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CS473-Algorithms I

Lecture 3

Solving Recurrences
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Solving Recurrences

• The analysis of merge sort Lecture 1 required us 
to solve a recurrence.

• Recurrences are like solving integrals, differential 
equations, etc.

        Learn a few tricks.

• Lecture 4 : Applications of recurrences.
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Recurrences

• Function expressed recursively

• Solve for n = 2k
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Recurrences
• Claimed answer: T(n) = lgn+1 = Θ (lgn)

 Substitute claimed answer for T in the recurrence
 Note: resulting equations are true when n = 2k

   i.e.  

Tedious technicality: haven’t shown T(n) = Θ (lgn)
– But, since T(n) is monotonically non-decreasing function of n

– Thus, ceiling didn’t matter much
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• Technically, should be careful about floors and 

ceilings (as in the book)

    

• But, usually it is okay 

− To ignore floor/ceiling

− Just solve for exact powers of 2 ( or b)

Recurrences
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Boundary Conditions
• Usually assume T(n)= Θ(1) for small n
           – Does not usually affect soln. (if polynomially bounded)

•  Example: Initial condition affects soln.
           – Exponential  T(n)=(T(n / 2))2

                If T(1)= c for a constant c > 0, then
                    T(2) = (T(1))2=c2, T(4)= (T(2))2=c4,
                    T(n) = Θ(cn)
 E.g.,   

Difference in soln. is more dramatic with
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Substitution Method

• The most general method:
1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

• Example: T(n) = 4T(n/2) + n
–  [Assume that T(1) = Θ(1).]
–  Guess O(n3) . (Prove O and Ω separately.)
–  Assume that T(k) ≤ ck3 for k < n .
–  Prove T(n) ≤ cn3 by induction.
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Example of Substitution

 T(n) = 4T(n/2) + n

         ≤  4c (n/2)3 + n

         = (c/2) n3 + n

         = cn3 –n ((c/2) n3 -  n)   desired –residual

         ≤  cn3 

    whenever (c/2) n3 – n ≥  0, for example,

     if c ≥  2 and n ≥  1         residual        
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Example (Continued)

• We must also handle the initial conditions, that is, 
ground the induction with base cases.

• Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable 

constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big 

enough.

               

                   This bound is not tight!
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A Tighter Upper Bound?

We shall prove that  T(n) = O(n2)

Assume that T(k) ≤   ck2 for k < n:

           T(n) = 4T(n/2) + n
                   ≤   cn2 + n
                   = O(n2)   Wrong ! We must prove the I.H.

                   = cn2 - (-n) 
                   ≤  cn2 

    for no choice  of c > 0. Lose!
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A Tighter Upper Bound!

• IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.

 Inductive hypothesis: T(k) ≤   c1k2 – c2k for k < n

           T(n) = 4T(n/2) + n
                   ≤  4 (c1 (n/2)2- c2 (n/2)) + n
                   = c1 n2- 2 c2 n + n

 = c1 n2- c2 n –(c2 n - n)
                   ≤  c1 n2- c2 n  if c2 > 1
 Pick c1 big enough to handle the initial conditions
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Recursion-Tree Method

• A recursion tree models the costs (time) of a recursive 

execution of an algorithm.

• The recursion tree method is good for generating 

guesses for the substitution method.

• The recursion-tree method can be unreliable.

• The recursion-tree method promotes intuition, 

however.
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + n2:
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Solve T(n) = T(n/4) + T(n/2) + n2:

                            T(n)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

                             n2

T(n/4) T(n/2)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

                               n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

                             n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

                             n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

                             n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

5/16 n2

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

                             n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

5/16 n2

25/256 n2

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

                             n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

5/16 n2

25/256 n2

Total = n2 (1 + 5/16 + (5/16)2 + (5/16)2 + ...)
         = Θ(n2)     geometric series

Example of Recursion Tree
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The Master Method

• The master method applies to recurrences of the form

                T(n) = aT(n/b) + f (n) ,

    where a ≥ 1, b > 1, and f is asymptotically

    positive.
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Three Common Cases
• Compare f (n) with              :

1.  f (n) = O(               ) for some constant ε > 0.

•   f (n) grows polynomialy slower than 

                  (by an nε factor).

   Solution: T(n) = Θ(                ) .

2.  f (n) = Θ(             lgkn) for some constant k ≥ 0.

         •    f (n) and              grow at similar rates.

  Solution: T(n) = Θ(             lgk+1n) .

abnlog

ε−abnlog

abnlog

abnlog

abnlog

abnlog

abnlog
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• Compare f (n) with                    :

3.  f (n) = Ω (                   ) for some constant ε > 0.
•  f (n) grows polynomially faster than 

                  (by an nε factor).

          and  f (n) satisfies the regularity condition that 

           a f (n/b) ≤  c f (n) for some constant  c < 1

 

  Solution: T(n) = Θ( f (n) ) .

abnlog

ε+abnlog

abnlog

Three Common Cases
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Examples

abnlog
• Ex: T(n) = 4T(n/2) + n 

           a=4, b=2 ⇒              = n2 ; f (n) = n 

          CASE 1: f (n) =O (n2- ε) for ε=1

                T(n) = Θ (n2)

• Ex: T(n) = 4T(n/2) + n2  

           a=4, b=2 ⇒               = n2 ; f (n) = n2  
         CASE 2: f (n) = Θ (n2 lg0n), that is, k=0

                 T(n) = Θ (n2 lgn)

abnlog
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Examples

abnlog
• Ex: T(n) = 4T(n/2) + n3 

           a=4, b=2 ⇒               = n2 ; f (n) = n3. 

          CASE 3: f (n) =Ω  (n2+ ε) for ε=1

          and 4 c (n/2)3  ≤  cn3 (reg. cond.) for c=1/2.

                T(n) = Θ (n3)

• Ex: T(n) = 4T(n/2) + n2 / lgn 

           a=4, b=2 ⇒               = n2 ; f (n) = n2 / lgn  

   Master method does not apply. In particular, for every  
constant ε > 0, we have nε = ω (lgn)

abnlog
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General Method (Akra-Bazzi)

Let p be the unique solution to

Then, the answers are the same as for the

master method, but with np instead of 
(Akra and Bazzi also prove an even more general result.)

∑
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Idea of Master Theorem

Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b)  f (n/b)

a

a f (n/b)

 f (n/b2)  f (n/b2)  f (n/b2)

ah= logbn
a2 f (n/b2)

#leaves = a h

             = 

             = 

nba log

abnlog
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Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b)  f (n/b)

a

a f (n/b)

 f (n/b2)  f (n/b2)  f (n/b2)

ah= logbn
a2 f (n/b2)

CASE 1 : The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight. Θ (               )

abnlog

Idea of Master Theorem
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Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b)  f (n/b)

a

a f (n/b)

 f (n/b2)  f (n/b2)  f (n/b2)

ah= logbn
a2 f (n/b2)

CASE 2 : (k = 0) The weight
is approximately the same on

each of the logbn levels.
Θ (             lgn)

abnlog

Idea of Master Theorem
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Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b)  f (n/b)

a

a f (n/b)

 f (n/b2)  f (n/b2)  f (n/b2)

ah= logbn
a2 f (n/b2)

CASE 3 : The weight decreases
geometrically from the root to the
leaves. The root holds a constant

fraction of the total weight.     Θ (  f (n) )

Idea of Master Theorem
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Proof of Master Theorem:
Case 1 and Case 2

• Recall from the recursion tree (note h = lgbn=tree 
height)
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    Leaf cost    Non-leaf cost = g(n)
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Proof of Case 1
                                       for some ε > 0

  

  

  
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 = An increasing geometric series since b > 1
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Case 1 (cont’)
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Proof of Case 2 (limited to k=0)
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Conclusion

• Next time: applying the master method.
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