
CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

1

CS473-Algorithms I

Lecture 5

Quicksort

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

2

Quicksort

• Proposed by C.A.R. Hoare in 1962.
• Divide-and-conquer algorithm.
• Sorts “in place” (like insertion sort, but

not like merge sort).
• Very practical (with tuning).

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

3

Quicksort
1.  Divide: Partition the array into 2 subarrays such

that elements in the lower part ≤ elements in the
higher part

2.  Conquer: Recursively sort 2 subarrays
3.  Combine: Trivial (because in-place)

•  Key: Linear-time (Θ(n)) partitioning algorithm

≥ x ≤ x
p q r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

4

Two partitioning algorithms

1.  Hoare’s algorithm: Partitions around the first
element of subarray (pivot = x = A[p])

2.  Lomuto’s algorithm: Partitions around the last
element of subarray (pivot = x = A[r])

≥ x ? ≤ x
 p i j r

x > x ? ≤ x
 p i j r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

5

Hoare’s Partitioning Algorithm
 H-PARTITION (A, p, r)
 pivot ← A[p]
 i ← p - 1
 j ← r + 1
 while true do
 repeat j ← j - 1 until A[j] ≤ pivot
 repeat i ← i + 1 until A[i] ≥ pivot
 if i < j then
 exchange A[i] ↔ A[j]
 else
 return j

Running time
is O(n)

≥ x ? ≤ x
 p i j r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

6

 QUICKSORT (A, p, r)
 if p < r then
 q ← H-PARTITION(A, p, r)
 QUICKSORT(A, p, q)
 QUICKSORT(A, q +1, r)

 Initial invocation: QUICKSORT(A, 1, n)

≥ x ≤ x
p q r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

7

Hoare’s Partitioning Algorithm

•  Select a pivot element: pivot=A[p] from A[p…r]
•  Grows two regions

A[p…i] from left to right
A[j…r] from right to left

such that
every element in A[p…i] is ≤ pivot
every element in A[j…r] is ≥ pivot

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

8

Hoare’s Partitioning Algorithm

•  The two regions A[p…i] and A[j…r] grow until
A[i] ≥ pivot ≥ A[j]

•  Assuming these inequalities are strict
-  A[i] is too large to belong to the left region
-  A[j] is too small to belong to the right region
-  exchange A[i]↔A[j] for future growing in the

next iteration

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

9

Hoare’s Partitioning Algorithm

•  It is important that
-  A[p] is chosen as the pivot element
-  If A[r] is used as pivot then

•  may yield a trivial split (termination i = j = r)
•  occurs when A[p…r-1] < pivot = A[r]
•  then quicksort may loop forever since q = r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

10

 5 3 2 6 4 1 3 7
i j

 5 3 2 6 4 1 3 7
i j

 3 3 2 6 4 1 5 7
i j

Hoare’s Algorithm: Example 1 (pivot = 5)

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

11

 3 3 2 6 4 1 5 7
j i

 3 3 2 1 4 6 5 7
j i

 3 3 2 1 4 6 5 7
j

i

Termination: i = 6; j = 5, i.e., i = j + 1

p q r

Hoare’s Algorithm: Example 1 (pivot = 5)

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

12

 5 3 2 6 5 1 3 7
i j

 5 3 2 6 5 1 3 7
i j

 3 3 2 6 5 1 5 7
i j

Hoare’s Algorithm: Example 2 (pivot = 5)

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

13

 3 3 2 6 5 1 5 7
j i

 3 3 2 1 5 6 5 7
j i

 3 3 2 1 5 6 5 7
j
i

Hoare’s Algorithm: Example 2 (pivot = 5)

Termination: i = j = 5

p q r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

14

Correctness of Hoare’s Algorithm

(a) Indices i & j never reference A outside the interval A[p…r]
(b) Split is always non-trivial; i.e., j ≠ r at termination
(c) Every element in A[p…j] ≤ every element in A[j +1…r] at

termination

Notation used for proof:
•  k = # of times while-loop iterates until termination

•  il & jl = values of i & j indices at the end of iteration 1 ≤ l ≤ k

•  Note: we always have i1 = p & p ≤ j1 ≤ r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

15

Correctness of Hoare’s Algorithm
Lemma: Either ik = jk or ik = jk +1 at termination

  k = 1: occurs when A[p+1…r] > pivot ⇒ il = jl = p

> x
p r

 j1 j
 i i1

x = pivot

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

16

Correctness of Hoare’s Algorithm

  k > 1: we have ik-1 < jk-1
 (A[ik-1] ≤ pivot & A[jk-1] ≥ pivot due to exchange)

•  case a: ik-1< jk < jk-1
- case a-1: A[jk] = pivot ⇒ ik = jk

≥ x

 p
 ik-1

 r jk-1 jk
 ik

=x

x = pivot

> x < x ≤ x

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

17

-  case a-2: A[jk] < pivot ⇒ ik = jk + 1

 p
 ik-1

 r jk-1 jk
 ik

•  case b: ik-1 = jk < jk-1 ⇒ ik = jk +1

 p
 ik-1

 r jk-1 jk
 ik

> x

x = pivot

x = pivot

≥ x < x > x < x ≤ x

≥ x ≤ x

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

18

Correctness of Hoare’s Algorithm

(a) Indices i & j never reference A outside the interval A[p…r]
(b) Split is always non-trivial; i.e., j ≠ r at termination

Proof of (a) & (b)

•  k = 1: trivial since i1 = j1 = p

•  k > 1: p ≤ jk < r ⇒ p < ik ≤ r due to the lemma

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

19

(c) Every element in A[p…j] ≤ every element in A[j +1…r] at
termination

Proof of (c) : by induction on l (while-loop iteration sequence)
Basis: true for l = 1

•  k = 1:

•  k > 1:

p = i1 = j1 r

L1=pivot R1>pivot

p j1 r
?

L1≤pivot >pivot

R1≥pivot
≤ pivot =pivot

after exchange

exchange

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

20

•  Hypothesis: Ll-1 = A[p… il-1] ≤ pivot ≤ A[jl-1…r] = Rl-1

•  Show that

-  Ll = A[p… il] ≤ pivot ≤ A[jl…r] = Rl if l < k

-  Ll = A[p… jl] ≤ pivot ≤ A[jl +1…r] = Rl if l = k

•  Case: l < k (partition does not terminate at iteration l)

?
 p r il-1 il jl jl-1

Ll-1 ≤ pivot <pivot

Ll ≤ pivot

>pivot Rl-1 ≥ pivot

Rl ≥ pivot

≤ pivot ≥ pivot
after exchange

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

21

Lomuto’s Partitioning Algorithm
 L-PARTITION (A, p, r)
 pivot ← A[r]
 i ← p - 1
 for j ← p to r - 1 do
 if A[j] ≤ pivot then
 i ← i + 1
 exchange A[i] ↔ A[j]
 exchange A[i + 1] ↔ A[r]
 return i + 1

Running time
is O(n)

x > x ? ≤ x
 p i j r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

22

 QUICKSORT (A, p, r)
 if p < r then
 q ← L-PARTITION(A, p, r)
 QUICKSORT(A, p, q - 1)
 QUICKSORT(A, q +1, r)

 Initial invocation: QUICKSORT(A, 1, n)

> x ≤ x
p q r

x

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

23

 7 8 2 6 5 1 3 4
i j

 7 8 2 6 5 1 3 4
i j

 2 8 7 6 5 1 3 4
i j

Lomuto’s Algorithm: Example (pivot = 4)

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

24

i j
 2 8 7 6 5 1 3 4

i j
 2 1 7 6 5 8 3 4

i j
 2 1 7 6 5 8 3 4

Lomuto’s Algorithm: Example (pivot = 4)

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

25

i j
 2 1 3 6 5 8 7 4

i r
 2 1 3 6 5 8 7 4

 2 1 3 4 5 8 7 6

Example: pivot = 4

p q r

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

26

Comparison of Hoare’s & Lomuto’s Algorithms
Notation: n = r-p+1 & pivot = A[p] (Hoare)
 & pivot = A[r] (Lomuto)

  # of element exchanges: e(n)
•  Hoare: 0 ≤ e(n) ≤

-  Best: k =1 with i1=j1=p (i.e., A[p+1…r] > pivot)

-  Worst: A[p+1…p+ -1] ≥ pivot ≥ A[p+ …r]

•  Lomuto: 1 ≤ e(n) ≤ n
-  Best: A[p…r -1] > pivot

-  Worst: A[p…r -1] ≤ pivot

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

27

Comparison of Hoare’s & Lomuto’s Algorithms

  # of element comparisons: ce(n)
•  Hoare: n + 1 ≤ ce(n) ≤ n + 2
-  Best: ik = jk

-  Worst: ik = jk + 1
•  Lomuto: ce(n) = n - 1

  # of index comparisons: ci(n)
•  Hoare: 1 ≤ ci(n) ≤ + 1 (ci(n) = e(n) + 1)

•  Lomuto: ci(n) = n - 1

CS473 – Lecture 5 Cevdet Aykanat - Bilkent University
Computer Engineering Department

28

Comparison of Hoare’s & Lomuto’s Algorithms

  # of index increment/decrement operations: a(n)
•  Hoare: n + 1 ≤ a(n) ≤ n + 2 (a(n) = ce(n))

•  Lomuto: n ≤ a(n) ≤ 2n - 1 (a(n) = e(n) + (n - 1))

•  Hoare’s algorithm is in general faster

•  Hoare behaves better when pivot is repeated in A[p…r]
-  Hoare: Evenly distributes them between left & right

regions
-  Lomuto: Puts all of them to the left region

