CS425: Algorithms for Web Scale Data

Lecture 5: MapReduce

Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org
MapReduce

- **Challenges of large scale computing:**
 - How to distribute computation?
 - Distributed/parallel programming is hard
 - Need to consider parallelism, efficiency, communication, synchronization, reliability.

- **Map-reduce** addresses all of the above
 - Google’s computational/data manipulation model
 - Elegant way to work with big data

Single Node Architecture

Machine Learning, Statistics

“Classical” Data Mining
Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 80-160 MB/sec from disk
 - > 1 month to read the web
- Many hard drives to store the web
- Takes even more to do something useful with the data!

Today, a standard architecture for such problems:
- Cluster of commodity Linux nodes
- Commodity network (ethernet) to connect them
Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between any pair of nodes in a rack

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware

- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to lose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

Idea and Solution

- **Issue:** Copying data over a network takes time
- **Idea:**
 - Bring computation close to the data
 - Store files multiple times for reliability
- **Map-reduce** addresses these problems
 - Google’s computational/data manipulation model
 - Elegant way to work with big data
- **Storage Infrastructure – File system**
 - Google: GFS. Hadoop: HDFS
- **Programming model**
 - Map-Reduce

Problem:
- If nodes fail, how to store data persistently?

Answer:
- Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;

Typical usage pattern
- Huge files (TBs)
- Data is rarely updated in place
- Reads and appends are common
Distributed File System

- **Chunk servers**
 - File is split into contiguous chunks
 - Typically each chunk is 16-128MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks

- **Master node**
 - a.k.a. Name Node in Hadoop’s HDFS
 - Stores metadata about where files are stored
 - Might be replicated

- **Client library for file access**
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data
Distributed File System

- **Reliable distributed file system**
- Data kept in “chunks” spread across machines
- Each chunk **replicated** on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

MapReduce: Overview

- **Map:**
 - Extract something you care about
- **Group by key:** Sort and Shuffle
- **Reduce:**
 - Aggregate, summarize, filter or transform
- **Write the result**

Outline stays the same, **Map** and **Reduce** change to fit the problem
MapReduce: The Map Step

Input key-value pairs

Intermediate key-value pairs

map

MapReduce: The **Reduce** Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

Group by key

reduce

reduce

reduce

More Specifically

- **Input:** a set of key-value pairs
- Programmer specifies two methods:
 - **Map**\((k, v) \rightarrow <k', v'>\)*
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every \((k,v)\) pair
 - **Reduce**\((k', <v'>)* \rightarrow <k', v''>\)
 - All values \(v'\) with same key \(k'\) are reduced together and processed in \(v'\) order
 - There is one Reduce function call per unique key \(k'\)
Programming Model: MapReduce

Warm-up task:
- We have a huge text document
- Count the number of times each distinct word appears in the file

Sample application:
- Analyze web server logs to find popular URLs
The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term, space-based, man/machine partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need
Word Count Using MapReduce

map(key, value):
// key: document name; value: text of the document
 for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(key, result)
Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program’s execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram

MAP:
Read input and produce a set of key-value pairs

Group by key:
Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

Reduce:
Collect all values belonging to the key and output

Input:
Big document

Intermediate:
```
k1:v k1:v k2:v  k1:v  k3:v k4:v  k4:v k5:v  k4:v  k1:v k3:v
```

Group by Key:
```
k1:v,v,v,v  k2:v  k3:v,v  k4:v,v,v  k5:v
```

Output:

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

Map-Reduce

- **Programmer specifies:**
 - Map and Reduce and input files
- **Workflow:**
 - Read inputs as a set of key-value-pairs
 - **Map** transforms input kv-pairs into a new set of k'v'-pairs
 - Sorts & Shuffles the k'v'-pairs to output nodes
 - All k’v’-pairs with a given k’ are sent to the same **reduce**
 - **Reduce** processes all k'v'-pairs grouped by key into new k''v''-pairs
 - Write the resulting pairs to files

- **All phases are distributed with many tasks doing the work**

Data Flow

- **Input and final output** are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks “close” to physical storage location of input data

- **Intermediate results** are stored on local FS of Map and Reduce workers

- **Output** is often input to another MapReduce task
Execution Overview

Figure from Mining of Massive Datasets textbook
Coordination: Master

- **Master node takes care of coordination:**
 - **Task status:** (idle, in-progress, completed)
 - **Idle tasks** get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers

- **Master pings workers periodically to detect failures**
Dealing with Failures

- **Map worker failure**
 - Map tasks completed or in-progress at worker are reset to idle
 - Reduce workers are notified when task is rescheduled on another worker
- **Reduce worker failure**
 - Only in-progress tasks are reset to idle
 - Reduce task is restarted
- **Master failure**
 - MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- User defines M map tasks, R reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
 - Usually R is smaller than M
 - Each mapper generates a file per reducer
 - Output is spread across R files

can use –getmerge to merge all files at the end
Fine granularity tasks: map tasks >> machines

- Minimizes time for fault recovery
- Better dynamic load balancing

<table>
<thead>
<tr>
<th>Process</th>
<th>Time -----------------></th>
</tr>
</thead>
<tbody>
<tr>
<td>User Program</td>
<td>MapReduce() ... wait ...</td>
</tr>
<tr>
<td>Master</td>
<td>Assign tasks to worker machines...</td>
</tr>
<tr>
<td>Worker 1</td>
<td>Map 1</td>
</tr>
<tr>
<td>Worker 2</td>
<td>Map 2</td>
</tr>
<tr>
<td>Worker 3</td>
<td>Read 1.1</td>
</tr>
<tr>
<td>Worker 4</td>
<td>Read 2.1</td>
</tr>
</tbody>
</table>

Refinements: Backup Tasks

- **Problem**
 - Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

- **Solution**
 - Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first “wins”

- **Effect**
 - Dramatically shortens job completion time
Often a Map task will produce many pairs of the form \((k,v_1), (k,v_2), \ldots\) for the same key \(k\)
- E.g., popular words in the word count example

Can save network time by pre-aggregating values in the mapper:
- \(\text{combine}(k, \text{list}(v_1)) \rightarrow v_2\)
- Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative
Back to our word counting example:

- Combiner combines the values of all keys of a single mapper (single machine):

 Much less data needs to be copied and shuffled!
Refinement: Partition Function

- **Want to control how keys get partitioned**
 - Inputs to map tasks are created by contiguous splits of input file
 - Reduce needs to ensure that records with the same intermediate key end up at the same worker

- **System uses a default partition function:**
 - `hash(key) mod R`

- **Sometimes useful to override the hash function:**
 - E.g., `hash(hostname(URL)) mod R` ensures URLs from a host end up in the same output file
Problems Suited for Map-Reduce
Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)
- For each host, find the total number of bytes
 - That is, the sum of the page sizes for all URLs from that particular host

- Map:
 - Emit <host name, size>
- Reduce:
 - Sum up the sizes
Example: Language Model

- **Statistical machine translation:**
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents

- **Very easy with MapReduce:**
 - **Map:**
 - Extract (5-word sequence, count) from document
 - **Reduce:**
 - Combine the counts
Example Application: Join
Join Operation

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
</tr>
<tr>
<td>a_3</td>
<td>b_2</td>
</tr>
<tr>
<td>a_4</td>
<td>b_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_2</td>
<td>c_1</td>
</tr>
<tr>
<td>b_2</td>
<td>c_2</td>
</tr>
<tr>
<td>b_3</td>
<td>c_3</td>
</tr>
</tbody>
</table>

=

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_3</td>
<td>b_2</td>
<td>c_1</td>
</tr>
<tr>
<td>a_3</td>
<td>b_2</td>
<td>c_2</td>
</tr>
<tr>
<td>a_4</td>
<td>b_3</td>
<td>c_3</td>
</tr>
</tbody>
</table>

Join with MapReduce: Map

- **Map:**
 - For each input tuple \(R(a, b) \):
 - Generate \(<\text{key} = b, \text{value} = ('R', a)\>
 - For each input tuple \(S(b, c) \):
 - Generate \(<\text{key} = b, \text{value} = ('S', c)\>

Think of ‘R’ and ‘S’ as bool variables that indicate where the pair originated from.
Join with MapReduce: Shuffle & Sort

Output of Map

\[
\langle b_1, (R, a_1) \rangle \quad \langle b_2, (S, c_1) \rangle \\
\langle b_1, (R, a_2) \rangle \quad \langle b_2, (S, c_2) \rangle \\
\langle b_2, (R, a_3) \rangle \quad \langle b_3, (S, c_3) \rangle \\
\langle b_3, (R, a_4) \rangle
\]

\[
\langle b_1, [(R, a_1); (R, a_2)] \rangle \\
\langle b_2, [(R, a_3); (S, c_1); (S, c_2)] \rangle \\
\langle b_3, [(R, a_4); (S, c_3)] \rangle
\]

Input of Reduce
Join with MapReduce: Reduce

- Reduce:
 - Input: \(<b, \text{value_list}>\)
 - In the value list:
 - Pair each entry of the form ‘R’, a) with each entry (‘S’, c), and output:
 \(<a, b, c>\)

Input of Reduce

\(<b_1, [(R, a_1); (R, a_2)]>\>
\(<b_2, [(R, a_3); (S, c_1); (S, c_2)]>\>
\(<b_3, [(R, a_4); (S, c_3)]>\>

Output of Reduce

\(<a_3, b_2, c_1>\>
\(<a_3, b_2, c_2>\>
\(<a_4, b_3, c_3>\>\)
Example Application: Matrix-Vector Multiplication
Matrix-Vector Multiplication

\[x_i = \sum_{j=1}^{n} m_{ij} v_j \]
Simple Case: Vector fits in memory

- For simplicity, assume that n is not too large and V fits into main memory of each node.
- First, read V into an array accessible from Map tasks
 - **Map:**
 - For each m_{ij}, generate $<key = i, value = m_{ij} \cdot v_j>$
 - **Reduce:**
 - Input: $<key = i, values = [m_{i1} \cdot v_1; m_{i2} \cdot v_2; \ldots; m_{in} \cdot v_n]>$
 - Sum up all values, and output $<key = i, value = \text{sum}>$
- What if V does not fit into main memory?
 - Still works, but very slow.

\[
x_i = \sum_{j=1}^{n} m_{ij} v_j
\]
General Case: Vector does not fit into memory

- Each map task:
 - is assigned a chunk of one of the M files.
 - reads one stripe of V completely, and stores in local node’s memory.
- Map and reduce function definitions same as in previous slide.

- Vertical stripes for M
- Horizontal stripes for V
- Each stripe stored in a file.
Example Application: Matrix-Matrix Multiplication
2 Map-Reduce Steps
Matrix – Matrix Multiplication

\[
\begin{align*}
\mathbf{p}_{ik} &= \sum_{j=1}^{n} m_{ij} n_{jk} \\
\mathbf{M} \times \mathbf{N} &= \mathbf{P}
\end{align*}
\]
Two-Step MapReduce

- Two matrices in two separate input files

- Two steps of MapReduce:
 - Step 1: “Join” the matrix entries that need to be multiplied with each other
 - Similar to the Join operation we implemented using MapReduce
 - Step 2: Accumulate all results and compute the output matrix entries
First MapReduce Step

- **Objective:** “Join” m_{ij} and n_{jk} entries
 - In this case, “join” corresponds to multiplication

- **Map:**
 - For each m_{ij} value of matrix M
 Generate $<key = j, value = (“M”, i, m_{ij})>$
 - For each n_{jk} value of matrix N
 Generate $<key = j, value = (“N”, k, m_{jk})>$

$$p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}$$
Example: Map Output

```
Example: Map Output

Map output:
<1, (M, 2, m_{21})>
<1, (M, 4, m_{41})>
<3, (M, 1, m_{13})>
<3, (M, 4, m_{43})>
<4, (M, 2, m_{24})>
<1, (N, 2, n_{12})>
<1, (N, 4, n_{14})>
<3, (N, 2, n_{32})>
<3, (N, 4, n_{34})>
<4, (N, 2, n_{42})>
```
Intuition 1: Joining entries with same j values

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m_{21}</td>
<td>m_{13}</td>
<td>m_{24}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m_{41}</td>
<td>0</td>
<td>m_{43}</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j</th>
<th>k</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n_{12}</td>
<td>0</td>
<td>n_{14}</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>n_{32}</td>
<td>0</td>
<td>n_{34}</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>n_{42}</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Map output:

- <1, (M, 2, m_{21})>
- <1, (M, 4, m_{41})>
- <1, (N, 2, n_{12})>
- <1, (N, 4, n_{14})>
- <3, (M, 1, m_{13})>
- <3, (M, 4, m_{43})>
- <3, (N, 2, n_{32})>
- <3, (N, 4, n_{34})>
- <4, (M, 2, m_{24})>
- <4, (N, 2, n_{42})>

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk} \]
Intuition 1: Joining entries with same j values

Map output:

\[
\begin{align*}
\text{<1, (M, 2, m_{21})>} & & \text{<1, (N, 2, n_{12})>} \\
\text{<1, (M, 4, m_{41})>} & & \text{<1, (N, 4, n_{14})>} \\
\text{<3, (M, 1, m_{13})>} & & \text{<3, (N, 2, n_{32})>} \\
\text{<3, (M, 4, m_{43})>} & & \text{<3, (N, 4, n_{34})>} \\
\text{<4, (M, 2, m_{24})>} & & \text{<4, (N, 2, n_{42})>}
\end{align*}
\]
Intuition 2: Partial sums

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk} \]

\[
\begin{array}{ccc}
0 & 0 & m_{13} \\
m_{21} & 0 & 0 \\
0 & 0 & 0 \\
m_{41} & 0 & m_{43} \\
\end{array}
\quad
\begin{array}{ccc}
0 & n_{12} & 0 \\
0 & 0 & 0 \\
0 & n_{32} & 0 \\
0 & n_{42} & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
m_{21} \cdot n_{12} \text{ will contribute to the partial sum of } p_{22}
\end{array}
\]
Intuition 2: Partial sums

\[
p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}
\]

- \(m_{24} \cdot n_{42}\) will contribute to the partial sum of \(p_{22}\)

\[
\begin{array}{ccc}
0 & 0 & m_{13} & 0 \\
1 & 0 & 0 & m_{24} \\
0 & 0 & 0 & 0 \\
m_{41} & 0 & m_{43} & 0
\end{array}
\quad
\begin{array}{ccc}
0 & n_{12} & 0 & n_{14} \\
0 & 0 & 0 & 0 \\
0 & n_{32} & 0 & n_{34} \\
0 & n_{42} & 0 & 0
\end{array}
\]
Intuition 2: Partial sums

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk} \]

- \(m_{21} \cdot n_{14} \) will contribute to the partial sum of \(p_{24} \)
First MapReduce Step: Reduce

Reduce input:
\[<1, [(M, 2, m_{21}); (M, 4, m_{41}); (N, 2, n_{12}); (N, 4, n_{14})] > \]
\[<3, [(M, 1, m_{13}); (M, 4, m_{43}); (N, 2, n_{32}); (N, 4, n_{34})] > \]
\[<4, [(M, 2, m_{24}); (N, 2, n_{42})] > \]

Reduce(key, value_list):

- Put all entries in value_list of form \((M, i, m_{i, key})\) into \(L_M\)
- Put all entries in value_list of form \((N, k, n_{key, k})\) into \(L_N\)

for each entry \((M, i, m_{i, key})\) in \(L_M\)

for each entry \((N, k, n_{key, k})\) in \(L_N\)

output \(<\text{key} = (i, k); \text{value} = m_{i, key} \cdot n_{key, k}>\)
Example: Reduce Output

Reduce input:

\[
<1, [(M, 2, m_{21}); (M, 4, m_{41}); (N, 2, n_{12}); (N, 4, n_{14})] > \\
<3, [(M, 1, m_{13}); (M, 4, m_{43}); (N, 2, n_{32}); (N, 4, n_{34})] > \\
<4, [(M, 2, m_{24}); (N, 2, n_{42})] >
\]

Reduce output:

\[
< (2, 2), (m_{21}.n_{12}) > \\
< (2, 4), (m_{21}.n_{14}) > \\
< (4, 2), (m_{41}.n_{12}) > \\
< (4, 4), (m_{41}.n_{14}) > \\
< (1, 2), (m_{13}.n_{32}) > \\
< (1, 4), (m_{13}.n_{34}) > \\
< (4, 2), (m_{43}.n_{32}) > \\
< (4, 4), (m_{43}.n_{34}) > \\
< (2, 2), (m_{24}.n_{42}) >
\]
Second MapReduce Step: Map

Map input:

- `<(2, 2), (m_{21}.n_{12})>`
- `<(2, 4), (m_{21}.n_{14})>`
- `<(4, 2), (m_{41}.n_{12})>`
- `<(4, 4), (m_{41}.n_{14})>`
- `<(1, 2), (m_{13}.n_{32})>`
- `<(1, 4), (m_{13}.n_{34})>`
- `<(4, 2), (m_{43}.n_{32})>`
- `<(4, 4), (m_{43}.n_{34})>`
- `<(2, 2), (m_{24}.n_{42})>`

- **Map:**

 for each *(key, value)* pair in the input

 generate *(key, value)*

- **Identity function**

- The system will most likely assign the map tasks on the same node as the reduce that produced these outputs. Hence, no communication cost.
Second MapReduce Step: Reduce

Reduce input:

\[
\begin{align*}
&< (2, 2), (m_{21}.n_{12}) > & < (1, 2), (m_{13}.n_{32}) > \\
&< (2, 4), (m_{21}.n_{14}) > & < (1, 4), (m_{13}.n_{34}) > \\
&< (4, 2), (m_{41}.n_{12}) > & < (4, 2), (m_{43}.n_{32}) > \\
&< (4, 4), (m_{41}.n_{14}) > & < (4, 4), (m_{43}.n_{34}) > \\
&< (2, 2), (m_{24}.n_{42}) > & \\
\end{align*}
\]

Reduce(key, value_list):

\[
\begin{align*}
\text{sum} &= 0 \\
\text{foreach} v \text{ in value_list} &
\begin{align*}
\text{sum} &= \text{sum} + v \\
\text{output} &= <\text{key}, \text{sum}> \\
\end{align*}
\end{align*}
\]
Example: MapReduce Step 2 - Reduce

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk} \]

Reduce input:

\[
\begin{align*}
&< (2, 2), (m_{21}.n_{12}) > &< (1, 2), (m_{13}.n_{32}) > \\
&< (2, 4), (m_{21}.n_{14}) > &< (1, 4), (m_{13}.n_{34}) > \\
&< (4, 2), (m_{41}.n_{12}) > &< (4, 2), (m_{43}.n_{32}) > \\
&< (4, 4), (m_{41}.n_{14}) > &< (4, 4), (m_{43}.n_{34}) > \\
&< (2, 2), (m_{24}.n_{42}) >
\end{align*}
\]
Example: MapReduce Step 2 - Reduce

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk} \]

Reduce input:

\[< \text{(2, 2)}, (m_{21}.n_{12}) > \]
\[< \text{(2, 4)}, (m_{21}.n_{14}) > \]
\[< \text{(4, 2)}, (m_{41}.n_{12}) > \]
\[< \text{(4, 4)}, (m_{41}.n_{14}) > \]

\[< \text{(1, 2)}, (m_{13}.n_{32}) > \]
\[< \text{(1, 4)}, (m_{13}.n_{34}) > \]
\[< \text{(4, 2)}, (m_{43}.n_{32}) > \]
\[< \text{(4, 4)}, (m_{43}.n_{34}) > \]

\[< \text{(2, 2)}, (m_{24}.n_{42}) > \]
Example: MapReduce Step 2 - Reduce

Reduce Input:

\[
\begin{align*}
< (2, 2), (m_{21}.n_{12}) > & \quad < (2, 2), (m_{21}.n_{14}) > \quad < (1, 2), (m_{13}.n_{32}) > \quad < (1, 4), (m_{13}.n_{34}) > \\
< (2, 4), (m_{21}.n_{14}) > & \quad < (4, 2), (m_{41}.n_{12}) > \quad < (1, 4), (m_{43}.n_{32}) > \quad < (4, 2), (m_{43}.n_{32}) > \\
< (4, 4), (m_{41}.n_{14}) > & \quad < (4, 4), (m_{43}.n_{34}) > \quad < (2, 2), (m_{24}.n_{42}) >
\end{align*}
\]

\[
p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}
\]
Example: MapReduce Step 2 - Reduce

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk} \]

Reduce input:

\(< (2, 2), (m_{21}.n_{12}) >\)
\(< (2, 4), (m_{21}.n_{14}) >\)
\(< (4, 2), (m_{41}.n_{12}) >\)
\(< (4, 4), (m_{41}.n_{14}) >\)
\(< (2, 2), (m_{24}.n_{42}) >\)
\(< (1, 2), (m_{13}.n_{32}) >\)
\(< (1, 4), (m_{13}.n_{34}) >\)
\(< (4, 2), (m_{43}.n_{32}) >\)
\(< (4, 4), (m_{43}.n_{34}) >\)
Summary: Two-Step MapReduce Algorithm

- **Step1: Map (input):**

 For each m_{ij} value of matrix M
 generate $<\text{key} = j, \text{value} = ("M", i, m_{ij})>$

 For each n_{jk} value of matrix N
 generate $<\text{key} = j, \text{value} = ("N", k, m_{jk})>$

- **Step1: Reduce(key, value_list):**

 for each entry $(M, i, m_{i,key})$ in value_list
 for each entry $(N, k, n_{key,k})$ in value_list
 output $<\text{key} = (i, k); \text{value} = m_{i,key} \cdot n_{key,k} >$

- **Step2: Map (key, value):**

 generate (key, value)

- **Step2: Reduce(key, value_list):**

 $p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}$

 $\text{sum} \leftarrow \text{accumulate the values in value_list}$

 output (key, sum)
Example Application: Matrix-Matrix Multiplication
Single Map-Reduce
Single-Step MapReduce: Intuition

\[p_{ik} = \sum_{j=1}^{n} m_{ij}n_{jk} \]

- To compute \(p_{ik} \), we need \(m_{ij} \) and \(n_{jk} \) values for all \(j \).

- In other words:
 - \(m_{ij} \) entry is needed to compute \(p_{ik} \) values for all \(k \).
 - \(n_{jk} \) entry is needed to compute \(p_{ik} \) values for all \(i \).

- Intuition: Send each input matrix entry to all reducers that need it.
An Entry of Matrix M

Each m_{ij} needs to be paired with all entries in row j of matrix N

$$p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}$$
An Entry of Matrix N

- Each n_{jk} needs to be paired with all entries in column j of matrix M.

$$p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}$$
Map Operation

- **Reminder:**
 - m_{ij} entry is needed to compute p_{ik} values for all k.
 - n_{jk} entry is needed to compute p_{ik} values for all i.

- **Map:**
 - for each m_{ij} entry from matrix M:
 - for $k=1$ to n
 - generate $<\text{key} = (i, k), \text{value} = (\text{‘M’}, j, m_{ij})>$
 - for each n_{jk} entry from matrix N:
 - for $i=1$ to n
 - generate $<\text{key} = (i, k), \text{value} = (\text{‘N’}, j, n_{jk})>$

\[
p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}
\]
Example: Map Output for Matrix M Entries

Map output:

\[<(1,1), (M, 3, m_{13}) > \]
Example: Map Output for Matrix M Entries

Map output:

\(<(1,1), (M, 3, m_{13}) > \)
\(<(1,2), (M, 3, m_{13}) > \)
Example: Map Output for Matrix M Entries

Map output:

\[
< (1,1), (M, 3, m_{13}) > \\
< (1,2), (M, 3, m_{13}) > \\
< (1,3), (M, 3, m_{13}) > \\
< (1,4), (M, 3, m_{13}) >
\]

\[
p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}
\]
Example: Map Output for Matrix M Entries

Map output:

\[<(1,1), (M, 3, m_{13})> \quad <(2,1), (M, 1, m_{21})>\]
\[<(1,2), (M, 3, m_{13})> \quad <(2,2), (M, 1, m_{21})>\]
\[<(1,3), (M, 3, m_{13})> \quad <(2,3), (M, 1, m_{21})>\]
\[<(1,4), (M, 3, m_{13})> \quad <(2,4), (M, 1, m_{21})>\]

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}\]
Example: Map Output for Matrix M Entries

Map output:

\[
\begin{align*}
&< (1,1), (M, 3, m_{13}) > & < (2,1), (M, 1, m_{21}) > & < (2,1), (M, 4, m_{24}) > \\
&< (1,2), (M, 3, m_{13}) > & < (2,2), (M, 1, m_{21}) > & < (2,2), (M, 4, m_{24}) > \\
&< (1,3), (M, 3, m_{13}) > & < (2,3), (M, 1, m_{21}) > & < (2,3), (M, 4, m_{24}) > \\
&< (1,4), (M, 3, m_{13}) > & < (2,4), (M, 1, m_{21}) > & < (2,4), (M, 4, m_{24}) > \\
\end{align*}
\]

\[
p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}
\]
Example: Map Output for Matrix N Entries

Map output:

\((1,2), (N, 1, n_{12})\)

\(p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}\)
Example: Map Output for Matrix N Entries

Map output:

\[
<(1,2), (N, 1, n_{12}) >
\]

\[
<(2,2), (N, 1, n_{12}) >
\]

\[
<(3,2), (N, 1, n_{12}) >
\]

\[
<(4,2), (N, 1, n_{12}) >
\]

\[
p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}
\]
Example: Map Output for Matrix N Entries

Map output:

\[\langle (1,2), (N, 1, n_{12}) \rangle, \langle (2,2), (N, 1, n_{12}) \rangle, \langle (3,2), (N, 1, n_{12}) \rangle, \langle (4,2), (N, 1, n_{12}) \rangle, \langle (1,4), (N, 1, n_{14}) \rangle, \langle (2,4), (N, 1, n_{14}) \rangle, \langle (3,4), (N, 1, n_{14}) \rangle, \langle (4,4), (N, 1, n_{14}) \rangle \]

\[
p_{ik} = \sum_{j=1}^{n} m_{ij}n_{jk}
\]
Example: Map Output for Matrix N Entries

Map output:

\[(1, 2), (N, 1, n_{12}) \quad (1, 4), (N, 1, n_{14}) \quad (1, 2), (N, 3, n_{32}) \]
\[(2, 2), (N, 1, n_{12}) \quad (2, 4), (N, 1, n_{14}) \quad (2, 2), (N, 3, n_{32}) \]
\[(3, 2), (N, 1, n_{12}) \quad (3, 4), (N, 1, n_{14}) \quad (3, 2), (N, 3, n_{32}) \]
\[(4, 2), (N, 1, n_{12}) \quad (4, 4), (N, 1, n_{14}) \quad (4, 2), (N, 3, n_{32}) \]

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}\]
Summary: Map Operation

\[
\begin{align*}
\text{key}=(i,1), \text{value} & = (M, j, m_{ij}) \\
m_{ij} & \\
\text{key}=(i,n), \text{value} & = (M, j, m_{ij}) \\
\text{key}=(1,k), \text{value} & = (N, j, n_{jk}) \\
n_{jk} & \\
\text{key}=(n,k), \text{value} & = (N, j, n_{jk})
\end{align*}
\]
Reduce Operation

- **Input:**

 \[
 \text{key} = (i,k), \ \text{value_list} = [\ldots (M, j, m_{ij}); \ldots (N, j, n_{jk}) \ldots]
 \]

 an entry exists for any non-zero \(m_{ij} \) or \(n_{jk} \)

- **Objective:** Multiply \(m_{ij} \) and \(n_{jk} \) values with matching \(j \) values, and sum up all products to compute \(p_{ik} \)

- **Reduce(key, value_list)**

 put all entries of form \((M, j, m_{ij})\) into \(L_M \)

 sort entries in \(L_M \) based on \(j \) values

 put all entries of form \((N, j, n_{jk})\) into \(L_N \)

 sort entries in \(L_N \) based on \(j \) values

 \[\text{sum} \leftarrow 0\]

 for each pair \((M, j, m_{ij})\) in \(L_M \) and \((N, j, n_{jk})\) in \(L_N \)

 \[\text{sum} \leftarrow= m_{ij} \cdot n_{jk}\]

 output \((\text{key}, \text{sum})\)

\[
p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk}
\]
Example: Reduce

Reduce input: \textbf{key} = (4, 2), \textbf{value} = \{(M, m_{41}, 1); (M, m_{43}, 3); (N, n_{12}, 1); (N, n_{32}, 3); (N, n_{42}, 4)\}

Reduce output: \textbf{key} = (4, 2), \textbf{value} = m_{41}. n_{12} + m_{43}. n_{32}
Summary: Single-Step MapReduce Algorithm

Map(input):

for each m_{ij} entry from matrix M:
 for $k=1$ to n
 generate $<key = (i, k), value = (\text{'M'}, j, m_{ij})>$

for each n_{jk} entry from matrix N:
 for $i=1$ to n
 generate $<key = (i, k), value = (\text{'N'}, j, n_{jk})>$

Reduce(key, value_list)

$\text{sum} \leftarrow 0$

for each pair (M, j, m_{ij}) and (N, j, n_{jk}) in value_list
 $\text{sum} += m_{ij} \cdot n_{jk}$

output (key, sum)

$p_{ik} = \sum_{j=1}^{n} m_{ij}n_{jk}$
Next Lecture

- No analysis of communication costs and computation costs so far.

- Next lecture:
 - Complexity Analysis
 - Improved Algorithms