
CS425: Algorithms for Web Scale Data

Most of the slides are from the Mining of Massive Datasets book.

These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

http://www.mmds.org/
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 Many problems can be expressed as 
finding “similar” sets:
 Find near-neighbors in high-dimensional space

 Examples:
 Pages with similar words
 For duplicate detection, classification by topic

 Customers who purchased similar products
 Products with similar customer sets

 Images with similar features
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 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
 For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
 Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are 

within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔
 Note: Naïve solution would take 𝑶 𝑵𝟐 

where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How?
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 Goal: Find near-neighbors in high-dim. space
 We formally define “near neighbors” as 

points that are a “small distance” apart
 For each application, we first need to define 

what “distance” means
 Today: Jaccard distance/similarity
 The Jaccard similarity of two sets is the size of their 

intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

 Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|
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3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8



 Goal: Given a large number (𝑵 in the millions or 
billions) of documents, find “near duplicate” pairs

 Applications:
 Mirror websites, or approximate mirrors
 Don’t want to show both in search results

 Similar news articles at many news sites
 Cluster articles by “same story”

 Problems:
 Many small pieces of one document can appear 

out of order in another

 Too many documents to compare all pairs

 Documents are so large or so many that they cannot 
fit in main memory
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1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

 Candidate pairs!
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Step 1: Shingling: Convert documents to sets

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument



 A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc

 Tokens can be characters, words or something 
else, depending on the application

 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

 Option: Shingles as a bag (multiset), count ab

twice: S’(D1) = {ab, bc, ca, ab}
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Examples

 Input text:

“The most effective way to represent documents as sets is to 

construct from the document the set of short strings that 

appear within it.”

 5-shingles:
“The m”, “he mo”, “e mos”, “ most”, “ ost ”, “ost e”, “st ef”, “t eff”,

“ effe”, “effec”, “ffect”, “fecti”, “ectiv”, …

 9-shingles:

“The most ”, “he most e”, “e most ef”, “ most eff”, “most effe”, 

“ost effec”, “st effect”, “t effecti”, “ effectiv”, “effective”, …
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Hashing Shingles

 Storage of k-shingles: k bytes per shingle

 Instead, hash each shingle to a 4-byte integer.

 E.g. “The most ”  4320

“he most e”   56456

“e most ef”   214509

 Which one is better?

1. Using 4 shingles?

2. Using 9-shingles, and then hashing each to 4 byte integer?

 Consider the # of distinct elements represented with 4 bytes
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Hashing Shingles

 Not all characters are common.

 e.g. Unlikely to have shingles like “zy%p”

 Rule of thumb: # of k-shingles is about 20k

 Using 4-shingles:

 # of shingles: 204 = 160K

 Using 9-shingles and then hashing to 4-byte values:

 # of shingles: 209 = 512B

 # of buckets: 232 = 4.3B

 512B shingles (uniformly) distributed to 4.3B buckets



 Document D1 is a set of its k-shingles C1=S(D1)
 Equivalently, each document is a 

0/1 vector in the space of k-shingles

 Each unique shingle is a dimension

 Vectors are very sparse

 A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|
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 Documents that have lots of shingles in 
common have similar text, even if the text 
appears in different order

 Caveat: You must pick k large enough, or most 
documents will have most shingles

 k = 5 is OK for short documents

 k = 10 is better for long documents
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 Suppose we need to find near-duplicate 
documents among 𝑵 = 𝟏million documents

 Naïvely, we would have to compute pairwise 
Jaccard similarities for every pair of docs

 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

 At 105 secs/day and 106 comparisons/sec, 
it would take 5 days

 For 𝑵 = 𝟏𝟎million, it takes more than a year…
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Step 2: Minhashing: Convert large sets to 
short signatures, while preserving similarity

Docu-
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 Many similarity problems can be 
formalized as finding subsets that 
have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors 

 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and 
set union as bitwise OR

 Example: C1 = 10111; C2 = 10011

 Size of intersection = 3; size of union = 4, 

 Jaccard similarity (not distance) = 3/4

 Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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 Rows = elements (shingles)
 Columns = sets (documents)
 1 in row e and column s if and only 

if e is a member of s

 Column similarity is the Jaccard
similarity of the corresponding 
sets (rows with value 1)

 Typical matrix is sparse!
 Each document is a column:
 Example: sim(C1 ,C2) = ?
 Size of intersection = 3; size of union = 6, 

Jaccard similarity (not distance) = 3/6

 d(C1,C2) = 1 – (Jaccard similarity) = 3/6
23J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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 So far:

 Documents  Sets of shingles

 Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while 
computing small signatures

 Similarity of columns == similarity of signatures
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 Key idea: “hash” each column C to a small 
signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of 
signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs 
of near duplicate docs hash into the same bucket!
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 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on 
the similarity metric:

 Not all similarity metrics have a suitable 
hash function

 There is a suitable hash function for 
the Jaccard similarity: It is called Min-Hashing
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 Imagine the rows of the boolean matrix 
permuted under random permutation 

 Define a “hash” function h(C) = the index of 
the first (in the permuted order ) row in 
which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash 
functions (that is, permutations) to create a 
signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example
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is the first to map to a 1
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)

 Proof:

 Consider 3 types of rows:

type X: Ci and Cj both have 1s

type Y: only one of Ci and Cj has 1

type Z: Ci and Cj both have 0s

 After random permutation , what if the 
first X-type row is before the first Y-type 
row? 

h(Ci) = h(Cj)

01

11

00

00

00

01

11 

Input Matrix

Ci Cj

X

Y

Z

Z

Z

Y

X
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The Min-Hash Property

 What is the probability that the first not-Z row is of type X?

|𝑋|

𝑋 +|𝑌|

 Pr[h(Ci) = h(Cj)] = 
|𝑿|

𝑿 +|𝒀|

 sim(Ci, Cj) = 
|𝑪

𝒊
∩𝑪

𝐣
|

|𝑪
𝒊
∪𝑪

𝐣
|

= 
|𝑿|

𝑿 +|𝒀|
= Pr[h(Ci) = h(Cj)] 

 Conclusion: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)
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 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

 Note: Because of the Min-Hash property, the 
similarity of columns is the same as the 
expected similarity of their signatures
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Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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Similarity of Signatures

 What is the expected value of Jaccard similarity of two 
signatures sig1 and sig2? Assume there are s min-hash values 
in each signature.

𝐸 𝑠𝑖𝑚 𝑠𝑖𝑔1, 𝑠𝑖𝑔2 = 𝐸
# 𝑜𝑓 π 𝑠. 𝑡. ℎπ 𝐶1 = ℎπ 𝐶2

𝑠

=
1

𝑠
 =1
𝑠 Pr[ℎ𝜋 C1 = h𝜋(𝐶2)]

= 𝑠𝑖𝑚(𝐶1, 𝐶2)

 Law of large numbers: Average of the results obtained from a large 
number of trials should be close to the expected value, and will tend to 
become closer as more trials are performed.



 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the 

index of the first row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is 
small  ~𝟒𝟎𝟎 bytes!

 We achieved our goal! We “compressed” 
long bit vectors into short signatures
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 Permuting rows even once is prohibitive
 Row hashing!

 Pick K = 100 hash functions ki

 Ordering under ki gives a random row (almost) permutation!
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How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
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 One-pass implementation

 For each column C and hash-func. ki keep a “slot” 
for the min-hash value

 Initialize all sig(C)[i] = 

 Scan rows looking for 1s

 Suppose row j has 1 in column C

 Then for each ki :

 If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)
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Example: Computing Min-Hash Signatures
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Example: Computing Min-Hash Signatures
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Example: Computing Min-Hash Signatures
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Example: Computing Min-Hash Signatures
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Example: Computing Min-Hash Signatures
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Example: Computing Min-Hash Signatures
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Example: Computing Min-Hash Signatures
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Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
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 Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

 For Min-Hash matrices: 

 Hash columns of signature matrix M to many buckets

 Each pair of documents that hashes into the 
same bucket is a candidate pair
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 Big idea: Hash columns of 
signature matrix M several times

 Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

 Candidate pairs are those that hash to 
the same bucket
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 Divide matrix M into b bands of r rows

 For each band, hash its portion of each 
column to a hash table with k buckets

 Make k as large as possible

 Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs, 
but few non-similar pairs
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Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical 

(candidate pair)

Columns 6 and 7 are

surely different.
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 There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band

 Hereafter, we assume that “same bucket” 
means “identical in that band”

 Assumption needed only to simplify analysis, 
not for correctness of algorithm
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Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40Mb
 Choose b = 20 bands of r = 5 integers/band

 Goal: Find pairs of documents that 
are at least s = 0.8 similar
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 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8

 Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We want them 
to hash to at least 1 common bucket (at least one band is identical)

 Probability C1, C2 identical in one particular band: 
(0.8)5 = 0.328

 Probability C1, C2 are different in all of the 20 bands: 
(1-0.328)20 = 0.00035 

 i.e., about 1/3000th of the 80%-similar column pairs 
are false negatives (we miss them)

 We would find 99.965% pairs of truly similar documents
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 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3

 Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

 Probability C1, C2 identical in one particular band: 
(0.3)5 = 0.00243

 Probability C1, C2 identical in at least 1 of 20 bands: 
1 - (1 - 0.00243)20 = 0.0474

 In other words, approximately 4.74% pairs of docs with 
similarity 0.3% end up becoming candidate pairs
 They are false positives since we will have to examine them (they 

are candidate pairs) but then it will turn out their similarity is below 
threshold s
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 Pick:

 The number of Min-Hashes (rows of M) 

 The number of bands b, and 

 The number of rows r per band

to balance false positives/negatives

 Example: How would the false positives/negatives change 
if we had only 15 bands of 5 rows (as opposed to 20 
bands of 5 rows)?

 The number of false positives would go down, but the 
number of false negatives would go up
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Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1 
if t > s
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Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket



 Columns C1 and C2 have similarity t
 Pick any band (r rows)
 Prob. that all rows in band equal 

tr

 Prob. that some row in band unequal

1 - tr

 Prob. that no band identical  
(1 - tr)b

 Prob. that at least 1 band identical
1 - (1 - tr)b
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t r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r 
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 Similarity threshold s
 Prob. that at least 1 band is identical:
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s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996



 Picking r and b to get the best S-curve

 50 hash-functions (r=5, b=10)
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 Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents
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 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

 We used similarity preserving hashing to generate 
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

 We used hashing to get around generating random 
permutations

 Locality-Sensitive Hashing: Focus on pairs of 
signatures likely to be from similar documents

 We used hashing to find candidate pairs of similarity  s
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