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Huffman Codes
• Widely used and very effective technique for compressing data 
• Savings of 20% to 90% are typical
• Depending on the characteristics of the file being compressed 

Huffman’s greedy algorithm
− uses a table of the frequencies of occurrence of each character 
− to build up an optimal way of representing each character as a 

binary string
Example: A 100,000-character data file that is to be compressed    

only 6 characters {a, b, c, d, e, f} appear
a            b  c            d            e            f

frequency (in thousands) 45K      13K   12K   16K  9K   5K
fixed-length codeword            000       001        010        011  100       101
variable-length codeword       0            101       100        111     1101     1100
variable-length codeword 0            10         110        1110      11110   11111    
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Huffman Codes

Binary character code:
• each character is represented by a unique binary string

Fixed-length code:
• needs 3 bits to represent 6 characters
• requires 100.000×3=300,000 bits to code the entire file

Variable-length code:
• can do better by giving frequent characters short 

codewords & infrequent words long codewords
• requires 45×1+13×3+12×3+16×3+9×4+5×4

=224,000 bits
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Prefix Codes

Prefix codes: No codeword is also a prefix of some other 
codeword

It can be shown that:
optimal data compression achievable by a character code 
can always be achieved with a prefix code

Prefix codes simplify encoding (compression) and decoding

Encoding: Concatenate the codewords representing each         
character of the file

e.g. 3 char file  “abc”               0.101.100 = 0101100encoded
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Prefix Codes

Decoding: is quite simple with a prefix code
the codeword that begins an encoded file is unambigious

since no codeword is a prefix of any other
• identify the initial codeword
• translate it back to the original character
• remove it from the encoded file
• repeat the decoding process on the remainder of the 

encoded file
e.g. string 001011101 parses uniquely as 

0.0.101.1101       aabedecoded
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Prefix Codes

Convenient representation for the prefix code:
a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the
root to that character in the binary tree

“0” means “go to the left child”
“1” means “go to the right child”
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Binary Tree Representation of Prefix Codes
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Binary Tree Representation of Prefix Codes
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An optimal code for a file is always represented by a full binary tree
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Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has |C| leaves (external nodes)

One for each letter of the alphabet where C is the alphabet 
from which the characters are drawn

Lemma: An FBT with |C| external nodes has exactly
|C|−1 internal nodes
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Full Binary Tree Representation of Prefix Codes

Consider an FBT T corresponding to a prefix code
How to compute, B(T), the number of bits required to 

encode a file
f(c): frequency of character c in the file
dT(c): depth of c’s leaf in the FBT T
note that dT(c) also denotes length of the codeword for c

which we define as the cost of the tree T
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Prefix Codes

Lemma: Let each internal node i is labeled with 
the sum of the weight w(i) of the leaves in its subtree

Then where

IT denotes the set of internal nodes in T

Proof: Consider a leaf node c with f (c) & dT(c)
Then, f (c) appears in the weights of dT(c) internal node
along the path from c to the root
Hence, f (c) appears dT(c) times in the above summation

∑∑ == T iwcdcfTB )()( )()(
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Constructing a Huffman Code

Huffman invented a greedy algorithm that constructs 
an optimal prefix code called a Huffman code

The greedy algorithm
• builds the FBT corresponding to the optimal code 

in a bottom-up manner
• begins with a set of |C| leaves
• performs a sequence of |C|−1 “merges” to create 

the final tree
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Constructing a Huffman Code

A priority queue Q, keyed on f, is used 
to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object
• inserted into the priority queue according to its 

frequency
• which is the sum of the frequencies of the two 

objects merged
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Constructing a Huffman Code
HUFFMAN(C)

n ← |C|
Q ← C
for i ← 1 to n −1 do

z ← ALLOCATE-NODE()
x ← left[z] ← EXTRACT-MIN(Q)
y ← right[z] ← EXTRACT-MIN(Q)
f [z] ← f [x] + f [y]
INSERT(Q, z)

return EXTRACT-MIN(Q)    ∆ only one object left in Q
Priority queue is implemented as a binary heap
Initiation of Q (BUILD-HEAP): O(n) time
EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects
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Constructing a Huffman Code
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Constructing a Huffman Code
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Constructing a Huffman Code
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Constructing a Huffman Code
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Correctness of Huffman’s Algorithm

We must show that the problem of determining an 
optimal prefix code 
• exhibits the greedy choice property
• exhibits the optimal substructure property

Lemma 1: Let x & y be two characters in C having the 
lowest frequencies

Then, ∃ an optimal prefix code for C in which the 
codewords for x & y have the same length and differ 
only in the last bit
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Correctness of Huffman’s Algorithm

Proof: Take tree T representing an arbitrary optimal code
Modify T to make a tree representing another optimal code 

such that characters x & y appear as sibling leaves of 
max-depth in the new tree

Assume that f [b] ≤ f [c] & f [x] ≤ f [y]

Since f [x] & f [y] are two lowest leaf frequencies, in order,
and f [b] & f [c] are two arbitrary leaf frequencies, in order, 
f [x] ≤ f [b] & f [y] ≤ f [c]
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Correctness of Huffman’s Algorithm
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Greedy-Choice Property of Determining an Optimal Code

Proof of Lemma 1 (continued):
The difference in cost between T and T′ is
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Greedy-Choice Property of Determining an Optimal Code

Proof of Lemma 1 (continued):

Since f [b]−f [x] ≥ 0 and dT(b) ≥ dT(x)
therefore B(T′) ≤ B(T)

We can similary show that 
B(T′)−B(T′′) ≥ 0 ⇒ B(T′′) ≤ B(T′)
which implies B(T′′) ≤ B(T)

Since T is optimal ⇒ B(T′′) = B(T) ⇒ T′′ is also optimal
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Greedy-Choice Property of Determining an Optimal Code

Lemma 1 implies that
process of building an optimal tree by mergers
can begin with the greedy choice of merging
those two characters with the lowest frequency

We have already proved that    , that is,
the total cost of the tree constructed 
is the sum of the costs of its mergers (internal nodes) 
of all possible mergers

At each step Huffman chooses the merger that incurs the
least cost
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Greedy-Choice Property of Determining an Optimal Code

Lemma 2: Consider any two characters x & y that appear 
as sibling leaves in optimal T and let z be their parent

Then, considering z as  a character with frequency
f [z] = f [x] + f [y]

The tree T′ = T − {x, y} represents an optimal prefix code
for the alphabet C′ = C − {x, y} ∪ {z}
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Greedy-Choice Property of Determining an Optimal Code

Proof: Try to express cost of T in terms of cost of T′
For each c ∈ C′ = C − {x, y} we have

dT(c) = dT′(c) ⇒ f (c)dT(c) = f (c)dT′(c)
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Greedy-Choice Property of Determining an Optimal Code

Proof (continued): If T′ represents a nonoptimal prefix 
code for the alphabet C′

Then, ∃ a tree T′′ whose leaves are characters in C′
such that B(T′′) < B(T′)

Since z is a character in C′, it appears as a leaf in T′′

If we add x & y as children of z in T′′
then we obtain a prefix code for x with cost

B(T′′) + f [x] + f [y] < B(T′) + f [x] + f [y] = B(T)
contradicting the optimality of T
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