
CS473-Algorithms I

Lecture 8

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

1

Heapsort

Introduction

• O(n lgn) worst case
• Sorts in place
• Another design paradigm

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

2

• Another design paradigm
– Use of a data structure (heap) to manage
information during execution of algorithm

Heap Data Structure
• Nearly complete binary tree

– Completely filled on all levels,
except possibly the lowest level

– Lowest level is filled from left to right
– Each node of the tree stores an element

• Height of a node

h h-1

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

3

• Height of a node
– Length of the longest simple downward path from the node to a
leaf

> Height of the tree: height of the root

• Depth of a node
– Length of the simple downward path from the root to the node

Heap Property
• For every node i other than root

– Max-Heap: A[parent(i)] ≥ A[i]
– Min-Heap: A[parent(i)] ≤ A[i]
Where A[i] denotes the element stored at node i

• Will discuss Max-Heap

i

parent(i)

x

> x

Max-Heap

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

4

• Will discuss Max-Heap

x
i

Si

< x

Fact: Largest element in a
subtree of a heap is at the
root of the subtree.

Example

1

2 3

4 5 6 7

16

14 10

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

5

4 5 6 7

8 9 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

A :

Heap Data Structure
• Store a heap in an array with implicit links

– Left child: left(i)=2i
– Right child: right(i)= 2i+1
Computing 2i is fast: left shift in binary
– Parent of i is: parent(i)=i/2
Computing i/2 is fast: right shift in binary

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

6

Computing i/2 is fast: right shift in binary
• A[1]: element stored at the root
• Array has two attributes

– length[A]: number of elements in A
– heap-size[A]=n: number of elem. in heap stored in A

n ≤ length[A]

Heap Operations

EXTRACT-MAX(A, n)

max ← A[1]

A[1] ← A[n]

n← n − 1

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

max to be
returned

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

7

n← n − 1

HEAPIFY(A, 1, n)

return max

1

2 3

4 5 6 7

8 9

1

14 10

8 7 9 3

2 4

Heapify(A, 1, 9) max=16 returned

O(1) + heapify time

Heap Operations
HEAPIFY(A, i, n)

if 2i ≤ n and A[2i] > A[i]
then largest ← 2i

else largest ← i

if 2i +1 ≤ n and A[2i+1] > A[largest]
then largest ← 2i +1

Maintaining heap property:

Subtrees rooted at left[i]
and right[i] are already
heaps.

But, A[i] may violate the
heap property (i.e., may be

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

8

then largest ← 2i +1
if largest ≠ i then
exchange A[i]↔ A[largest]
HEAPIFY(A, largest, n)

else return

heap property (i.e., may be
smaller than its children)

Idea: Float down the value
at A[i] in the heap so that
subtree rooted at i becomes
a heap.

Maintaining Heap

1

2 3
16

4 10

HEAPIFY(A,2,10)

1

2 3

4 5 6 7

8 9

16

14 10

4 7 9 3

2 8 1
10

HEAPIFY(A,4,10)

1

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

9

4 5 6 7

8 9

14 7 9 3

2 8 1
10

1

2 3

4 5 6 7

8 9

16

14 10

4

7 9 3

2

8

1
10

Intuitive Analysis of HEAPIFY
• Consider HEAPIFY(A, i, n)
– let h(i) be the height of node i
– at most h(i) recursion levels

• Constant work at each level: Θ(1)

– Therefore T(i) = O(h(i))

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

10

– Therefore T(i) = O(h(i))

• Heap is almost-complete binary tree
> h(i) = O(lgn)

• Thus T(n) = O(lgn)

Formal Analysis of HEAPIFY
• Worst case occurs when last row of the subtree Si rooted at
node i is half full

• T(n) ≤ T(| SL(i)|) + Θ(1)

i
L(i) R(i)

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

11

• T(n) ≤ T(| SL(i)|) + Θ(1)

• SL(i) and SR(i) are complete

binary trees of heights

h(i) −1 and h(i) −2,

respectively

h(i)-2h(i)-1 SL(i) SR(i)

m leaf nodes
m / 2 leaf
nodes

• Let m be the number of leaf nodes in SL(i)

• | SL(i) | = m + (m – 1) = 2m – 1 ;

• | SR(i) | = m/2 + (m/2 – 1) = m – 1

Formal Analysis of HEAPIFY

ext int

i
L(i) R(i)

SL(i) SR(i)

m / 2 leaf

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

12

• | SL(i) | + | SR(i) | +1= n

(2m – 1) + (m – 1) +1= n⇒ m = (n+1)/3

| SL(i) | = 2m – 1=2(n+1)/3 – 1=(2n/3+2/3) –1=2n/3 –1/3 ≤ 2n/3

• T(n) ≤ T(2n/3) + Θ(1) ⇒ T(n) = O(lgn) By case 2 of
Master Thm

m leaf nodes
m / 2 leaf
nodes

Maintaining Heap Property: Efficiency Issues

HEAPIFY(A, i, n)
j← i
while true do

if 2j ≤ n and A[2j] > A[j]
then largest ← 2j

else largest ← j

Recursion vs iteration:

•In the absence of tail
recursion iterative
version is in general more

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

13

else largest ← j

if 2j +1 ≤ n and A[2j+1] > A[largest]
then largest ← 2j +1

if largest ≠ j then
exchange A[j]↔ A[largest]
j← largest

else return

version is in general more
efficient.

Because of the pop/push
operations to/from stack
at each level of recursion.

Building Heap

• Use HEAPIFY in a bottom-up manner
– This processing order guarantees that SL(i) and SR(i) are
already heaps when HEAPIFY is run on node i

Lemma: last n/2 nodes of a heap are all leaves
Proof:

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

14

Proof:

nodesf/2

f/2

dd-1

f leaf nodes

m -
leaf nodes

m = 2d – 1: # nodes at level d – 1

f : # nodes at level d (last level)

Proof of Lemma

• # of leaves=f + (m – f/2)
=m+ f/2

m+(m – 1) + f = n
2m + f = n+1

 (2m+f) = (n+1)

nodesf/2

f/2m -

m = 2d – 1

1 1

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

15

 (2m+f) = (n+1)
m+f/2 = n/2
m+ f/2 = n/2
• # of leaves= n/2 Q.E.D

f/2
f leaf nodes

m -
leaf nodes2

1
2
1

Building Heap

BUILD-HEAP(A, n)

for i← downto 1 do

HEAPIFY(A, i, n)

Running time analysis
• Get simple O(nlgn) bound

 2/n

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

16

• Get simple O(nlgn) bound
− n calls to HEAPIFY each of which takes O(lgn) time
− Loose bound
− A good approach in general

− Start by proving easy bound
− Then, try to tighten it

1

2 3

4 5 6 7

8 9

4

1 3

2 16 9 10

14 8 7
10

i

Build-Heap: Example

1

2 3

4 5 6 7

8 9

4

1 3

2 16 9 10

14 8 7
10

i

4 1 3 216 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

17

14 8 7 14 8 7
1

2 3

4 5 6 7

8 9

4

1 3

14 16 9 10

2 8 7
10

i

1

2 3

4 5 6 7

8 9

4

1 10

14 16 9 3

2 8 7
10

i

Build-Heap: Example(cont’)

1

2 3

4 5 6 7

4

16 10

14 7 9 3

i

1

2 3

4 5 6 7

16

14 10

8 7 9 3

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

18

8 9

14 7 9 3

2 8 1
10 8 9

8 7 9 3

2 4 1
10

d

l =1, d – 2 ≤ h1 ≤ d –1
l = 0, h0= d

l, d – l – 1 ≤ hl ≤ d – l

Build-Heap: tighter running time analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

19

l= d – 1, 0 ≤ hd–1 ≤ 1

l= d, hd= 0
If the heap is complete binary tree then hl = d – l

Otherwise, nodes at a given level do not all have the same height

But we have d – l – 1 ≤ h l ≤ d – l

∴T(n)= O(Σ 2l (d – l))
Let h = d – l⇒ l = d – h (change of variables)

Assume that all nodes at level l= d – 1 are processed

T(n)= ΣnlO(hl)= O(Σnl hl)

Build-Heap: tighter running time analysis

l=0

d-1

l=0

d-1

l=0

d-1 nl= 2l = # of nodes at level l
hl= height of nodes at level l

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

20

Let h = d – l⇒ l = d – h (change of variables)

T(n)= O(Σ h 2d-h)= O(Σ h 2d/2h)= O(2dΣ h (1/2)h)

but 2d=Θ(n)⇒ T(n)= O(nΣ h (1/2)h)
h=1

d

h=1

d

h=1

d

h=1

d

recall infinite decreasing geometric series

∑∑∑
∞

===

≤≤
001

)2/1()2/1()2/1(
h

h
d

h

h
d

h

h hhh

1 where
1

<=∑
∞

xxk

Build-Heap: tighter running time analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

21

differentiate both sides

1 where
1
1

0

<
−

=∑
=

x
x

x
k

k

2
0

1

)1(
1
x

kx
k

k

−
=∑

∞

=

−

then, multiply both sides by x

in our case: x = 1/2 and k = h

2
0)1(x

x
kx

k

k

−
=∑

∞

=

2
0

1

)1(
1
x

kx
k

k

−
=∑

∞

=

−

Build-Heap: tighter running time analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

22

in our case: x = 1/2 and k = h

∑

∑

=

∞

=

Ο=Ο=∴

Ο==
−

=∴

d

h

h

h

h

nhnnT

h

1

2
0

)())2/1(()(

)1(2
)2/11(

2/1
)2/1(

The HEAPSORT algorithm

(1) Build a heap on array A[1…n] by calling BUILD-HEAP(A, n)
(2) The largest element is stored at the root A[1]

Put it into its correct final position A[n] by A[1] ↔A[n]
(3) Discard node n from the heap

Heapsort Algorithm

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

23

(3) Discard node n from the heap
(4) Subtrees (S2 & S3) rooted at children of root remain as heaps

but the new root element may violate the heap property
Make A[1…n − 1] a heap by calling HEAPIFY(A, 1, n − 1)

(5) n← n − 1
(6) Repeat steps 2−4 until n = 2

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for i← n downto 2 do

Heapsort Algorithm

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

24

for i← n downto 2 do
exchange A[1] ↔A[i]
HEAPIFY(A, 1, i −1)

1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1
10

Heapsort: Example
1

2 3

4 5 6 7

8 9

14

8 10

4 7 9 3

2 1 16 i

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

25

1

2 3

4 5 6 7

8

10

8 9

4 7 1 3

2 14 16
i

1

2 3

4 5 6 7

9

8 3

4 7 1 2

10 14 16
i

1

2 3

4 5 6

8

7 3

4 2 1 9

10 14 16

i

Heapsort: Example
1

2 3

4 5

7

4 3

1 2 8 9

10 14 16

i

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

26

1

2 3

4

4

2 3

1 7 8 9

10 14 16

i

1

2 3
3

2 1

4 7 8 9

10 14 16

i

Heapsort: Example
1

2
2

1 3

4 7 8 9

10 14 16

i

1
1

2 3

4 7 8 9

10 14 16

i

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

27

1

2 3

4 7 8 9

10 14 16

i

1 2 3 4 7 8 9 10 14 16

• BUILD-HEAP takes O(n) time
• i-th iteration of for loop takes O(lg(n − i)) time

• Heapsort is a very good algorithm but, a good

()∑ ∑∑
−

=

−

=

−

=

Ο=

Ο=Ο=−Ο=

1

1

1

1

1

1

lglg)(lg))(lg()(
n

k

n

k

n

i

nnkkinnT

Heapsort Run Time Analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

28

• Heapsort is a very good algorithm but, a good
implementation of quicksort always beats heapsort
in practice

• However, heap data structure has many popular
applications, and it can be efficiently used for
implementing priority queues

Data structures for Dynamic Sets

• Consider sets of records having key and
satellite data

key

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

29

key

satellite datax

record

Operations on Dynamic Sets
• Queries: Simply return info; Modifying operations: Change the set

– INSERT(S, x): (Modifying) S← S ∪{x}
– DELETE(S, x): (Modifying) S ← S − {x}
– MAX(S) / MIN(S): (Query) return x∈S with the largest/smallest key
– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and

∈

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

30

– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and
delete x∈S with the largest/smallest key

– SEARCH(S, k): (Query) return x∈S with key[x]= k
– SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return y∈S which
is the next larger/smaller element after x

• Different data structures support/optimize different operations

Priority Queues (PQ)

• Supports
– INSERT

– MAX / MIN
– EXTRACT-MAX / EXTRACT-MIN

• One application: Schedule jobs on a shared resource

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

31

• One application: Schedule jobs on a shared resource
– PQ keeps track of jobs and their relative priorities
– When a jobs is finished or interrupted

Highest priority job is selected from those pending using
EXTRACT-MAX

– A new job can be added at any time using INSERT

Priority Queues

• Another application: Event-driven simulation
– Events to be simulated are the items in the PQ
– Each event is associated with a time of occurrence which serves
as a key

– Simulation of an event can cause other events to be simulated in

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

32

– Simulation of an event can cause other events to be simulated in
the future

– Use EXTRACT-MIN at each step to choose the next event to
simulate

– As new events are produced insert them into the PQ using
INSERT

Implementation of Priority Queue

• Sorted linked list: Simplest implementation
– INSERT

– O(n) time
– Scan the list to find place and splice in the new item

– EXTRACT-MAX

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

33

– EXTRACT-MAX
– O(1) time
– Take the first element

> Fast extraction but slow insertion.

Implementation of Priority Queue
• Unsorted linked list: Simplest implementation

– INSERT
– O(1) time
– Put the new item at front

– EXTRACT-MAX
– O(n) time

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

34

– O(n) time
– Scan the whole list

> Fast insertion but slow extraction
Sorted linked list is better on the average
– Sorted list: on the average, scans n/2 elem. per insertion
– Unsorted list: always scans n elem. at each extraction

Heap Implementation of PQ
• INSERT and EXTRACT-MAX are both O(lgn)

– good compromise between fast insertion but slow extraction and vice versa

• EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion is like that of Insertion-Sort.

HEAP-INSERT(A, key, n)Traverses O(lgn) nodes, as

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

35

HEAP-INSERT(A, key, n)
n← n +1
i ← n
while i >1 and A[i/2] < key do
A[i] ←A[i/2]
i← i/2

A[i] ← key

Traverses O(lgn) nodes, as
HEAPIFY does but makes
fewer comparisons and
assignments

–HEAPIFY: compares parent
with both children
–HEAP-INSERT: with only one

1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1
10 11

HEAP-INSERT(A, 15)
1

2 3

4 5 6 7

8 9

16

14 10

8

7

9 3

2 4 1
10 11

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

36

1

2 3

4 5 6 7

8 9

16

14

10

8

7

9 3

2 4 1
10 11

1

2 3

4 5 6 7

8 9

16

14

10

8

7

9 3

2 4 1
10 11

15

Heap Increase Key
• Key value of i-th element of heap is
increased from A[i] to key

HEAP-INCREASE-KEY(A, i, key)
if key < A[i] then
return error

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

37

return error

while i >1 andA[i/2] < key do
A[i] ←A[i/2]
i← i/2

A[i] ← key

HEAP-INCREASE-KEY(A, 9, 15)
1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1
10

1

2 3

4 5 6 7

8 9

16

14 10

7 9 3

2 8 1
10

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

38

1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1
10

1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1
10

15

Heap Implementation of PQ
1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1
10

15

1

a 414
b 1 10
c 310
d 16 1
e ¬*
f 9 6
g 2 8

key data H-ptr

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

39

1

2 3

4 5 6 7

8 9

d

a

c

k f j

g m b
10

h

g 2
h 215
i * ¬
j 73
k 7 5
l ¬*
m 8 9
n *

8

¬
o * ¬

