CS425: Algorithms for Web Scale Data

Lecture 1: PageRank Formulation

Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org
Lecture Overview

- Graph data overview
- Problems with early search engines
- PageRank Model
 - Flow Formulation
 - Matrix Interpretation
 - Random Walk Interpretation
 - Google’s Formulation
- How to Compute PageRank
Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]
Graph Data: Communication Nets

Internet

domain1

domain2

domain3

router
Web as a Directed Graph

I'm a student at Univ. of X

My song lyrics

I teach at Univ. of X

Classes

Networks

Networks class blog

Blog post about Company Z

Blog post about college rankings

I'm applying to college

USNews College Rankings

USNews Featured Colleges
How to organize the Web?

First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
- **But:** Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search: 2 Challenges

2 challenges of web search:

1. Web contains many sources of information
 - Who to “trust”?
 - Trick: Trustworthy pages may point to each other!

2. What is the “best” answer to query “newspaper”?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers
Early Search Engines

- Inverted index
 - Data structure that return pointers to all pages a term occurs

- Which page to return first?
 - Where do the search terms appear in the page?
 - How many occurrences of the search terms in the page?

- What if a spammer tries to fool the search engine?
Fooling Early Search Engines

- Example: A spammer wants his page to be in the top search results for the term “movies”.

- **Approach 1:**
 - Add thousands of copies of the term “movies” to your page.
 - Make them invisible.

- **Approach 2:**
 - Search the term “movies”.
 - Copy the contents of the top page to your page.
 - Make it invisible.

- **Problem:** Ranking only based on page contents
- Early search engines almost useless because of spam.
Google’s Innovations

- **Basic idea:** Search engine believes what other pages say about you instead of what you say about yourself.

- **Main innovations:**
 1. Define the importance of a page based on:
 - How many pages point to it?
 - **How important are those pages?**
 2. Judge the contents of a page based on:
 - Which terms appear in the page?
 - **Which terms are used to link to the page?**
All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity.

Let’s rank the pages by the link structure!
We will cover the following Link Analysis approaches for computing importances of nodes in a graph:

- Page Rank
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms
PageRank: The “Flow” Formulation
Think of in-links as votes:
- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

Are all in-links are equal?
- Links from important pages count more
- Recursive question!
Example: PageRank Scores

- Each link’s vote is proportional to the **importance** of its source page

- If page j with importance r_j has n out-links, each link gets r_j/n votes

- Page j’s own importance is the sum of the votes on its in-links

$$r_j = \frac{r_i}{3} + \frac{r_k}{4}$$
PageRank: The “Flow” Model

- A “vote” from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a “rank” r_j for page j

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

d_i ... out-degree of node i
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
 - \(r_y + r_a + r_m = 1 \)
 - Solution: \(r_y = \frac{2}{5}, \ r_a = \frac{2}{5}, \ r_m = \frac{1}{5} \)
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!
PageRank: The Matrix Formulation
PageRank: Matrix Formulation

- **Adjacency matrix** \mathbf{M}
 - Let page i have d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

- **Rank vector** \mathbf{r}: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$

- The flow equations can be written
 \[\mathbf{r} = \mathbf{M} \cdot \mathbf{r} \]
Example: Flow Equations & M

\[r_y = \frac{r_y}{2} + \frac{r_a}{2} \]
\[r_a = \frac{r_y}{2} + r_m \]
\[r_m = \frac{r_a}{2} \]

\[
\begin{array}{ccc}
 \ y & \ a & \ m \\
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 1 \\
 0 & \frac{1}{2} & 0 \\
\end{array}
\]

\[r = M \cdot r \]
Example

- Remember the flow equation: \(r_j = \sum_{i \to j} \frac{r_i}{d_i} \)
- Flow equation in the matrix form
 \[M \cdot r = r \]
- Suppose page \(i \) links to 3 pages, including \(j \)

\[
\begin{align*}
M \cdot r &= r \\
\sum_{i \to j} \frac{r_i}{d_i} &= r_j
\end{align*}
\]
Exercise: Matrix Formulation

\[
\begin{pmatrix}
0 & 1/2 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
r_A \\
r_B \\
r_C \\
r_D
\end{pmatrix}
=
\begin{pmatrix}
r_A \\
r_B \\
r_C \\
r_D
\end{pmatrix}
\]
A is a column stochastic matrix iff each of its columns add up to 1 and there are no negative entries.

Our adjacency matrix M is column stochastic. Why?

If there exist a vector x and a scalar λ such that $Ax = \lambda x$, then:

- x is an eigenvector and λ is an eigenvalue of A

- The principal eigenvector is the one that corresponds to the largest eigenvalue.

The largest eigenvalue of a column stochastic matrix is 1.

$Ax = x$, where x is the principal eigenvector
Eigenvector Formulation

- PageRank flow formulation:
 \[r = M \cdot r \]

- So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

- We can now efficiently solve for \(r \)!
The method is called Power iteration

NOTE: \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:
\[Ax = \lambda x \]
Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- **Power iteration**: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N, \ldots, 1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$

$\mathbf{x}_1 = \sum_{1 \leq i \leq N} |x_i|$ is the L_1 norm
Can use any other vector norm, e.g., Euclidean

\[
r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}
\]
PageRank: How to solve?

- **Power Iteration:**
 - Set \(r_j = 1/N \)
 - 1: \(r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
 - 2: \(r = r' \)
 - Goto 1

- **Example:**

\[
\begin{bmatrix}
r_y \\
r_a \\
r_m
\end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}
\]

Iteration 0, 1, 2, …

\[
\begin{align*}
r_y &= r_y / 2 + r_a / 2 \\
r_a &= r_y / 2 + r_m \\
r_m &= r_a / 2
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- 2: $r = r'$
- Goto 1

Example:

\[
\begin{pmatrix}
r_y \\
r_a \\
r_m
\end{pmatrix} =
\begin{pmatrix}
1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\
1/3 & 3/6 & 1/3 & 11/24 & \ldots & 6/15 \\
1/3 & 1/6 & 3/12 & 1/6 & 3/15
\end{pmatrix}
\]

Iteration 0, 1, 2, …

\[
\begin{array}{c|c|c|c}
& y & a & m \\
\hline
y & 1/2 & 1/2 & 0 \\
a & 1/2 & 0 & 1 \\
m & 0 & 1/2 & 0 \\
\end{array}
\]

\[
\begin{align*}
r_y &= r_y / 2 + r_a / 2 \\
r_a &= r_y / 2 + r_m \\
r_m &= r_a / 2
\end{align*}
\]
Power iteration:

A method for finding principal eigenvector (the vector corresponding to the largest eigenvalue)

- $\mathbf{r}^{(1)} = \mathbf{M} \cdot \mathbf{r}^{(0)}$
- $\mathbf{r}^{(2)} = \mathbf{M} \cdot \mathbf{r}^{(1)} = \mathbf{M} (\mathbf{Mr}^{(1)}) = \mathbf{M}^2 \cdot \mathbf{r}^{(0)}$
- $\mathbf{r}^{(3)} = \mathbf{M} \cdot \mathbf{r}^{(2)} = \mathbf{M} (\mathbf{M}^2 \mathbf{r}^{(0)}) = \mathbf{M}^3 \cdot \mathbf{r}^{(0)}$

Claim:

Sequence $\mathbf{M} \cdot \mathbf{r}^{(0)}, \mathbf{M}^2 \cdot \mathbf{r}^{(0)}, ... \mathbf{M}^k \cdot \mathbf{r}^{(0)}, ...$ approaches the dominant eigenvector of \mathbf{M}
PageRank: Random Walk Interpretation
Random Walk Interpretation of PageRank

- Consider a web surfer:
 - He starts at a random page
 - He follows a random link at every time step
 - After a sufficiently long time:
 - What is the probability that he is at page j?
 - This probability corresponds to the page rank of j.
Example: Random Walk

Time $t = 0$: Assume the random surfer is at A.

Time $t = 1$:

- $p(A, 1) = ? \quad 0$
- $p(B, 1) = ? \quad 1/3$
- $p(C, 1) = ? \quad 1/3$
- $p(D, 1) = ? \quad 1/3$
Example: Random Walk

Time t = 1:

\[p(B, 1) = 1/3 \]
\[p(C, 1) = 1/3 \]
\[p(D, 1) = 1/3 \]

Time t=2:

\[p(A, 2) = ? \]

\[p(A, 2) = p(B, 1) \cdot p(B \rightarrow A) + p(C, 1) \cdot p(C \rightarrow A) \]
\[= 1/3 \cdot 1/2 + 1/3 \cdot 1 = 3/6 \]
Example: Transition Matrix

\[p(A, t+1) = p(B, t) \cdot p(B \rightarrow A) + p(C, t) \cdot p(C \rightarrow A) \]

\[p(C, t+1) = p(A, t) \cdot p(A \rightarrow C) + p(D, t) \cdot p(D \rightarrow C) \]
Imagine a random web surfer:
- At any time t, surfer is on some page i
- At time $t + 1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:
- $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- So, $p(t)$ is a probability distribution over pages
Where is the surfer at time $t+1$?

- Follows a link uniformly at random

 $$p(t+1) = M \cdot p(t)$$

- Suppose the random walk reaches a state

 $$p(t+1) = M \cdot p(t) = p(t)$$

 then $p(t)$ is **stationary distribution** of a random walk

- **Our original rank vector** r satisfies

 $$r = M \cdot r$$

 So, r is a stationary distribution for the random walk

Rank of page j = Probability that the surfer is at page j after a long random walk
A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $t = 0$.
Summary So Far

- PageRank formula:
 \[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]
 \(d_i \) out-degree of node i

- Iterative algorithm:
 1. Initialize rank of each page to 1/N (where N is the number of pages)
 2. Compute the next page rank values using the formula above
 3. Repeat step 2 until the page rank values do not change much

- Same algorithm, but different interpretations
Summary So Far (cont’d)

- Eigenvector interpretation:
 - Compute the principal eigenvector of stochastic adjacency matrix M
 \[r = M \cdot r \]
 - Power iteration method

- Random walk interpretation:
 - Rank of page i is the probability that a surfer is at i after random walk
 \[p(t+1) = M \cdot p(t) \]
 - Guaranteed to converge to a unique solution under certain conditions
Convergence Conditions

- To guarantee convergence to a meaningful and unique solution, the transition matrix must be:
 1. Column stochastic
 2. Irreducible
 3. Aperiodic
Column Stochastic

- Column stochastic:
 - All values in the matrix are non-negative
 - Sum of each column is 1

What if we remove the edge $m \rightarrow a$?

No longer column stochastic

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

$$r_y = \frac{r_y}{2} + \frac{r_a}{2}$$

$$r_a = \frac{r_y}{2} + r_m$$

$$r_m = \frac{r_a}{2}$$
Irreducible

- Irreducible: From any state, there is a non-zero probability of going to another.
 - Equivalent to: Strongly connected graph

What if we remove the edge C → A?

No longer irreducible.
Aperiodic

- State i has **period k** if any return to state i must occur in *multiples of k time steps*.

- If $k = 1$ for a state, it is called **aperiodic**.
 - Returning to the state at irregular intervals

- A **Markov chain** is aperiodic if all its states are aperiodic.
 - If Markov chain is irreducible, one aperiodic state means all stated are aperiodic.

A Markov chain is aperiodic if all its states are aperiodic.

If Markov chain is irreducible, one aperiodic state means all stated are aperiodic.

How to make this aperiodic?

Add any new edge
PageRank: The Google Formulation
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]

or equivalently

\[r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[
\begin{align*}
\mathbf{r}^a &= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \\
\mathbf{r}^b &= \\
\end{align*}
\]

Iteration 0, 1, 2, …

\[
r_{j}^{(t+1)} = \sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{d_{i}}
\]
Does it converge to what we want?

Example:

\begin{align*}
\mathbf{r}_a &= \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \end{pmatrix} \\
\mathbf{r}_b &= \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}
\end{align*}

Iteration 0, 1, 2, …

\[r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \]
PageRank: Problems

2 problems:

- (1) Some pages are **dead ends** (have no out-links)
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

- (2) **Spider traps:**
 - (all out-links are within the group)
 - Random walk gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem: Spider Traps

- **Power Iteration:**
 - Set \(r_j = 1/N \)
 - \(r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
 - And iterate

- **Example:**

\[
\begin{pmatrix}
 r_y \\
r_a \\
r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 3/6 & 7/12 & 16/24 & 1
\end{pmatrix}
\]

Iteration 0, 1, 2, …

All the PageRank score gets “trapped” in node m.

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
</tr>
</tbody>
</table>

\(r_y = \frac{r_y}{2} + \frac{r_a}{2} \)
\(r_a = \frac{r_y}{2} \)
\(r_m = \frac{r_a}{2} + r_m \)
The Google solution for spider traps: At each time step, the random surfer has two options

- With prob. β, follow a link at random
- With prob. $1-\beta$, jump to some random page
- Common values for β are in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

 \[
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix} = \begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0
 \end{pmatrix}
 \]

 Iteration 0, 1, 2, …

 Here the PageRank “leaks” out since the matrix is not stochastic.

```
\[
\begin{array}{ccc}
  y & a & m \\
  \hline
  y & 1/2 & 1/2 & 0 \\
  a & 1/2 & 0 & 0 \\
  m & 0 & 1/2 & 0 \\
\end{array}
\]

$\mathbf{r}_y = \mathbf{r}_y / 2 + \mathbf{r}_a / 2$

$\mathbf{r}_a = \mathbf{r}_y / 2$

$\mathbf{r}_m = \mathbf{r}_a / 2$

**Teleports**: Follow random teleport links with probability 1.0 from dead-ends

- Adjust matrix accordingly

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>a</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{3})</td>
</tr>
</tbody>
</table>
Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- **Spider-traps**: PageRank scores are **not** what we want
  - **Solution**: Never get stuck in a spider trap by teleporting out of it in a finite number of steps

- **Dead-ends** are a problem
  - **Solution**: Make matrix column stochastic by always teleporting when there is nowhere else to go
Google’s solution that does it all:
At each step, random surfer has two options:

- With probability $\beta$, follow a link at random
- With probability $1-\beta$, jump to some random page

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that $M$ has no dead ends. We can either preprocess matrix $M$ to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]

  \[ r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

- **The Google Matrix A:**

  \[ A = \beta M + (1 - \beta) \left[ \frac{1}{N} \right]_{N \times N} \]

- We have a recursive problem: \( r = A \cdot r \)

  And the Power method still works!

- What is \( \beta \)?

  - In practice \( \beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports ($\beta = 0.8$)

\[
\begin{align*}
\text{y} & = 1/3 
\begin{bmatrix}
0.33 & 0.24 & 0.26 \\
0.20 & 0.20 & 0.18 \\
0.46 & 0.52 & 0.56 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{a} & = 1/3 
\begin{bmatrix}
0.20 & 0.20 & 0.18 \\
0.20 & 0.20 & 0.18 \\
0.46 & 0.52 & 0.56 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{m} & = 1/3 
\begin{bmatrix}
0.33 & 0.24 & 0.26 \\
0.20 & 0.20 & 0.18 \\
0.46 & 0.52 & 0.56 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{A} & = 
\begin{bmatrix}
1/2 & 1/2 & 0 \\
1/2 & 0 & 0 \\
0 & 1/2 & 1 \\
\end{bmatrix} 
+ 0.2
\end{align*}
\]

\[
\begin{align*}
\text{M} & = 
\begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{[1/N]}_{N \times N} & = 
\begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
\end{bmatrix}
\] \quad \text{y} \\
\text{a} & = 7/15 
\begin{bmatrix}
1/15 & 0 \\
1/15 & 0 \\
1/15 & 0 \\
\end{bmatrix} \\
\text{m} & = 1/15 
\begin{bmatrix}
7/15 & 7/15 & 13/15 \\
1/15 & 1/15 & 1/15 \\
7/15 & 7/15 & 13/15 \\
\end{bmatrix}
\end{align*}
\]
Suppose there are \( N \) pages

Consider page \( i \), with \( d_i \) out-links

We have \( M_{ji} = 1/|d_i| \) when \( i \rightarrow j \) and \( M_{ji} = 0 \) otherwise

The random teleport is equivalent to:

- Adding a **teleport link** from \( i \) to every other page and setting transition probability to \((1-\beta)/N\)
- Reducing the probability of following each out-link from \( 1/|d_i| \) to \( \beta/|d_i| \)
- **Equivalent:** Tax each page a fraction \((1-\beta)\) of its score and redistribute evenly
How do we actually compute the PageRank?
Key step is matrix-vector multiplication

- \( r^{\text{new}} = A \cdot r^{\text{old}} \)
- Easy if we have enough main memory to hold \( A, r^{\text{old}}, r^{\text{new}} \)
- Say \( N = 1 \) billion pages
  - We need 4 bytes for each entry (say)
  - 2 billion entries for vectors, approx 8GB
  - Matrix \( A \) has \( N^2 \) entries
    - \( 10^{18} \) is a large number!

\[
A = \beta \cdot M + (1-\beta) \left[ \frac{1}{N} \right]_{N \times N}
\]

\[
\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1
\end{pmatrix} + 0.2 \\
= \\
\begin{pmatrix}
\frac{7}{15} & \frac{7}{15} & \frac{1}{15} \\
\frac{7}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{7}{15} & \frac{13}{15}
\end{pmatrix}
\]
Matrix Sparseness

- Reminder: Our original matrix was sparse.
  - On average: ~10 out-links per vertex
  - # of non-zero values in matrix M: ~10N
- Teleport links make matrix M dense.
- Can we convert it back to the sparse form?

Original matrix without teleports:

\[
\begin{pmatrix}
0 & 1/2 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0
\end{pmatrix}
\]
Rearranging the Equation

- \( r = A \cdot r \), where \( A_{ji} = \beta M_{ji} + \frac{1-\beta}{N} \)
- \( r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \)
- \( r_j = \sum_{i=1}^{N} \left[ \beta M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i 
= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i 
= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \cdot \sum_{i=1}^{N} r_i 
= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \cdot N \) since \( \sum_{i=1}^{N} r_i = 1 \)
- So we get: \( r = \beta M \cdot r + \left[ \frac{1-\beta}{N} \right]_N \)

**Note:** Here we assumed \( M \) has no dead-ends
Example: Equation with Teleports

Note: Here we assumed $M$ has no dead-ends
We just rearranged the **PageRank equation**

\[ r = \beta M \cdot r + \left[ \frac{1 - \beta}{N} \right] \]

- where \([ (1-\beta)/N \] is a vector with all \( N \) entries \( (1-\beta)/N \)

- **\( M \) is a sparse matrix!** (with no dead-ends)
  - 10 links per node, approx 10\( N \) entries

- So in each iteration, we need to:
  - Compute \( r^{\text{new}} = \beta M \cdot r^{\text{old}} \)
  - Add a constant value \( (1-\beta)/N \) to each entry in \( r^{\text{new}} \)
  - Note if \( M \) contains dead-ends then \( \sum_j r_j^{\text{new}} < 1 \) and we also have to renormalize \( r^{\text{new}} \) so that it sums to 1
- **Input:** Graph $G$ and parameter $\beta$
  - Directed graph $G$ (cannot have dead ends)
  - Parameter $\beta$
- **Output:** PageRank vector $r^{new}$

- **Set:** $r_j^{old} = \frac{1}{N}$

- **repeat until convergence:** $\sum_j |r_j^{new} - r_j^{old}| > \varepsilon$
  - $\forall j$: $r_j^{new} = \sum_{i \to j} \beta \frac{r_i^{old}}{d_i}$
  - $r_j^{new} = 0$ if in-degree of $j$ is 0
- **Add constant terms:**
  - $\forall j$: $r_j^{new} = r_j^{new} + \frac{1-\beta}{N}$
- $r^{old} = r^{new}$
PageRank: The Complete Algorithm

- **Input:** Graph $G$ and parameter $\beta$
  - Directed graph $G$ (can have spider traps and dead ends)
  - Parameter $\beta$
- **Output:** PageRank vector $r^{new}$

  - **Set:** $r^{old}_j = \frac{1}{N}$
  - **repeat until convergence:** $\sum_j |r^{new}_j - r^{old}_j| > \varepsilon$
    - $\forall j: r^{new}_j = \sum_i \beta \frac{r^{old}_i}{d_i}$
    - $r^{new}_j = 0$ if in-degree of $j$ is 0
  - **Now re-insert the leaked PageRank:**
    - $\forall j: r^{new}_j = r^{new}_j + \frac{1-S}{N}$ where: $S = \sum_j r^{new}_j$
  - $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing $S$. 

Sparse Matrix Encoding: First Try

Store a triplet for each nonzero entry: (row, column, weight)

\[\begin{array}{ccc}
0 & 1/2 & 1 \\
1/3 & 0 & 0 \\
1/3 & 0 & 1/2 \\
1/3 & 1/2 & 0 \\
\end{array}\] …

Assume 4 bytes per integer and 8 bytes per float: 16 bytes per entry

*Inefficient:* Repeating the column index and weight multiple times
**Sparse Matrix Encoding**

- **Store entries per source node**
  - Source index and degree stored once per node
  - Space proportional roughly to number of links
  - Say 10N, or 4*10*1 billion = 40GB
  - Still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Basic Algorithm: Update Step

- **Assume enough RAM to fit** $r^{new}$ **into memory**
  - Store $r^{old}$ and matrix $M$ on disk
- **1 step of power-iteration is:**

  - **Initialize** all entries of $r^{new} = (1-\beta) / N$
  - For each page $i$ (of out-degree $d_i$):
    - Read into memory: $i$, $d_i$, $dest_1$, …, $dest_{d_i}$, $r^{old}(i)$
    - For $j = 1…d_i$
      - $r^{new}(dest_j) += \beta \ r^{old}(i) / d_i$

<table>
<thead>
<tr>
<th>source</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>17, 64, 113, 117</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Assume enough RAM to fit $r^{new}$ into memory
- Store $r^{old}$ and matrix $M$ on disk

In each iteration, we have to:
- Read $r^{old}$ and $M$
- Write $r^{new}$ back to disk

Cost per iteration of Power method:
\[ = 2|r| + |M| \]

Question:
- What if we could not even fit $r^{new}$ in memory?
- Break $r^{\text{new}}$ into $k$ blocks that fit in memory
- Scan $M$ and $r^{\text{old}}$ once for each block
Block-based Update Algorithm

- Break $r^{\text{new}}$ into $k$ blocks that fit in memory
- Scan $M$ and $r^{\text{old}}$ once for each block
Break $r^{\text{new}}$ into $k$ blocks that fit in memory
Scan $M$ and $r^{\text{old}}$ once for each block

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0, 5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3, 4</td>
</tr>
</tbody>
</table>
Similar to nested-loop join in databases

- Break $r^{\text{new}}$ into $k$ blocks that fit in memory
- Scan $M$ and $r^{\text{old}}$ once for each block

Total cost:

- $k$ scans of $M$ and $r^{\text{old}}$
- Cost per iteration of Power method:
  $$k(|M| + |r|) + |r| = k|M| + (k+1)|r|$$

Can we do better?

- Hint: $M$ is much bigger than $r$ (approx 10-20x), so we must avoid reading it $k$ times per iteration
### Block-Stripe Update Algorithm

#### Break $M$ into stripes!
Each stripe contains only destination nodes in the corresponding block of $r^{\text{new}}$

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

**Note:**
- $r^{\text{new}}$: New block representation
- $r^{\text{old}}$: Old block representation

---

### Block-Stripe Update Algorithm

**Break \( M \) into stripes!** Each stripe contains only destination nodes in the corresponding block of \( r^{new} \).

<table>
<thead>
<tr>
<th></th>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

\( r^{new} \)

\[\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
\end{array}\]

\( r^{old} \)

\[\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
\end{array}\]

**Block-Stripe Update Algorithm**

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

*Break $M$ into stripes!* Each stripe contains only destination nodes in the corresponding block of $r_{\text{new}}$.
Block-Stripe Analysis

- Break $M$ into stripes
  - Each stripe contains only destination nodes in the corresponding block of $r^{new}$
- Some additional overhead per stripe
  - But it is usually worth it
- Cost per iteration of Power method:
  $$= |M|(1+\varepsilon) + (k+1)|r|$$
Some Problems with Page Rank

- Measures generic popularity of a page
  - Biased against topic-specific authorities
  - **Solution:** Topic-Specific PageRank (next)

- Uses a single measure of importance
  - Other models of importance
  - **Solution:** Hubs-and-Authorities

- Susceptible to Link spam
  - Artificial link topographies created in order to boost page rank
  - **Solution:** TrustRank