
CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

1

CS473-Algorithms I

Lecture 1

Introduction to Analysis of
Algorithms

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

2

Motivation
– Procedure vs. Algorithm

– What kind of problems are solved by Algorithms?
• determine/compare DNA sequences
• efficiently search (e.g. Google) web pages w/ keywords
• route data (e.g. email) on the Internet

• decode data (e.g. banking) for security

– Data Structures & Algorithms
– Repertoire vs. New Algorithms (Techniques)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

3

Motivation cntd
– Efficient (scope of course) vs. Inefficient

– Design algorithms that are
• fast,
• uses as little memory as possible, and
• correct!

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

4

Problem : Sorting (from Section 1.1)

Input : Sequence of numbers

〈a1, a2,…,an〉
Output : A permutation

Π= 〈 Π (1), Π(2),…, Π (n)〉
such that

 aΠ(1)≤ aΠ(2) ≤ … ≤ aΠ(n)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

5

Algorithm: Insertion sort (from Section 1.1)

Insertion-Sort (A)
1 for j ← 2 to n do

2 key ← A[j];

3 i ← j - 1;

4 while i > 0 and A[i] > key do

5 A[i+1] ← A[i];

6 i ← i - 1;

endwhile

7 A[i+1] ← key;

endfor

Θ(1)

Θ(1)

Θ(1)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

6

Pseudocode Notation
– Liberal use of English
– Use of indentation for block structure
– Omission of error handling and other details

• Needed in real programs

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

7

Algorithm: Insertion sort

Idea:

• Items sorted in-place
– Items rearranged within array
– At most constant number of items stored outside the

array at any time
– Input array A contains sorted output sequence when

Insertion-Sort is finished

• Incremental approach

1 ni j

key

already sorted

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

8

Algorithm: Insertion sort

Example: Sample sequence

A=〈31, 42, 59, 26,40, 35〉
Assume first 5 items are already sorted in A[1..5]

A=〈26, 31, 40, 42, 59, 35〉
already sorted key

26 31 40 42 59 35 35=key
26 31 40 42 59 59 35=key
26 31 40 42 42 59 35=key
26 31 40 40 42 59 35=key
26 31 35 40 42 59

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

9

Running Time
• Depends on

– Input size (e.g., 6 elements vs 60000 elements)
– Input itself (e.g., partially sorted)

• Usually want upper bound

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

10

Kinds of running time analysis:
– Worst Case (Usually):

T(n) = max time on any input of size n

– Average Case (Sometimes):
T(n) = average time over all inputs of size n

Assumes statistical distribution of inputs

– Best Case (Rarely):
BAD*: Cheat with slow algorithm that works fast on some inputs
GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time
– Check whether input constitutes an output at the very beginning of the

algorithm

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

11

Running Time
• For Insertion-Sort, what is its worst-case time

– Depends on speed of primitive operations
• Relative speed (on same machine)
• Absolute speed (on different machines)

• Asymptotic analysis
– Ignore machine-dependent constants
– Look at growth of T(n) as n→∞

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

12

Θ Notation

• Drop low order terms

• Ignore leading constants

E.g. 3n3+90n2-2n+5= Θ(n3)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

13

• As n gets large a Θ(n2) algorithm runs faster
than a Θ(n3) algorithm

T(n)

n

min value for n0

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

14

Running Time Analysis of Insertion-Sort
• Sum up costs:

• The best case (sorted order):

• The worst case (reverse sorted order):

() ++−+−+= ∑
=

n

j
jtcncncncnT

2
4321)1()1(

∑∑
==

−+−+−
n

j
j

n

j
j nctctc

2
8

2
65)1()1()1(

())()(854274321 ccccncccccnT +++−++++=

() +++= 2
7652

1)(ncccnT
)())((854287652

1
421 ccccnccccccc +++−++++++

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

15

Running Time Analysis of Insertion-Sort
• Worst-case (input reverse sorted)

– Inner loop is Θ(j)

• Average case (all permutations equally likely)
– Inner loop is Θ(j/2)

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?
– Yes, for small n. No, for large n.

() () ()2

22

njjnT
n

j

n

j

Θ=

Θ=Θ= ∑∑

==

() () () ()2

22

2 njjnT
n

j

n

j

Θ=Θ=Θ= ∑∑
==

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

16

Algorithm: Merge-Sort

• Basic Step: Merge 2 sorted lists of total
length n in Θ(n) time

• Example:

2 3 7 8

1 4 5 6
1 2 3 4 5 6 ...

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

17

Recursive Algorithm:

Merge-Sort (A,p,r) (T(n))
if p = r then return; (Θ(1))

else

q ← (p+r)/2 ; : Divide (Θ(1))

Merge-Sort(A,p,q); : Conquer (T(n/2))

Merge-Sort(A,q+1,r); : Conquer
(T(n/2))

Merge(A,p,q,r); : Combine (Θ(n))

endif
• Call Merge-Sort(A,1,n) to sort A[1..n]
• Recursion bottoms up when subsequences have length 1

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

18

Recurrence (for Merge-Sort) -From Section 1.3

• Describes a function recursively in terms of itself
• Describes performance of recursive algorithms

• For Merge-Sort

T(n)=
Θ(1) if n=1
2T(n/2) + Θ(n) otherwise

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

19

• How do we find a good upper bound on
T(n) in closed form?

• Generally, will assume T(n)=Constant (Θ(1))
for sufficiently small n

• For Merge-Sort write the above recurrence as

T(n)=2 T(n/2) + Θ(n)

• Solution to the recurrence

T(n)=Θ(nlgn)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

20

Conclusions (from Section 1.3)
∀Θ(nlgn) grows more slowly than Θ(n2)

Therefore Merge-Sort beats Insertion-Sort in
the worst case

•In practice, Merge-Sort beats Insertion-Sort
for n>30 or so.

	CS473-Algorithms I
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

