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Heapsort



Introduction

• O(n lgn) worst case
• Sorts in place
• Another design paradigm
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• Another design paradigm
– Use of  a data structure (heap) to manage 
information during execution of algorithm



Heap Data Structure
• Nearly complete binary tree

– Completely filled on all levels, 
except possibly the lowest level

– Lowest  level is filled from left to right
– Each node of the tree stores an element

• Height of a node

h h-1
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• Height of a node
– Length of the longest simple downward path from the node to a 
leaf

> Height of the tree: height of the root

• Depth of a node
– Length of the simple downward path from the root to the node



Heap Property
• For every node i other than root

– Max-Heap: A[parent(i)] ≥ A[i]
– Min-Heap:  A[parent(i)] ≤ A[i]
Where A[i] denotes the element stored at node i

• Will discuss Max-Heap

i

parent(i)

x

> x

Max-Heap
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• Will discuss Max-Heap

x
i

Si

< x

Fact: Largest element in a 
subtree of a heap is at the 
root of the subtree.



Example

1

2 3

4 5 6 7
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4 5 6 7

8 9 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

A :



Heap Data Structure
• Store a heap in an array with implicit links

– Left child: left(i)=2i
– Right child: right(i)= 2i+1
Computing 2i is fast: left shift in binary
– Parent of i is: parent(i)=i/2
Computing i/2 is fast: right shift in binary
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Computing i/2 is fast: right shift in binary
• A[1]: element stored at the root
• Array has two attributes

– length[A]: number of elements in A
– heap-size[A]=n: number of elem. in heap stored in A

n ≤ length[A]



Heap Operations

EXTRACT-MAX(A, n)

max ← A[1]

A[1] ← A[n]

n← n − 1

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

max to be
returned
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n← n − 1

HEAPIFY(A, 1, n)

return max

1

2 3

4 5 6 7

8 9

1

14 10

8 7 9 3

2 4

Heapify(A, 1, 9) max=16 returned

O(1) + heapify time



Heap Operations
HEAPIFY(A, i, n)

if 2i ≤ n and A[2i] > A[i]
then largest ← 2i

else largest ← i

if 2i +1 ≤ n and A[2i+1] > A[largest]
then largest ← 2i +1

Maintaining heap property:

Subtrees rooted at left[i]
and right[i] are already 
heaps.

But, A[i] may violate the 
heap property (i.e.,  may be 

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

8

then largest ← 2i +1
if largest ≠ i then
exchange A[i]↔ A[largest]
HEAPIFY(A, largest, n)

else return

heap property (i.e.,  may be 
smaller than its children)

Idea: Float down the value 
at A[i] in the heap so that 
subtree rooted at i becomes 
a heap.



Maintaining Heap

1

2 3
16

4 10

HEAPIFY(A,2,10)
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HEAPIFY(A,4,10)

1
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Intuitive Analysis of HEAPIFY
• Consider HEAPIFY(A, i, n)
– let h(i) be the height of node i
– at most h(i) recursion levels

• Constant work at each level: Θ(1)

– Therefore T(i) = O(h(i))
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– Therefore T(i) = O(h(i))

• Heap is almost-complete binary tree
> h(i) = O(lgn)

• Thus T(n) = O(lgn)



Formal Analysis of HEAPIFY
• Worst case occurs when last row of the subtree Si rooted at 
node i is half full

• T(n) ≤ T(| SL(i)|) + Θ(1)

i
L(i) R(i)
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• T(n) ≤ T(| SL(i)|) + Θ(1)

• SL(i) and SR(i) are complete

binary trees of heights 

h(i) −1 and h(i) −2, 

respectively

h(i)-2h(i)-1 SL(i) SR(i)

m leaf nodes
m / 2 leaf
nodes



• Let m be the number of leaf nodes in SL(i)

• | SL(i) | = m +  (m – 1) = 2m – 1 ; 

• | SR(i) | = m/2 + (m/2 – 1) = m – 1 

Formal Analysis of HEAPIFY

ext int

i
L(i) R(i)

SL(i) SR(i)

m / 2 leaf
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• | SL(i) |     +    | SR(i) | +1= n

(2m – 1) +  (m – 1) +1= n⇒ m = (n+1)/3

| SL(i) | = 2m – 1=2(n+1)/3 – 1=(2n/3+2/3) –1=2n/3 –1/3 ≤ 2n/3

• T(n) ≤ T(2n/3) + Θ(1) ⇒ T(n) = O(lgn) By case 2 of 
Master Thm

m leaf nodes
m / 2 leaf
nodes



Maintaining Heap Property: Efficiency Issues

HEAPIFY(A, i, n)
j← i
while true do

if 2j ≤ n and A[2j] > A[j] 
then largest ← 2j

else largest ← j

Recursion vs iteration:

•In the absence of tail 
recursion iterative 
version is in general more 
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else largest ← j

if 2j +1 ≤ n and A[2j+1] > A[largest]
then largest ← 2j +1

if largest ≠ j then
exchange A[j]↔ A[largest]
j← largest

else return

version is in general more 
efficient. 

Because of the pop/push
operations to/from stack
at each level of recursion. 



Building Heap

• Use HEAPIFY in a bottom-up manner
– This processing order guarantees that SL(i) and SR(i) are 
already heaps when HEAPIFY is run on node i

Lemma: last n/2 nodes of a heap are all leaves
Proof: 

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

14

Proof: 

nodesf/2

f/2

dd-1

f leaf nodes

m -
leaf nodes

m = 2d – 1: # nodes at level d – 1

f : # nodes at level d (last level)



Proof of Lemma

• # of leaves=f + (m – f/2)
=m+ f/2

m+(m – 1) + f = n
2m + f = n+1

 (2m+f ) =  (n+1) 

nodesf/2

f/2m -

m = 2d – 1

1 1
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 (2m+f ) =  (n+1) 
m+f/2 = n/2
m+ f/2 = n/2
• # of leaves= n/2 Q.E.D

f/2
f leaf nodes

m -
leaf nodes2

1
2
1



Building Heap

BUILD-HEAP(A, n)

for i← downto 1 do

HEAPIFY(A, i, n)

Running time analysis
• Get simple O(nlgn) bound

 2/n
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• Get simple O(nlgn) bound
− n calls to HEAPIFY each of which takes  O(lgn) time
− Loose bound
− A good approach in general

− Start by proving easy bound
− Then, try to tighten it



1

2 3

4 5 6 7

8 9

4
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i

Build-Heap: Example
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4
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14 8 7
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i

4 1 3 216 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10
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14 8 7 14 8 7
1

2 3

4 5 6 7

8 9

4

1 3

14 16 9 10

2 8 7
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i
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4 5 6 7

8 9

4
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14 16 9 3

2 8 7
10

i



Build-Heap: Example(cont’)
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4 5 6 7

4
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8 9

14 7 9 3

2 8 1
10 8 9

8 7 9 3

2 4 1
10



d

l =1, d – 2 ≤ h1 ≤ d –1
l = 0, h0= d

l, d – l – 1 ≤ hl ≤ d – l

Build-Heap: tighter running time analysis
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l= d – 1, 0 ≤ hd–1 ≤ 1

l= d, hd= 0
If the heap is complete binary tree then hl = d – l

Otherwise, nodes at a given level do not all have the same height

But we have d – l – 1 ≤ h l ≤ d – l



∴T(n)= O(Σ 2l (d – l))
Let h = d – l⇒ l = d – h (change of variables)

Assume that all nodes at level l= d – 1 are processed 

T(n)= ΣnlO(hl)= O(Σnl hl)

Build-Heap: tighter running time analysis

l=0

d-1

l=0

d-1

l=0

d-1 nl= 2l = # of nodes at level l
hl= height of nodes at level l
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Let h = d – l⇒ l = d – h (change of variables)

T(n)= O(Σ h 2d-h)= O(Σ h 2d/2h)= O(2dΣ h (1/2)h)

but 2d=Θ(n)⇒ T(n)= O(nΣ h (1/2)h)
h=1

d

h=1

d

h=1

d

h=1

d



recall infinite decreasing geometric series
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Build-Heap: tighter running time analysis
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differentiate both sides
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then, multiply both sides by x

in our case: x = 1/2 and k = h

2
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Build-Heap: tighter running time analysis
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in our case: x = 1/2 and k = h

∑

∑

=

∞

=

Ο=Ο=∴

Ο==
−

=∴

d

h

h

h

h

nhnnT

h

1

2
0

)())2/1(()(

)1(2
)2/11(

2/1
)2/1(



The HEAPSORT algorithm

(1) Build a heap on array A[1…n] by calling BUILD-HEAP(A, n)
(2) The largest element is stored at the root A[1]

Put it into its correct final position A[n] by A[1] ↔A[n] 
(3) Discard node n from the heap

Heapsort Algorithm
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(3) Discard node n from the heap
(4) Subtrees (S2 & S3) rooted at children of root remain as heaps

but the new root element may violate the heap property
Make A[1…n − 1] a heap by calling HEAPIFY(A, 1, n − 1)

(5) n← n − 1
(6) Repeat steps 2−4 until n = 2



HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i← n downto 2 do

Heapsort Algorithm
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for i← n downto 2 do
exchange A[1] ↔A[i]
HEAPIFY(A, 1, i −1)



1

2 3

4 5 6 7

8 9

16
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8 7 9 3

2 4 1
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Heapsort: Example
1

2 3

4 5 6 7

8 9

14
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4 7 9 3
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1
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i
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9
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10 14 16
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Heapsort: Example
1
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4 5

7
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1 2 8 9

10 14 16

i
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Heapsort: Example
1

2
2

1 3

4 7 8 9

10 14 16

i

1
1
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4 7 8 9

10 14 16

i
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1
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4 7 8 9

10 14 16

i

1 2 3 4 7 8 9 10 14 16



• BUILD-HEAP takes O(n) time
• i-th iteration of for loop takes O(lg(n − i)) time

• Heapsort is a very good algorithm but, a good 
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Heapsort Run Time Analysis
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• Heapsort is a very good algorithm but, a good 
implementation of quicksort always beats heapsort
in practice

• However, heap data structure has many popular 
applications, and it can be efficiently used for 
implementing priority queues



Data structures for Dynamic Sets

• Consider sets of records having key and 
satellite data

key
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key

satellite datax

record



Operations on Dynamic Sets
• Queries: Simply return info; Modifying operations: Change the set

– INSERT(S, x): (Modifying) S← S ∪{x}
– DELETE(S, x): (Modifying) S ← S − {x}
– MAX(S) / MIN(S): (Query) return x∈S with the largest/smallest key
– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and 

∈
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– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and 
delete x∈S with the largest/smallest key

– SEARCH(S, k): (Query) return x∈S with key[x]= k
– SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return y∈S which 
is the next larger/smaller element after x

• Different data structures support/optimize different operations



Priority Queues (PQ)

• Supports 
– INSERT 

– MAX / MIN 
– EXTRACT-MAX / EXTRACT-MIN

• One application: Schedule jobs on a shared resource
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• One application: Schedule jobs on a shared resource
– PQ keeps track of jobs and their relative priorities
– When a jobs is finished or interrupted 

Highest priority job is selected from those pending using 
EXTRACT-MAX 

– A new job can be added at any time using INSERT



Priority Queues

• Another application: Event-driven simulation
– Events to be simulated are the items in the PQ
– Each event is associated with a time of occurrence which serves 
as a key

– Simulation of an event can cause other events to be simulated in 
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– Simulation of an event can cause other events to be simulated in 
the future

– Use EXTRACT-MIN at each step to choose the next event to 
simulate

– As new events are produced insert them into the PQ using 
INSERT



Implementation of Priority Queue

• Sorted linked list: Simplest implementation
– INSERT

– O(n) time
– Scan the list to find place and splice in the new item

– EXTRACT-MAX 
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– EXTRACT-MAX 
– O(1) time
– Take the first element

> Fast extraction but slow insertion.



Implementation of Priority Queue
• Unsorted linked list: Simplest implementation

– INSERT
– O(1) time
– Put the new item at front

– EXTRACT-MAX 
– O(n) time
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– O(n) time
– Scan the whole list

> Fast insertion but slow extraction
Sorted linked list is better on the average
– Sorted list: on the average, scans n/2 elem. per insertion
– Unsorted list: always scans n elem. at each extraction



Heap Implementation of PQ
• INSERT and EXTRACT-MAX are both O(lgn)

– good compromise between fast insertion but slow extraction and vice versa

• EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion is like that of Insertion-Sort.

HEAP-INSERT(A, key, n)Traverses O(lgn) nodes, as 
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HEAP-INSERT(A, key, n)
n← n +1
i ← n
while i >1 and A[i/2] < key do
A[i] ←A[i/2]
i← i/2

A[i] ← key

Traverses O(lgn) nodes, as 
HEAPIFY does but makes 
fewer comparisons and 
assignments

–HEAPIFY: compares parent 
with both children
–HEAP-INSERT: with only one



1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1
10 11

HEAP-INSERT(A, 15)
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Heap Increase Key
• Key value of i-th element of heap is
increased from A[i] to key

HEAP-INCREASE-KEY(A, i, key)
if key < A[i] then
return error
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return error

while i >1 andA[i/2] < key do
A[i] ←A[i/2]
i← i/2

A[i] ← key



HEAP-INCREASE-KEY(A, 9, 15)
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Heap Implementation of PQ
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1

a 414
b 1 10
c 310
d 16 1
e ¬*
f 9 6
g 2 8

key data H-ptr

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

39

1

2 3

4 5 6 7
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a

c

k f j

g m b
10

h

g 2
h 215
i * ¬
j 73
k 7 5
l ¬*
m 8 9
n *

8

¬
o * ¬


