CS473-Algorithms I

Lecture 10

Dynamic Programming

CS473 - Lecture 10

Cevdet Aykanat - Bilkent University Computer Engineering Department 1

Introduction

- An algorithm design paradigm like divide-and-conquer
- "Programming": A tabular method (not writing computer code)
- Divide-and-Conquer (DAC): subproblems are independent
- Dynamic Programming (DP): subproblems are not independent
- Overlapping subproblems: subproblems share sub-subproblems
 - In solving problems with overlapping subproblems
 - A DAC algorithm does redundant work
 - Repeatedly solves common subproblems
 - A DP algorithm solves each problem just once
 - Saves its result in a table

Optimization Problems

- **DP** typically applied to optimization problems
- In an optimization problem
 - There are many possible solutions (feasible solutions)
 - Each solution has a value
 - Want to find an optimal solution to the problem
 - A solution with the optimal value (min or max value)
 - Wrong to say "the" optimal solution to the problem
 - There may be several solutions with the same optimal value

Development of a DP Algorithm

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from the information computed in Step 3

Example: Matrix-chain Multiplication

- Input: a sequence (chain) $\langle A_1, A_2, \dots, A_n \rangle$ of *n* matrices
- Aim: compute the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$
- A product of matrices is fully parenthesized if
 - It is either a single matrix
 - Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.

$$\triangleright \left(A_i (A_{i+1} A_{i+2} \dots A_j) \right)$$

$$\triangleright \left((A_i A_{i+1} A_{i+2} \dots A_{j-1}) A_j \right)$$

$$\triangleright \left((A_i A_{i+1} A_{i+2} \dots A_k) (A_{k+1} A_{k+2} \dots A_j) \right)$$
 for $i \le k < j$

- All parenthesizations yield the same product; matrix product is associative

Matrix-chain Multiplication: An Example Parenthesization

- Input: $\langle A_1, A_2, A_3, A_4 \rangle$
- 5 distinct ways of full parenthesization

 $(A_{1}(A_{2}(A_{3}A_{4})))$ $(A_{1}((A_{2}A_{3})A_{4}))$ $((A_{1}A_{2})(A_{3}A_{4}))$ $((A_{1}(A_{2}A_{3}))A_{4})$ $(((A_{1}A_{2}A_{3}))A_{4})$

• The way we parenthesize a chain of matrices can have a dramatic effect on the cost of computing the product

Cost of Multiplying two Matrices

Matrix has two attributes •rows[A]: # of rows •cols[A]: # of columns # of scalar mult-adds in C \leftarrow AB is $rows[A] \rtimes cols[B] \times cols[A]$ A: $(\mathbf{p} \times \mathbf{q}) \stackrel{\triangleright}{\models} \mathbf{C} = \mathbf{A} \cdot \mathbf{B} \text{ is } \mathbf{p} \times \mathbf{r}.$ B: $(q \times r)$

of mult-adds is $p \times r \times q$

MATRIX-MULTIPLY(A, B)

if cols[A]≠ rows[B] then **error(**"incompatible dimensions") for $i \leftarrow 1$ to rows[A] do for $j \leftarrow 1$ to cols[B] do $C[i,j] \leftarrow 0$ for $k \leftarrow 1$ to cols[A] do $C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$ return C

Matrix-chain Multiplication Problem

Input: a chain $\langle A_1, A_2, ..., A_n \rangle$ of *n* matrices, A_i is a $p_{i-1} \times p_i$ matrix Aim: fully parenthesize the product $A_1 \cdot A_2 \cdot ... \cdot A_n$ such that the number of scalar mult-adds are minimized.

• Ex.: $\langle A_1, A_2, A_3 \rangle$ where $A_1: 10 \times 100; A_2: 100 \times 5; A_3: 5 \times 50$

$$\begin{array}{c|c} ((A_{1}A_{2}) & A_{3}): 1 & 0 \times 100 \times 5 \\ \hline (A_{1}A_{2}) & 5 \times 5 \\ \hline (A_{1}A_{2}) & 5 \times 5 \\ \hline (A_{1}A_{2}) & A_{3} \\ \hline (A_{1}A_{2}) & A_{$$

 \Rightarrow First parenthesization yields 10 times faster computation.

CS473 – Lecture 10

Counting the Number of Parenthesizations

- Brute force approach: exhaustively check all parenthesizations
- P(n): # of parenthesizations of a sequence of n matrices
- We can split sequence between *k*th and (*k*+1)st matrices for any *k*=1, 2, ..., *n*-1, then parenthesize the two resulting sequences independently, i.e.,

$$(\mathbf{A}_1\mathbf{A}_2\mathbf{A}_3\ldots\mathbf{A}_k)(\mathbf{A}_{k+1}\mathbf{A}_{k+2}\ldots\mathbf{A}_n)$$

• We obtain the recurrence $\mathbf{P}(1) = 1 \text{ and } \mathbf{P}(n) = \sum_{k=1}^{n-1} \mathbf{P}(k)\mathbf{P}(n-k)$

Number of Parenthesizations: $\sum_{k=1}^{n-1} P(k)P(n-k)$

- The recurrence generates the sequence of Catalan Numbers
- Solution is P(n) = C(n-1) where

$$C(n) = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \Omega(4^n/n^{3/2})$$

- The number of solutions is exponential in *n*
- Therefore, brute force approach is a poor strategy

The Structure of an Optimal Parenthesization

<u>Step 1</u>: Characterize the structure of an optimal solution

- $A_{i..j}$: matrix that results from evaluating the product $A_i A_{i+1} A_{i+2}$... A_j
- An optimal parenthesization of the product $A_1 A_2 \dots A_n$
 - Splits the product between A_k and A_{k+1} , for some $1 \le k \le n$ $(A_1A_2A_3 \dots A_k) \cdot (A_{k+1}A_{k+2} \dots A_n)$
 - i.e., first compute $A_{1..k}$ and $A_{k+1..n}$ and then multiply these two
- The cost of this optimal parenthesization Cost of computing $A_{1..k}$
 - + Cost of computing $A_{k+1..n}$

CS473 Cost of multiplying Aykanat - Bulkent University Computer Engineering Department

Step 1: Characterize the Structure of an Optimal Solution

• Key observation: given optimal parenthesization

 $(\mathbf{A}_1\mathbf{A}_2\mathbf{A}_3\ldots\mathbf{A}_k)\cdot(\mathbf{A}_{k+1}\mathbf{A}_{k+2}\ldots\mathbf{A}_n)$

- Parenthesization of the subchain $A_1A_2A_3 \dots A_k$
- Parenthesization of the subchain $A_{k+1}A_{k+2} \dots A_n$ should both be optimal
- Thus, optimal solution to an instance of the problem contains optimal solutions to subproblem instances
- i.e., optimal substructure within an optimal solution exists.

The Structure of an Optimal Parenthesization

- <u>Step 2</u>: Define the value of an optimal solution recursively in terms of optimal solutions to the subproblems
- Subproblem: The problem of determining the minimum cost of computing $A_{i...i}$, i.e., parenthesization of $A_i A_{i+1} A_{i+2} \dots A_i$
- m_{ij} : min # of scalar mult-adds needed to compute subchain $A_{i..j}$ - the value of an optimal solution is m_{1n}
 - $-m_{ii} = 0$, since subchain $A_{i..i}$ contains just one matrix; no multiplication at all

$$-m_{ij}=?$$

Step 2: Define Value of an Optimal Soln Recursively($m_{ij} = ?$)

• For i < j, optimal parenthesization splits subchain $A_{i,j}$ as $A_{i..k}$ and $A_{k+1..i}$ where $i \le k \le j$ optimal cost of computing $A_{i,k}: m_{ik}$ + optimal cost of computing $A_{k+1,i}$: $m_{k+1,i}$ + cost of multiplying $A_{i,k} A_{k+1,j} : p_{i+1} \times p_k \times p_j$ $(A_{i} \mid p_{i-1} \times p_k \text{ matrix and } A_{k+1, j} \text{ is a } p_k \times p_j \text{ matrix})$ $\Rightarrow m_{ii} = m_{ik} + m_{k+1,i} + p_{i+1} \times p_k \times p_i$

CS473 - The equation assumes we know the ivalue of k, but we do not Computer Engineering Department

Step 2: Recursive Equation for m_{ii}

- $m_{ij} = m_{ik} + m_{k+1,j} + p_{i+1} \times p_k \times p_j$
 - We do not know k, but there are j i possible values for k; k = i, i + 1, i + 2, ..., j - 1
 - Since optimal parenthesization must be one of these
 k values we need to check them all to find the best

Step 2: $m_{ij} = MIN\{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$

- The *m*_{*ij*} values give the costs of optimal solutions to subproblems
- In order to keep track of how to construct an optimal solution
 - Define S_{ij} to be the value of k which yields the optimal split of the subchain $A_{i..j}$

That is, $S_{ii} = k$ such that

$$m_{ij} = m_{ik} + m_{k+1,j} + p_{i+1} p_k p_j$$
 holds

An important observation:

- We have relatively few subproblems
 - one problem for each choice of *i* and *j* satisfying $1 \le i \le j \le n$
 - total $n + (n-1) + ... + 2 + 1 = \frac{1}{2} n(n+1) = \Theta(n^2)$ subproblems
- We can write a recursive algorithm based on recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree
- This property, overlapping subproblems, is the second important feature for applicability of dynamic programming

Compute the value of an optimal solution in a bottom-up fashion

- matrix A_i has dimensions $p_{i-1} \times p_i$ for i = 1, 2, ..., n
- the input is a sequence $\langle p_0, p_1, ..., p_n \rangle$ where length[p] = n + 1

Procedure uses the following auxiliary tables:

- -m[1...n, 1...n]: for storing the m[i, j] costs
- s[1...n, 1...n]: records which index of k achieved the optimal cost in computing m[i, j]

Algorithm for Computing the Optimal Costs

```
MATRIX-CHAIN-ORDER(p)
       n \leftarrow \text{length}[p] \dashv
       for i \leftarrow 1 to n do
              m[i, i] \leftarrow 0
       for \ell \leftarrow 2 to n do
              for i \leftarrow 1 to n - \ell + 1 do
                    j \leftarrow i + \ell - 1
                     m[i, j] \leftarrow \infty
                     for k \leftarrow i to j \dashv do
                            q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
                            if q < m[i, j] then
                                   m[i, j] \leftarrow q
                                   s[i, j] \leftarrow k
```

return *m* and *s*

Algorithm for Computing the Optimal Costs

- The algorithm first computes
 m[*i*, *i*] ←0 for *i* = 1, 2, ..., *n* min costs for all chains of length 1
- Then, for l = 2, 3, ..., n computes
 m[i, i+l-1] for i = 1, ..., n-l+1 min costs for all chains of length
- For each value of l = 2, 3, ..., n,
 m[i, i+l-1] depends only on table entries m[i, k] & m[k+1, i+l-1]

for $i \le k < i + l - 1$, which are already computed CS473 – Lecture 10 Cevdet Aykanat - Bilkent University Computer Engineering Department

Algorithm for Computing the Optimal Costs

$$\begin{array}{c} \ell = 2 \\ \text{for } i = 1 \text{ to } n - 1 \\ m[i, i+1] = \infty \\ \text{for } k = i \text{ to } i \text{ do} \\ \vdots \\ \ell = 3 \\ \text{for } i = 1 \text{ to } n - 2 \\ m[i, i+2] = \infty \\ \text{for } k = i \text{ to } i+1 \text{ do} \\ \vdots \\ \ell = 4 \\ \text{for } i = 1 \text{ to } n - 3 \\ m[i, i+3] = \infty \\ \text{for } k = i \text{ to } i+2 \text{ do} \\ \vdots \\ \end{array} \right) \begin{array}{c} \text{compute } m[i, i+2] \\ \{m[1, 3], m[2, 4], \dots, m[n-2, n]\} \\ (n-2) \text{ values} \\ \{m[1, 4], m[2, 5], \dots, m[n-3, n]\} \\ \{m[1, 4], m[2, 5], \dots, m[n-3, n]\} \\ (n-3) \text{ values} \end{array} \right)$$

CS473 – Lecture 10

Table reference pattern for m[i, j] $(1 \le i \le j \le n)$ 1 2 3 n The referenced table entry m[i, j]Table entries referencing m[i, j]m[i, j] is referenced for the computation of -m[i, r] for $j < r \le n$ (n-j) times -m[r, j] for $1 \le r \le i$ (i-1) times n

Table reference pattern for m[i, j] $(1 \le i \le j \le n)$

Constructing an Optimal Solution

- MATRIX-CHAIN-ORDER determines the optimal # of scalar mults/adds
 - needed to compute a matrix-chain product
 - it does not directly show how to multiply the matrices
- That is,
 - it determines the cost of the optimal solution(s)
 - it does not show how to obtain an optimal solution
- Each entry s[i, j] records the value of k such that optimal parenthesization of A_i... A_j splits the product between A_k & A_{k+1}
- We know that the final matrix multiplication in computing $A_{1...n}$ optimally is $A_{1...s[1,n]} \times A_{s[1,n]+1,n}$

Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively

Given:

- the chain of matrices $A = \langle A_1, A_2, \dots, A_n \rangle$
- the *s* table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product $A_{i...j}$

```
MATRIX-CHAIN-MULTIPLY(A, s, i, j)
```

if j > i then

 $X \leftarrow MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])$ Y \leftarrow MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]+1, j) return MATRIX-MUTIPLY(X, Y)

else

return A_i

Invocation: MATRIX-CHAIN-MULTIPLY(A, *s*, 1, *n*)

Example: Recursive Construction of an Optimal Solution

Example: Recursive Construction of an Optimal Solution

Example: Recursive Construction of an Optimal Solution

CS473 – Lecture 10

Cevdet Aykanat - Bilkent University Computer Engineering Department

return A_6

33

Elements of Dynamic Programming

- When should we look for a DP solution to an optimization problem?
- Two key ingredients for the problem
 - Optimal substructure
 - Overlapping subproblems

DP Hallmark #1

Optimal Substructure

- A problem exhibits optimal substructure

 if an optimal solution to a problem contains within
 it optimal solutions to subproblems
- Example: matrix-chain-multiplication Optimal parenthesization of $A_1A_2...A_n$ that splits the product between A_k and A_{k+l} ,

contains within it optimal soln's to the problems of parenthesizing $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$

Optimal Substructure

- The optimal substructure of a problem often suggests a suitable space of subproblems to which DP can be applied
- Typically, there may be several classes of subproblems that might be considered natural
- Example: matrix-chain-multiplication
 - All subchains of the input chain

We can choose an arbitrary sequence of matrices from the input chain

However, DP based on this space solves many more subproblems
Optimal Substructure

Finding a suitable space of subproblems

- Iterate on subproblem instances
- Example: matrix-chain-multiplication
 - Iterate and look at the structure of optimal soln's to subproblems, sub-subproblems, and so forth
 - Discover that all subproblems consists of subchains of $\langle A_1, A_2, \dots, A_n \rangle$
 - Thus, the set of chains of the form

$$\langle A_i, A_{i+1}, \dots, A_j \rangle$$
 for $1 \le i \le j \le n$

– Makes a natural and reasonable space of subproblems

DP Hallmark #2

Overlapping Subproblems

- Total number of distinct subproblems should be polynomial in the input size
- When a recursive algorithm revisits the same problem over and over again

we say that the optimization problem has overlapping subproblems

Overlapping Subproblems

- DP algorithms typically take advantage of overlapping subproblems
 - by solving each problem once
 - then storing the solutions in a table
 where it can be looked up when needed
 - using constant time per lookup

Overlapping Subproblems

Recursive matrix-chain order

```
RMC(p, i, j)
   if i = j then
        return 0
    m[i,j] \leftarrow \infty
    for k \leftarrow i to j \dashv do
        q \leftarrow \text{RMC}(p, i, k) + \text{RMC}(p, k+1, j) + p_{i-1}p_kp_i
        if q < m[i, j] then
              m[i, j] \leftarrow q
    return m[i, j]
```


Running Time of RMC

$T(1) \ge 1$ $T(n) \ge 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1) \text{ for } n > 1$ = 1

- For i = 1, 2, ..., n each term T(i) appears twice
 Once as T(k), and once as T(n-k)
- Collect n-1 1's in the summation together with the front 1 n-1

$$T(n) \ge 2_i \sum_{l} T(i) + n$$

• Prove that $T(n) = \Omega(2^n)$ using the substitution method

CS473 – Lecture 10

Running Time of RMC: Prove that $T(n) = \Omega(2^n)$

- Try to show that $T(n) \ge 2^{n-1}$ (by substitution) <u>Base case</u>: $T(1) \ge 1 = 2^0 = 2^{1-1}$ for n = 1
- $\underline{IH}: T(i) \ge 2_{n-1}^{i-1} \text{ for all } i = 1, 2, ..., n 1 \text{ and } n \ge 2$ $T(n) \ge 2_i \underbrace{\sum}_{n-2} 2^{i-1} + n$ $= 2_i \underbrace{\sum}_{n-2} 2^{i-1} + n = 2(2^{n-1} 1) + n$ $= 2^{n-1} + (2^{n-1} 2 + n)$

 $\Rightarrow \Gamma(n) \geq 2^{n-1}$

Q.E.D.

CS473 – Lecture 10

Running Time of RMC: $T(n) \ge 2^{n-1}$

Whenever

- a recursion tree for the natural recursive solution to a problem contains the same subproblem repeatedly
- the total number of different subproblems is small
- it is a good idea to see if **DP** can be applied

Memoization

- Offers the efficiency of the usual DP approach while maintaining top-down strategy
- Idea is to memoize the natural, but inefficient, recursive algorithm

Memoized Recursive Algorithm

- Maintains an entry in a table for the soln to each subproblem
- Each table entry contains a special value to indicate that the entry has yet to be filled in
- When the subproblem is first encountered its solution is computed and then stored in the table
- Each subsequent time that the subproblem encountered the value stored in the table is simply looked up and returned

Memoized Recursive Algorithm

- The approach assumes that
 - The set of all possible subproblem parameters are known
 - The relation between the table positions and subproblems is established
- Another approach is to memoize
 by using hashing with subproblem parameters as *key*

Memoized Recursive Matrix-chain Order

MemoizedMatrixChain(*p*)

LookupC(p, i, j) $n \leftarrow \text{length}[p] - 1$ for $i \leftarrow 1$ to n do if $m[i, j] = \infty$ then for $j \leftarrow 1$ to n do if i = j then $m[i, j] \leftarrow \mathbf{0}$ $m[i, j] \leftarrow \infty$ else **return** LookupC(p, 1, n) for $k \leftarrow i$ to $j \dashv do$ $q \leftarrow \text{LookupC}(p, i, k) + \text{LookupC}(p, k+1, j) + p_{i-1}p_kp_i$ if q < m[i, j] then $m[i, j] \leftarrow q$ ▷Shaded subtrees are looked-up rather than recomputing **return** *m*[*i*, *j*]

Elements of Dynamic Programming: Summary

- Matrix-chain multiplication can be solved in $O(n^3)$ time
 - by either a top-down memoized recursive algorithm
 - or a bottom-up dynamic programming algorithm
- Both methods exploit the overlapping subproblems property
 - There are only $\Theta(n^2)$ different subproblems in total
 - Both methods compute the soln to each problem once
- Without memoization the natural recursive algorithm runs in exponential time since subproblems are solved repeatedly

Elements of Dynamic Programming: Summary

In general practice

- If all subproblems must be solved at once
 - a bottom-up DP algorithm always outperforms a top-down memoized algorithm by a constant factor

because, bottom-up DP algorithm

- Has no overhead for recursion
- Less overhead for maintaining the table
- DP: Regular pattern of table accesses can be exploited to reduce the time and/or space requirements even further
- Memoized: If some problems need not be solved at all, it has the advantage of avoiding solutions to those subproblems

A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out

Formal definition: Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a subsequence of Xif \exists a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that $x_i = z_j$ for all j = 1, 2, ..., k, where $1 \le k \le m$ Example: $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ with the index sequence $\langle i_1, i_2, i_3, i_4 \rangle = \langle 2, 3, 5, 7 \rangle$ Given two sequences X & Y, Z is a common subsequence of X & Y

Example: $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$ Sequence $\langle B, C, A \rangle$ is a common subsequence of *X* and *Y*. However, $\langle B, C, A \rangle$ is not a longest common subsequence (LCS) of *X* and *Y*.

 $\langle B, C, B, A \rangle$ is an LCS of *X* and *Y*.

Longest common subsequence (LCS): Given two sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ We wish to find the LCS of X & Y

Characterizing a Longest Common Subsequence

A brute force approach

- Enumerate all subsequences of *X*
- Check each subsequence to see if it is also a subsequence of *Y* meanwhile keeping track of the LCS found
- Each subsequence of *X* corresponds to a subset of the index set {1, 2, ..., *m*} of *X*
- So, there are 2^m subsequences of X
- Hence, this approach requires exponential time

Characterizing a Longest Common Subsequence

Definition: The *i*-th prefix X_i of X for i = 0, 1, ..., m is $X_i = \langle x_1, x_2, ..., x_i \rangle$

Example: Given $X \stackrel{1}{=} \stackrel{2}{<} \stackrel{3}{A} \stackrel{4}{B} \stackrel{5}{C} \stackrel{6}{B} \stackrel{7}{D}$, A, B> $X_4 = \langle A, B, C, B \rangle$ and $X_{\emptyset} =$ empty sequence

Theorem: (Optimal substructure of an LCS) Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ are given Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y 1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} 2. If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y 3. If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1} Cevdet Aykanat - Bilkent University Computer Engineering Department

Optimal Substructure Theorem (case 1)

If
$$x_m = y_n$$
 then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

Optimal Substructure Theorem (case 2)

If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y

Optimal Substructure Theorem (case 3)

If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}

Proof of Optimal Substructure Theorem (case 1)

If
$$x_m = y_n$$
 then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

Proof: If $z_k \neq x_m = y_n$ then

we can append x_m = y_n to Z to obtain a common subsequence of length k+1 ⇒contradiction
Thus, we must have z_k = x_m = y_n
Hence, the prefix Z_{k-1} is a length-(k-1) CS of X_{m-1} and Y_{n-1}

We have to show that Z_{k-1} is in fact an LCS of X_{m-1} and Y_{n-1} Proof by contradiction: Assume that \exists a CS W of X_{m-1} and Y_{n-1} with |W| = k

Then appending $x_m = y_n$ to W produces a CS of length k+1

Proof of Optimal Substructure Theorem (case 2)

If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y

Proof : If $z_k \neq x_m$ then Z is a CS of X_{m-1} and Y_n We have to show that Z is in fact an LCS of X_{m-1} and Y_n (Proof by contradiction) Assume that \exists a CS W of X_{m-1} and Y_n with |W| > kThen W would also be a CS of X and Y Contradiction to the assumption that

Z is an LCS of X and Y with |Z| = k

Case 3: Dual of the proof for (case 2)

Longest Common Subsequence Algorithm

LCS(X, Y) $m \leftarrow \text{length}[X]$ $n \leftarrow \operatorname{length}[Y]$ if $x_m = y_n$ then $Z \leftarrow \text{LCS}(X_{m-1}, Y_{n-1})$ \triangleright solve one subproblem \triangleright append $x_m = y_n$ to Z return $\langle Z, x_m = y_n \rangle$ else $Z' \leftarrow \operatorname{LCS}(X_{m-1}, Y) \\ Z'' \leftarrow \operatorname{LCS}(X, Y_{n-1}) \end{cases} \geqslant \text{ solve two subproblems}$ return longer of Z' and Z''

Theorem implies that there are one or two subproblems to examine if $x_m = y_n$ then

we must solve the subproblem of finding an LCS of X_{m-1} & Y_{n-1} appending $x_m = y_n$ to this LCS yields an LCS of X & Y

else

we must solve two subproblems

-finding an LCS of X_{m-1} & Y

-finding an LCS of $X \& Y_{n-1}$

longer of these two LCSs is an LCS of X & Y

endif

A Recursive Solution to Subproblems

Overlapping-subproblems property

- finding an LCS to X_{m-1} & Y and an LCS to X & Y_{n-1} has the subsubproblem of finding an LCS to X_{m-1} & Y_{n-1}
- many other subproblems share subsubproblems
- A recurrence for the cost of an optimal solution

c[i, j]: length of an LCS of the prefix subsequences $X_i \& Y_j$

If either i = 0 or j = 0, one of the prefix sequences has length 0, so the LCS has length 0

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max\{c[i, j-1], c[i-1, j]\} & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

We can easily write an exponential-time recursive algorithm based on the given recurrence However, there are only $\Theta(mn)$ distinct subproblems Therefore, we can use dynamic programming

Data structures:

Table c[0...m, 0...n] is used to store c[i, j] values

Entries of this table are computed in row-major order

- Table b[1...m, 1...n] is maintained to simplify the construction of an optimal solution
- b[i, j]: points to the table entry corresponding to the optimal subproblem solution chosen when computing c[i, j]

$$\begin{aligned} \textbf{CS-LENGTH}(X,Y) \\ m \leftarrow \text{length}[X]; n \leftarrow \text{length}[Y] \\ \text{for } i \leftarrow 0 \text{ to } m \text{ do } c[i, 0] \leftarrow 0 \\ \text{for } j \leftarrow 0 \text{ to } n \text{ do } c[0, j] \leftarrow 0 \\ \text{for } i \leftarrow 1 \text{ to } m \text{ do} \\ \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ \text{if } x_i = y_j \text{ then} \\ c[i, j] \leftarrow c[i \dashv, j \dashv] + 1 \\ b[i, j] \leftarrow ``[]`` \\ \text{else if } c[i - 1, j] \ge c[i, j \dashv] \\ c[i, j] \leftarrow c[i \dashv, j] \\ b[i, j] \leftarrow ``[]`` \\ \text{else} \\ c[i, j] \leftarrow c[i, j \dashv] \\ b[i, j] \leftarrow ``[]`` \end{aligned}$$

CS473 – Lecture 10

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

j	0	1	2	3	4	5	6
i	y_i	В	D	С	A	В	A
$0 x_i$	0	0	0	0	0	0	0
	Ŭ	<u>́</u>	<u>́</u>	$\mathbf{\Lambda}$	<u>ہ</u>		к Л
1 A	0	0	0	0	1	←ı	1
		Γ			\uparrow	Z	
2 B	0	1	←ı	←ı	1	2	←2
2.0		\uparrow	$\mathbf{\Lambda}$	Γ		\uparrow	\uparrow
3 C	0	1	1	2	←2	2	2
		R	\uparrow	\uparrow	\uparrow	R	
4 B	0	1	1	2	2	3	←3
		\uparrow	Γ	\uparrow	\uparrow	\uparrow	\uparrow
5 D	0	1	2	2	2	3	3
6 1							
0 A	0						
7 B	0						

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

j	0	1	2	3	4	5	6
i	y_i	В	D	C	A	В	A
$0 x_i$							
	0	0	0	0	0	0	0
1 4		\uparrow	\uparrow	1			
1 A	0	0	0	0	1	←ı	1
A D		Γ				R	
2 B	0	1	←ı	←1	1	2	←2
• •		\uparrow	\uparrow	R		\uparrow	\uparrow
3 C	0	1	1	2	←2	2	2
		Γ	\uparrow	\uparrow	\uparrow	R	
4 B	0	1	1	2	2	3	←3
		\uparrow	Γ	\uparrow	\uparrow	\wedge	\uparrow
5 D	0	1	2	2	2	3	3
		\uparrow	\uparrow	\uparrow	Γ	\uparrow	Γ
6 A	0	1	2	2	3	3	4
7 D							
/ B	0						

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Running-time = O(mn)since each table entry takes O(1) time to compute

LCS of $X \& Y = \langle B, C, B, A \rangle$

j	0	1	2	3	4	5	6
i	\mathcal{Y}_{i}	В	D	С	Α	В	Α
$0 x_i$	0	0	0	0	0	0	0
		\uparrow	\uparrow	\uparrow	Γ		Γ
ΙA	0	0	0	0	1	←1	1
2 B	0	Γ	← 1	€1	↑ 1	N 2	← ?
3 C	0	1 ↑ 1	↑ 1	۲ ۲ 2	← 2	² ↑ 2	↑ 2
4 B	0	N	↑ 1	↑ 2	↑ 2	<u>Γ</u> 3	<u>←</u> 3
5 D	0	↑ 1	к 2	↑ 2	↑ 2	↑ 3	↑ 3
6 A	0	↑ 1	↑ 2	↑ 2	К 3	↑ 3	⊼ 4
7 B	0	Γ 1	↑ 2	↑ 3	↑ 3	۲ 4	↑ 4

Operation of LCS-LENGTH on the sequences

I = 2 = 3 = 4 = 5 = 6 = 7 X = <A, B, C, B, D, A, B > Y = <B, D, C, A, B, A >I = 2 = 3 = 4 = 5 = 6

Running-time = O(mn)since each table entry takes O(1) time to compute

LCS of $X \& Y = \langle B, C, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	↑ 0	r 1	← 1	⊼ 1
2 B	0	⊼ 1	← 1	← 1	↑ 1	⊼ 2	←2
3 C	0	↑ 1	↑ 1	⊼ 2	← 2	↑ 2	↑ 2
4 B	0	⊼ 1	↑ 1	↑ 2	↑ 2	⊼ 3	←3
5 D	0	↑ 1	 2	↑ 2	↑ 2	↑ 3	↑ 3
6 A	0	↑ 1	↑ 2	↑ 2	ہ 3	↑ 3	⊾ 4
7 B	0	N	$ \begin{array}{c} \uparrow \\ 2 \end{array} $	\uparrow 3	$ \begin{array}{c} $	⊼ 4	↑ 4

Constructing an LCS

The *b* table returned by LCS-LENGTH can be used to quickly construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a "[]" in entry b[i, j]it implies that $x_i = y_i$ is an element of LCS

The elements of LCS are encountered in reverse order

Constructing an LCS

```
PRINT-LCS(b, X, i, j)
    if i = 0 or j = 0 then
                                        The initial invocation:
                                        PRINT-LCS(b, X, \text{length}[X], \text{length}[Y])
          return
    if b[i, j] = "\square" then
         PRINT-LCS(b, X, i \rightarrow j, j \rightarrow l)
          print x_i
    else if b[i, j] = "\square" then
         PRINT-LCS(b, X, i \rightarrow j)
     else
          PRINT-LCS(b, X, i, j-1)
```

The recursive procedure **PRINT-LCS** prints out LCS in proper order

This procedure takes O(m+n) time

since at least one of i and j is determined in each stage of the recursion

Longest Common Subsequence

Improving the code:

- we can eliminate the *b* table altogether
- each c[i, j] entry depends only on 3 other c table entries c[i-1, j-1], c[i-1, j] and c[i, j-1]

Given the value of c[i, j]

- we can determine in O(1) time which of these 3 values was used to compute c[i, j] without inspecting table b
- we save $\Theta(mn)$ space by this method
- however, space requirement is still $\Theta(mn)$ since we need $\Theta(mn)$ space for the *c* table anyway

We can reduce the asymptotic space requirement for LCS-LENGTH

- since it needs only two rows of table c at a time
- the row being computed and the previous row

This improvement works if we only need the length of an LCSCS473 – Lecture 10Cevdet Aykanat - Bilkent University
Computer Engineering Department