Routing Topology Algorithms

Mustafa Ozdal
Introduction

• How to connect nets with multiple terminals?
• Net topologies needed before point-to-point routing between terminals.

• Several objectives:
 – Minimum wirelength
 – Best timing
 – Routability
Example

(receiver)

(driver)
Example – Star topology (suboptimal)

Connect each receiver to the driver independently.
Example – Min Wirelength Topology

- : receiver
- : driver
Outline

• Definitions and basic algorithms
 – Minimum Spanning Trees (MST)
 – Steiner Trees
 – Rectilinear Steiner Trees

• Wirelength vs timing tradeoff
Minimum Spanning Tree (MST)

• Consider a connected graph $G = (V, E)$
 – V: terminals
 – E: potential connections between terminals
 – $w(e)$: wirelength of edge e

• MST: The set of edges E_T such that:
 – E_T is a subset of E
 – The graph $T = (V, E_T)$ is connected
 – The total edge weight of E_T is minimum
MST Example

• 5 vertices
• 10 edges
• Weight of edge e is the Manhattan distance of e
• What is the MST?
MST Example

- The edge set E_T:
 - $W(E_T)$ is minimum
 - $T = (V, E_T)$ is still connected

- Note: $T = (V, E_T)$ must contain n vertices and $n-1$ edges.
Kruskal’s MST Algorithm

1. Initialize T as empty set

2. Define a disjoint set corresponding to each vertex in V.

3. Sort edges in non-decreasing order of weights

4. For each e = (v1, v2) in the sorted edge list
 1. If v1 and v2 belong to different sets
 1. Add e to T
 2. Merge the sets corresponding to v1 and v2

5. Return T
Kruskal’s MST Algorithm - Example

- Initially, each vertex is a disjoint set (different color)
- We will process edges from shortest to longest
Kruskal’s MST Algorithm – Example

Step 1

• Start from the shortest edge

• The vertices connected are in different sets

• Add the edge to MST

• Merge the vertices
Kruskal’s MST Algorithm - Example

Step 2

- Process the next shortest edge.
- The vertices connected are in different sets.
- Add the edge to MST.
- Merge the vertices.
Kruskal’s MST Algorithm – Example

Step 3

• Process the next shortest edge.
• The vertices connected are in different sets.
• Add the edge to MST.
• Merge the vertices.
Kruskal’s MST Algorithm – Example

Step 4

- Process the next shortest edge.
- The vertices connected are in different sets.
- Add the edge to MST.
- Merge the vertices.
Kruskal’s MST Algorithm – Example
Step 5

• Process the next shortest edge.
• The vertices connected are in the same set
• Skip the edge
Kruskal’s MST Algorithm – Example

Step 6

- Process the next shortest edge.
- The vertices connected are in different sets.
- Add the edge to MST.
- Merge the vertices.
Kruskal’s MST Algorithm – Example

Step 7

- All vertices are connected
- MST edges are highlighted
Prim’s MST Algorithm

1. Initialize V_T and MST to be empty set

2. Pick a root vertex v in V (e.g. driver terminal)

3. Add v to V_T

4. While V_T is not equal to V
 1. Find edge $e = (v_1, v_2)$ such that
 1. v_1 is in V_T
 2. v_2 is NOT in V_T
 3. weight of e is minimum
 2. Add e to MST
 3. Add v_2 to V_T

5. Return MST
Prim’s MST Algorithm - Example

- Initially, V_T contains the root vertex (e.g. driver)
Prim’s MST Algorithm - Example

- Pick the shortest edge between V_T and $V - V_T$
- Add that edge to MST
- Expand V_T
Prim’s MST Algorithm - Example

• Pick the shortest edge between V_T and $V - V_T$
• Add that edge to MST
• Expand V_T
Prim’s MST Algorithm - Example

- Pick the shortest edge between V_T and $V - V_T$
- Add that edge to MST
- Expand V_T
Prim’s MST Algorithm - Example

- Pick the shortest edge between \(V_T \) and \(V - V_T \)
- Add that edge to MST
- Expand \(V_T \)
Prim’s MST Algorithm - Example

• Pick the shortest edge between V_T and $V - V_T$

• Add that edge to MST

• Expand V_T
Prim's MST Algorithm - Example

- Pick the shortest edge between \(V_T \) and \(V - V_T \)
- Add that edge to MST
- Expand \(V_T \)
Prim’s MST Algorithm - Example

- All vertices are included in V_T
- MST edges are highlighted
Find the min-cost edge set that connects a given vertex set.

Possible to solve it optimally in $O(E \log E)$ time
 - Kruskal’s algorithm
 - Prim’s algorithm

In general Prim’s algorithm is better to control timing tradeoffs because we expand a wavefront from the driver.
Steiner Trees

• Similar to MSTs, but:
 – Extra intermediate vertices can be added to reduce wirelength.

MST

Steiner tree

Steiner point
Rectilinear Steiner Trees

- Steiner trees of which edges are all Manhattan
 - i.e. The routing of the slanted edges are all pre-determined

Steiner tree

Rectilinear Steiner tree
Steiner Tree Algorithms

• Steiner tree problem is NP-complete
 – Most likely there’s no polynomial time optimal algorithm
 – Note: MST problem can be solved optimally in $O(E \log E)$

• Many Steiner tree heuristics
 – Iteratively add Steiner points to an MST
 – Route each edge of MST allowing Steiner points be created in the process.
 – Exponential time algorithms: Based on ILP, SAT, SMT solvers
 – A popular and practical algorithm: FLUTE

FLUTE for Steiner Tree Generation

Example

- “Press” terminals from each side
FLUTE for Steiner Tree Generation

Example

- Press from left
- From the leftmost terminal to the second leftmost one.
FLUTE for Steiner Tree Generation

Example

- Create a Steiner edge corresponding to pressing edge
- Create a Steiner point at the new location

It is proven that pressing maintains optimality of Steiner tree.
FLUTE for Steiner Tree Generation

Example

- Press from top
FLUTE for Steiner Tree Generation
Example

- Press from top
FLUTE for Steiner Tree Generation

Example

- Press from right
FLUTE for Steiner Tree Generation

Example

- Press from bottom
FLUTE for Steiner Tree Generation

Example

- Problem is reduced to the rectangle at the center.
- How to connect these 4 Steiner (orange) points?
FLUTE for Steiner Tree Generation

Example

- FLUTE pre-computes all Steiner tree solutions for such rectangles up to 10 terminals.

- After pressing, if there are less than 10 nodes, returns the solution from database.
FLUTE for Steiner Tree Generation

• The solutions for simple problems are stored in a database.

• After pressing operations, if the problem is turned into one of those in the database, the best solution in the database is returned.

• If not in the database, use reduction heuristics.

Canonical solutions stored in database
FLUTE for Steiner Tree Generation

Example

• Solution inside the center rectangle is chosen from the database.
FLUTE for Steiner Tree Generation

Example

• Final rectilinear Steiner tree
Cost Metrics

• Many tradeoffs to consider for routing topologies

• Topology with best wirelength can have poor timing

• Topology with best wirelength and timing may not be routable
Example

Wirelength/Timing Tradeoff

: receiver

: driver
Example
Min Wirelength

: receiver
: driver
Example
Min Wirelength

Large delay to receiver

: receiver
: driver
Example

Better Timing – Worse Wirelength