Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org
Complexity Analysis of MapReduce Algorithms
Communication Cost Model

- The model we will use:
 \[
 \text{Communication cost} = \text{sum of input sizes to each stage}
 \]

- Output sizes are ignored
 - *If the output is large, it’s likely that it will be input to another stage*
 - *The real outputs are typically small, e.g. some summary statistics, etc.*

- Reading from disk is part of the communication cost
 - *e.g. The input to the map stage can be from the disk of a reduce task at a different node*

- Analysis is independent of scheduling decisions
 - *e.g. Map and reduce tasks may or may not be assigned to the same node.*

<table>
<thead>
<tr>
<th>Input</th>
<th>Map</th>
<th>Reduce</th>
<th>Map</th>
<th>Reduce</th>
<th>Output</th>
</tr>
</thead>
</table>

CS 425 – Lecture 6

Mustafa Ozdal, Bilkent University
Definitions: Replication Rate & Reducer Size

- **Replication rate**: Avg # of key-value pairs generated by Map tasks per input
 - The communication cost between Map and Reduce is determined by this
 - Donated as \(r \)
- **Reducer size**: Upper bound for the size of the value list corresponding to a *single* key
 - Donated as \(q \)
 - Choose \(q \) small enough such that:
 1. there are many reducers for high levels of parallelism
 2. the data for a reducer fits into the main memory of a node
- Typically \(q \) and \(r \) inversely proportional
 - Tradeoff between communication cost and parallelism/memory requirements.
Example: Join with MapReduce

- **Map:**
 - For each input tuple \(R(a, b) \):
 - Generate \(<\text{key} = b, \text{value} = (\text{‘R’}, a)>\)
 - For each input tuple \(S(b, c) \):
 - Generate \(<\text{key} = b, \text{value} = (\text{‘S’}, c)>\)

- **Reduce:**
 - Input: \(<b, \text{value_list}>\)
 - In the value_list:
 - Pair each entry of the form (‘R’, a) with each entry (‘S’, c), and output:
 - \(<a, b, c>\)

Replication rate:

\[r = 1 \]

Communication cost:

\[2(|R| + |S|) \]

Reducer size (worst case):

\[q = |R| + |S| \]
Example: Single-Step Matrix-Matrix Multiplication

Map(input):

- for each m_{ij} entry from matrix M:
 - for $k=1$ to n
 - generate $<key = (i, k), value = ('M', j, m_{ij})>$
- for each n_{jk} entry from matrix N:
 - for $i=1$ to n
 - generate $<key = (i, k), value = ('N', j, n_{jk})>$

Reduce(key, value_list)

- $sum \leftarrow 0$
- for each pair (M, j, m_{ij}) and (N, j, n_{jk}) in value_list
 - $sum += m_{ij} \cdot n_{jk}$
- output (key, sum)

Assume both M and N have size $n \times n$

Replication rate:

- $r = n$

Communication cost:

- $2n^2 + 2n^3$

Reducer size:

- $q = 2n$
A Graph Model for MapReduce Algorithms

- Define a vertex for each input and output
- Define edges reflecting which inputs each output needs
- Every MapReduce algorithm has a schema that assigns outputs to reducers.

- Assume that max reducer size is q.
- Assignment Requirements:
 1. No reducer can be assigned more than q inputs.
 2. Each output is assigned to at least one reducer that receives all inputs needed for that output.
Example: Single-Step Matrix-Matrix Multiplication

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
e & f \\
g & h
\end{bmatrix} =
\begin{bmatrix}
i & j \\
k & l
\end{bmatrix}
\]

We have assigned each output to a single reducer.
The replication rate \(r = n \)
The reducer size \(q = 2n \)
Application: Naïve Similarity Join
Naïve Similarity Join

- **Objective**: Given a large set of elements X and a similarity measure $s(x_1, x_2)$, output the pairs that have similarity above a given threshold.
 - *Locality sensitive hashing is not used for the sake of this example.*

- **Example**:
 - Each element is an image of 1M bytes
 - There are 1M images in the set
 - About 5×10^{11} (500B) image comparisons to make
Similarity Join with MapReduce (First Try)

- Let \(n \) be the # of pictures in the set.

- **Map:**
 - for each picture \(P_i \) do:
 - for each \(j=1 \) to \(n \) (except \(i \))
 - generate \(<\text{key} = (i,j), \text{value} = P_i>\>

- **Reduce (key, value_list)**
 - compute \(\text{sim}(P_i, P_j) \)
 - output \((i,j)\) if similarity is above threshold

Replication rate \(r = n-1 \)
Reducer size \(q = 2 \)
Communication cost = \(n + n(n-1) \)
of reducers = \(n(n-1)/2 \)
Example: 1M pictures with 1MByte size each

- Replication rate $r = n - 1$
- Reducer size $q = 2$
- Communication cost $= n + n(n-1)$
- # of reducers $= n(n-1)/2$

Communication cost:

$n(n-1)$ pictures communicated from Map to Reduce

total # bytes transferred $= 10^{18}$

Assume gigabit ethernet:

time to transfer 10^{18} bytes $= 10^{10}$ seconds (~300 years)
Graph Model

Our MapReduce algorithm:
- One reducer per output.
- \(P_i \) must be sent to each output.
- Replication rate \(r = n-1 \)
- Reducer size \(q = 2 \)

What if a reducer *covers* multiple outputs?
Graph Model: Multiple Outputs per Reducer

Replication rate & communication cost reduced.

How to do the grouping?
Grouping Outputs

- Define g intervals between 1 and n.
- **Reducer** (u,v) will be responsible for comparing all inputs in range u with all inputs in range v.

Example:

Reducer $(2, 3)$ will compare all entries in interval 2 with all entries in interval 3.
Similarity Join with Grouping

- Let \(n \) be the number of inputs, and \(g \) be the number of groups.
- **Map:**

 for each \(P_i \) in the input

 let \(u \) be the group to which \(i \) belongs

 for \(v = 1 \) to \(g \)

 generate \(< \text{key}=(u,v), \text{value}=(i, P_i) >\)

- **Reduce(key=\((u,v)\), value_list)**

 for each \(i \) that belongs to group \(u \) in value_list

 for each \(j \) that belongs to group \(v \) in value_list

 compute \(\text{sim}(P_i, P_j) \), and output \((i, j)\) if it is above threshold.

\[\text{Problem:} \]
\[P_i \text{ will be sent to } (g_i, g_j) \]
\[P_j \text{ will be sent to } (g_j, g_i)\]
Similarity Join with Grouping

- Let \(n \) be the number of inputs, and \(g \) be the number of groups.

 - **Map:**

 for each \(P_i \) in the input

 let \(u \) be the group to which \(i \) belongs

 for \(v = 1 \) to \(g \)

 generate \(< \text{key}=[\min(u, v), \max(u, v)], \text{value}=(i, P_i) >\>

 - **Reduce(key=(u,v), value_list)**

 for each \(i \) that belongs to group \(u \) in \(\text{value_list} \)

 for each \(j \) that belongs to group \(v \) in \(\text{value_list} \)

 compute \(\text{sim}(P_i, P_j) \), and output \((i, j)\) if it is above threshold.
Example: If $g = 4$, the highlighted comparisons will be performed.

There will be a reducer for each key (u, v), where $u \leq v$.
Example

Which reducers will receive and use P_i in group 2?

Reducers: (1, 2), (2, 2), (2, 3), (2, 4)
Complexity Analysis

- Replication rate: \[r = g \]
- Reducer size: \[q = \frac{2n}{g} \]
- Communication cost: \[n + ng \]
- # of reducers: \[\frac{g(g+1)}{2} \]
Example: 1M pictures with 1MByte size each

- Let $g = 1000$

- Reducer size $q = \frac{2n}{g}$
 - memory needed for one node: ~ 2GB (reasonable)

- Communication cost $= n + ng$
 - total # bytes transferred $= \sim 10^{15}$ (still a lot, but 1000x less than before)

- # of reducers $= \frac{g(g+1)}{2}$
 - there are $\sim 500K$ reducers (enough parallelism for 1000s of nodes)

- What if $g = 100$?
Tradeoff Between Replication Rate and Reducer Size

- Replication rate \(r = g \)
- Reducer size \(q = \frac{2n}{g} \)

\[qr = 2n \]

- Replication rate and reducer size are inversely proportional.
- Reducing replication rate will reduce communication, but will increase reducer size.
 - Extreme case: \(r = 1 \) and \(q = 2n \). There is a single reducer doing all the comparisons.
 - Extreme case: \(r = n \) and \(q = 2 \). There is a reducer for each pair of inputs.
- Need to choose \(r \) small enough such that the data fits into local DRAM and there’s enough parallelism.
Application: Matrix-Matrix Multiplication with 1D Decomposition
Reminder: Matrix-Matrix Multiplication without Grouping

Each m_{ij} needs to be sent to each reducer (i, k) for all k
Reminder: Matrix-Matrix Multiplication without Grouping

\[p_{ik} = \sum_{j=1}^{n} m_{ij} n_{jk} \]

Each \(n_{jk} \) needs to be sent to each reducer \((i, k)\) for all \(i \)

Replication rate \(r = n \)
Multiple Outputs per Reducer

Notation:
- \(j \): row/column index of an individual matrix entry
- \(J \): set of indices that belong to the \(J^{th} \) interval.

Let reducer \((I,K)\) be responsible for computing all \(p_{ik} \) where:
- \(i \in I \) and \(k \in K \)
Multiple Outputs per Reducer

Which reducers need m_{ij}?
Reducers (I, K) for all $1 \leq K \leq g$

Replication rate $r = g$
Multiple Outputs per Reducer

Which reducers need \(n_{jk} \)?
Reducers \((I, K)\) for all \(1 \leq I \leq g\)

Replication rate \(r = g \)
1D Matrix Decomposition

Which matrix elements will reducer \((I, K)\) receive?
- \(I^{th}\) row stripe of \(M\) and \(K^{th}\) column stripe of \(N\)
MapReduce Formulation

- **Map**: for each element m_{ij} from matrix M
 - for $K=1$ to g
 - generate $\langle key=(I, K), value = ('M', i, j, m_{ij}) \rangle$
 - for each element n_{jk} from matrix N
 - for $I=1$ to g
 - generate $\langle key=(I, K), value = ('N', j, k, n_{jk}) \rangle$

- **Reduce**($key=(I,K)$, value_list)
 - for each $i \in I$ and for each $k \in K$
 - $p_{ik} = 0$
 - for $j = 1$ to n
 - $p_{ik} += m_{ij} \cdot n_{jk}$
 - output $\langle key=(i, k), value = p_{ik} \rangle$

Replication rate: $r = g$

Communication cost: $2n^2 + 2gn^2$

Reducer size: $q = \frac{2n^2}{g}$

of reducers: g^2
Communication Cost vs. Reducer Size

Replication rate vs. reducer size

\[q = \frac{2n^2}{g} \Rightarrow q = \frac{2n^2}{r} \Rightarrow qr = 2n^2 \]

Communication cost vs. reducer size

\[\text{cost} = 2n^2 + 2gn^2 \]
\[= 2n^2 + 4n^4/q \]

Inverse relation between communication cost and reducer size.

Reminder: q value chosen should be small enough such that:

- Local memory is sufficient
- There’s enough parallelism

Replication rate:
\[r = g \]

Communication cost:
\[2n^2 + 2gn^2 \]

Reducer size:
\[q = \frac{2n^2}{g} \]

of reducers:
\[g^2 \]
Application: Matrix-Matrix Multiplication with 2D Decomposition
Two Stage MapReduce Algorithm

- What are we trying to achieve?
 A better tradeoff between replication rate r and reducer size q
 The previous algorithm: $qr = 2n^2$
 We will show that we can achieve $qr^2 = 2n^2$
 For the same reducer size, the replication rate will be smaller

- **Reminder**: Two-stage MapReduce without grouping:
 - Stage 1: “Join” matrix entries that need to be multiplied together
 - Stage 2: Sum up products to compute final results

- Use a similar idea, but for sub-blocks of matrices instead of individual elements
2D Matrix Decomposition

Assume that M and N are partitioned to g horizontal and g vertical stripes.
Computing the Product at Stripe (I, K)

$$P_{IK} = \sum_{j=1}^{g} M_{IJ} \times N_{JK}$$

Note: $M_{IJ} \times N_{JK}$ is multiplication of two sub-matrices
How to Define Reducers?

M_{IJ} needs to be multiplied with N_{JK} and will produce the partial sum P_{IK}^J.

What if we define a reducer for each (I, K)?

It would be identical to the 1D decomposition

What if we define a reducer for each J?

Exercise: Derive the communication cost as a function of n and q
How to Define Reducers?

What if we define a reducer for each \((I, J, K)\)?

Smaller reducer size

Reducer \((I, J, K)\) will be responsible for computing the \(J^{th}\) partial sum for block \(P_{IK}\).

\[
M_{IJ} \text{ needs to be multiplied with } N_{JK} \text{ and will produce the partial sum } P^J_{IK}.
\]
First MapReduce Step

- **Map**: for each m_{ij} in M
 - for $K = 1$ to g
 - generate $<key = (I, J, K), value = ('M', i, j, m_{ij})$ for each n_{jk} in N
 - for $I = 1$ to g
 - generate $<key = (I, J, K), value = ('N', j, k, n_{jk})$

- **Reduce(key = (I, J, K), value_list)**
 - for each $i \in I$ and $k \in K$
 - compute $x'_{ik} = \sum_{j \in J} m_{ij} n_{jk}$
 - output $<key = (i, k), value = x'_{ik}>$

\[\text{from } M \quad \text{from } N \quad J_{th} \text{ partial sum} \]
MapReduce Step 1: Map

Block M_{IJ} will be sent to the reducers (I, J, K) for all K

Reminder: Reducer (I, J, K) is responsible for computing the J^{th} partial sum for block P_{IK}
MapReduce Step 1: Map

Block N_{JK} will be sent to the reducers (I, J, K) for all I.

Reminder: Reducer (I, J, K) is responsible for computing the J^{th} partial sum for block P_{IK}.
MapReduce Step 1: Reduce

Reducer \((I, J, K)\) will receive \(M_{IJ}\) and \(N_{JK}\) blocks and will compute the \(J^{th}\) partial sum for block \(P_{IK}\).
MapReduce Step 1: Reducer Output

For each $p_{ik} \in P_{IK}$, there are g reducers that compute a partial sum (each with key=(i, J, K))

The reduce outputs corresponding to p_{ik}: $<key = (i, k), value = x^j_{ik}>$
MapReduce Step 2

- **Map:**

 for each input `<key = (i, k), value = x_{ik}>`

 generate `<key = (i, k), value = x_{ik}>`

- **Reduce**(key = (i, k), value_list)

 \[p_{ik} = 0 \]

 for each \(x_{ik} \) in value_list

 \[p_{ik} += x_{ik} \]

 output `<key = (i, k), value = p_{ik}>`
Complexity Analysis: Step 1

- **Map:**

 for each m_{ij} in M
 for $K = 1$ to g
 generate $<key = (I, J, K), value = ('M', i, j, m_{ij})$
 for each n_{jk} in N
 for $I = 1$ to g
 generate $<key = (I, J, K), value = ('N', j, k, m_{jk})$

- **Reduce**($key = (I, J, K), value_list$)

 for each $i \in I$ and $k \in K$
 compute $x'_{ik} = \sum_{j \in J} m_{ij} n_{jk}$
 output $<key = (i, k), value = x'_{ik}>$

- Replication rate: $r_1 = g$
- Communication cost: $2n^2 + 2gn^2$
- Reducer size: $q_1 = 2n^2/g^2$
- # of reducers: g^3
Complexity Analysis: MapReduce Step 2

Map:

for each input \(<\text{key} = (i, k), \text{value} = x_{ik}^J>\)

generate \(<\text{key} = (i, k), \text{value} = x_{ik}^J>\)

Reduce(key = (i, k), value_list)

\[p_{ik} = 0 \]

for each \(x_{ik}^J\) in value_list

\[p_{ik} += x_{ik}^J \]

output \(<\text{key} = (i, k), \text{value} = p_{ik}>\)

- Replication rate: \(r_2 = 1\)
- Communication cost: \(gn^2\)
- Reducer size: \(q_2 = g\)
- # of reducers: \(n^2\)
Complexity Analysis

- Total communication cost: \(2n^2 + 3gn^2\)

- Which reducer size is the bottleneck?
 - Typical case: \(q_1 \geq q_2\) (when \(g^3 \leq 2n^2\))
 - What if this is not the case? (see next slide)

- Communication cost as function of \(q_1\):
 \[
 q_1 = \frac{2n^2}{g^2} \Rightarrow g = \sqrt[4]{\frac{2n^2}{q_1}}

 \text{comm. cost} = 2n^2 + \frac{3\sqrt[4]{2n^3}}{q_1}
 \]

- Communication cost as function of \(q_2\):
 \[
 \text{comm. cost} = 2n^2 + 3n^2q_2
 \]

Step 1
- Replication rate: \(r_1 = g\)
- Communication cost: \(2n^2 + 2gn^2\)
- Reducer size: \(q_1 = \frac{2n^2}{g^2}\)
- # of reducers: \(g^3\)

Step 2
- Replication rate: \(r_2 = 1\)
- Communication cost: \(gn^2\)
- Reducer size: \(q_2 = g\)
- # of reducers: \(n^2\)
Tradeoff Between Communication Cost and Reducer Size

- To decrease communication cost:
 Choose g small enough

- To decrease reducer size:
 Choose g large enough to reduce q_1
 Size of q_2 is less of a concern. Why?
 The reduce operation in step 2:
 Simply accumulate the values
 The same value is used only once
 The value_list doesn’t have to fit into local memory

- Conclusion: Use the communication cost formula as a function of q_1 to determine the right tradeoff.

\[
q_1 = \frac{2n^2}{g^2} \quad q_2 = g
\]

\[
\text{comm. cost} = 2n^2 + 3gn^2
\]

\[
\text{comm. cost} = 2n^2 + \frac{3\sqrt{2}n^3}{\sqrt{q_1}}
\]

\[
\text{comm. cost} = 2n^2 + 3n^2 q_2
\]
Matrix-Matrix Multiplication
1D Decomposition vs. 2D Decomposition
Comparison: Parallelism

1D Decomposition
\[\text{# of reducers} = g^{2}_{1D} \]

2D Decomposition
\[\text{# of reducers} = g^{3}_{2D} \text{ (step 1)} \]
\[n^{2} \text{ (step 2)} \]

For the same # of groups, 2D decomposition has better parallelism
Comparison: Reducer Size

1D Decomposition

$$q_{1D} = \frac{2n^2}{g_{1D}}$$

2D Decomposition

$$q_{2D} = \frac{2n^2}{g_{2D}^2}$$

For the same reducer size:
We need a larger g value for 2D decomposition

$$g_{1D} = g_{2D}^2$$

However, larger g leads to better parallelism:

- # of reducers for 1D: $$g_{1D}^4 = g_{2D}^4$$
- # of reducers for 2D: $$g_{2D}^3 \text{ (step 1)}$$
 $$n^2 \text{ (step 2)}$$
Comparison: Communication Costs

1D Decomposition

\[cost_{1D} = 2n^2 + 2n^2 g_{1D} \]

2D Decomposition

\[cost_{2D} = 2n^2 + 3n^2 g_{2D} \]

If the g values are the same:

1D decomposition has lower communication cost.

Why would we want to have \(g_{1D} = g_{2D} \) ?

No reason…

More realistically, if the reducer sizes are equal:

\(g_{1D} = g_{2D}^2 \) (previous slide)

\[cost_{1D} = 2n^2 + 2n^2 g_{2D}^2 \]

\[cost_{2D} = 2n^2 + 3n^2 g_{2D} \]

Note: We have control over how to choose the g values for 1D and 2D decompositions. However, the max q value is limited by the available local memory size. So, it makes more sense to use the same q value for 1D and 2D decompositions.
Comparison: Communication Costs (when reducer sizes are equal)

- **1D Decomposition**
 \[\text{cost}_{1D} = 2n^2 + 2n^2g_{1D} \]

- **2D Decomposition**
 \[\text{cost}_{2D} = 2n^2 + 3n^2g_{2D} \]

- **g_{1D} = g_{2D}^2**

- When does 1D decomposition have less communication cost?
 Only when \(g_{1D} = g_{2D} = 1 \) (i.e. the serial reduce execution)

- Compare the communication costs for the largest \(g_{1D} \) value
 \[g_{1D} = n \text{ and } g_{2D} = \sqrt{n} \]
 \[\text{cost}_{1D} = 2n^2 + 2n^3 \]
 \[\text{cost}_{2D} = 2n^2 + 3n^2\sqrt{n} \]

 For large # of groups, communication cost of 2D algorithm lower almost by a factor of \(\sqrt{n} \)
Conclusions

- **Complexity analysis:**
 - *Replication rate:* Typically determines the communication cost
 - *Reducer size:* Determines the available parallelism and the requirements for local memory sizes
 - Typically tradeoff between communication cost and reducer size
 - We ignored computation costs assuming that the total amount of computation does not change
 - e.g. n^3 multiply-and-add operations for matrix-matrix multiplication
 - However, this is not always the case: There can be parallel implementations that are not work efficient.

- **We reduced communication costs by assigning multiple outputs to each reducer. Why?**
 - Replication rates reduced (each input needs to be sent to less # of reducers)
 - Grouping may not help algorithms with replication rate = 1
 - e.g. the 2nd step of matrix matrix multiplication with 2D decomposition