CS473-Algorithms 1

Lecture §

Heapsort

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Introduction

* O(nlgn) worst case
* Sorts 1n place
* Another design paradigm

— Use of a data structure (heap) to manage
information during execution of algorithm

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Data Structure

« Nearly complete binary tree I
— Completely filled on all levels,
except possibly the lowest level h

h-1

— Lowest level is filled from left to right
— Each node of the tree stores an element

« Height of a node

— Length of the longest simple downward path from the node to a
leaf

> Height of the tree: height of the root

* Depth of a node
— Length of the simple downward path from the root to the node

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Property

* For every node i other than root
— Max-Heap: A[parent(7)] > A[i]
— Min-Heap: A[parent(i)] < A[i]

Where A[i] denotes the element stored at node i

« Will discuss Max-Heap

Fact: Largest element 1n a
subtree of a heap 1s at the
root of the subtree.

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 4
Computer Engineering Department

Example

1 2 3456 78910

A- 116114/10/817]9]3]2]4 |1

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Data Structure

« Store a heap 1n an array with implicit links
— Left child: left(i)=2i
— Right child: right(i)= 2i+1
Computing 2i 1s fast: left shift in binary
— Parent of 7 1s: parent(i)=Li/2J

Computing | i/2] is fast: right shift in binary
* AJl]: element stored at the root
* Array has two attributes

— length[A]: number of elements in A

— heap-size[A]

CS473 — Lecture 8

=n: number of elem. in heap stored in A

n < length[A]

Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Operations | e mextobe

returned

EXTRACT-MAX(A, n)
max < Al[l]

All] « Aln]

n<«<n-—1

HEAPIFY(A, 1, n)

return max
O(1) + heapify time
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 7

Computer Engineering Department

Heap Operations

Maintaining heap property: HEAPIFY(A, i, n)
Subtrees rooted at left[/] if 2i <n and A[2{] > A[/]
and right[i] are already then largest < 2i
heaps. else largest « i
But, A[i/] may violate the if 21 +1 <n and A[2i+1] > A[largest]
heap property (1.e., may be then largest < 2i +1
smaller than 1ts children) if largest = i then
Idea: Float down the value exchange AliJ«> Allargest]
at A[7] in the heap so that HEAPIFY(A, largest, n)
subtree rooted at i becomes else return
a heap.
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 8

Computer Engineering Department

Maintaming Heap | peaprviasio.

HEAPIFY(A,2,10) 1

CS473 — Lecture 8

Cevdet Aykanat - Bilkent University 9
Computer Engineering Department

Intuitive Analysis of HEAPIFY

e Consider HEAPIFY(A, i, n)
— let h(7) be the height of node i

— at most h(7) recursion levels

« Constant work at each level: O(1)
— Therefore T(7) = O(h(7))
* Heap 1s almost-complete binary tree
>h(i) = O(Ign)
« Thus|T(n) = O(lgn)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

10

Formal Analysis of HEAPIFY

* Worst case occurs when last row of the subtree S, rooted at

node 7 1s half full

*+ T(n) <T(] SL(i)D T O(1)

* S, and Sy are complete

binary trees of heights ¢

- ' m/EIeaf

respectively
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 11

Computer Engineering Department

Formal Analysis of HEAPIFY

Let m be the number of leaf nodes in SL(Z.)

| Sy l=m + (m—1)=2m—1;

ext int
—_— —

| Spiy | =m/2+(m/2—1)=m—1

[Sy |+ [ey | T1=n

_ _ m/ 2 leaf
m leaf nodes nodes

Cm—1)+ (m—1)+1=n=m= (n+1)/3

| Sy | = 2m — 1=2(n+1)/3 — 1=(2n/3+2/3) ~1=2n/3 ~1/3 < 2n/3

T(n) < T(2n/3) + ©(1) = T(n) = O(lg n) By case 2 of

Master Thm

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

12

Maintaining Heap Property: Efficiency Issues

HEAPIFY(A, i, n)
Rl
Recursion vs iteration: while true do
*In the absence of tail if 2/ <n and A[2]] > A[f]
recursion iterative then largest <— 2/
version is in general more else largest <
efficient. if 2/ +1 < n and A[2j+1] > A[largest]
Because of the pop/push then largest <— 2/ +1
operations to/from stack if largest #j then
at each level of recursion. exchange A[j]«<> Allargest]
J <« largest
else return

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 13
Computer Engineering Department

Building Heap

« Use HEAPIFY 1n a bottom-up manner

— This processing order guarantees that S, ; and Sy, are
already heaps when HEAPIFY is run on node i

Lemma: last| n/2 | nodes of a heap are all leaves

Proof: t f

-1 d

¢ m=29-1: #nodes at level d — 1

|_f/21 nodes
f:#nodes at level d (last level)

fleafrodes ~ leaf nodes

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 14
Computer Engineering Department

Proof of Lemma

o #of leaves=f+ (m —| /12)

=m+ | /12
mt(m-1)+f=n
2m + f=n+l
- @mAf)] =L (nt1) |
A2 =] n/2 |
m+f12]=1n/2 |
o # of leaves=| n/2 | Q.ED

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 15
Computer Engineering Department

Building Heap

BUILD-HEAP(A, n)

for i < |_n / QJ downto 1 do
HEAPIFY(A, i, n)

Running time analysis
e Get simple O(nlgn) bound
— n calls to HEAPIFY each of which takes O(lgn) time
— Loose bound
— A good approach 1n general
— Start by proving easy bound
— Then, try to tighten it

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 16
Computer Engineering Department

12345 6 7 8 910

Build-Heap: Example a[1[3]2f6]0 [10}14] 8|7

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 17
Computer Engineering Department

Build-Heap: Example(cont’)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 18
Computer Engineering Department

Build-Heap: tighter running time analysis

A =€:O,h0:d
- (=1,d-2<h <d-1

d e ld—0—1<h,<d—{

. t=d-1,0<h, <1
\ \- - (=d, h=0

[f the heap 1s complete binary tree then /1, =d — /

Otherwise, nodes at a given level do not all have the same height

Butwe haved -/ —-1<h ,<d—/

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 19
Computer Engineering Department

Build-Heap: tighter running time analysis

Assume that all nodes at level /=d — 1 are processed
n,=2'=# of nodes at level /

d-1 d-1
T(n)= Eg’eo(hf): 0%’% ho) { h,= height of nodes at level /

d-1
= T(n)= OQZ 2! (d - z))

=0
Let h=d— ¢ = ¢/ =d— h (change of variables)

T(n)= o(hd:] h 24)= o(héh 2424)= o(zdé]h (1/2)")

d
but 2= O(17) = T(n)= o(nhZ:]h (1/2)")

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 20
Computer Engineering Department

Build-Heap: tighter running time analysis

ih(l/z)”‘ Sih(l/Z)h Sih(l/Z)h

recall infinite decreasing geometric series

gxk =Lwhere M <1

1—x

differentiate both sides

N
ka _(l—x)2

k=0

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 21
Computer Engineering Department

Build-Heap: tighter running time analysis

St =]

k=0 (l—x)2
then, multiply both sides by x

o0

St =

k=0 (l—x)2
mourcase: x=12and k=#h

Zh(l 2)' = i 1/2) ~=2=0(1)

- T(n) = O(nZh(l/ 2)") =O(n)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 22
Computer Engineering Department

Heapsort Algorithm

The HEAPSORT algorithm

(1) Build a heap on array A[1...n] by calling BUILD-HEAP(A, n)
(2) The largest element is stored at the root A[1]
Put 1t into its correct final position A[n] by A[1] <> A[n]
(3) Discard node n from the heap
(4) Subtrees (S, & S;) rooted at children of root remain as heaps
but the new root element may violate the heap property
Make A[1...n — 1] a heap by calling HEAPIFY (A, 1,n— 1)
S)nen-1
(6) Repeat steps 2—4 until n =2

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 23
Computer Engineering Department

Heapsort Algorithm

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i «— n downto 2 do
exchange A[1] <> A[{]
HEAPIFY(A, 1,i-1)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

24

Heapsort: Example

]

8 I
2) 14 46

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 25
Computer Engineering Department

Heapsort: Example

, 8
7
4 5 6
J 2 v
1
4 3
5/@

=)
" 4
=)

@ i@ @

CS473 — Lecture 8

Cevdet Aykanat - Bilkent University
Computer Engineering Department

26

Heapsort: Example

é/@ 15

@ @

©)

@ @

%

®

©)

;
=

1

2

9110

14

16

CS473 — Lecture

8

Cevdet Aykanat - Bilkent University
Computer Engineering Department

27

Heapsort Run Time Analysis

« BUILD-HEAP takes O(n) time
* [-th 1teration of for loop takes O(lg(n — 7)) time

700 =3 Ol =) = 3 Ollg) = S kj Olnlgn)

. Heapsort 1s a very good algorithm but, a good
implementation of quicksort always beats heapsort
1n practice

 However, heap data structure has many popular

applications, and it can be efficiently used for
implementing priority queues

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 28
Computer Engineering Department

Data structures for Dynamic Sets

* Consider sets of records having key and
satellite data

— —~ key

X ‘ ——— satellite data

record

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 29
Computer Engineering Department

Operations on Dynamic Sets

Queries: Simply return info; Modifying operations: Change the set

INSERT(S, x): (Modifying) S<— S U{x}
DELETE(S, x): (Modifying) S <— S — {x}
MAX(S) / MIN(S): (Query) return x€ S with the largest/smallest key

EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and
delete xS with the largest/smallest key

SEARCH(S, k): (Query) return xe S with key[x]=k

SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return y€ S which
1s the next larger/smaller element after x

Different data structures support/optimize different operations

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 30
Computer Engineering Department

Priority Queues (PQ)

* Supports
— INSERT

— MAX/ MIN
— EXTRACT-MAX / EXTRACT-MIN

e One application: Schedule jobs on a shared resource

— PQ keeps track of jobs and their relative priorities
— When a jobs 1s finished or interrupted

Highest priority job is selected from those pending using
EXTRACT-MAX

— A new job can be added at any time using INSERT

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 31
Computer Engineering Department

Priority Queues

e Another application: Event-driven simulation

— Events to be simulated are the items in the P(Q)

— Each event 1s associated with a time of occurrence which serves
as a key

— Simulation of an event can cause other events to be simulated in
the future

— Use EXTRACT-MIN at each step to choose the next event to
simulate

— As new events are produced insert them into the PQ) using
INSERT

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 32
Computer Engineering Department

Implementation of Priority Queue

« Sorted linked list: Simplest implementation
— INSERT
— O(n) time
— Scan the list to find place and splice in the new item
— EXTRACT-MAX
—O(1) time
— Take the first element

> Fast extraction but slow 1nsertion.

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 33
Computer Engineering Department

Implementation of Priority Queue

* Unsorted linked list: Stmplest implementation

— INSERT
—O(1) time
— Put the new i1tem at front

— EXTRACT-MAX
— O(n) time
— Scan the whole list
> Fast insertion but slow extraction

Sorted linked list is better on the average
— Sorted list: on the average, scans n/2 elem. per insertion
— Unsorted list: always scans n elem. at each extraction

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

34

Heap Implementation of PQ

« INSERT and EXTRACT-MAX are both O(lg n)

— good compromise between fast insertion but slow extraction and vice versa

« EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion is like that of Insertion-Sort.

Traverses O(lgn) nodes, as HEAP-INSERT(A, key, n)

HEAPIFY does but makes n<—n+l
fewer comparisons and [<71
assignments while i >1 and A[Li/2]] < key do

~HEAPIFY: compares parent Ali] < AlLi/2]]

with both children [« Li/2]
~HEAP-INSERT: with only one Ali] « key
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 35

Computer Engineering Department

HEAP-INSERT(A, 15)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 36
Computer Engineering Department

Heap Increase Key

« Key value of i-th element of heap 1s

increased from A[i] to key

HEAP-INCREASE-KEY(A, i, key)
if key < A[i] then
return error
while i >1 and A[li/2]] <key do
Ali] « AJLi/2]]
[< i/2]
Ali] < key

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

37

HEAP-INCREASE-KEY(A, 9, 15)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 38
Computer Engineering Department

Heap Implementation of PQ

key |data| H-ptr
a |14 -
b |1 10
c |10
d [16
e ®
f 19
g [2
h |15
i ®
] |3
k |7
1 ®
m |8
n ®
0 ®

CS473 — Lecture 8

Il Jlef = oo oy ||| w

Cevdet Aykanat - Bilkent University
Computer Engineering Department

39

