CS425: Algorithms for Web Scale Data

Lecture 3: Similarity Modeling
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A Common Metaphor

Many problems can be expressed as
finding “similar” sets:
Find near-neighbors in high-dimensional space
Examples:
Pages with similar words
For duplicate detection, classification by topic
Customers who purchased similar products
Products with similar customer sets
Images with similar features
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Problem for Today’s Lecture

Given: High dimensional data points x¢, x5, ...

For example: Image is a long vector of pixel colors
1 2 1
0 2 1|—-[121021010]

0 1 0.
And some distance function d(x4, x5)

Which quantifies the “distance” between x4 and x,
Goal: Find all pairs of data points (x;, x;) that are
within some distance threshold d(xi, x]-) <Ss
Note: Naive solution would take O(N?) ®
where N is the number of data points

MAGIC: This can be done in O(N)!! How?
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Finding Similar Items



Distance Measures

Goal: Find near-neighbors in high-dim. space
We formally define “near neighbors” as
points that are a “small distance” apart
For each application, we first need to define
what “distance” means
Today: Jaccard distance/similarity

The Jaccard similarity of two sets is the size of their
intersection divided by the size of their union:
sim(C,, C,) = |C,NC,|/|C,UG, |

Jaccard distance: d(C,, C,) =1- |C,;NC,]|/|C,UG, |

3 in intersection

8 in union

Jaccard similarity= 3/8
Jaccard distance = 5/8
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Task: Finding Similar Documents

Goal: Given a large number (N in the millions or
billions) of documents, find “near duplicate” pairs
Applications:
Mirror websites, or approximate mirrors
Don’t want to show both in search results

Similar news articles at many news sites
Cluster articles by “same story”
Problems:

Many small pieces of one document can appear
out of order in another

Too many documents to compare all pairs

Documents are so large or so many that they cannot
fit in main memory
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3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

W

Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

= Candidate pairs!
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Define: Shingles

A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc

Tokens can be characters, words or something
else, depending on the application

Assume tokens = characters for examples

Example: k=2; document D, = abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}

Option: Shingles as a bag (multiset), count ab
twice: §’(D,) = {ab, bc, ca, ab}
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Examples

-4
o Input text:
“The most effective way to represent documents as sets 1s to

construct from the document the set of short strings that
appear within it.”

o 5-shingles:
CCThe mﬂ,, “he mo”, cce mOS)), (44 most)” (44 OSt 99’ CCOSt e’), “St ef”’ “t eff),
“ effe”, “effec”, “ffect”, “fecti”, “ectiv”, ...

o 9-shingles:
“The most ”, “he most €”, “e most ef”’, “ most eff”, “most effe”,

“ost effec”, “st effect”, “t effect1”, « effectiv”, “effective”, ...

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 13



Hashing Shingles

-]
o Storage of k-shingles: k bytes per shingle

o Instead, hash each shingle to a 4-byte integer.
o E.g. “The most ” = 4320
“he most e” - 56456
“e most ef” = 214509

o Which one Is better?

1. Using 4 shingles?
2. Using 9-shingles, and then hashing each to 4 byte integer?

o Consider the # of distinct elements represented with 4 bytes

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 16



Hashing Shingles

B ,—,—,—,—,,,
o Not all characters are common.

o e.g. Unlikely to have shingles like “zy%p”
o Rule of thumb: # of k-shingles is about 20k

o Using 4-shingles:
o # of shingles: 204 = 160K

o Using 9-shingles and then hashing to 4-byte values:
o # of shingles: 20° = 512B

o # of buckets: 232 = 4.3B
o 512B shingles (uniformly) distributed to 4.3B buckets

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 17



Similarity Metric for Shingles

Document D, is a set of its k-shingles C,=S(D,)
Equivalently, each document is a
0/1 vector in the space of k-shingles

Each unique shingle is a dimension

Vectors are very sparse
A natural similarity measure is the

Jaccard similarity:
sim(D,, D,) = |C;,nC,|/|C,uC, ]|

CLOD
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Working Assumption

Documents that have lots of shingles in
common have similar text, even if the text
appears in different order

Caveat: You must pick k large enough, or most
documents will have most shingles

k =5 is OK for short documents
k =10 is better for long documents
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Motivation for Minhash/LSH

Suppose we need to find near-duplicate
documents among N = 1 million documents

Naively, we would have to compute pairwise
Jaccard similarities for every pair of docs

N(N —1)/2 = 5*10 comparisons

At 10° secs/day and 10° comparisons/sec,
it would take 5 days

For N = 10 million, it takes more than a year...
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Encoding Sets as Bit Vectors

Many similarity problems can be (0)
formalized as finding subsets that

have significant intersection
Encode sets using 0/1 (bit, boolean) vectors

One dimension per element in the universal set
Interpret set intersection as bitwise AND, and
set union as bitwise OR

Example: C; =10111; C, = 10011
Size of intersection = 3; size of union =4,
Jaccard similarity (not distance) = 3/4

Distance: d(C,,C,) = 1 — (Jaccard similarity) = 1/4
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From Sets to Boolean Matrices

Rows = elements (shingles)
Columns = sets (documents)

. ) Documents
1 in row e and column s if and only
if e is a member of s i i
Column similarity is the Jaccard 1 |1 |0 |1
similarity of ’Fhe corresponding o |11 lo |1
sets (rows with value 1) 3
: . 2lo |o |0 |1
| =
Typical matrix is sparse! =
Each document is a column: 1 |0 |0 |1
Example: sim(C, ,C,) =7 1 11 11 lo
Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6 1 O |1 O

d(C,,C,) =1 — (Jaccard similarity) = 3/6
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Outline: Finding Similar Columns

So far:
Documents — Sets of shingles

Represent sets as boolean vectors in a matrix
Next goal: Find similar columns while
computing small signatures

Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24



Hashing Columns (Signatures)

Key idea: “hash” each column C to a small
signature h(C), such that:

(1) h(C) is small enough that the signature fits in RAM

(2) sim(C,, C,) is the same as the “similarity” of
signatures h(C,) and h(C,)

Goal: Find a hash function h(:) such that:

If sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
If sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

Hash docs into buckets. Expect that “most” pairs
of near duplicate docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25



Min-Hashing

Goal: Find a hash function h(-) such that:
if sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
if sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

Clearly, the hash function depends on
the similarity metric:

Not all similarity metrics have a suitable
hash function

There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Min-Hashing

Imagine the rows of the boolean matrix
permuted under random permutation 7

Define a “hash” function h_(C) = the index of
the first (in the permuted order &) row in
which column C has value 1:

h,,(C) = min,, #C)

Use several (e.g., 100) independent hash
functions (that is, permutations) to create a
signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Min-Hashing Example
N

Documents Documents

1101 |0 o [1]/o |0

1 [0 (O |1 O1 1|0 Izl Min-hash values
210 |1 {0 |1 1/lo |0 |0 3 1 4 2
£lo|1]0 0 1 1o [i]]o
“lo |1 |o |1 1 10 0 |1

110 (1|0 0|1 (0|1

1100 |0 110 |1 |0

Input Matrix Permuted Matrix

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 28



Min-Hashing Example

2"d element of the permutation
is the firsttomaptoal

Permutation® Input matrix (Shinglessx Documents _ _
P ( 9 ) Signature matrix M

2| | 4 | 3 1 O 1 O ’ 5 |1 5 |1

1 O O 1
lEHE 2 |1 (4 |1
7111|l7 O 1 O 1 .

1 2 /|1 2
6132 O |1 |0 1 _ )
1([6]|6 O 1 O 1 4t element of the permutation
Is the firsttomaptoal

5117 111 1 O 1 O
411515 1 O 1 O
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The Min-Hash Property
B

o Choose a random permutation w C. C
o Claim: Pr[h,(C;) = h,(C;)] =sim(C;, C;) x| 1 ]
o Proof:

o Consider 3 types of rows: i 0

type X: C; and C; both have 1s |0 O

type Y: only one of C; and C; has 1 z |0 0

type Z: C; and C; both have 0s 710 0

o After random permutation z, what It the |1 ]
first X-type row is before the first Y-type

row? Y |1 0

hA(Ci) = hn(Cj) Input Matrix

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 30



The Min-Hash Property

-]
o What is the probability that the first not-Z row is of type X?

|X]
X[ +]Y]
_ __IX]
= Pr[hn(Cl) o h‘lt(CJ)] - IX|+|Y]
€,NCl _ _IX]

ICUC|  |X]|+]Y] = Prih.(Cy) = h(Cy)]

o Conclusion: Pr[h,(C;) = h,(C;)] =sim(C;, C;)

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 31



Similarity for Signatures

We know: Pr[h_(C,) = h_(C,)] = sim(C,, C,)
Now generalize to multiple hash functions

The similarity of two signatures is the
fraction of the hash functions in which they
agree

Note: Because of the Min-Hash property, the
similarity of columns is the same as the
expected similarity of their signatures

ts, http://www.mmds.org



Min-Hashing Example

Permutation Input matrix (Shingles x Documents _ _
" P ( 9 ) Signature matrix M

2 1 8| 2 I e e i 2 (1 |2 |1
31|121ll4] |2 |o |o |2 > o |z |
o) 1 o) 1

27 1 2 1 2
6113(|2] [0 |1 |0 |1 >
1/|6|6] [0 |1 |0 |1 Similarities:

1-3  2-4 1-2 34
o [Z |2 (* |° |* |° Col/Col| 0.75 0.75 0o o©
4{15|l5 1 lo |1 lo Sig/Sig| 0.67 1.00 0 o©
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Similarity of Signatures

-]
o What is the expected value of Jaccard similarity of two
signatures sig, and sig,? Assume there are s min-hash values
In each signature.

#of ns.t.h (C)) = h_ (C,)
S

E[sim(sig,,sig,)] = E

1

= =¥%,Pr[h (C) =h (C)]

S

= sim(C, C,)

o Law of large numbers: Average of the results obtained from a large
number of trials should be close to the expected value, and will tend to
become closer as more trials are performed.

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 34



Min-Hash Signatures

Pick K=100 random permutations of the rows

Think of sig(C) as a column vector

sig(C)[i] = according to the i-th permutation, the

index of the first row that hasa 1 in column C
sig(C)[1] = min (m;(C))

Note: The sketch (signature) of document C is

small ~400 bytes!

We achieved our goal! We “compressed”
long bit vectors into short signatures

ts, http://www.mmds.org



Implementation Trick

Permuting rows even once is prohibitive
Row hashing!

Pick K =100 hash functions k;
Ordering under k; gives a random row (almost) permutation!

Hash func. 1 Hash func. 2

Row || D, D,|D; /D, | (r+1) %5 | (3r+1) %5

O1 /0 0 1 1 1
How to pick arandom

110/ 0/12/0 2 4 hash function h(x)?
Universal hashing:

2,0 1 0 1 3 2 hap(X)=((a-x+b) mod p) mod N
where:

3.1 0 1 1 4 0) a,b ... random integers
p ... prime number (p > N)

4 0,0 10 0 3
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Implementation Trick

One-pass implementation

For each column € and hash-func. k; keep a “slot”
for the min-hash value

Initialize all sig(C)[i] = o

Scan rows looking for 1s

Suppose row j has 1 in column C

Then for each k;:
If ki(j) < sig(C)[i], then sig(C)[i] « k.j)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Example: Computing Min-Hash Signatures
B

Hash func. 1 Hash func. 2

Row || D, | D,|D,|D, || (r+1) % 5 (3r+1) % 5
0 0|01 1 1
1110{0]|1]|0 2 4
2101101 3 2
Signatures
31|10 f1]1 4 0
D, |D,|D;|D,
4110010 0 3 o

O | o0 | o0 o0

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 38



Example: Computing Min-Hash Signatures
B

Hash func. 1 Hash func. 2

Row || D, | D,|D,|D, || (r+1) % 5 (3r+1) % 5
0 0|0 1 1 1
1110{0]|1]|0 2 4
2101101 3 2
Signatures
31|10 f1]1 4 0
D, |D,|D; | D,
41101010 0 3 T o l=l2
1 |oo || 1
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Example: Computing Min-Hash Signatures
B

Hash func. 1 Hash func. 2

Row || D, | D,|D,|D, || (r+1) % 5 (3r+1) % 5
0 0|01 1 1
1110[{0]110 2 4
2101101 3 2
Signatures
31|10 f1]1 4 0
D, |D,|D;|D,
41101010 0 3 L lel2l1
1 || 4|1
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Example: Computing Min-Hash Signatures
B

Hash func. 1 Hash func. 2

Row || D, | D,|D,|D, || (r+1) % 5 (3r+1) % 5
0 0|01 1 1
1110{0]|1]|0 2 4
211011 ]0|1 3 2
Signatures
31|10 f1]1 4 0
D, |D,|D; | D,
41101010 0 3 113121
11214 |1

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 41



Example: Computing Min-Hash Signatures
B

Hash func. 1 Hash func. 2

Row || D, | D,|D,|D, || (r+1) % 5 (3r+1) % 5
0 0|01 1 1
1110{0]|1]|0 2 4
2101101 3 2
Signatures
31|10 f1]1 4 0
D, |D,|D;|D,
41101010 0 3 113 12 1
0|20} O0

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 42



Example: Computing Min-Hash Signatures
B

Hash func. 1 Hash func. 2

Row || D, | D,|D,|D, || (r+1) % 5 (3r+1) % 5
0 0|01 1 1
1110{0]|1]|0 2 4
2101101 3 2
Signatures
31|10 f1]1 4 0
D, |D,|D; | D,
41101010 0 3 3
0O|(2|0]|O0
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Example: Computing Min-Hash Signatures
B

Hash func. 1 Hash func. 2

Row || D, | D,|D,|D, || (r+1) % 5 (3r+1) % 5
0 0|01 1 1
111010110 2 4
201101 3 2
Final signatures
3|10 f1]1 4 0
D; [D,|Ds [D,
41101012 |0 0 3 113 ol
012|010

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 44
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2 1 4 1

LSH: First Cut 1 2 1 2

2 1 2 1

Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

LSH — General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

For Min-Hash matrices:
Hash columns of signature matrix M to many buckets

Each pair of documents that hashes into the
same bucket is a candidate pair

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 46



LSH for Min-Hash i ;

2 1

Big idea: Hash columns of
signature matrix M several times

Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

Candidate pairs are those that hash to
the same bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



2 1 4 1
Partition M into b Bands FIEFEEEe

b bands

2

|

N

AN

AN

Signature matrix M

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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r rows
per band

One
signature

1
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Partition M into Bands

Divide matrix M into b bands of r rows

For each band, hash its portion of each
column to a hash table with k buckets

Make k as large as possible

Candidate column pairs are those that hash
to the same bucket for = 1 band

Tune b and r to catch most similar pairs,
but few non-similar pairs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Hashing Bands

Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
,,,, surely different.

atfix M \

r rows b bands

v

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 50



Banding Example

Signature Matrix Buckets
1/0{0|0(2 4 2 4
312|11|2|2 3 2 3
0{1|3/1|1 0 5 5

Candidate pairs: {(2,4);

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University -1



Banding Example
N

Signature Matrix Buckets
212|1|2|5 2 5 5
4134|315 4 4 3
3/1/211/0 3 00

—]

Candidate pairs: {(2,4);

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 52



Banding Example

Signature Matrix Buckets
212 1 2 5|2|5 5
413 4 3 5|4|4 3
311 210|3/00

Candidate pairs: {(2,4); (1,6)

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 23



Banding Example
N

Signature Matrix Buckets
2 11010 2 1|0
5 312|120 2|2
1 2|{5/2 0 1 0|5 —

Candidate pairs: {(2,4); (1,6) (3,8)}

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University o4



Banding Example
N

Signature Matrix Buckets

2

R WO PN O

oo O NPAREFR,  WEL O
R WN [P DNO

OCOU1Ol | P, DN
O O | OINDN
o N O O wao | o1 wpH

=

w Bk
=
N -

R O N WPhrhrDN OWEHE
R ODN W AN OWAHL

o

2

True positive
Candidate pairs: {(2,4); (1,6); (3,8)}

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 93



Banding Example
N

Signature Matrix Buckets

2

R WOWN [ PDNO
P WD | PDNO
OCOU1Ol | P, DN
O O | OINDN
o N O O wao | o1 wpH

=

w
oo O NPAREFR,  WEL O

=
N B

R O N WHAN OWLE
R ON WhrhrDN OCWH

o

2

True positive
Candidate pairs: {(2,4); (1,6); (3,8)}
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Banding Example
N

Signature Matrix Buckets

2

R WODN PN O
P WD | PDNO
QU1 Oo1 | PN

O O | OINDN

=

w Bk
=
N -

R O N WPhrhrDN OWEHE
o O NS PFP WL O
R ODN W AN OWAHL
o N O O wao | 0o1wpH

o

2

False positive?
Candidate pairs: {(2,4); (1,6); (3,8)}

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University 4



Banding Example
N

Signature Matrix Buckets

2

R WOWN [ PDNO
P WD | PDNO
OCuU1Ol | P, DN
O O | OINDN
o N O O wao | o1 wpH

=

w
oo O NPAREFR,  WEL O

=
N -

R O N WPhrhrDN OWEHE
R ODN W AN OWAHL

o

2

False negative?
Candidate pairs: {(2,4); (1,6); (3,8)}

CS 425 — Lecture 3 Mustafa Ozdal, Bilkent University o8



Simplifying Assumption

There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

Hereafter, we assume that “same bucket”
means “identical in that band”

Assumption needed only to simplify analysis,
not for correctness of algorithm

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



2 1 4 1
Example of Bands 12 1 2

2 1 2 1
Assume the following case:
Suppose 100,000 columns of M (100k docs)
Signatures of 100 integers (rows)
Therefore, signatures take 40Mb
Choose b = 20 bands of r = 5 integers/band

Goal: Find pairs of documents that
are at least s = 0.8 similar

ts, http://www.mmds.org



C,, C, are 80% Similar L2 12

Find pairs of > s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) = 0.8

Since sim(C,, C,) = s, we want C,, C, to be a candidate pair: We want them
to hash to at least 1 common bucket (at least one band is identical)

Probability C,, C, identical in one particular band:
(0.8)°> =0.328

Probability C,, C, are different in all of the 20 bands:
(1-0.328)%° = 0.00035

i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

We would find 99.965% pairs of truly similar documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 61



C,, C, are 30% Similar L2 1 2

Find pairs of > s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) = 0.3
Since sim(C,, C,) <s we want C,;, C, to hash to NO
common buckets (all bands should be different)
Probability C,, C, identical in one particular band:
(0.3)> =0.00243
Probability C,, C, identical in at least 1 of 20 bands:
1-(1-0.00243)%° =0.0474
In other words, approximately 4.74% pairs of docs with
similarity 0.3% end up becoming candidate pairs

They are false positives since we will have to examine them (they
are candidate pairs) but then it will turn out their similarity is below
threshold s
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LSH Involves a Tradeoff

Pick:

The number of Min-Hashes (rows of M)
The number of bands b, and

The number of rows r per band
to balance false positives/negatives

Example: How would the false positives/negatives change
if we had only 15 bands of 5 rows (as opposed to 20
bands of 5 rows)?

The number of false positives would go down, but the
number of false negatives would go up
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Analysis of LSH - What We Want

/

tn Probability = 1
[ - ift>s
(@)
5
Probability No chance v
of sharing fre o S
a bucket =
(©
£
0p)

\

Similarity ¢ =sim(C,, C,) of two sets ——
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What 1 Band of 1 Row Gives You

|

Probability Remember:

of sharing Probability of

a bucket equal hash-values
= similarity

Similarity ¢ =sim(C,, C,) of two sets ——
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b bands, r rows/band

Columns C, and C, have similarity t
Pick any band (r rows)

Prob. that all rows in band equal
tr
Prob. that some row in band unequal
1-t
Prob. that no band identical
(1-t)°

Prob. that at least 1 band identical
1-(1-t)°
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What b Bands of r Rows Gives You

|

Probability
of sharing
a bucket

s ~ (1/b)lr

ﬁ./

_/

—_—

Similarity t=sim(C,, C,) of two sets ——
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All rows
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ofaband g equal
unequal
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Example: b =20;r =5

Similarity threshold s
Prob. that at least 1 band is identical:

s | 1-(1-s")P
2 .006

3 047

4 .186

D 470

.0 .802

A 975

.8 9996




Picking rand b: The S-curve

Picking r and b to get the best S-curve
50 hash-functions (r=5, b=10)

1

09}
08}
071
06}
05F
04}
: False Positive rate

0.3}

0.2}

Prob. sharing a bucket

: False Negative rate
01

0 L 1 1 1 L L L
0 01 02 03 04 05 06 07 08 09 1

Similarity
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LSH Summary

Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

Check in main memory that candidate pairs
really do have similar signatures

Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents
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Summary: 3 Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID
Min-Hashing: Convert large sets to short
signatures, while preserving similarity

We used similarity preserving hashing to generate

signatures with property Pr[h_(C,) = h_(C,)] = sim(C,, C,)

We used hashing to get around generating random
permutations

Locality-Sensitive Hashing: Focus on pairs of
signatures likely to be from similar documents

We used hashing to find candidate pairs of similarity > s
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