
CS425: Algorithms for Web Scale Data

Most of the slides are from the Mining of Massive Datasets book.

These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

http://www.mmds.org/

2J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

3J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 20,000 images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 4

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 2 million images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

[Hays and Efros, SIGGRAPH 2007]

 Many problems can be expressed as
finding “similar” sets:
 Find near-neighbors in high-dimensional space

 Examples:
 Pages with similar words
 For duplicate detection, classification by topic

 Customers who purchased similar products
 Products with similar customer sets

 Images with similar features

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6

 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
 For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
 Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are

within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔
 Note: Naïve solution would take 𝑶 𝑵𝟐 

where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How?
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

 Goal: Find near-neighbors in high-dim. space
 We formally define “near neighbors” as

points that are a “small distance” apart
 For each application, we first need to define

what “distance” means
 Today: Jaccard distance/similarity
 The Jaccard similarity of two sets is the size of their

intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

 Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

9J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

 Goal: Given a large number (𝑵 in the millions or
billions) of documents, find “near duplicate” pairs

 Applications:
 Mirror websites, or approximate mirrors
 Don’t want to show both in search results

 Similar news articles at many news sites
 Cluster articles by “same story”

 Problems:
 Many small pieces of one document can appear

out of order in another

 Too many documents to compare all pairs

 Documents are so large or so many that they cannot
fit in main memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

 Candidate pairs!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 11

12

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Step 1: Shingling: Convert documents to sets

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

 A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc

 Tokens can be characters, words or something
else, depending on the application

 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

 Option: Shingles as a bag (multiset), count ab

twice: S’(D1) = {ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

15CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Examples

 Input text:

“The most effective way to represent documents as sets is to

construct from the document the set of short strings that

appear within it.”

 5-shingles:
“The m”, “he mo”, “e mos”, “ most”, “ ost ”, “ost e”, “st ef”, “t eff”,

“ effe”, “effec”, “ffect”, “fecti”, “ectiv”, …

 9-shingles:

“The most ”, “he most e”, “e most ef”, “ most eff”, “most effe”,

“ost effec”, “st effect”, “t effecti”, “ effectiv”, “effective”, …

16CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Hashing Shingles

 Storage of k-shingles: k bytes per shingle

 Instead, hash each shingle to a 4-byte integer.

 E.g. “The most ”  4320

“he most e”  56456

“e most ef”  214509

 Which one is better?

1. Using 4 shingles?

2. Using 9-shingles, and then hashing each to 4 byte integer?

 Consider the # of distinct elements represented with 4 bytes

17CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Hashing Shingles

 Not all characters are common.

 e.g. Unlikely to have shingles like “zy%p”

 Rule of thumb: # of k-shingles is about 20k

 Using 4-shingles:

 # of shingles: 204 = 160K

 Using 9-shingles and then hashing to 4-byte values:

 # of shingles: 209 = 512B

 # of buckets: 232 = 4.3B

 512B shingles (uniformly) distributed to 4.3B buckets

 Document D1 is a set of its k-shingles C1=S(D1)
 Equivalently, each document is a

0/1 vector in the space of k-shingles

 Each unique shingle is a dimension

 Vectors are very sparse

 A natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 18

 Documents that have lots of shingles in
common have similar text, even if the text
appears in different order

 Caveat: You must pick k large enough, or most
documents will have most shingles

 k = 5 is OK for short documents

 k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 19

 Suppose we need to find near-duplicate
documents among 𝑵 = 𝟏million documents

 Naïvely, we would have to compute pairwise
Jaccard similarities for every pair of docs

 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

 At 105 secs/day and 106 comparisons/sec,
it would take 5 days

 For 𝑵 = 𝟏𝟎million, it takes more than a year…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

Step 2: Minhashing: Convert large sets to
short signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

 Many similarity problems can be
formalized as finding subsets that
have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors

 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and
set union as bitwise OR

 Example: C1 = 10111; C2 = 10011

 Size of intersection = 3; size of union = 4,

 Jaccard similarity (not distance) = 3/4

 Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22

 Rows = elements (shingles)
 Columns = sets (documents)
 1 in row e and column s if and only

if e is a member of s

 Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

 Typical matrix is sparse!
 Each document is a column:
 Example: sim(C1 ,C2) = ?
 Size of intersection = 3; size of union = 6,

Jaccard similarity (not distance) = 3/6

 d(C1,C2) = 1 – (Jaccard similarity) = 3/6
23J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s

 So far:

 Documents  Sets of shingles

 Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while
computing small signatures

 Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

 Key idea: “hash” each column C to a small
signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of
signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs
of near duplicate docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on
the similarity metric:

 Not all similarity metrics have a suitable
hash function

 There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 26

27

 Imagine the rows of the boolean matrix
permuted under random permutation 

 Define a “hash” function h(C) = the index of
the first (in the permuted order ) row in
which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash
functions (that is, permutations) to create a
signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

28CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Min-Hashing Example

0001

0101

1010

0010

1010

1001

0101

Input Matrix

Documents

S
h

in
g

le
s

0101

1010

1001

0101

0001

1010

0010

Permuted Matrix

Documents

2413

Min-hash values

29

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation 

30CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)

 Proof:

 Consider 3 types of rows:

type X: Ci and Cj both have 1s

type Y: only one of Ci and Cj has 1

type Z: Ci and Cj both have 0s

 After random permutation , what if the
first X-type row is before the first Y-type
row?

h(Ci) = h(Cj)

01

11

00

00

00

01

11

Input Matrix

Ci Cj

X

Y

Z

Z

Z

Y

X

31CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

The Min-Hash Property

 What is the probability that the first not-Z row is of type X?

|𝑋|

𝑋 +|𝑌|

 Pr[h(Ci) = h(Cj)] =
|𝑿|

𝑿 +|𝒀|

 sim(Ci, Cj) =
|𝑪

𝒊
∩𝑪

𝐣
|

|𝑪
𝒊
∪𝑪

𝐣
|

=
|𝑿|

𝑿 +|𝒀|
= Pr[h(Ci) = h(Cj)]

 Conclusion: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)

32

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the
fraction of the hash functions in which they
agree

 Note: Because of the Min-Hash property, the
similarity of columns is the same as the
expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

33J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation 

34CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Similarity of Signatures

 What is the expected value of Jaccard similarity of two
signatures sig1 and sig2? Assume there are s min-hash values
in each signature.

𝐸 𝑠𝑖𝑚 𝑠𝑖𝑔1, 𝑠𝑖𝑔2 = 𝐸
𝑜𝑓 π 𝑠. 𝑡. ℎπ 𝐶1 = ℎπ 𝐶2

𝑠

=
1

𝑠
 =1
𝑠 Pr[ℎ𝜋 C1 = h𝜋(𝐶2)]

= 𝑠𝑖𝑚(𝐶1, 𝐶2)

 Law of large numbers: Average of the results obtained from a large
number of trials should be close to the expected value, and will tend to
become closer as more trials are performed.

 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the

index of the first row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is
small ~𝟒𝟎𝟎 bytes!

 We achieved our goal! We “compressed”
long bit vectors into short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 35

 Permuting rows even once is prohibitive
 Row hashing!

 Pick K = 100 hash functions ki

 Ordering under ki gives a random row (almost) permutation!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 36

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

1

2

3

4

0

1

4

2

0

3

 One-pass implementation

 For each column C and hash-func. ki keep a “slot”
for the min-hash value

 Initialize all sig(C)[i] = 

 Scan rows looking for 1s

 Suppose row j has 1 in column C

 Then for each ki :

 If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 37

38CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Example: Computing Min-Hash Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

∞

∞

∞

∞

∞

∞

∞

∞

1

2

3

4

0

1

4

2

0

3

Signatures

39CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Example: Computing Min-Hash Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

∞

∞

∞

∞

∞

∞

∞

∞

1

2

3

4

0

1

4

2

0

3
1

1

1

1

Signatures

40CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Example: Computing Min-Hash Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

1

∞

∞

∞

∞

1

1

1

2

3

4

0

1

4

2

0

3
2

4

Signatures

41CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Example: Computing Min-Hash Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

1

∞

∞

2

4

1

1

1

2

3

4

0

1

4

2

0

3
3

2

Signatures

42CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Example: Computing Min-Hash Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

1

3

2

2

4

1

1

1

2

3

4

0

1

4

2

0

3

0 0 0

Signatures

43CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Example: Computing Min-Hash Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

0

3

2

2

0

1

0

1

2

3

4

0

1

4

2

0

3
0

Signatures

44CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Example: Computing Min-Hash Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

0

3

2

0

0

1

0

1

2

3

4

0

1

4

2

0

3

Final signatures

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

 Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

 For Min-Hash matrices:

 Hash columns of signature matrix M to many buckets

 Each pair of documents that hashes into the
same bucket is a candidate pair

46J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

 Big idea: Hash columns of
signature matrix M several times

 Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

 Candidate pairs are those that hash to
the same bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 47

1212

1412

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 48

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

 Divide matrix M into b bands of r rows

 For each band, hash its portion of each
column to a hash table with k buckets

 Make k as large as possible

 Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs,
but few non-similar pairs

49J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 50

51CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

52CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

53CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

(1,6)

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

54CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

(1,6) (3,8)}

55CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

True positive

56CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

True positive

57CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

False positive?

58CS 425 – Lecture 3 Mustafa Ozdal, Bilkent University

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

False negative?

 There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

 Hereafter, we assume that “same bucket”
means “identical in that band”

 Assumption needed only to simplify analysis,
not for correctness of algorithm

59J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40Mb
 Choose b = 20 bands of r = 5 integers/band

 Goal: Find pairs of documents that
are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 60

1212

1412

2121

 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8

 Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We want them
to hash to at least 1 common bucket (at least one band is identical)

 Probability C1, C2 identical in one particular band:
(0.8)5 = 0.328

 Probability C1, C2 are different in all of the 20 bands:
(1-0.328)20 = 0.00035

 i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

 We would find 99.965% pairs of truly similar documents

61J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3

 Since sim(C1, C2) < s we want C1, C2 to hash to NO
common buckets (all bands should be different)

 Probability C1, C2 identical in one particular band:
(0.3)5 = 0.00243

 Probability C1, C2 identical in at least 1 of 20 bands:
1 - (1 - 0.00243)20 = 0.0474

 In other words, approximately 4.74% pairs of docs with
similarity 0.3% end up becoming candidate pairs
 They are false positives since we will have to examine them (they

are candidate pairs) but then it will turn out their similarity is below
threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 62

1212

1412

2121

 Pick:

 The number of Min-Hashes (rows of M)

 The number of bands b, and

 The number of rows r per band

to balance false positives/negatives

 Example: How would the false positives/negatives change
if we had only 15 bands of 5 rows (as opposed to 20
bands of 5 rows)?

 The number of false positives would go down, but the
number of false negatives would go up

63J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1
if t > s

64J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 65

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

 Columns C1 and C2 have similarity t
 Pick any band (r rows)
 Prob. that all rows in band equal

tr

 Prob. that some row in band unequal

1 - tr

 Prob. that no band identical
(1 - tr)b

 Prob. that at least 1 band identical
1 - (1 - tr)b

66J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

67J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

 Similarity threshold s
 Prob. that at least 1 band is identical:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 68

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

 Picking r and b to get the best S-curve

 50 hash-functions (r=5, b=10)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate

Similarity

P
ro

b
. s

h
ar

in
g

 a
 b

u
ck

et

Green area: False Positive rate

 Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

70J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short
signatures, while preserving similarity

 We used similarity preserving hashing to generate
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

 We used hashing to get around generating random
permutations

 Locality-Sensitive Hashing: Focus on pairs of
signatures likely to be from similar documents

 We used hashing to find candidate pairs of similarity  s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 71

