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Introduction

• An algorithm design paradigm like divide-and-conquer

• “Programming”: A tabular method (not writing computer code)

• Divide-and-Conquer (DAC): subproblems are independent
• Dynamic Programming (DP): subproblems are not independent
• Overlapping subproblems: subproblems share sub-subproblems

– In solving problems with overlapping subproblems
• A DAC algorithm does redundant work

– Repeatedly solves common subproblems

• A DP algorithm solves each problem just once

– Saves its result in a table
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Optimization Problems

• DP typically applied to optimization problems
• In an optimization problem

– There are many possible solutions (feasible solutions)
– Each solution has a value
– Want to find an optimal solution to the problem

• A solution with the optimal value (min or max value)

– Wrong to say “the” optimal solution to the problem
• There may be several solutions with the same optimal value
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Development of a DP Algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal 
solution

3. Compute the value of an optimal solution in a 
bottom-up fashion

4. Construct an optimal solution from the 
information computed in Step 3
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Example: Matrix-chain Multiplication

• Input: a sequence (chain) 〈A1,A2, … , An〉  of n matrices

• Aim: compute the product A1·A2·… ·An

• A product of matrices is fully parenthesized if
– It is either a single matrix

– Or, the product of two fully parenthesized matrix products surrounded by 
a pair of parentheses. 

(Ai(Ai+1Ai+2 … Aj))

((AiAi+1Ai+2 … Aj-1)Aj)

((AiAi+1Ai+2 … Ak)(Ak+1Ak+2 … Aj))             for i≤ k<j
– All parenthesizations yield the same product; matrix product is associative
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Matrix-chain Multiplication: An Example 
Parenthesization

• Input: 〈A1, A2, A3, A4〉
• 5 distinct ways of full parenthesization

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)
• The way we parenthesize a chain of matrices can have a 

dramatic effect on the cost of computing the product
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Matrix has two attributes 

•rows[A]: # of rows

•cols[A]: # of columns

# of scalar mult-adds in        
                                       C 
← AB is

rows[A]× cols[B]× cols[A]

A: (p× q)

B: (q× r)

# of mult-adds is p× r× q

Cost of Multiplying two Matrices
MATRIX-MULTIPLY(A, B)

if cols[A]≠ rows[B] then 
error(“incompatible dimensions”)

for i ←1 to rows[A] do

for j←1 to cols[B] do 

 C[i,j] ← 0

  for k←1 to cols[A] do 

     C[i,j]← C[i,j]+A[i,k]·B[k,j]

return C 

C=A·B is p× r. 
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Matrix-chain Multiplication Problem
Input: a chain 〈 A1,A2, … , An 〉  of n matrices, Ai is a pi−1× pi matrix

Aim: fully parenthesize the product A1 ·A2·… ·An such that the 
number of scalar mult-adds are minimized.

• Ex.: 〈A1, A2, A3〉  where A1: 10× 100; A2: 100× 5; A3: 5× 50

 
((A1 A2) A3): 10 ×  100 ×  5 + 10 ×  5 ×  50 =7500

 

(A1 (A2A3)): 100× 5× 50 + 10× 100× 50  =75000

⇒ First parenthesization  yields 10 times faster computation.

10×
5

5× 5
0

A1 A2 (A1 A2)A3

10× 10
0

100× 5
0

A2 A3 A1 (A2A3)
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Counting the Number of Parenthesizations
• Brute force approach: exhaustively check all parenthesizations
• P(n): # of parenthesizations of a sequence of n matrices
• We can split sequence between kth and (k+1)st matrices for any 

k=1, 2, … , n−1, then parenthesize the two resulting sequences 
independently, i.e.,

(A1A2A3 … Ak)(Ak+1Ak+2 … An)

• We obtain the recurrence

     P(1) = 1 and P(n) = ∑
−

=

−
1

1

)(P)(P
n
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knk
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Number of Parenthesizations: 

• The recurrence generates the sequence of Catalan Numbers
• Solution is P(n) = C(n−1) where

C(n) =                   = Ω(4n/n3/2) 

• The number of solutions is exponential in n
• Therefore, brute force approach is a poor strategy
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The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution

• Ai..j: matrix that results from evaluating the product AiAi+1Ai+2 
… Aj

• An optimal parenthesization of the product A1A2… An

– Splits the product between Ak and Ak+1, for some 1≤ k<n 

(A1A2A3 … Ak) · (Ak+1Ak+2 … An)
– i.e., first compute A1..k and Ak+1..n and then multiply these two

• The cost of this optimal parenthesization
 Cost of computing A1..k

+ Cost of computing Ak+1..n

+ Cost of multiplying A1..k · Ak+1..n 
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Step 1: Characterize the Structure of an Optimal Solution

• Key observation: given optimal parenthesization

 (A1A2A3 … Ak) · (Ak+1Ak+2 … An)

– Parenthesization of the subchain A1A2A3 … Ak

– Parenthesization of the subchain Ak+1Ak+2 … An

should both be optimal

– Thus, optimal solution to an instance of the problem contains 
optimal solutions to subproblem instances

– i.e., optimal substructure within an optimal solution exists.
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The Structure of an Optimal Parenthesization

Step 2: Define the value of an optimal solution recursively in 
terms of optimal solutions to the subproblems

• Subproblem: The problem of determining the minimum cost of 

computing Ai..j, i.e., parenthesization of  AiAi+1Ai+2 … Aj

• mij: min # of scalar mult-adds needed to compute subchain Ai..j

– the value of an optimal solution is m1n

– mii = 0, since subchain Ai..i contains just one matrix; no 

multiplication at all

– mij = ? 
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Step 2: Define Value of an Optimal Soln Recursively(mij =?)

• For i < j, optimal parenthesization splits subchain Ai..j 

as Ai..k and Ak+1..j where i≤ k<j

 optimal cost of computing Ai..k : mik

+ optimal cost of computing Ak+1.. j : mk+1, j

+ cost of multiplying Ai..k Ak+1.. j: pi−1× pk × pj

(Ai..k is a pi−1× pk matrix and Ak+1.. j is a pk× pj matrix)

⇒ mij = mik + mk+1, j + pi−1× pk × pj

– The equation assumes we know the value of k, but we do not
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Step 2: Recursive Equation for mij

• mij = mik + mk+1, j + pi−1× pk × pj

– We do not know k, but there are j−i possible values 
for k;     k =i, i +1, i+2, …, j −1

– Since optimal parenthesization must be one of these 
k values we need to check them all to find the best 

                   

                   0 if  i=j

 mij =

                   MIN{mik + mk+1, j +pi−1pk pj}  if i < ji≤ k<
j
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Step 2: mij = MIN{mik + mk+1, j +pi−1pk pj} 
• The mij values give the costs of optimal solutions 

to subproblems 

• In order to keep track of how to construct an 
optimal solution
– Define Sij to be the value of k which yields the 

optimal split of the subchain Ai..j 

That is, Sij =k such that

 mij = mik + mk+1, j +pi−1pk pj     holds
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Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

• We have relatively few subproblems

− one problem for each choice of i and j satisfying 1 ≤  i ≤  j ≤  n

− total n + (n−1) +… + 2 + 1 =     n(n+1) =  Θ(n2) subproblems

• We can write a recursive algorithm based on recurrence. 

• However, a recursive algorithm may encounter each subproblem 
many times in different branches of the recursion tree

• This property, overlapping subproblems, is the second important 
feature for applicability of dynamic programming

2

1
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Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

− matrix Ai has dimensions pi−1 ×  pi for i =  1, 2, …, n

− the input is a sequence 〈p0, p1, …, pn〉  where length[p] =  n + 1

Procedure uses the following auxiliary tables:

− m[1…n, 1…n]: for storing the m[i,  j] costs

− s[1…n, 1…n]:  records which index of k achieved the optimal 
cost in computing m[i,  j]
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Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)
n ← length[p] −1
for i ← 1 to n do

m[i, i] ← 0
for  ← 2 to n do

for i ← 1 to n −  + 1 do
j ← i +  − 1
m[i, j] ← ∞
for k ← i to j−1 do

q ← m[i, k] + m[k+1, j] + pi-1 pk pj

if q < m[i, j] then
       m[i, j] ← q
       s[i, j] ← k

return m and s
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Algorithm for Computing the Optimal Costs

• The algorithm first computes 

 m[i, i] ← 0 for i = 1, 2, …, n min costs for all chains of length 1

• Then, for  =  2, 3, …, n computes 

 m[i, i+−1] for i =  1, …, n−+1 min costs for all chains of length 


• For each value of  =  2, 3, …, n, 

 m[i, i+−1] depends only on table entries m[i, k] & m[k+1, i+−1]   
  

     for i≤ k<i+−1, which are already computed
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Algorithm for Computing the Optimal Costs
 =  2
for i =  1 to n − 1

m[i, i+1] =  ∞                        compute m[i, i+1]
for k =  i to i do                     {m[1, 2], m[2, 3], …, m[n−1, n]}
          .
          .                                                 (n−1) values

 =  3
for i =  1 to n − 2

m[i, i+2] =  ∞                       compute m[i, i+2]
for k =  i to i+1 do                {m[1, 3], m[2, 4], …, m[n−2, n]}
          .
          .                                                 (n−2) values

 =  4
for i =  1 to n − 3

m[i, i+3] =  ∞                       compute m[i, i+3]
for k =  i to i+2 do                {m[1, 4], m[2, 5], …, m[n−3, n]}
          .
          .                                                 (n−3) values
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Table access pattern in computing m[i, j]s for = j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . − 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 
 
 

n−+ 1 
 

Table entries already computed 

Table entries referenced  

 k 

 k 

for k ← i to j−1 do
q ← m[i, k] + m[k+1, j] + pi-1 pk pj
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Table access pattern in computing m[i, j]s for = j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . − 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 
 
 

n−+ 1 
 

Table entries already computed 

Table entries referenced  

 k 

 k 

for k ← i to j−1 do
q ← m[i, k] + m[k+1, j] + pi-1 pk pj

((Ai) (Ai+1Ai+2 … Aj))
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Table access pattern in computing m[i, j]s for = j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . − 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 
 
 

n−+ 1 
 

Table entries already computed 

Table entries referenced  

  k 

 k 

for k ← i to j−1 do
q ← m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1) (Ai+2 … Aj))
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Table access pattern in computing m[i, j]s for = j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . − 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 
 
 

n−+ 1 
 

Table entries already computed 

Table entries referenced  

  k 

 k 

for k ← i to j−1 do
q ← m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1Ai+2 ) (Ai+3…Aj))
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Table access pattern in computing m[i, j]s for = j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . − 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 
 
 

n−+ 1 
 

Table entries already computed 

Table entries referenced  

for k ← i to j−1 do
q ← m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1… Aj-1) (Aj))
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Table reference pattern for m[i, j] (1 ≤  i ≤  j ≤  n) 

m[i, j] is referenced for the computation of
− m[i, r] for j < r ≤  n     (n − j ) times
− m[r, j] for 1 ≤  r < i     (i − 1 ) times

 Table Entries currently computed 
 

Table entries referencing m[i, j] 

The referenced table entry m[i, j] 

 n 
 

1  2   3                                            j                             n 

 i 
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Table reference pattern for m[i, j] (1 ≤  i ≤  j ≤  n) 

R(i, j) = # of times that m[i, j] is
referenced in computing other entries

R(i, j) = (n−j) + (i−1)

          =  (n−1) − (j−i)

The total # of references for the entire table is

 Table Entries currently computed 
 

 n 
 

1  2   3                                            j                             n 

 i 
 
 
 
 
  

i −  1 

n −  j 

∑∑
= =

−n

i

n

ij

nn
jiR

1

3

3
),(
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Constructing an Optimal Solution

• MATRIX-CHAIN-ORDER determines the optimal # of  scalar mults/adds
− needed to compute a matrix-chain product
− it does not directly show how to multiply the matrices

• That is,
− it determines the cost of the optimal solution(s)
− it does not show how to obtain an optimal solution

• Each entry s[i, j] records the value of k such that
optimal parenthesization of Ai … Aj splits the product between Ak & Ak+1

• We know that the final matrix multiplication in computing A1…n optimally 
is A1…s[1,n] × As[1,n]+1,n
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Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively 

Given: 
− the chain of matrices A =  〈A1, A2, … An〉
− the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product Ai…j

MATRIX-CHAIN-MULTIPLY(A, s, i,  j)
if j > i  then

X ← MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])
Y ← MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]+1, j)
return MATRIX-MUTIPLY(X, Y)

else
return Ai

Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

31

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
  X←MCM(1,3)= (A1A2A3)           MCM(1,3)                            return A1

  Y←MCM(4,6)= (A4A5A6)             X←MCM(1,1)= A1

  return (?)                                        Y←MCM(2,3)= (A2A3)
                                                         return (?)                  

                                                       

 
 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
  X←MCM(1,3)= (A1(A2A3))        MCM(1,3)                            return A1

  Y←MCM(4,6)= (A4A5A6)             X←MCM(1,1)= A1

  return (?)                                        Y←MCM(2,3)= (A2A3)       MCM(2,3)
                                                         return (A1(A2A3))                  X←MCM(2,2)= A2       return A2

                                                                                                       Y←MCM(3,3)= A3            return 
A3

                                                                                                        return (A2A3) 
                                                       

 
 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
  X←MCM(1,3)= (A1(A2A3))        MCM(1,3)                            return A1

  Y←MCM(4,6)= ((A4A5)A6)          X←MCM(1,1)= A1

  return (A1(A2A3))((A4A5)A6)        Y←MCM(2,3)= (A2A3)       MCM(2,3)
                                                         return (A1(A2A3))                  X←MCM(2,2)= A2       return A2

                                                                                                       Y←MCM(3,3)= A3            return 
A3

                                                                                                        return (A2A3) 
                                                       MCM(4,6)
                                                         X←MCM(4,5)= (A4A5)       MCM(4,5)
                                                         Y←MCM(6,6)= A6                        X←MCM(4,4)= A4       return A4

                                                                                      return ((A4A5)A6 )                 Y←MCM(5,5)= A5           return A5

                                                                                                        return (A4A5)

                                                                                                        return A6

 
 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Elements of Dynamic Programming

• When should we look for a DP solution to an 
optimization problem?

• Two key ingredients for the problem
– Optimal substructure 
– Overlapping subproblems
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DP Hallmark #1
Optimal Substructure

• A problem exhibits optimal substructure 
– if an optimal solution to a problem contains within 

it optimal solutions to subproblems

• Example: matrix-chain-multiplication

Optimal parenthesization of A1A2… An that splits 

the product between Ak and Ak+1, 

contains within it optimal soln’s to the problems of 
parenthesizing A1A2… Ak and Ak+1Ak+2 … An
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Optimal Substructure
• The optimal substructure of a problem often suggests a 

suitable space of subproblems to which DP can be 
applied

• Typically, there may be several classes of subproblems 
that might be considered natural 

• Example: matrix-chain-multiplication
– All subchains of the input chain

We can choose an arbitrary sequence of matrices from the input chain

– However, DP based on this space solves many more 
subproblems
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Optimal Substructure
Finding a suitable space of subproblems
• Iterate on subproblem instances
• Example: matrix-chain-multiplication

– Iterate and look at the structure of optimal soln’s to 
subproblems, sub-subproblems, and so forth

– Discover that all subproblems consists of subchains of     
〈A1, A2, … , An〉  

– Thus, the set of chains of the form 

〈Ai,Ai+1, … , Aj〉  for 1≤  i ≤  j ≤  n
– Makes a natural and reasonable space of subproblems
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DP Hallmark #2
Overlapping Subproblems

• Total number of distinct subproblems should 
be polynomial in the input size

• When a recursive algorithm revisits the same 
problem over and over again

we say that the optimization problem has 
overlapping subproblems
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Overlapping Subproblems

• DP algorithms typically take advantage of 
overlapping subproblems
– by solving each problem once
– then storing the solutions in a table

where it can be looked up when needed
– using constant time per lookup
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Overlapping Subproblems
Recursive matrix-chain order

RMC(p, i, j)

if  i = j then 
return 0

m[i, j] ← ∞
for k ←i to j −1 do

q ← RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj

if q < m[i, j] then

       m[i, j] ← q

return m[i, j] 
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2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

1..1 2..4 1..2 3..4 1..3 4..4

1..4

k = 1
k =

 1

k 
= 

2 k = 2

k = 3
k = 3

k 
= 

2 k = 3

k =
 3k 

= 
2

k 
=

 1

k =
 1

k =
 3k 

=
 3

k 
= 

1
k 

=
 1

k =
 2

k = 2
k 

= 
3 k =

 3 k 
=

 2

k = 2 Redundant
calls are

filled

Recursive Matrix-chain Order
Recursion tree for RMC(p,1,4)

Nodes are labeled 
with i and j values
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Running Time of RMC
T(1) ≥  1

T(n) ≥  1+ Σ (T(k) + T(n−k) + 1) for n >1

• For i = 1, 2, …, n each term T(i) appears twice
– Once as T(k), and once as T(n −k) 

• Collect n−1 1’s in the summation together with the 
front 1

T(n) ≥  2 Σ T(i) + n

• Prove that T(n) = Ω(2n) using the substitution method

k 
= 1

n − 1

i = 1

n − 1
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Running Time of RMC: Prove that T(n) =  Ω(2n) 
• Try to show that T(n) ≥  2n−1 (by substitution)
Base case: T(1) ≥  1 =  20 =  21−1 for n =  1

IH: T(i) ≥  2i−1 for all  i = 1, 2, …, n −1 and n ≥  2

  T(n) ≥  2 Σ 2i−1 + n

      =  2 Σ 2i + n =  2(2n −1 −1) + n 

     =  2n −1 + (2n −1 −2 + n)

  ⇒T(n) ≥  2n−1 Q.E.D.

i = 1

n − 1

i =  0

n − 2
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Running Time of RMC: T(n) ≥  2n−1 

Whenever 
– a recursion tree for the natural recursive solution 

to a problem contains the same subproblem 
repeatedly

– the total number of different subproblems is small 

it is a good idea to see if DP can be applied
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Memoization

• Offers the efficiency of the usual DP approach 
while maintaining top-down strategy 

• Idea is to memoize the natural, but inefficient, 
recursive algorithm



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

46

Memoized Recursive Algorithm

• Maintains an entry in a table for the soln to each 
subproblem 

• Each table entry contains a special value to indicate 
that the entry has yet to be filled in

• When the subproblem is first encountered its solution 
is computed and then stored in the table

• Each subsequent time that the subproblem 
encountered the value stored in the table is simply 
looked up and returned



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

47

Memoized Recursive Algorithm

• The approach assumes that
– The set of all possible subproblem parameters are 

known
– The relation between the table positions and 

subproblems is established

• Another approach is to memoize 
– by using hashing with subproblem parameters as key
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Memoized Recursive Matrix-chain Order

LookupC(p, i, j)

if  m[i, j] = ∞ then 

if  i = j then 
 m[i, j] ← 0

else

   for k ← i to j −1 do

       q ← LookupC(p, i, k) + LookupC(p, k+1, j) + pi-1 pk pj

       if  q < m[i, j] then

              m[i, j] ← q

return m[i, j] 

MemoizedMatrixChain(p)

      n ← length[p] −1 

      for i ←1 to n do

for j ←1 to n do

          m[i, j] ← ∞

      return LookupC(p, 1, n)

Shaded subtrees are looked-up 
rather than recomputing
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Elements of Dynamic Programming: 
Summary

• Matrix-chain multiplication can be solved in O(n3) time
– by either a top-down memoized recursive algorithm

– or a bottom-up dynamic programming algorithm

• Both methods exploit the overlapping subproblems 
property
– There are only Θ(n2) different subproblems in total 
– Both methods compute the soln to each problem once

• Without memoization the natural recursive algorithm 
runs in exponential time since subproblems are solved 
repeatedly
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Elements of Dynamic Programming: 
Summary

In general practice
• If all subproblems must be solved at once

– a bottom-up DP algorithm always outperforms a top-down 
memoized algorithm by a constant factor

because, bottom-up DP algorithm
• Has no overhead for recursion
• Less overhead for maintaining the table

• DP: Regular pattern of table accesses can be exploited to reduce 
the time and/or space requirements even further

• Memoized: If some problems need not be solved at all, it has 
the advantage of avoiding solutions to those subproblems 
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Longest Common Subsequence

A subsequence of a given sequence is just the given sequence

with some elements (possibly none) left out

Formal definition: Given a sequence X =  〈x1, x2, …, xm〉 ,

sequence Z =  〈z1, z2, …, zk〉  is a subsequence of X 

if ∃  a strictly increasing sequence 〈i1, i2, …, ik 〉  of indices of X such 
that xi =  zj for all  j =  1, 2, …, k, where 1 ≤  k ≤  m

                                                                                                                     1    2   3    4   5    6    7

Example: Z=  〈B,C,D,B〉  is a subsequence of X=  〈A,B,C,B,D,A,B〉

with the index sequence 〈i1, i2, i3, i4 〉  =  〈2, 3, 5, 7〉



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

52

Longest Common Subsequence (LCS)

Given two sequences X & Y, Z is a common subsequence of X & Y

Example: X =  <A, B, C, B, D, A, B> and Y =  <B, D, C, A, B, A>
Sequence <B, C, A> is a common subsequence of X and Y.
However, <B, C, A> is not a longest common subsequence (LCS) 
of X and Y. 
<B, C, B, A> is an LCS of X and Y.

Longest common subsequence (LCS):

Given two sequences X =  <x1, x2, …, xm> and Y =  <y1, y2, …, yn>

We wish to find the LCS of X & Y
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Characterizing a Longest Common Subsequence

A brute force approach
• Enumerate all subsequences of X

• Check each subsequence to see if it is also a subsequence of Y 
meanwhile keeping track of the LCS found

• Each subsequence of X corresponds to a subset of the index 
set {1, 2, …, m} of X

• So, there are 2m subsequences of X
• Hence, this approach requires exponential time
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Characterizing a Longest Common Subsequence

Definition: The i-th prefix Xi of X for i =  0,1, …, m is 
                   Xi =  <x1, x2, …, xi>

                                                       1     2     3     4     5      6     7

Example: Given X =  <A, B, C, B, D, A, B>

                 X4 =  <A, B, C, B> and X∅ =  empty sequence

Theorem: (Optimal substructure of an LCS)
Let X =  <x1, x2, …, xm> and Y =  <y1, y2, …, yn> are given

Let Z =  <z1, z2, …, zk> be any LCS of X and Y

1. If xm =  yn then zk =  xm =  yn and Zk−1 is an LCS of Xm−1 and Yn−1

2. If xm ≠  yn and zk ≠  xm then Z is an LCS of Xm−1 and Y

3. If xm ≠  yn and zk ≠  yn then Z is an LCS of X and Yn −1
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Optimal Substructure Theorem (case 1)

If xm =  yn then zk =  xm =  yn and Zk−1 is an LCS of Xm−1 and Yn−1 

Xm−1 

   1    2                                       m 

X =   C Y = 

   1    2                                       n 

  C 

Yn−1 

  C 

   1    2                                       k 

Zk−1 

LCS 
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Optimal Substructure Theorem (case 2)

If xm ≠  yn and zk ≠  xm then Z is an LCS of Xm−1 and Y 

Xm−1 

   1    2                                       m 

X =   C Y = 

   1    2                                       n 

  D 

Y 

   1    2                                       k 

Z 

LCS 

Z =   C 
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Optimal Substructure Theorem (case 3)

If xm ≠  yn and zk ≠  yn then Z is an LCS of X and Yn −1 

X 

   1    2                                       m 

X =   C Y = 

   1    2                                       n 

  D 

Yn−1 

  D 

   1    2                                       k 

Z 

LCS 

Z = 
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Proof of Optimal Substructure Theorem (case 1)

Proof: If zk ≠  xm=  yn then 

      we can append xm =  yn to Z to obtain a common    

           subsequence of length k+1 ⇒ contradiction
Thus, we must have zk =  xm =  yn

Hence, the prefix Zk−1 is a length-(k−1) CS of Xm−1 and Yn−1

We have to show that Zk−1 is in fact an LCS of Xm−1 and Yn−1

Proof by contradiction:
Assume that ∃  a CS W of Xm−1 and Yn−1 with |W| =  k

Then appending xm =  yn to W produces a CS of length k+1

If xm =  yn then zk =  xm =  yn and Zk−1 is an LCS of Xm−1 and Yn−1
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Proof of Optimal Substructure Theorem (case 2)

Proof : If zk ≠  xm then Z is a CS of Xm−1 and Yn

            We have to show that Z is in fact an LCS of Xm−1 and Yn

(Proof by contradiction)
Assume that ∃  a CS W of Xm−1 and Yn with |W| > k

Then W would also be a CS of X and Y 

Contradiction to the assumption that

      Z is an LCS of X and Y with |Z| =  k

Case 3: Dual of the proof for (case 2)

If xm ≠  yn and zk ≠  xm then Z is an LCS of Xm−1 and Y
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Longest Common Subsequence Algorithm

LCS(X, Y)
m ← length[X]
n ← length[Y]
if xm =  yn then

Z ← LCS(Xm−1, Yn−1)     solve one subproblem

return <Z, xm =  yn>         append xm =  yn to Z

else
Z′  ← LCS(Xm−1, Y)

Z′ ′  ← LCS(X, Yn−1)

return longer of Z′  and Z′ ′  

 solve two subproblems
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A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if xm =  yn then

we must solve the subproblem of finding an LCS of Xm−1 & Yn−1

appending xm =  yn to this LCS yields an LCS of X & Y

else

we must solve two subproblems

− finding an LCS of Xm−1 & Y

− finding an LCS of X & Yn−1

longer of these two LCSs is an LCS of X & Y

endif
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A Recursive Solution to Subproblems

Overlapping-subproblems property
− finding an LCS to Xm−1 & Y and an LCS to X & Yn−1 has the 

subsubproblem of finding an LCS to Xm−1 & Yn−1

− many other subproblems share subsubproblems

A recurrence for the cost of an optimal solution

c[i, j]: length of an LCS of the prefix subsequences Xi & Yj

If either i =  0 or j =  0, one of the prefix sequences has length 0,
so the LCS has length 0

ji

ji

yxji

yxji

ji

jicjic

jicjic

≠>
=>

==
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+−−=

 and 0, if

 and 0, if

0or  0 if
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Computing the Length of an LCS

We can easily write an exponential-time recursive algorithm
       based on the given recurrence
However, there are only Θ(mn) distinct subproblems
Therefore, we can use dynamic programming

Data structures:
Table c[0…m, 0…n] is used to store c[i, j] values 
Entries of this table are computed in row-major order
Table b[1…m, 1…n] is maintained to simplify the construction 

of an optimal solution
b[i, j]: points to the table entry corresponding to the optimal 

subproblem solution chosen when computing c[i, j]
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Computing the Length of an LCS
LCS-LENGTH(X,Y)

m ← length[X]; n ← length[Y]
for i ← 0 to m do c[i, 0] ← 0
for j ← 0 to n do c[0, j] ← 0
for i ← 1 to m do

for j ← 1 to n do
if xi =  yj then 

c[i, j] ← c[i−1, j−1]+1
b[i, j] ← “”

else if c[i − 1, j] ≥  c[i, j−1]
c[i, j] ← c[i−1, j]
b[i, j] ← “”

else
c[i, j] ← c[i, j−1]
b[i, j] ← “”
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

             
  0          

          
  0          

             
  0          

 
  0          

             
  0          

             
  0          

          
  0          

 
  0         0        0        0         0        0        0   

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

1 A 

          
  0          

                                                
  0         0        0        0         1    1        1 

          
  0          

             
  0          

          
  0          

             
  0          

             
  0          

 
  0         0        0        0         0        0       0    

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

             
  0          

          
  0          

             
  0          

              
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A 

 
  0         0        0        0         0        0        0  

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

          
  0          

             
  0          

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A 

 
  0         0        0        0         0        0        0  

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

 
  0         0        0        0         0        0        0     

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                    
  0         1        

             
  0          

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

 
  0         0        0        0         0        0        0     

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                          
  0         1        1            

             
  0          

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

 
  0         0        0        0         0        0        0     

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                 
  0         1        1        2         

             
  0          

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

 
  0         0        0        0         0        0        0     

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                     
  0         1        1        2        2         

             
  0          

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

 
  0         0        0        0         0        0        0     

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                     
  0         1        1        2        2        3      

             
  0          

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

 
  0         0        0        0         0        0        0     

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                     
  0         1        1        2        2        3     3 

             
  0          

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                     
  0         1        1        2        2        3     3 

                                               
  0         1        2        2        2        3         3 

             
  0          

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A 

 
  0         0        0        0         0        0        0   

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

 
 

          
  0          

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                     
  0         1        1        2        2        3     3 

                                               
  0         1        2        2        2        3         3 

                                            
  0         1        2        2        3        3         4 

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A 

 
  0         0        0        0         0        0        0    

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 
Computer Engineering Department

77

Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

Running-time =  O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y =  <B, C, B, A>

 
 

                                               
  0         1        2        3        3        4         4 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                     
  0         1        1        2        2        3     3 

                                               
  0         1        2        2        2        3         3 

                                            
  0         1        2        2        3        3         4 

                                                
  0         0        0        0         1    1        1 

 
  0         0        0        0         0        0        0   

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences

               1     2     3     4    5      6     7

X =  <A, B, C, B, D, A, B>
Y =  <B, D, C, A, B, A>
              1     2     3     4     5      6

Running-time =  O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y =  <B, C, B, A>

 
 

                                               
  0         1        2        3        3        4         4 

 
  0         0        0        0         0        0        0   

                                                
  0         0        0        0         1    1        1 

                                            
  0         1    1     1        1       2     2 

                                                  
  0         1        1        2     2       2         2 

                                     
  0         1        1        2        2        3     3 

                                               
  0         1        2        2        2        3         3 

                                            
  0         1        2        2        3        3         4 

       j       0         1        2        3         4        5       6 
               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly 
construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a “” in entry b[i, j] 
it implies that xi =  yj is an element of LCS

The elements of LCS are encountered in reverse order
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Constructing an LCS

PRINT-LCS(b, X, i, j)
if i =  0 or j =  0 then

return
if b[i, j] =  “” then

PRINT-LCS(b, X, i−1, j−1)
print xi

else if b[i, j] =  “” then
PRINT-LCS(b, X, i−1, j)

else
PRINT-LCS(b, X, i, j−1)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(m+n) time 
since at least one of i and j is determined in each stage of the recursion

The initial invocation:
PRINT-LCS(b, X, length[X], length[Y])
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Longest Common Subsequence

Improving the code:
− we can eliminate the b table altogether
− each c[i, j] entry depends only on 3 other c table entries 

               c[i−1, j−1], c[i−1, j] and c[i, j−1]

Given the value of c[i, j]
− we can determine in O(1) time which of these 3 values was used
        to compute c[i, j] without inspecting table b
− we save Θ(mn) space by this method
− however, space requirement is still Θ(mn) 
       since we need Θ(mn) space for the c table anyway

We can reduce the asymptotic space requirement for LCS-LENGTH
− since it needs only two rows of table c at a time
− the row being computed and the previous row

This improvement works if we only need the length of an LCS
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