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CS473-Algorithms I 

Lecture 5  

Quicksort 
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Quicksort 

• Proposed by C.A.R. Hoare in 1962. 
• Divide-and-conquer algorithm. 
• Sorts “in place” (like insertion sort, but 

not like merge sort). 
• Very practical (with tuning). 
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Quicksort 
1.  Divide: Partition the array into 2 subarrays such 

that elements in the lower part ≤ elements in the 
higher part 

2.  Conquer: Recursively sort 2 subarrays 
3.  Combine: Trivial (because in-place) 

•  Key: Linear-time (Θ(n)) partitioning algorithm 

≥ x  ≤ x  
p q r 
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Two partitioning algorithms 

1.  Hoare’s algorithm: Partitions around the first 
element of subarray (pivot = x = A[p]) 

2.  Lomuto’s algorithm: Partitions around the last 
element of subarray (pivot = x = A[r]) 

≥ x ? ≤ x 
 p  i j  r 

x > x ? ≤ x 
 p  i j  r 
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Hoare’s Partitioning Algorithm 
 H-PARTITION (A, p, r) 
      pivot ← A[p] 
      i ← p - 1 
      j ← r + 1 
      while true do 
           repeat j ← j - 1 until A[j] ≤ pivot 
           repeat i ← i + 1 until A[i] ≥ pivot 
           if i < j then 
                exchange A[i] ↔ A[j] 
           else 
                return j 

Running time  
is O(n) 

≥ x ? ≤ x 
 p  i j  r 
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        QUICKSORT (A, p, r) 
        if p < r then 
            q ← H-PARTITION(A, p, r) 
              QUICKSORT(A, p, q) 
               QUICKSORT(A, q +1, r) 

       Initial invocation: QUICKSORT(A, 1, n) 

≥ x  ≤ x  
p q r 
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Hoare’s Partitioning Algorithm 

•  Select a pivot element: pivot=A[p] from A[p…r] 
•  Grows two regions 

A[p…i] from left to right 
A[j…r] from right to left 

such that 
every element in A[p…i] is ≤ pivot 
every element in A[j…r] is ≥ pivot 
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Hoare’s Partitioning Algorithm 

•  The two regions A[p…i] and A[j…r] grow until 
A[i] ≥ pivot ≥ A[j]  

•  Assuming these inequalities are strict 
-  A[i] is too large to belong to the left region 
-  A[j] is too small to belong to the right region 
-  exchange A[i]↔A[j] for future growing in the 

next iteration 
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Hoare’s Partitioning Algorithm 

•  It is important that  
-  A[p] is chosen as the pivot element 
-  If A[r] is used as pivot then 

•  may yield a trivial split (termination i = j = r) 
•  occurs when A[p…r-1] < pivot = A[r] 
•  then quicksort may loop forever since q = r 
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 5        3        2       6         4        1        3        7 
i j 

 5        3        2       6         4        1        3        7 
i j 

 3        3        2       6         4        1        5        7 
i j 

Hoare’s Algorithm: Example 1 (pivot = 5) 
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 3        3        2        6        4        1        5        7 
j i 

 3        3        2        1        4        6        5        7 
j i 

 3        3        2        1        4        6        5        7 
j 

i 

Termination: i = 6; j = 5,    i.e., i = j + 1 

p q r 

Hoare’s Algorithm: Example 1 (pivot = 5) 
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 5        3        2       6         5        1        3        7 
i j 

 5        3        2       6         5        1        3        7 
i j 

 3        3        2       6         5        1        5        7 
i j 

Hoare’s Algorithm: Example 2 (pivot = 5) 
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 3        3        2        6        5        1        5        7 
j i 

 3        3        2        1        5        6        5        7 
j i 

 3        3        2        1        5        6        5        7 
j 
i 

Hoare’s Algorithm: Example 2 (pivot = 5) 

Termination: i = j = 5 

p q r 



CS473 – Lecture 5 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

14 

Correctness of Hoare’s Algorithm 

(a) Indices i & j never reference A outside the interval A[p…r] 
(b) Split is always non-trivial; i.e., j ≠ r at termination 
(c) Every element in A[p…j] ≤ every element in A[ j +1…r ] at 

termination 

Notation used for proof: 
•  k = # of times while-loop iterates until termination 

•  il & jl = values of i & j indices at the end of iteration 1 ≤ l ≤ k 

•  Note: we always have i1 = p  &  p ≤ j1 ≤ r 
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Correctness of Hoare’s Algorithm 
Lemma: Either ik =  jk or ik = jk +1 at termination 

  k = 1: occurs when A[p+1…r] > pivot  ⇒  il = jl = p 

> x  
p r 

 j1  j 
 i  i1 

x = pivot 
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Correctness of Hoare’s Algorithm 

  k > 1:  we have ik-1 <  jk-1  
               (A[ik-1] ≤ pivot & A[jk-1] ≥ pivot due to exchange) 

•  case a: ik-1< jk < jk-1 
- case a-1: A[jk] = pivot ⇒ ik = jk 

≥ x 

 p 
 ik-1 

 r  jk-1  jk 
 ik 

=x 

x = pivot 

> x < x ≤ x 
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-  case a-2: A[jk] < pivot ⇒ ik = jk + 1 

 p 
 ik-1 

 r  jk-1  jk 
 ik 

•  case b: ik-1 =  jk < jk-1 ⇒ ik = jk +1 

 p 
 ik-1 

 r  jk-1  jk 
 ik 

> x 

x = pivot 

x = pivot 

≥ x < x > x < x ≤ x 

≥ x ≤ x 
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Correctness of Hoare’s Algorithm 

(a) Indices i & j never reference A outside the interval A[p…r] 
(b) Split is always non-trivial; i.e., j ≠ r at termination 

Proof of (a) & (b) 

•  k = 1: trivial since i1 = j1 = p 

•  k > 1: p ≤ jk < r  ⇒ p < ik ≤  r  due to the lemma 
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(c) Every element in A[p…j] ≤ every element in A[ j +1…r ] at 
termination 

Proof of (c) : by induction on l (while-loop iteration sequence)  
Basis: true for l = 1 

•  k = 1:  

•  k > 1:  

p = i1 = j1 r 

L1=pivot R1>pivot 

p j1 r 
? 

L1≤pivot >pivot 

R1≥pivot 
≤ pivot =pivot 

after exchange 

exchange 
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•  Hypothesis: Ll-1 = A[p… il-1] ≤ pivot ≤ A[jl-1…r] = Rl-1 

•  Show that  

-  Ll = A[p… il] ≤ pivot ≤ A[jl…r] = Rl if l < k 

-  Ll = A[p… jl] ≤ pivot ≤ A[jl +1…r] = Rl if l = k 

•  Case: l  < k (partition does not terminate at iteration l) 

? 
 p  r  il-1  il  jl  jl-1 

Ll-1 ≤ pivot <pivot 

Ll ≤ pivot 

>pivot Rl-1 ≥ pivot 

Rl ≥ pivot 

≤ pivot ≥ pivot 
after exchange 
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Lomuto’s Partitioning Algorithm 
 L-PARTITION (A, p, r) 
      pivot ← A[r] 
      i ← p - 1 
      for j ← p to r - 1 do 
           if A[j] ≤ pivot then 
                i ← i + 1 
                exchange A[i] ↔ A[j] 
            exchange A[i + 1] ↔ A[r] 
       return i + 1 

Running time  
is O(n) 

x > x ? ≤ x 
 p  i j  r 
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        QUICKSORT (A, p, r) 
        if p < r then 
            q ← L-PARTITION(A, p, r) 
              QUICKSORT(A, p, q - 1) 
               QUICKSORT(A, q +1, r) 

       Initial invocation: QUICKSORT(A, 1, n) 

> x  ≤ x  
p q r 

x  
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 7        8        2        6        5        1        3        4 
i j 

 7        8        2        6        5        1        3        4 
i j 

 2        8        7        6        5        1        3        4 
i j 

Lomuto’s Algorithm: Example (pivot = 4) 
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i j 
 2        8        7        6        5        1        3        4 

i j 
 2        1        7        6        5        8        3        4 

i j 
 2        1        7        6        5        8        3        4 

Lomuto’s Algorithm: Example (pivot = 4) 
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i j 
 2        1        3        6        5        8        7        4 

i r 
 2        1        3        6        5        8        7        4 

 2        1        3        4        5        8        7        6 

Example: pivot = 4 

p q r 
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Comparison of Hoare’s & Lomuto’s Algorithms 
Notation: n = r-p+1 & pivot = A[p] (Hoare) 
                                  & pivot = A[r] (Lomuto) 

  # of element exchanges: e(n) 
•  Hoare: 0 ≤ e(n) ≤  

-  Best: k =1 with i1=j1=p   (i.e., A[ p+1…r ] > pivot) 

-  Worst: A[ p+1…p+       -1] ≥ pivot ≥ A[ p+      …r ] 

•  Lomuto: 1 ≤ e(n) ≤ n 
-  Best: A[ p…r -1 ] > pivot  

-  Worst: A[ p…r -1 ] ≤ pivot 
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Comparison of Hoare’s & Lomuto’s Algorithms 

  # of element comparisons: ce(n) 
•  Hoare: n + 1 ≤ ce(n) ≤ n + 2 
-  Best: ik = jk 

-  Worst: ik = jk + 1 
•  Lomuto: ce(n) = n - 1 

  # of index comparisons: ci(n) 
•  Hoare: 1 ≤ ci(n) ≤       + 1     (ci(n) = e(n) + 1) 

•  Lomuto: ci(n) = n - 1 



CS473 – Lecture 5 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

28 

Comparison of Hoare’s & Lomuto’s Algorithms 

  # of index increment/decrement operations: a(n) 
•  Hoare: n + 1 ≤ a(n) ≤ n + 2    (a(n) = ce(n)) 

•  Lomuto: n ≤ a(n) ≤ 2n - 1    (a(n) = e(n) + (n - 1)) 

•  Hoare’s algorithm is in general faster  

•  Hoare behaves better when pivot is repeated in A[p…r] 
-  Hoare: Evenly distributes them between left & right 

regions 
-  Lomuto: Puts all of them to the left region 


