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2.1 Introduction

ENTITY test is

port a: in bit;

end ENTITY test;

DRC

LVS

ERC

Circuit Design

Functional Design

and Logic Design

Physical Design

Physical Verification

and Signoff

Fabrication

System Specification

Architectural Design

Chip

Packaging and Testing

Chip Planning

Placement

Signal Routing

Partitioning

Timing Closure

Clock Tree Synthesis
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Divide and Conquer Strategy for Chip Design

 Partition the design. Then, work on each partition separately

 Advantages: 

 Parallel implementation of each part by different designers

 Tool capacity issues avoided

 Disadvantages:

 Potentially less room for optimization

 Inter-dependency between different partitions

 Difficulty of combining partitions at the end
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Circuit:

Cut ca: four external connections

1

2

4

5

3

6

7 8

5

6

48

7 23

1

56

48

7 2

3 1

Cut ca

Cut cb

Block A Block B Block A Block B

Cut cb: two external connections

2.1 Introduction
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2.2 Terminology

5 6

4

2

1

3
3

2

4

5 6

1

Graph G2: Nodes 1, 2, 6.

Graph  G1:  Nodes  3, 4, 5.

Collection of cut edges 

Cut set:   (1,3), (2,3), (5,6),

Block (Partition)

Cells

cut edge: connects nodes in different partitions
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2.3 Optimization Goals

 Given a graph G(V,E) with |V| nodes and |E| edges where each node v  V

and each edge e  E. 

 Each node has area s(v) and each edge has cost or weight w(e). 

 The objective is to divide the graph G into k disjoint subgraphs such that all 

optimization goals are achieved:

 Number (or total weight) of connections between partitions is minimized

 Partition sizes are balanced

 NP-hard problem

 Efficient heuristics are developed in the 1970s and 1980s. 

They are high quality and in low-order polynomial time.
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Given: A graph with 2n nodes where each node has the same weight.

Goal: A partition (division) of the graph into two disjoint subsets A and B with 

minimum cut cost and |A| = |B| = n.
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6

3

1

4
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8

Example: n = 4

Block A Block B

2.4.1  Kernighan-Lin (KL) Algorithm
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Gain D(v) of a node v 

D(v) = |Ec(v)| – |Enc(v)| , 

where

Ec(v) is the set of v’s incident edges that are cut by the 

cut line, and 

Enc(v) is the set of v’s incident edges that are not cut by 

the cut line. 

High gains (D > 0) indicate that the node 

should move, while low gains (D < 0) indicate 

that the node should stay within the same 

partition. 
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8
Node 3:

D(3) = 3-1=2

Node 7:

D(7) = 2-1=1

2.4.1  Kernighan-Lin (KL) Algorithm – Terminology 



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 12

Gain of swapping a pair of nodes a and b

g = D(a) + D(b) - 2* c(a,b),

where 

• D(a), D(b) are the respective gains of nodes a, b 

• c(a,b) is the connection weight between a and b:

If an edge exists between a and b, 

then c(a,b) = edge weight (here 1), 

otherwise, c(a,b) = 0.

The gain g indicates how useful the swap between two 

nodes will be

The larger g, the more the total cut cost will be reduced 
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2.4.1  Kernighan-Lin (KL) Algorithm – Terminology 
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Gain of swapping a pair of nodes a und b

g = D(a) + D(b) - 2* c(a,b),

where 

• D(a), D(b) are the respective gains of nodes a, b 

• c(a,b) is the connection weight between a and b:

If an edge exists between a and b, 

then c(a,b) = edge weight (here 1), 

otherwise, c(a,b) = 0.

2
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8
Node 3:

D(3) = 3-1=2

Node 7:

D(7) = 2-1=1

g (3,7) = D(3) + D(7) - 2* c(a,b) = 2 + 1 – 2 = 1

=> Swapping nodes 3 and 7 would reduce the cut size by 1

2
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6

3

1

4

7

8

2.4.1  Kernighan-Lin (KL) Algorithm – Terminology 
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Gain of swapping a pair of nodes a und b

g = D(a) + D(b) - 2* c(a,b),

where 

• D(a), D(b) are the respective gains of nodes a, b 

• c(a,b) is the connection weight between a and b:

If an edge exists between a and b, 

then c(a,b) = edge weight (here 1), 

otherwise, c(a,b) = 0.
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8
Node 3:

D(3) = 3-1=2

Node 5:

D(5) = 2-1=1

g (3,5) = D(3) + D(5) - 2* c(a,b) = 2 + 1 – 0 = 3

=> Swapping nodes 3 and 5 would reduce the cut size by 3
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1
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2.4.1  Kernighan-Lin (KL) Algorithm – Terminology 
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Gain of swapping a pair of nodes a and b

The goal is to find a pair of nodes a and b to exchange such that g is 

maximized and swap them.

2.4.1  Kernighan-Lin (KL) Algorithm – Terminology 
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Maximum positive gain Gm of a pass 

The maximum positive gain Gm corresponds to the best prefix of m swaps 

within the swap sequence of a given pass. 

These m swaps lead to the partition with the minimum cut cost 

encountered during the pass.

Gm is computed as the sum of Δg values over the first m swaps of the 

pass, with m chosen such that Gm is maximized.





m

i

im gG
1



2.4.1  Kernighan-Lin (KL) Algorithm – Terminology 
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Kernighan-Lin Algorithm  

Step 0:  

– V = 2n nodes 

– {A, B} is an initial arbitrary partitioning 

Step 1:  

– i = 1 

– Compute D(v) for all nodes vÎV 

Step 2:  

– Choose ai and bi such that Dgi = D(ai) + D(bi) – 2 * c(aibi) is maximized 

– Swap and fix ai and bi 

Step 3:  

– If all nodes are fixed, go to Step 4. Otherwise 

– Compute and update D values for all nodes that are connected to ai and bi and are not fixed. 

– i = i + 1 

– Go to Step 2 

Step 4:  

– Find the move sequence 1...m (1 £ m £ i), such that å =
=

m

i im gG
1
Δ   is maximized 

– If Gm > 0, go to Step 5. Otherwise, END 

Step 5:  

– Execute m swaps, reset remaining nodes 

– Go to Step 1 

2.4.1  Kernighan-Lin (KL) Algorithm
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2

5

6

3

1
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8

Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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2

5

6

3

1

4

7

8

Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

gains D(v) of each node:

Nodes that lead to 

maximum gain

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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2
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Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

Nodes that lead to 

maximum gain

Gain in the current pass

gains D(v) of each node:

Gain after node swapping

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

Nodes that lead to 

maximum gain

Gain in the current pass

Gain after node swapping

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed: 

1,2,4,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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1

4
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Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed: 

1,2,4,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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1

4
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1

4
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Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed: 

1,2,4,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

Nodes that lead to 

maximum gain

Gain in the current pass

Gain after node swapping

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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1
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Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed: 

1,2,4,6,7,8

Cut cost: 1

Not fixed: 

1,2,7,8

2

5

6

3

1

4

7

8

Cut cost: 7

Not fixed: 

2,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2 Gain in the current pass

Nodes that lead to 

maximum gain

Gain after node swapping

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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Cut cost: 9

Not fixed: 

1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

Cut cost: 9

Not fixed: 

–

Cut cost: 6

Not fixed: 

1,2,4,6,7,8

Cut cost: 1

Not fixed: 

1,2,7,8

Cut cost: 7

Not fixed: 

2,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2

D(2) = -1 D(8)=-1

g4 = -1-1-0 = -2

Swap (2,8)

G4 = G3 +g4 = 0

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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Maximum positive gain Gm = 8 with m = 2.

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2

D(2) = -1 D(8)=-1

g4 = -1-1-0 = -2

Swap (2,8)

G4 = G3 +g4 = 0

2.4.1  Kernighan-Lin (KL) Algorithm – Example 
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D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2

D(2) = -1 D(8)=-1

g4 = -1-1-0 = -2

Swap (2,8)

G4 = G3 +g4 = 0

Since Gm > 0, the first m = 2 swaps 

(3,5) and (4,6) are executed.
2

5

6

3

1

4

7

8

2.4.1  Kernighan-Lin (KL) Algorithm – Example 

Since Gm > 0, more passes are needed until 

Gm  0.

Maximum positive gain Gm = 8 with m = 2.
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1-pass runtime: O(n3)

Optimized implementation: O(n2lgn) 

29

Kernighan-Lin Algorithm  

Step 0:  

– V = 2n nodes 

– {A, B} is an initial arbitrary partitioning 

Step 1:  

– i = 1 

– Compute D(v) for all nodes vÎV 

Step 2:  

– Choose ai and bi such that Dgi = D(ai) + D(bi) – 2 * c(aibi) is maximized 

– Swap and fix ai and bi 

Step 3:  

– If all nodes are fixed, go to Step 4. Otherwise 

– Compute and update D values for all nodes that are connected to ai and bi and are not fixed. 

– i = i + 1 

– Go to Step 2 

Step 4:  

– Find the move sequence 1...m (1 £ m £ i), such that å =
=

m

i im gG
1
Δ   is maximized 

– If Gm > 0, go to Step 5. Otherwise, END 

Step 5:  

– Execute m swaps, reset remaining nodes 

– Go to Step 1 

2.4.1  Kernighan-Lin (KL) Algorithm – Complexity Analysis

O(n)

O(n2)

O(n2)

O(n)

O(n)

n
 t

im
e

s

n: # of nodes in each partition
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2.4.2  Extensions for Kernighan-Lin (KL) Algorithm

 Unequal partition sizes

 Unequal cell sizes or unequal node weights 

 k-way partitioning (generating k partitions)

30
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 Single cells are moved independently instead of swapping pairs of cells. 

Thus, this algorithm is applicable to partitions of unequal size or the 

presence of initially fixed cells.

 Cut costs are extended to include hypergraphs, i.e., nets with two or more 

pins. While the KL algorithm aims to minimize cut costs based on edges, 

the FM algorithm minimizes cut costs based on nets.

 The area of each individual cell is taken into account.

 Nodes and subgraphs are referred to as cells and blocks, respectively. 

2.4.3    Fiduccia-Mattheyses (FM) Algorithm
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Given:  a graph G(V,E) with nodes and weighted edges 

Goal:  to assign all nodes to disjoint partitions, so as to minimize the total cost 

(weight) of all cut nets while satisfying partition size constraints 

2.4.3    Fiduccia-Mattheyses (FM) Algorithm
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Fiduccia-Mattheyses (FM) Algorithm – Terminology

FS(c): the # of cut nets connected only to cell c in c’s partition

“moving force”

c

FS(c) = 1
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Fiduccia-Mattheyses (FM) Algorithm – Terminology

TE(c): the # of uncut nets connected to cell c 

“retention force”

c

TE(c) = 1
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Fiduccia-Mattheyses (FM) Algorithm – Terminology

Δg(c) = FS(c) – TE(c) 

“gain of moving c”

c

Δg(c) = 0
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Gain g(c) for cell c

g(c)  = FS(c) – TE(c) , 

where 

the “moving force“ FS(c) is the number of nets connected 

to c but not connected to any other cells within c’s 

partition, i.e., cut nets that connect only to c, and 

the “retention force“ TE(c) is the number of uncut nets 

connected to c.

The higher the gain g(c), the higher is the 

priority to move the cell c to the other partition. 

Cell 2:      FS(2) = 0 TE(2) = 1 g(2) = -1

1
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4
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b
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d
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2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology
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Gain g(c) for cell c

g(c)  = FS(c) – TE(c) , 

where 

the “moving force“ FS(c) is the number of nets connected 

to c but not connected to any other cells within c’s 

partition, i.e., cut nets that connect only to c, and 

the “retention force“ TE(c) is the number of uncut nets 

connected to c.

Cell 1:      FS(1) = 2 TE(1) = 1 g(1) = 1

Cell 2:      FS(2) = 0 TE(2) = 1 g(2) = -1

Cell 3:      FS(3) = 1 TE(3) = 1 g(3) = 0 

Cell 4:      FS(4) = 1 TE(4) = 1 g(4) = 0

Cell 5:      FS(5) = 1 TE(5) = 0 g(5) = 1 

1

3

4

2

5
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b
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2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology
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Maximum positive gain Gm of a pass 

The maximum positive gain Gm is the cumulative cell gain of m moves 

that produce a minimum cut cost. 

Gm is determined by the maximum sum of cell gains g over a prefix of 

m moves in a pass 





m

i

im gG
1



2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology
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Ratio factor

The ratio factor is the relative balance between the two partitions with respect to 

cell area.

It is used to prevent all cells from clustering into one partition. 

The ratio factor r is defined as

where area(A) and area(B) are the total respective areas of partitions A and B

)()(

)(

BareaAarea

Aarea
r




2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology
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Balance criterion

The balance criterion enforces the ratio factor. 

To ensure feasibility, the maximum cell area areamax(V) must be taken into 

account. 

A partitioning of V into two partitions A and B is said to be balanced if 

[ r ∙ area(V) – areamax(V) ] ≤ area(A) ≤ [ r ∙ area(V) + areamax(V) ]

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology
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Base cell

A base cell is a cell c that has maximum cell gain g(c) among all free cells, and 

whose move does not violate the balance criterion. 

Cell 1:      FS(1) = 2 TE(1) = 1 g(1) = 1

Cell 2:      FS(2) = 0 TE(2) = 1 g(2) = -1

Cell 3:      FS(3) = 1 TE(3) = 1 g(3) = 0 

Cell 4:      FS(4) = 1 TE(4) = 1 g(4) = 0

Base cell

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology
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Fiduccia-Mattheyses (FM) Algorithm – Terminology

 Pin distribution of a net: The pair (A(net), B(net))

where  A(net): # of pins in partition A

B(net): # of pins in partition B

 Critical net: A net that contains a cell c whose move 

changes the cut state of the net

 Either: The net has 1 cell in partition A and all others in B

 Or: The net has all cells in a single partition

 For a critical cell, one of the following should hold:

A(net) = 0 or A(net) = 1 or B(net) = 0 or B(net) = 1
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Fiduccia-Mattheyses (FM) Algorithm – Critical Nets

 Critical nets simplify the gain calculations

 Only the cells belonging to critical nets need to be 

considered for gain calculations
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Fiduccia-Mattheyses Algorithm  

Step 0: Compute the balance criterion 

Step 1: Compute the cell gain Dg1 of each cell 

Step 2: i = 1 

– Choose base cell c1 that has maximal gain Dg1 , move this cell 

Step 3:  

– Fix the base cell ci  

– Update all cells’ gains that are connected to critical nets via the base cell ci 

Step 4: 

– If all cells are fixed, go to Step 5. If not: 

– Choose next base cell ci with maximal gain Dgi and move this cell 

– i = i + 1, go to Step 3 

Step 5:  

– Determine the best move sequence c1, c2, .., cm (1 £ m £ i) , so that  å =
=

m

i im gG
1
Δ  is maximized 

– If Gm > 0, go to Step 6. Otherwise, END 

Step 6:  

– Execute m moves, reset all fixed nodes 

– Start with a new pass, go to Step 1 
 

2.4.3 Fiduccia-Mattheyses (FM) Algorithm
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1
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A B

a
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2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

Step 0: Compute the balance criterion

[ r ∙ area(V) – areamax(V) ] ≤ area(A) ≤ [ r ∙ area(V) + areamax(V) 

]

0,375 * 16 – 5 = 1  area(A)  11 = 0,375 * 16 +5.

Given:

Ratio factor r = 0,375

area(Cell_1) = 2 

area(Cell_2) = 4 

area(Cell_3) = 1 

area(Cell_4) = 4 

area(Cell_5) = 5.
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1
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A B

a
b

c
d

e

Step 1: Compute the gains of each cell

Cell 1:      FS(Cell_1) = 2 TE(Cell_1) = 1 g(Cell_1) = 1

Cell 2:      FS(Cell_2) = 0 TE(Cell_2) = 1 g(Cell_2) = -1

Cell 3:      FS(Cell_3) = 1 TE(Cell_3) = 1 g(Cell_3) = 0 

Cell 4:      FS(Cell_4) = 1 TE(Cell_4) = 1 g(Cell_4) = 0

Cell 5:      FS(Cell_5) = 1 TE(Cell_5) = 0 g(Cell_5) = 1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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1

3

4

2

5

A B

a
b

c
d

e
Cell1:       FS(Cell_1) = 2     TE(Cell_1) = 1 g(Cell_1) = 1

Cell 2:      FS(Cell_2) = 0     TE(Cell_2) = 1 g(Cell_2) = -1

Cell 3:      FS(Cell_3) = 1     TE(Cell_3) = 1 g(Cell_3) = 0 

Cell 4:      FS(Cell_4) = 1     TE(Cell_4) = 1 g(Cell_4) = 0

Cell 5:      FS(Cell_5) = 1     TE(Cell_5) = 0 g(Cell_5) = 1

Step 2: Select the base cell 

Possible base cells are Cell 1 and Cell 5

Balance criterion after moving Cell 1: area(A) = area(Cell_2) = 4

Balance criterion after moving Cell 5: area(A) = area(Cell_1) + area(Cell_2) + area(Cell_5) = 11

Both moves respect the balance criterion, but Cell 1 is selected, moved, 

and fixed as a result of the tie-breaking criterion.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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Step 3: Fix base cell, update g values

Cell 2:      FS(Cell_2) = 2 TE(Cell_2) = 0 g(Cell_2) = 2

Cell 3:      FS(Cell_3) = 0 TE(Cell_3) = 1 g(Cell_3) = -1

Cell 4:      FS(Cell_4) = 0 TE(Cell_4) = 2 g(Cell_4) = -2

Cell 5:      FS(Cell_5) = 0 TE(Cell_5) = 1 g(Cell_5) = -1

After Iteration i = 1: Partition A1 = 2, Partition B1 = 1,3,4,5, with fixed cell 1.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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Cell 2:      FS(Cell_2) = 2    TE(Cell_2) = 0 g(Cell_2) = 2

Cell 3:      FS(Cell_3) = 0    TE(Cell_3) = 1 g(Cell_3) = -1

Cell 4:      FS(Cell_4) = 0    TE(Cell_4) = 2 g(Cell_4) = -2

Cell 5:      FS(Cell_5) = 0    TE(Cell_5) = 1 g(Cell_5) = -1

Iteration i = 2

Cell 2 has maximum gain g2 = 2, area(A) = 0, balance criterion is violated.

Cell 3 has next maximum gain g2 = -1, area(A) = 5, balance criterion is met.

Cell 5 has next maximum gain g2= -1, area(A) = 9, balance criterion is met.

Move cell 3, updated partitions: A2 = {2,3}, B2 = {1,4,5}, with fixed cells {1,3} 

Iteration i = 1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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Cell 2:      g(Cell_2) = 1

Cell 4:      g(Cell_4) = 0

Cell 5:      g(Cell_5) = -1

Iteration i = 3

Cell 2 has maximum gain g3 = 1, area(A) = 1, balance criterion is met.

Move cell 2, updated partitions: A3 = {3}, B3 = {1,2,4,5}, with fixed cells {1,2,3} 

1

3

4

2

5

A

Ba b

c
d

e

Iteration i = 2

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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Cell 4:      g(Cell_4) = 0

Cell 5:      g(Cell_5) = -1

Iteration i = 4

Cell 4 has maximum gain g4 = 0, area(A) = 5, balance criterion is met.

Move cell 4, updated partitions: A4 = {3,4}, B3 = {1,2,5}, with fixed cells {1,2,3,4} 

1
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5

B A

a b

c
d

e

Iteration i = 3

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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Cell 5:      g(Cell_5) = -1

Iteration i = 5

Cell 5 has maximum gain g5 = -1, area(A) = 10, balance criterion is met.

Move cell 5, updated partitions: A4 = {3,4,5}, B3 = {1,2}, all cells {1,2,3,4,5} fixed.
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B A

a b

c
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e

Iteration i = 4

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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Step 5: Find best move sequence c1 … cm

G1 = g1 = 1

G2 = g1 + g2 = 0

G3 = g1 + g2 + g3 = 1

G4 = g1 + g2 + g3 + g4 = 1

G5 = g1 + g2 + g3 + g4 + g5 = 0.

Maximum positive cumulative gain 1

1




m

i

im gG

found in iterations 1, 3 and 4.

The move prefix m = 4 is selected due to the better balance ratio (area(A) = 5); 

the four cells 1, 2, 3 and 4 are then moved.

Result of Pass 1: Current partitions: A = {3,4}, B = {1,2,5}, cut cost reduced from 3 to 2.
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2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example
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Chapter 2 Supplemental: Difference between KL & FM

 Component dependency of partitioning algorithms

 KL is based on the number of edges

 FM is based on the number of nets

 Time complexity of partitioning algorithms

 KL has cubic time complexity

 FM has linear time complexity 

54
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Chapter 2 – Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals

2.4 Partitioning Algorithms

2.4.1  Kernighan-Lin (KL) Algorithm

2.4.2  Extensions of the Kernighan-Lin Algorithm

2.4.3  Fiduccia-Mattheyses (FM) Algorithm

2.5 Framework for Multilevel Partitioning

2.5.1  Clustering

2.5.2  Multilevel Partitioning

2.6 System Partitioning onto Multiple FPGAs
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2.5.1 Clustering

56

 To make things easy, groups of tightly-connected nodes can be clustered,

absorbing connections between these nodes

 Size of each cluster is often limited so as to prevent degenerate clustering, 

i.e. a single large cluster dominates other clusters

 Refinement should satisfy balance criteria
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2.5.1 Clustering

a

b c

d

e

a,b,c

d

e

a

b

d

c,e

Initital graph Possible clustering hierarchies of the graph 
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2.5.2 Multilevel Partitioning
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FPGA Applications: Programmability

 Instead of fabricating a chip, we can program an FPGA

 Advantages:

 Avoid non-recurring engineering (NRE) costs of IC design

 Enable later changes easily (e.g. in case of a new media format)

 Disadvantages:

 Larger area, more power, slower speed
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FPGA Applications: System Prototyping

 Reduce time to market with system prototyping:

 Typical design cycle:

Hardware design

Arch RTL PD Litho Fab Firmware Drivers Apps

Arch RTL PD Litho Fab

Firmware Drivers Apps
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2.6 System Partitioning onto Multiple FPGAs

FPGA FPGA FPGA FPGA

FPIC FPIC FPIC FPIC

FPGA FPGA

RAM Logic Logic

Reconfigurable system with multiple 

FPGA and FPIC devices 

Mapping of a typical system architecture 

onto multiple FPGAs 
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System Partitioning onto Multiple FPGAs

 Challenges:

 Low utilization of FPGA resources (due to hard I/O pin limits)

 Low performance (due to interconnect delays between FPGAs)

 Long runtimes of system partitioning process

 Partitioning formulations:

 Hard upper bound for total area of each partition

 Hard upper bound for the cut size

 3rd dimension for FPGA mapping: time
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Summary of Chapter 2 

 Circuit netlists can be represented by graphs or hypergraphs

 Partitioning a graph means assigning nodes to disjoint partitions 

 Total size of each partition (number/area of nodes) is limited 

 Objective: minimize the number connections between partitions 

 Basic partitioning algorithms 

 Incremental changes organized into passes 

 KL swaps pairs of nodes from different partitions 

 FM re-assigns one node at a time 

 FM is faster, usually more successful 

 Multilevel partitioning 

 Clustering 

 FM partitioning 

 Refinement (also uses FM partitioning) 

 Application: system partitioning into FPGAs 

 Each FPGA is represented by a partition 


