.8 performance comparison showing the frame

rates of our culling techniques with each visualization method are given. In



CHAPTER 5. EMPIRICAL STUDY 20

deviation-based culling tests, the deviation threshold was taken as 500 meters.
In deferred culling, the deferring time was taken as 0.1 second. It is apparent
that, if we increase these thresholds, the performance gains will increase dras-
tically with the expense of the need to decrease the navigation speed. In our
experiments, we have determined that the deviation threshold can be increased
to 1000 meters and the deferring time can be increased to 0.4 second, without
loss of quality and the need for decreasing the navigation speed. As it is seen in
the figure, deviation based culling and deferred culling methods perform better
than dynamic culling. The performances are almost the same when dynamic
culling is on or off since the viewer is continuously moving. Turning dynamic
culling off becomes advantageous when the viewer does not move. In this case,
the frame rate increases since the view frustum culling and vertex activation
operations are not performed. Under normal conditions, the viewer generally
stops moving at undetermined instances. Since the screen will be rendered

without being culled, the stereo effect will be much better.

In Figures 5.9, 5.10, 5.11 and 5.12 the performances of the visualization
methods for each of the proposed culling schemes are given. It is apparent
that the proposed stereo visualization method — simultaneous generation of
triangles — performs much better than the normal stereoscopic visualization.
In deferred and deviation-based culling without morphing, the results of our
SGT approach seems to be close to normal stereo visualization. The reason is
that deferred and deviation based culling improves performance for both SGT
and normal stereo visualizations. It should also be noted that we kept threshold
values for deviation-based culling and deferred culling methods very small, and
our experiences showed that we can almost quadruple these values. Since the
operations will be done for only one eye in SGT approach, the performance

differences will be much greater.



CHAPTER 5. EMPIRICAL STUDY 51

T

4w

il L ST

L
ol
" e, |

R S T R . %

Figure 5.1: Still frames from a monoscopic walkthrough



CHAPTER 5. EMPIRICAL STUDY 52

Figure 5.2: Another set of still frames from a monoscopic walkthrough, showing
terrain in both filled and wire-frame modes with shading and texture.



CHAPTER 5. EMPIRICAL STUDY 23

Figure 5.3: Still frames from a stereoscopic walkthrough, showing terrain in
wire-frame.



CHAPTER 5. EMPIRICAL STUDY 54

80 ‘ ‘ ‘ ‘
— — Monoscopic visualization
'8 r | — Standard stereoscopic visualization
9 — Simultaneous gener ation of triangles
% 60 - ]
o)
o
E%
@
©
x
:
L

O L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000

Frame Number

Figure 5.4: Comparison of the frame rates of different types of visualizations
(SMOOTHED): monoscopic visualization where only one image is generated
for each frame; standard stereoscopic visualization where two images are gen-
erated for each frame; simultaneous generation of triangles for stereoscopic
visualization where we utilize triangle list for one eye to generate the triangles
for the other eye.

6000

4000

2000

Number of Polygons

0 1000 2000 3000 4000 5000
Frame Number

Figure 5.5: Number of polygons for the experimental visualization (SMOOTH-
ED)



CHAPTER 5. EMPIRICAL STUDY 95

M onoscopic Visualization with Morphing

80 T I T I T T I
S — Dynamic culling off
% — Dynamic culling on
§ Deferred view frustum culling

60 - | — Deviation based culling |
2
8
% 40 - \ ]
g i
r
% 20 8
E |

O J I | I | I | I | I
0 1000 2000 3000 4000 5000
Frame Number
(a)
M onaoscopic Visualization without Mor phing
80 ' I ' I ' I ' I

— Dynamic culling off
— Dynamic culling on
Deferred view frustum culling
60 |1 — Deviation based culling i

40

Frame Rate (frames per second)

L | L | L | L | L
0 1000 2000 3000 4000 5000
Frame Number
(b)
Figure 5.6: Comparison of the frame rates for visualization types with different
morphing/culling options (SMOOTHED): (a) monoscopic visualization with
morphing; (b) monoscopic visualization without morphing.



CHAPTER 5. EMPIRICAL STUDY 26

Normal Stereo Visualization with Morphing

40 ‘ \ ‘ \ ‘ ‘ ‘
S — Dynamic culling off
% — Dynamic culling on
§ Deferred view frustum culling

0 |- Deviation based culling |
2
:
o
©
x
:
I

O I | I | I | I | I
0 1000 2000 3000 4000 5000
Frame Number

(a)

Normal Stereo Visualization without Morphing
50 ' I ' I ' I ' I

— Dynamic culling off
— Dynamic culling on
40 + Deferred view frustum culling 7
— Deviation based culling

Frame Rate (frames per second)

L | L | L | L | L
0 0 1000 2000 3000 4000 5000
Frame Number
(b)
Figure 5.7: Comparison of the frame rates for visualization types with different
morphing/culling options (SMOOTHED): (a) standard stereoscopic visualiza-
tion with morphing; (b) standard stereoscopic visualization without morphing.



CHAPTER 5. EMPIRICAL STUDY 57

Simultaneous Generation of Triangleswith Morphing
40 ‘ \ ‘ \ ‘ \ ‘ \ ‘

— Dynamic culling off

— Dynamic culling on

Deferred view frustum culling
30 |/ | — Deviation based culling

20 |

10 ]

Frame Rate (frames per second)

O | | | | | | | | |
0 1000 2000 3000 4000 5000
Frame Number
(a)

Simultaneous Gener ation of Triangleswithout Morphing
40 T I T T T T T T
— Dynamic culling off

— Dynamic culling on
30 f Deferred view frustum culling

— Deviation based culling

\/\/

Frame Rate (frames per second)
N
(=

| | | | | | | | |
0 0 1000 2000 3000 4000 5000
Frame Number
(b)
Figure 5.8: Comparison of the frame rates for visualization types with dif-
ferent morphing/culling options (SMOOTHED): (a) simultaneous generation

of triangles with morphing; (b) simultaneous generation of triangles without
morphing.



CHAPTER 5. EMPIRICAL STUDY o8

Dynamic Culling Off with Morphing
80 ‘ \ ‘ \ ‘ \ ‘ \
— Monoscopic Visualization

— Normal Stereo Visualization
— Simultaneous Generation of Triangles

Frame Rate (frames per second)
5
[

O I | I | I | I | I
0 1000 2000 3000 4000 5000
Frame Number
(a)
Dynamic Culling Off without Morphing
80 ‘ | ‘ | ‘ ‘ ‘ ‘

— Monoscopic Visualization
— Normal Stereo Visualization
— Simultaneous Generation of Triangles

20 1

Frame Rate (frames per second)
8
[

I | I | I | I | I
0 0 1000 2000 3000 4000 5000
Frame Number
(b)
Figure 5.9: Comparison of different culling schemes for visualization types
(SMOOTHED): (a) dynamic culling off with morphing; (b) dynamic culling
off without morphing.



CHAPTER 5. EMPIRICAL STUDY

Dynamic Culling On with Morphing

80 i I i I I

29

— Monoscopic Visualization
— Normal Stereo Visualization
— Simultaneous Generation of Triangles

20

Frame Rate (frames per second)
5
I

O I | I | I | | I
0 1000 2000 3000 4000 5000
Frame Number
(a)
Dynamic Culling On without Mor phing
80 T I T I T T I T

— Monoscopic Visualization
— Normal Stereo Visualization
— Simultaneous Generation of Triangles

20

Frame Rate (frames per second)
8
I

O | | | | | |
0 1000 2000 3000
Frame Number
(b)

4000 5000

Figure 5.10: Comparison of different culling schemes for visualization types
(SMOOTHED): (a) dynamic culling on with morphing; (b) dynamic culling

on without morphing.



CHAPTER 5. EMPIRICAL STUDY 60

Deferred Culling with Morphing

80 ' I I I I
S — Monoscopic Visualization
8 — Normal Stereo Visualization
§ 60 - — Simultaneous Generation of Triangles |
©
Q
8
S w0 ]
o
g
o 20 i
£
@©
I

O I | I | I | I | I

0 1000 2000 3000 4000 5000
Frame Number
(a)
Deferred Culling without Morphing
80 ‘ | ‘ | ‘ ‘ ‘

— Monoscopic Visualization
— Normal Stereo Visualization
60 ( Simultaneous Generation of Triangles

20 1

Frame Rate (frames per second)
N
S

° 0 1000 2000 3000 4000 5000
Frame Number
(b)
Figure 5.11: Comparison of different culling schemes for visualization types

(SMOOTHED): (a) deferred culling with morphing; (b) deferred culling with-
out morphing.



CHAPTER 5. EMPIRICAL STUDY 61

Deviation-Based Culling with Morp
80 ' I ' I ' I '

— Monoscopic Visualization
— Normal Stereo Visualization
— Simultaneous Generation of Triangles

hing

Frame Rate (frames per second)
5
I

O I | I | I | I | I
0 1000 2000 3000 4000 5000
Frame Number
(a)
Deviation-Based Culling without Morphing
80 ‘ | ‘ | ‘ ‘ ‘ ‘

— Monoscopic Visualization
— Normal Stereo Visualization

— Simultaneous Generation of Triangles

Frame Rate (frames per second)
N
S

° 0 1000 2000 3000 4000 5000
Frame Number
(b)
Figure 5.12: Comparison of different culling schemes for visualization types

(SMOOTHED): (a) deviation-based culling with morphing; (b) deviation-based
culling without morphing.



CHAPTER 5. EMPIRICAL STUDY

62

Table 5.1: Performance Results: The best performance gain is 43.27 % and the
best average rendering speed is 27.48 fps.

Visual Morph | Dynamic | Def. | Dev. | Avg. | Theoretical | Practical

Method Culling | VFC | VFC | FPS Perf. Perf.
Gain Gain

Monoscopic | OFF OFF OFF | OFF | 30.66

SGT OFF OFF OFF | OFF | 21.83 42.41 42.61

Normal Ste. | OFF OFF OFF | OFF | 15.31

Monoscopic | OFF OFF ON | OFF | 44.88

SGT OFF OFF ON | OFF | 26.83 19.56 12.15

Normal Ste. | OFF OFF ON | OFF | 23.92

Monoscopic | OFF ON OFF | OFF | 30.85

SGT OFF ON OFF | OFF | 21.90 41.99 43.27

Normal Ste. | OFF ON OFF | OFF | 15.29

Monoscopic ON OFF OFF | OFF | 22.56

SGT ON OFF OFF | OFF | 16.42 45.58 27.61

Normal Ste. ON OFF OFF | OFF | 12.87

Monoscopic ON OFF ON | OFF | 31.38

SGT ON OFF ON | OFF | 19.13 21.91 27.54

Normal Ste. ON OFF ON | OFF | 15.00

Monoscopic ON ON OFF | OFF | 22.57

SGT ON ON OFF | OFF | 16.43 45.61 37.29

Normal Ste. ON ON OFF | OFF | 11.97

Monoscopic | OFF OFF OFF | ON | 43.25

SGT OFF OFF OFF | ON | 27.48 27.07 8.54

Normal Ste. | OFF OFF OFF | ON | 25.32

Monoscopic ON OFF OFF | ON | 31.91

SGT ON OFF OFF | ON | 20.70 29.73 15.25

Normal Ste. ON OFF OFF | ON | 17.96




Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis presents a framework for the stereoscopic view-dependent visual-
ization of large scale terrain models. A quadtree based multiresolution rep-
resentation is used for the terrain data. This structure is queried to obtain
the view-dependent approximations of the terrain model at different levels of
detail.

In order not to loose depth information, which is crucial for the stereo-
scopic visualization, we make use of a different simplification criterion, namely
distance-based angular error threshold. This simplification criterion is very
useful in terms of performance needs. Because the calculations needed for
the simplification criteria are very simple and if storage requirements are very
critical, then it may easily be implemented at run time without significant

overhead.

An algorithm is proposed for the construction of stereo pairs in order to
speed-up the view-dependent stereoscopic visualization. The proposed algo-
rithm simultaneously generates the triangles for two stereo images using a
single draw-list so that the view frustum culling and vertex activation is done

only once for each frame.

63



CHAPTER 6. CONCLUSION AND FUTURE WORK 64

The algorithm’s performance is very satisfactory as shown in related figures
and tables (Figures 5.4, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and Table 5.1).

The cracking problem is solved using the dependency information stored
for each vertex. This prevention scheme is crucial in order to have a perfect
view of the terrain. Because as the threshold value increases the appearance

of the terrain with cracks becomes annoying.

The popping artifacts that may occur while switching between different
resolutions of the data are eliminated using morphing. Morphing scheme im-
poses approximately 10-30% overhead on the performance. Especially for
great threshold degrees, the walkthrough becomes full of popping artifacts

that makes the visualization disturbing without morphing.

The proposed algorithms were implemented on personal computers and
graphics workstations. Since the application is domain independent, we did
not need to make significant changes in the code except the functions needed
for stereoscopic buffering mechanisms. Performance experiments showed that
the two views for a stereoscopic walkthrough can be produced approximately
45% faster than drawing the two images separately and a smooth stereoscopic
visualization can be achieved at interactive frame rates using continuous multi-

resolution representation of height fields.

6.2 Future Work

In this section we are going to propose some ideas that could be applied to

improve and develop the stereoscopic view dependent visualization system.

Since, our aim was to see how fast we could generate the second eye view
in a stereoscopic environment, we did not focus on modifying threshold value.
Threshold value modification during the navigation helps us to adjust view
parameters like morph-segment number and terrain level of detail dynamically,
so that the intended frame rate during the navigation could be achieved. By the
help of frame budgeting, the application would be more system independent

and larger terrain visualizations in the system would be available.



CHAPTER 6. CONCLUSION AND FUTURE WORK 65

For larger terrains, since the terrain data will not fit into memory, a paging
mechanism is needed. Paging in terrain visualization systems should not be
left to the operating system by only supporting enough virtual memory. Pag-
ing could be supported by implementing a robust paging algorithm and using
spatial terrain database access. Spatial terrain database access would also help

us to bind textures to terrain blocks making large texture usage available.

Memory optimization methods like paging would also make us to add other
features to terrain, such as vegetation, hydrographic data and even urban vi-

sualization in large terrains.

With the implementation of frame budgeting and spatial database access,
a more general purpose application for stereoscopic terrain visualization could
be achieved at interactive frame rates using simultaneous generation of trian-

gles approach with continuous multi-resolution representation of terrain height
fields.



Appendix A

The User Interface

In this appendix we give information about the user interface implemented for

the Stereoscopic View-Dependent Terrain Visualization System.

A.1 Overview

In the GUI of the system, it is intended to supply the most flexibility to the user
while visualizing the terrain. The properties of the algorithms and visualization

methods are tried to be emphasized.

The graphical user interface of the system is given in Figure A.2. The user
interface is developed to give the user the ability to navigate over the terrain
freely. Navigation over the data by using latitude and longitude locations in
meters is possible. Each vertex coordinate is in 100m. scale. Also the user is
able to use cursor keys to navigate over the data, and this is the recommended

style of the navigation.

The user interface is a combination of two parts on the screen. One of them

is the viewing area for the terrain data. The other is the commands section.

66



APPENDIX A. THE USER INTERFACE 67

A.2 Viewing Area

To use cursor key navigation, and function keys it is needed to click the viewing
area with mouse. Likewise in order to use commands section, commands area

has to be clicked.

Viewing area contains information about some parameters. Those param-

eters are;

e Morphing status on/off (F1),

e Dynamic culling status on/off (F2),
e Deferred culling status on/off (F'3),
e Deviation based culling status on/off (F/),
e Frames per second,

e Frame drawing time,

e Polygons drawn for that frame,

e Flight direction,

e Altitude,

e Wire-frame mode on/off (F5),

e Texture mode on/off (F6),

e Threshold change (F7-F8),

e Lights on/off (F9).

e Turn left (+—),

e Turn right (—),

e Go forward (1),

e Go backward ({),



APPENDIX A. THE USER INTERFACE 68

e Increase altitude (+),

e Decrease altitude ().

Most of those options are self explanatory. The option threshold change is
used to increase or decrease the threshold value used to simplify the terrain.
As this value changes the distances measured from the user location to the
vertices are multiplied with it and taken into account by the vertex activation

algorithm.

For example, if the value is decreased, the distances measure will be smaller
and therefore the user will be treated to be closer than normal reflecting a
decreased threshold value, which causes a refinement process. Likewise, if the
value is increased, the distances will be greater than real, and vertices will not
be activated, simulating a coarsening procedure. With this option it is able
to change the threshold value and see a more refined or coarsened view of the
terrain. This is very useful if the performance of the system is not sufficient

and it is needed to decrease the terrain complexity.

A.3 Commands Area

The commands area occurs from collapsible/expandable menu blocks. The user
may turn a block on by pressing its name button on the commands section.
This makes commands menu area flexible supporting the viewing area to be
enlarged as needed. Besides, it is also possible to collapse the whole commands

area by pressing commands button.

A.3.1 Culling Techniques Block

This collapsible block occurs from three groups of radio-buttons representing
the state of the culling algorithm used at that moment. Those are dynamic
culling, deferred view frustum culling and deviation based culling. Each of these
groups can be turned on or off. The selected algorithm is immediately taken

into action.



APPENDIX A. THE USER INTERFACE

69

RN RAEEN

* H

| |

| |

| |

'\ i
- -

(a) (b)

Figure A.1: Results of emboss change: (a) negative emboss; (b) positive em-

boss.

A.3.2 Visual Properties Block

In this block visual properties of the viewing area can be adjusted. It works in

the same manner as the culling techniques block. Here it is possible to change

from stereo to mono visualization. But since stereoscopic buffers are set up

during the program start-up phase, monoscopic visualization is simulated by

not drawing the second eye view and drawing only the right eye view.

The terrain can be viewed in wire-frame mode, textured, or in lighting

enabled. Here it is possible to switch morphing on or off.

A.3.3 Navigation Block

In the navigation block, there are two parts:

e Looking direction part (a rotating ball and a reset button) and,

e Location control part.



APPENDIX A. THE USER INTERFACE 70

Rotating ball makes it available for the user to move the terrain in any
direction. This is very useful to visualize the terrain in any angle when the
user comes to a point. Reset Look button is used to initialize the ball to its

original position.

Location control part is used to bring the user to a specific location and
direction. There are four spinner-buttons that enable the user to achieve this

purpose. These are;

Direction: Used to change the direction of the viewer. As the value

increases the user turns to the right.

Altitude : Used to increase or decrease the altitude of the user. The value

shows the altitude of the viewer from the average elevation of the terrain.

Latitude : Used to change the latitude of the user.

Longitude: Used to change the longitude of the user.

A.3.4 Stereo Control Block

Stereo control block defines two main parameters of a stereoscopic visualization.

These are;

e [OD and,

e Emboss.

I0D is inter-ocular distance between the eyes of the user. Initially it is set
to the average eye separation value of adults that is 64mm. A user may change
this value while looking through LCS glasses and can adjust it according to his
or her eye separation. As this value increases, the depth effect also increases

but this may result in eye fatigue if set to very high values.



APPENDIX A. THE USER INTERFACE 71

Emboss changes convergence point of both eye images in the space by ap-
plying them a rotation. If this value is less than zero, then it means that the
right eye view is rotated to left and left eye view is rotated to right causing the
convergence point come nearer and making the stereo view appear behind the
CRT display. It also enlarges the scene and increases the depth effect that can

be achieved.

Positive emboss values causes a divergent like parallax to be achieved and
makes the image pop out of the screen. Emboss values should be used to adjust
depth effect with respect to the user distance to the screen. If the user is close
to the CRT display then this value should be a positive value. If the distance
of the user to the CRT is not very close with respect to the former situation,
then this value should be a negative one, not to disturb the depth effect that
can be achieved from the visualization. The effect of changing emboss value is

shown in Figure A.1.



APPENDIX A. THE USER INTERFACE 72

i Stereoscopic Yiew Dependent Terrain Yizual

Ault:1.0000

N

i

COMMANDS —|
MAVIGATION —
CULLIMNG TECHNIGUES — | STEREQ COMTROL — | - |
Dynatiic: © [ DeffFC: | | DevVFC: ECA | © 4 3]
i O ~ O v Oh Emhoss :|-0.06 ﬂ
v OFF v OFF - OFF Lok At
Reset Loak
YISU&L PROFPERTIES —| DIRECTION : [3.3070 ﬂ
Stereo: Wire: harph: Textlre: Light: ALTITUDE 2000 ﬂ
i~ ON i~ 0N " ON v OR - ON
LATITUDE : |-Z91& ﬂ

i+ OFF t¢ OFF t¢ OFF ¢~ OFF w0

LONGITUDE : | 24348, | 5]

Figure A.2: Graphical user interface of the system



Appendix B

Types of Stereoscopic Displays

There are many methods developed for stereoscopic views [24].

Anaglyph Method.

Squished Side-by-side Method.

Polar Method.

Page Flipping Method.

Line Alternate Method.

B.1 Anaglyph Method

The anaglyph method uses color to encode the right and left image pairs. This
method requires that the user wear a special pair of glasses with color filters
over each eye. These glasses have a red filter over one eye and a blue or green
filter over the other eye. Most anaglyph glasses put the red filter over the left

eye.

73



APPENDIX B. TYPES OF STEREOSCOPIC DISPLAYS 74

There are three ways to encode an anaglyph image:

e (Color : Color anaglyphs try to preserve as much of the original image

color as possible (Figure B.1(a)).

e Gray : Gray anaglyphs use a black and white version of the original im-
age. Although the color information is not preserved (as is with the color

anaglyph) the gray anaglyph is typically easier to view (Figure B.1(b)).

e Pure: The pure anaglyph method converts the original image into a pure
red/blue or red/green image (depending on the type of glasses you have).
The pure method gives the best 3D effect but sacrifices the color data
and image intensity (Figure B.1(c)).

B.2 Squished Side-by-Side Method

Some more expensive viewing systems utilize lens arrays to help guide the right
and left images into the correct eye of the viewer. These systems typically do
not require the use of glasses and are classified as autostereoscopic displays.

Current autostereo displays use a squished side-by-side format (Figure B.2).

The draw back is that your head must be in a specific location in order to
view the image. If your head is not in the correct location, a 3D image will not

be seen.

B.3 Polar Method

The polar method requires two projectors covered with polarizing filters and
a special grey screen which reflects light in a more direct way then a standard
white screen (Figure B.3). The polar filter glasses that are used to view polar
stereo images are very inexpensive and do not cause color loss or distortion like

red/blue glasses.



APPENDIX B. TYPES OF STEREOSCOPIC DISPLAYS 75

(b) Gray anaglyph

(c) Pure anaglyph

Figure B.1: Types of anaglyph method [Courtesy of Vrex Inc.,
http://www.vrex.com, 1997]. If you look at these pictures with RED-BLUE
anaglyph glasses, you can see them in stereo.




APPENDIX B. TYPES OF STEREOSCOPIC DISPLAYS 76

Figure B.2:  Squished Side-by-Side method [Courtesy of Vrex Inc.,
http://www.vrex.com, 1997].

Figure B.3: Polar display equipment [Courtesy of Stereographics Co.,
http://www.stereographics.com, 1997].



APPENDIX B. TYPES OF STEREOSCOPIC DISPLAYS 7

Figure B.4: Examples of shutter glasses [Courtesy of Stereographics Co.,
http://www.stereographics.com, 1997].

B.4 Shutter Glasses

Shutter glasses come in many forms (Figure B.4):

e Some have wires which connect to your video card.
e Some connect to your serial port or parallel printer port.

e Some are wire-less and use special transmitters which send out infra-red

pulses to the glasses.

There are many view detection methods for shutter glasses. Some of them

are explained in the following sections.

B.4.1 Page Flipped Methods

Page flipped stereoscopic images use a special feature of some video hardware
to rapidly switch the monitor between the right and left images. A special
pair of glasses must be used to view these images. The glasses have high-speed
electronic shutters (typically made with Liquid Crystal material) which open

and close in synchronization with the images on the monitor.



APPENDIX B. TYPES OF STEREOSCOPIC DISPLAYS 78

Right image
Left image
Right image

Loft image

Right image

Laft image

Right image

Left image

elc

Figure B.5: Line alternate display method [Courtesy of Vrex Inc.,
http://www.vrex.com, 1997].

Page flipping methods allow you to see full color 3D stereoscopic image in
high resolutions. The draw back is that typical video systems will exhibit some
flicker. Special purpose video boards which support high-speed page flipping

are available.

B.4.2 Line Alternate Methods

Line alternate stereoscopic images reformat the right and left images so that
they are interleaved on a line-by-line basis. Each line alternates between the

right and left image (Figure B.5).

B.4.3 Disadvantage of Page Flipped Methods : Flicker

Vertical scan rates of the monitors is very important when viewing a stereo
image. The reason that if the rate is too slow, the viewer will be distracted
by perceived flicker, the sense that the image is not solid, but appears and
disappears as if the scene were lighted by candles blowing in a breeze. This
effect is not only annoying, but it actually makes the viewer tired, dizzy, and
can sometimes induce headaches. Even when refresh rates are fast enough
that the viewer does not consciously notice the flicker, the unconscious or

precognitive perception of flicker can produce the same stressing effects.



APPENDIX B. TYPES OF STEREOSCOPIC DISPLAYS 79

Anything less than 100 fields per second (50 pairs per second) is going to be
uncomfortable for about 80% of the population. At 100 frames per second and
above, frame sequential displays become acceptable to almost all of the general

population with only a small fraction perceiving some flicker unconsciously.

At about 120 fields per second, a wonderful effect occurs; the flicker nor-
mally associated with frame sequential systems goes away for almost the entire
population, both consciously and unconsciously. It is a phenomenon similar
to the one discovered early in this century for the cinema; almost nobody sees
flicker in (monoscopic) movies which are shown at 24 frames per second or

more.



Appendix C

OpenGL

OpenGL (for Open Graphics Library) is a software interface to graphics hard-
ware [20]. The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations in-
volved in producing high-quality graphical images, specifically color images of
three-dimensional objects. Most of OpenGL requires that the graphics hard-
ware contain a frame-buffer. Many OpenGL calls pertain to drawing objects
such as points, lines, polygons, and bitmaps, but the way that some of this
drawing occurs (such as when antialiasing or texturing is enabled) relies on the
existence of a frame-buffer. Further, some of OpenGL is specifically concerned

with frame-buffer manipulation.

To the programmer, OpenGL is a set of commands that allow the specifica-
tion of geometric objects in two or three dimensions, together with commands
that control how these objects are rendered into the frame-buffer. For the most
part, OpenGL provides an immediate-mode interface, meaning that specifying
an object causes it to be drawn. A typical program that uses OpenGL be-
gins with calls to open a window into the frame-buffer into which the program
will draw.Then, calls are made to allocate a GL context and associate it with
the window. Once a GL context is allocated, the programmer is free to issue

OpenGL commands.

80



APPENDIX C. OPENGL 81

Some calls are used to draw simple geometric objects (i.e. points, line
segments, and polygons), while others affect the rendering of these primitives
including how they are lit or colored and how they are mapped from the user’s
two— or three-dimensional model space to the two-dimensional screen. There
are also calls to effect direct control of the frame-buffer, such as reading and

writing pixels.

To the implementor, OpenGL is a set of commands that affect the oper-
ation of graphics hardware. If the hardware consists only of an addressable
frame-buffer, then OpenGL must be implemented almost entirely on the host
CPU. More typically, the graphics hardware may comprise varying degrees of
graphics acceleration, from a raster subsystem capable of rendering two- dimen-
sional lines and polygons to sophisticated floating-point processors capable of
transforming and computing on geometric data. The OpenGL implementor’s
task is to provide the CPU software interface while dividing the work for each
OpenGL command between the CPU and the graphics hardware. This divi-
sion must be tailored to the available graphics hardware to obtain optimum
performance in carrying out OpenGL calls. OpenGL maintains a considerable
amount of state information. This state controls how objects are drawn into
the frame-buffer. Some of this state is directly available to the user: he or she
can make calls to obtain its value. Some of it, however, is visible only by the
effect it has on what is drawn. One of the main goals of this specification is to
make OpenGL state information explicit, to elucidate how it changes, and to

indicate what its effects are.



Appendix D

GLUI User Interface Library

D.1 Overview

GLUI is a GLUT-based C++ user interface library which provides controls
such as buttons, checkboxes, radio buttons, spinners, and listboxes to OpenGL
applications. We used GLUI to develop the user interface of the Stereoscopic
View-Dependent Terrain Visualization System. GLUI library was developed by
Paul Rademacher [18]. It is window-system independent, relying on GLUT to
handle all system-dependent issues, such as window and mouse management.
Features of the GLUI User Interface Library include:

e Complete integration with GLUT toolkit.
e Simple creation of a new user interface window with a single line of code.
e Support for multiple user interface windows.

e Standard user interface controls such as buttons, checkbozes for boolean
variables, Radio Buttons for mutually-exclusive options, editable text
boxes for inputting text, integers, and floating-point values, spinners
for interactively manipulating integer and floating-point values arcball

controllers for inputting rotation values.

82



APPENDIX D. GLUI USER INTERFACE LIBRARY 83

Controls can generate callbacks when their values change.

Variables can be linked to controls and automatically updated when the

value of the control changes.

Controls can be automatically synchronized to reflect changes in live

variables.

Controls can trigger GLUT redisplay events when their values change.

Layout and sizing of controls is automatic.

D.2 Background

The OpenGL Utility Toolkit (GLUT) is a popular user interface library for
OpenGL applications. It provides a simple interface for handling windows, a
mouse, keyboard, and other input devices. It has facilities for nested pop-up
menus, and includes utility functions for bitmap and stroke fonts, as well as
for drawing primitive graphics objects like spheres and teapots. Its greatest
attraction is its window system independence, which (coupled with OpenGL’s
own window system independence) provides a very attractive environment for
developing cross-platform graphics applications. Many applications can be
built using only the standard GLUT input methods - the keyboard, mouse,
and pop-up menus. However, as the number of features and options increases,
these methods tend to be greatly overworked. It is not uncommon to find
glut applications where almost every key on the keyboard is assigned to some

function, and where the pop-up menus are large and cumbersome.

The GLUI User Interface Library addresses this problem by providing stan-
dard user interface elements such as buttons and checkboxes. The GLUI li-
brary is written entirely over GLUT, and contains no system-dependent code.
A GLUI program will therefore behave the same on SGIs, Windows machines,
Macs, or any other system to which GLUT has been ported. Furthermore,
GLUI has been designed for programming simplicity, allowing user interface
elements to be added with one line of code each. A sample GLUI window is

shown in Figure D.1.



APPENDIX D. GLUI USER INTERFACE LIBRARY 84

: GLUI Example 5

Hcllo Weorld!
DS & ® > =] ]
S - S
Chiecls Sghere Torus Elue Liglt Chjects &Y Chjecs W Chjecis v b ects =

Figure D.1: A sample GLUI window [Snapshot of the 5 example program
distributed with GLUI Library V2.0].

D.3 Properties

GLUI1is intended to be a simple yet powerful user interface library. This section
describes in more detail its main features, including a flexible API, easy and

full integration with GLUT, live variables, and callbacks.

D.3.1 Programming Interface

GLUI has been designed for maximum programming simplicity. New GLUI
windows and new controls within them can be created with a single line of
code each. GLUI automatically sizes controls and places them within their
windows. The programmer does not need to explicitly give X, Y, width, and

height parameters for each control -an otherwise cumbersome task.



APPENDIX D. GLUI USER INTERFACE LIBRARY 85

GLUI provides default values for many parameters in the API. This way,
one does not need to place NULL or dummy values in the argument list when

some feature are not needed.

D.3.2 Full Integration with GLUT

GLUI is built on top of - and meant to fully interact with - the GLUT toolkit.
Existing GLUT applications therefore need very little change in order to use
the user interface library. Once integrated, the presence of a user interface will

be mostly transparent to the GLUT application.

D.3.3 Live Variables

GLUI can associate live variables with most types of controls. These are regular
C variables that are automatically updated whenever the user interacts with
a GLUI control. For example, a checkbox may have an associated integer
variable, to be automatically toggled between one and zero whenever the user
checks or unchecks the control. An editable text control may maintain an entire
character array as a live variable, such that anything the user types into the
text box is automatically copied into the application’s character array. This
eliminates the need for the programmer to explicitly query each control’s state
to determine their current value or contents. In addition, a GLUI window
can send a GLUT redisplay message to another window (i.e., a main graphics
window) whenever a value in the interface is changed. This will cause that other
window to redraw, automatically using the new values of any live variables. For
example, a GLUI window can have a spinner to manipulate the radius of an
on-screen object. When the user changes the spinner’s value, a live variable
(say, float radius) is automatically updated, and the main graphics window is
sent a redisplay message. The graphics window then redraws itself, using the
current (that is, the updated) value of radius - unaware that it was changed
since the last frame. Live variables help make the GLUI interface transparent
to the rest of the application. Live variables are automatically updated by

GLUI whenever the user interacts with a control.



APPENDIX D. GLUI USER INTERFACE LIBRARY 86

One can synchronize live variables. This procedure will check the current
value of all live variables in a GLUI window, and compare them with the
controls’ current values. If a pair does not match (that is, the user changed a
live variable without telling GLUI), then the control is automatically updated
to reflect the variable. Thus, one can make a series of changes to variables in
memory, and then use the single function call sync_live() to synchronize the

user interface:

radius = radius * .05; // Make changes to a group of
aperture = aperture + .1; // variables that are linked
num_segments++; // Update user interface
toglui->sync_live(); // to reflect these changes

If a pointer to a live variable is passed to a control creation function (e.g.,
add_checkbox()), then the current value of that variable will be used as the
initial value for the control. Thus, remember to always properly initialize live

variables (including strings), before passing them to a control creation function.

D.3.4 Callbacks

GLUI can also generate callbacks whenever the value of a control changes.
Upon creation of a new control, one specifies a function to use as a callback, as
well as an integer ID to pass to that function when the control’s value changes.
A single function can handle callbacks for multiple controls by using a switch

statement to interpret the incoming ID value within the callback.

D.3.5 API

The GLUI library consists of 3 main classes:

e GLUI_Master_Object,
e GLUI,

e GLUI _Control.



APPENDIX D. GLUI USER INTERFACE LIBRARY 87

There is a single global GLUI_Master_Object object, named GLUI_Master.
All GLUI window creation must be done through this object. This lets the
GLUI library track all the windows with a single global object.

The GLUI_Master is also used to set the GLUT Idle function, and to retrieve

the current version of GLUIL



Appendix E

Performance Graphics

In this appendix we give the figures related with the performances of the pro-
posed algorithms. The results in these figures are actual, meaning that the
recorded results are given without a regression function being applied. The
figures in the Chapter 5 are smoothed in order to give a clear idea about the
results of the algorithms. The figures presented in this appendix are given with

actual values in order to be precise about the results of the empirical study.

Figure E.1 shows the performance comparisons of different types of visu-
alization techniques by using different morphing, culling and rendering tech-
niques at different parts of the flythrough and the number of polygons rendered
for each eye is given in Figure E.2. The reason for sudden changes in the poly-
gon count is that the viewer gets close to the edges and corners of the terrain.
In Figures E.3, E.4 and E.5 performance comparison showing the frame rates
of our culling techniques with each visualization method are given with the
recorded values. In Figures E.6, E.7, E.8 and E.9 the performances of the

visualization methods for each of the proposed culling schemes are given.

88



APPENDIX E. PERFORMANCE GRAPHICS 89

80.0 ‘ \ ‘ \

— Monoscopic visualization
| | — Standard stereoscopic visualization
— Simultaneous gener ation of triangles

60.0 - i
400 - 1
[
200 | 1
| _ !

O X O L | L | L | L | L
0 1000 2000 3000 4000 5000
Frame Number

Frame Rate (frames per second)

Figure E.1: Comparison of the frame rates of different types of visualizations
(ACTUAL).

6000

4000 -
2000 |- :
O I | I U

L | L | L
0 1000 2000 3000 4000 5000
Frame Number

=

Number of Polygons

Figure E.2: Number of polygons for the experimental visualization (ACTUAL)



APPENDIX E. PERFORMANCE GRAPHICS 90

M onoscopic Visualization with Mor phing

80.0 \ ‘ ‘ ‘ ; ‘
2
g 60.0 - .
. |
| |
5 400 | .
@
3 (
o
2 p
£ 200 | g
L — Dynamic culling off
— Dynamic culling on |
Deferred view frustum culling
— Deviation based culling
OO L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000
Frame Number
(a)
M onoscopic Visualization without Morphing
80.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
e i !
% 60.0 -, .
O : % ]
o
8
& 400 || 1
@
©
o
()
£ 200 .
L H — Dynamic culling off
— Dynamic culling on |
Deferred view frustum culling
— Deviation based culling
OO L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000

Frame Number

(b)
Figure E.3: Comparison of the frame rates for visualization types with differ-
ent morphing/culling options (ACTUAL): (a) monoscopic visualization with
morphing; (b) monoscopic visualization without morphing,.



APPENDIX E. PERFORMANCE GRAPHICS 91

Normal Stereo Visualization with Morphing

40.0 ‘ ‘ ‘ ‘ ‘
. ]
2
5 300
[}
o
8
5 200 |
oy
ol
o I
)
£ 100 i ﬂm M )
L " — Dynamic culling off

— Dynamic culling on |
Deferred view frustum culling
— Deviation based culling
OO L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000
Frame Number
(a)
Normal Stereo Visualization without Morphing
40.0 ; ‘
i
30.0 L .

=

zo.oww 1

100 | a

Frame Rate (frames per second)

— Dynamic culling off
— Dynamic culling on |
Deferred view frustum culling
— Deviation based culling
OO L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000
Frame Number
(b)

Figure E.4: Comparison of the frame rates for visualization types with different
morphing/culling options (ACTUAL): (a) standard stereoscopic visualization
with morphing; (b) standard stereoscopic visualization without morphing.



APPENDIX E. PERFORMANCE GRAPHICS 92

Simultaneous Gener ation of Triangleswith Morphing

40.0 \ \ ‘ ‘
7
2
g 30.0 :
[} ! (
o
g |
5 200 | | J 1
oy
"(.—U‘ 4
o
()
£ 100 | -
L — Dynamic culling off
— Dynamic culling on |
Deferred view frustum culling
— Deviation based culling
OO L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000

Frame Number

(a)

Simultaneous Generation of Triangleswithout M or phing

40.0 ‘ ‘ ‘ ‘
. b
% 30.0 - .
2 ! s
:
S 20.0 i | Mﬂ , g
Ej I
4(_—5' I
5 |
0}
£ 100 - .
L — Dynamic culling off
— Dynamic culling on |
Deferred view frustum culling
— Deviation based culling
OO L 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000

Frame Number

(b)
Figure E.5: Comparison of the frame rates for visualization types with different
morphing/culling options (ACTUAL): (a) simultaneous generation of triangles
with morphing; (b) simultaneous generation of triangles without morphing.



APPENDIX E. PERFORMANCE GRAPHICS 93

Dynamic Culling Off with Morphing

800 T I I I I
— Monoscopic Visualization ﬂ
| | — Normal Stereo Visualization
— Simultaneous Generation of Triangles
60.0 J .
40.0 :

20.0 .14y 1
W

Frame Rate (frames per second)

OO L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number
(a)
Dynamic Culling Off without M or phing
800 T I T I T I T I T
— Monoscopic Visualization F
| | — Normal Stereo Visualization
— Simultaneous Gener ation of Triangles
60.0 J .

40.0

20.0

Frame Rate (frames per second)

O-O L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0

Frame Number

(b)
Figure E.6: Comparison of different culling schemes for visualization types
(ACTUAL): (a) dynamic culling off with morphing; (b) dynamic culling off
without morphing.




APPENDIX E. PERFORMANCE GRAPHICS 94

Dynamic Culling On with Morphing

800 T I I I I
— Monoscopic Visualization 1
— Normal Stereo Visualization
- — Simultaneous Generation of Triangles
©
§ 60.0 - .
[
o
8
S 400
@
T
o
()
£ 200 |
* T
e W W W
OO L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number
(a)
Dynamic Culling On without Mor phing
80.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
— Monoscopic Visualization 1
— Normal Stereo Visualization
— — Simultaneous Generation of Triangles
©
§ 60.0 - .
O 1
o
é IJL
g 400 - |
: Jﬂj JLF [
)
a L
o
()
% 20.0 7LJ LU W nr ﬂrLL Hﬂmwmwd N
T Hp L Jur B, LHMJWJMF‘J W
OO L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0

Frame Number

(b)
Figure E.7: Comparison of different culling schemes for visualization types
(ACTUAL): (a) dynamic culling on with morphing; (b) dynamic culling on
without morphing.



APPENDIX E. PERFORMANCE GRAPHICS 95

Deferred Culling with Mor phing

800 T I I I I
— Monoscopic Visualization n
| | — Normal Stereo Visualization
- — Simultaneous Generation of Triangles
©
§ 60.0 |- jm .
[ ]
o
8 —
& 400 ]
S . i
E L 4
& | i b
S 20.0 J J T -
L J
OO L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number
(a)
Deferred Culling without Mor phing
800 T I T I T I T I

— Monoscopic Visualization L]
| | — Normal Stereo Visualization
— Simultaneous Gener ation of Triangles

simid!
‘"WFM NLJ f 1

20.0

=

Frame Rate (frames per second)

[ ——
=,
i

O-O L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0

Frame Number

(b)
Figure E.8: Comparison of different culling schemes for visualization types
(ACTUAL): (a) deferred culling with morphing; (b) deferred culling without
morphing.




APPENDIX E. PERFORMANCE GRAPHICS 96

Deviation-Based Culling with Mor phing
80.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

— Monoscopic Visualization
— Normal Stereo Visualization 1

| | — Simultaneous Generation of Triangles |
60.0
40.0
200 | Fm Jj I
b o A B lﬁ

Frame Rate (frames per second)

OO L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number
(a)
Deviation-Based Culling without Morphing
800 T I T I T I T I T
— Monoscopic Visualization L
| | — Normal Stereo Visualization
— — Simultaneous Generation of Triangles
= U
% 60.0
& ]
Q ,
8
§ 400
@
5 ) ! ]
o
o !
£ 200 |, ﬁ g ! 0l
Lt U
00 L 1 L 1 L 1 L 1 L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number

(b)
Figure E.9: Comparison of different culling schemes for visualization types
(ACTUAL): (a) deviation-based culling with morphing; (b) deviation-based
culling without morphing.



Bibliography

[1] S. Adelson, J. Bentley, I. Chong, L. Hodges, and J. Winograd. Simul-
taneous generation of stereographic views. Computer Graphics Forum,
10:3-10, 1991.

[2] S. Adelson and C. Hansen. Fast stereoscopic images with ray traced vol-
ume rendering. In Proc. of Symposium on Volume Visualization, pages
3-9, 1994.

[3] S. Adelson and L. Hodges. Stereoscopic ray tracing. the Visual Computer,
10(3):127-144, 1993.

[4] U. Assarsson and T. Maller. Optimized view frustum culling algorithms
for bounding boxes. Journal of Graphics Tools, 5(1):9-22, 2000.

[5] D. Bartz, M. Meisner, and T. Hiittner. OpenGL-assisted occlusion culling
for large polygonal models. Computers € Graphics, 23(5):667-679, 1999.

(6] J. Ezell and L. Hodges. Some preliminary results on using spatial locality
to speed-up raytracing of stereoscopic images. In Proc. of SPIE 1256,
Stereoscopic Dispaly and Applications I, pages 298-306, 1990.

[7] L. Hodges. Tutorial: Time-multiplexed stereoscopic computer graphics.
IEEE Computer Graphics and Applications, 12(2):20-30, 1992.

[8] L. Hodges and D. McAllister. Stereo and alternating-pair techniques for
display of computer-generated images. IEEE Computer Graphics and Ap-
plications, 5(9):38-45, 1985.

9] H. Hoppe. Smooth view-dependent level-of-detail control and its applica-
tion to terrain rendering. In Proc. of IEEE’98, pages 35-42, 1998.

97



BIBLIOGRAPHY 98

[10] R. Hubbold, D. Hancock, and C. Moore. Stereoscopic volume rendering.
In Proc. Visualization in Scientific Computing’98, pages 105-115, 1998.

[11] P. Lindstrom. Level-of-detail management for real-time rendering of pho-
totextured terrain. Technical Report GIT-GVU-95-06, Graphics, Visual-
ization and Usability Center, College of Computing, Georgia Institute of
Technology, GA, USA, 1995.

[12] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G. Turner.
Real-time continuous level of detail rendering of height fields. In ACM
Computer Graphics (Proc. of SIGGRAPH’96), pages 109-118, 1996.

[13] L. Lipton. Binocular symmetries as criteria for the successful transmission
of images. In Proc. of SPIE’8/, volume 507, 1984.

[14] L. Lipton. Factors affecting ghosting in a time-multiplexed plano-
stereoscopic CRT display system. In Proc. of SPIE’87, volume 507, 1987.

[15] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide. Addison—
Wesley, 1994.

[16] R. Nielson, D. Holliday, and T. Roxborough. Cracking the cracking prob-
lem with Coons patches. In Proc. of IEEE Visualization’99, pages 285-290,
1999.

[17] R. Pajarola. Large scale terrain visualization using the restricted quadtree
triangulation. In Proc. of IEEE Visualization’98, pages 19-26, 1998.

[18] P. Rademacher. GLUI — A GLUT Based User Interface Library Ver2.0.
http://www.cs.unc.edu/~rademach/glui/, 1999.

[19] H. Samet. The quadtree and related data structures. ACM Computing
Surveys, 16(2):187-260, 1984.

[20] M. Segal and K. Akeley. OpenGL Graphics System: A Specification
Ver1.2.1. Silicon Graphics Inc., CA, April 1999. Unpublished.

[21] C. Stereographics. Stereographics Developer’s Handbook. Stereographics
Corporation, http://www.stereographics.com, 1997.

[22] H. Taosong and A. Kaufman. Fast stereo volume rendering. In Proc. of
IEEFE Visualization’96, pages 49-56, 1996.



BIBLIOGRAPHY 99

[23] N. Valyus. Stereoscopy. Focal Press, New York, first edition, 1962.

[24] 1. Vrex. How To View A Stereoscopic Image. Vrex Incorporation,
http://www.vrex.com, 1997.

[25] C. Wheatstone. On some remarkable, and hitherto unobserved, phenom-
ena of binocular vision. Philosophical Transactions of the Royal Society
of London, pages 371-394, 1838.



