CS473-Algorithms I

Lecture 14-A

Graph Searching: Breadth-First Search

CS473 – Lecture 14

Cevdet Aykanat - Bilkent University Computer Engineering Department 1

Graph Searching: Breadth-First Search

Graph G = (V, E), directed or undirected with adjacency list repres. GOAL: Systematically explores edges of *G* to

- discover every vertex reachable from the source vertex *s*
- compute the shortest path distance of every vertex from the source vertex *s*
- produce a breadth-first tree (BFT) G_{Π} with root s
 - **– BFT** contains all vertices reachable from *s*
 - the unique path from any vertex v to s in G_{Π} constitutes a shortest path from s to v in G
- IDEA: Expanding frontier across the breadth -greedy-
 - propagate a wave 1 edge-distance at a time
 - using a FIFO queue: O(1) time to update pointers to both ends

Maintains the following fields for each $u \in V$

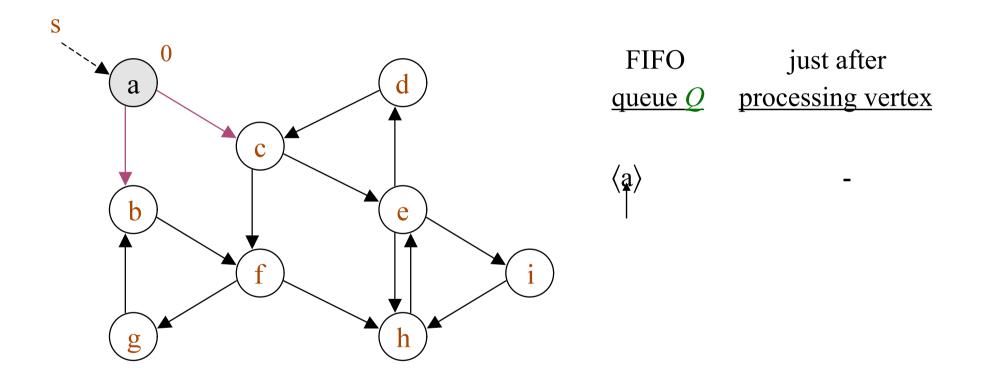
- color[*u*]: color of *u*
 - WHITE : not discovered yet
 - -GRAY : discovered and to be or being processed
 - -BLACK: discovered and processed
- $\Pi[u]$: parent of u (NIL of u = s or u is not discovered yet)
- *d*[*u*]: distance of *u* from *s*

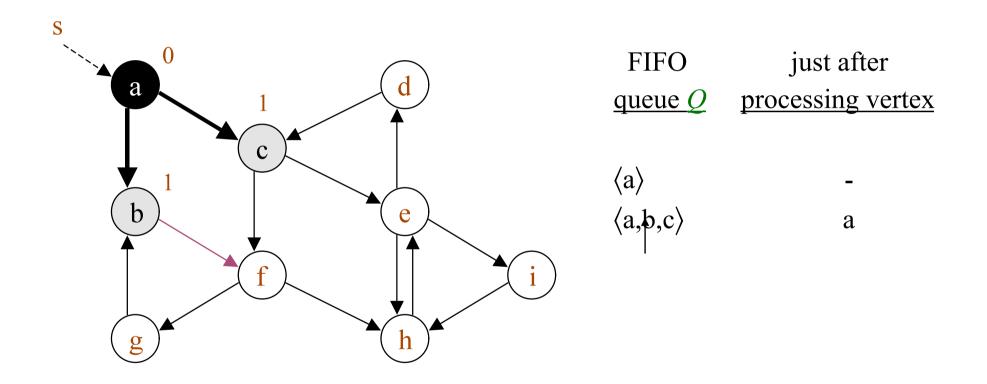
Processing a vertex = scanning its adjacency list

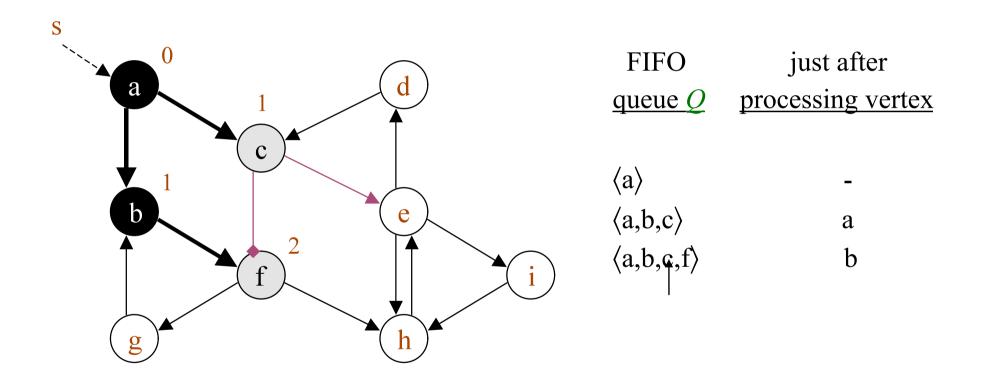
Breadth-First Search Algorithm

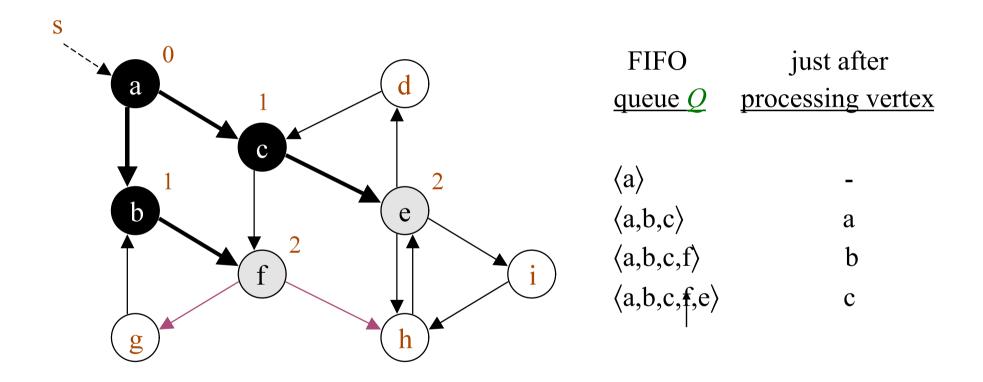
```
BFS(G, s)
      for each u \in V- {s} do
           color[u] \leftarrow WHITE
           \Pi[u] \leftarrow \text{NIL}; d[u] \leftarrow \infty
      color[s] \leftarrow GRAY
     \Pi[s] \leftarrow \text{NIL}; d[s] \leftarrow 0
      Q \leftarrow \{s\}
      while Q \neq \emptyset do
           u \leftarrow \text{head}[Q]
           for each v in Adj[u] do
                  if color[v] = WHITE then
                        color[v] \leftarrow GRAY
                        \Pi[v] \leftarrow u
                        d[v] \leftarrow d[u] + 1
                        ENQUEUE(Q, v)
           DEQUEUE(Q)
           color[u] \leftarrow BLACK
  CS473 – Lecture 14
                                    Cevdet Aykanat - Bilkent University
                                     Computer Engineering Department
```

Sample Graph:

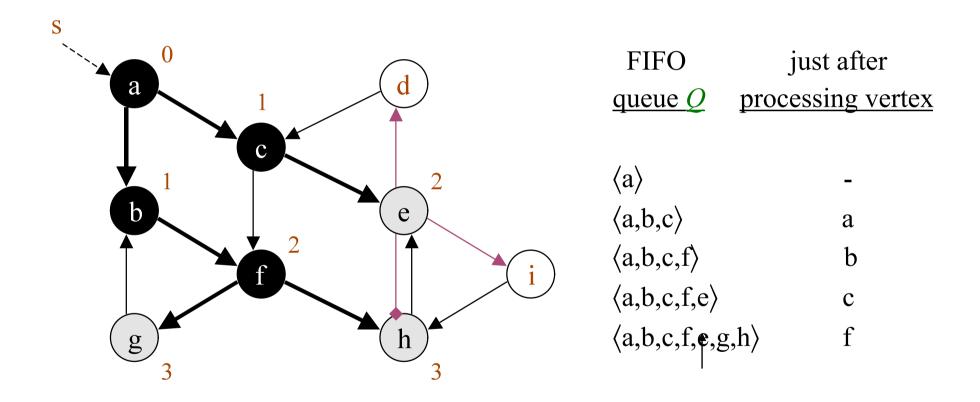


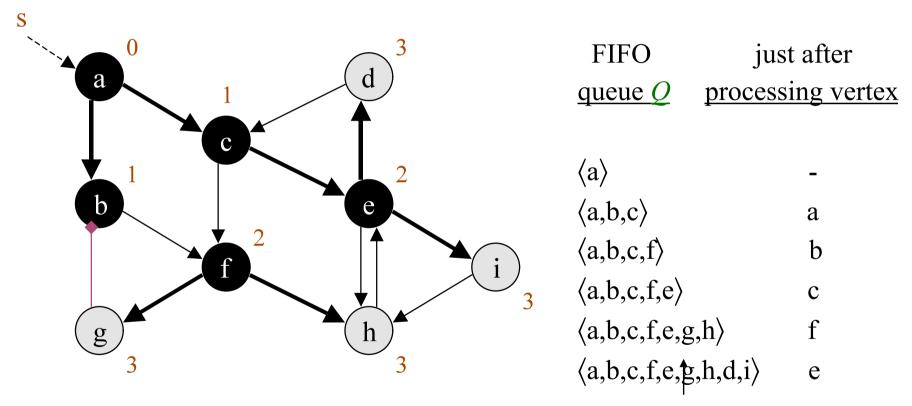




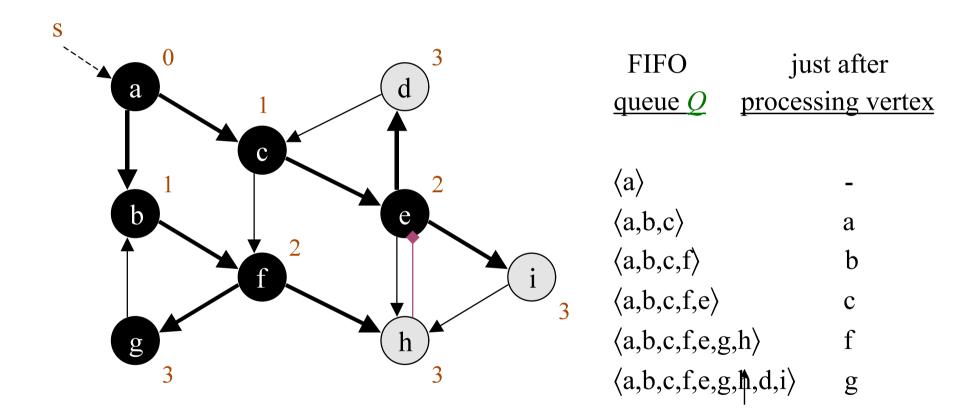


CS473 – Lecture 14



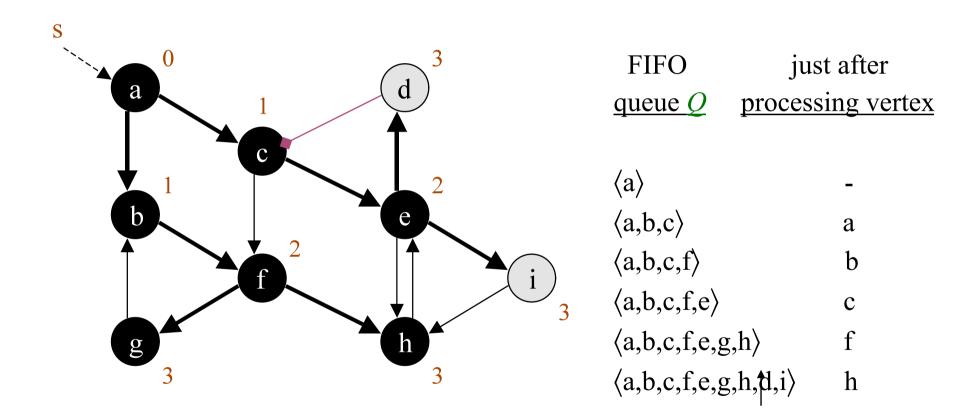


all distances are filled in after processing e

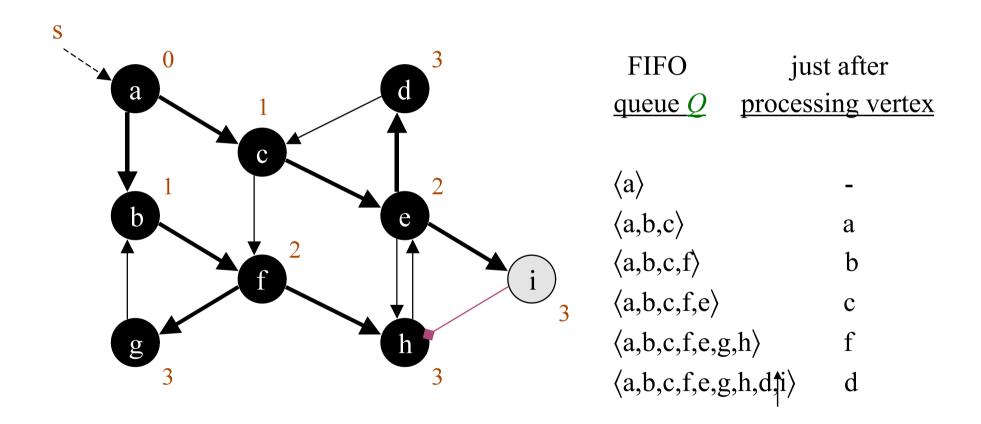


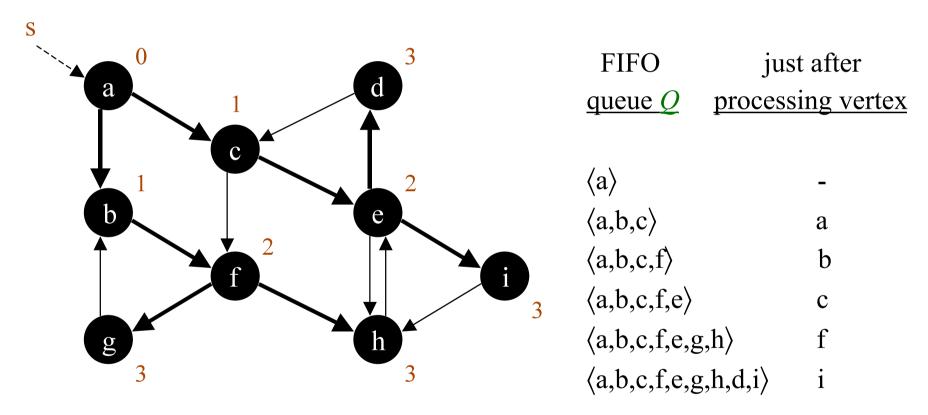
CS473 – Lecture 14

Cevdet Aykanat - Bilkent University Computer Engineering Department 11



CS473 – Lecture 14





algorithm terminates: all vertices are processed

Running time: O(V+E) = considered linear time in graphs

- initialization: $\Theta(V)$
- queue operations: O(V)
 - each vertex enqueued and dequeued at most once
 - both enqueue and dequeue operations take O(1) time
- processing gray vertices: O(*E*)

- each vertex is processed at most once and $\sum_{u \in V} |Adj[u]| = \Theta(E)$

CS473 – Lecture 14

DEF: $\delta(s, v) =$ shortest path distance from *s* to *v* LEMMA 1: for any $s \in V \& (u, v) \in E$; $\delta(s, v) \le \delta(s, u) + 1$

For any BFS(G, s) run on G=(V,E)

LEMMA 2: $d[v] \ge \delta(s, v) \quad \forall v \in V$

LEMMA 3: at any time of BFS, the queue $Q = \langle v_1, v_2, ..., v_r \rangle$ satisfies

- $d[v_r] \le d[v_1] + 1$
- $d[v_i] \le d[v_{i+1}]$, for i = 1, 2, ..., r 1

THM1: BFS(G, s) achieves the following

- discovers every $v \in V$ where $s \rightarrow v$ (i.e., v is reachable from s)
- upon termination, $d[v] = \delta(s, v) \quad \forall v \in V$
- for any $v \neq s \& s \rightarrow v$; sp $(s, \Pi[v]) \sim (\Pi[v], v)$ is a sp(s, v)

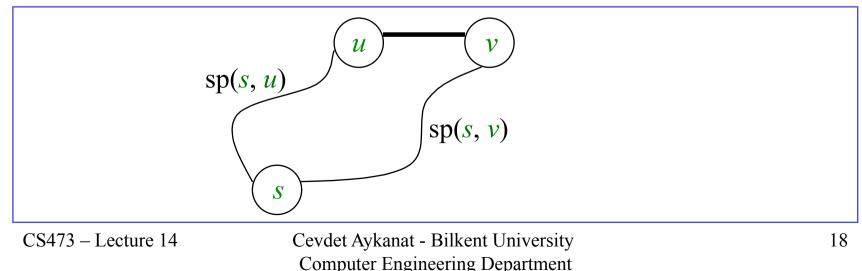
CS473 – Lecture 14

DEF: shortest path distance $\delta(s, v)$ from s to v $\delta(s, v)$ = minimum number of edges in any path from *s* to *v* $=\infty$ if no such path exists (i.e., v is not reachable from s) L1: for any $s \in V$ & $(u, v) \in E$; $\delta(s, v) \leq \delta(s, u) + 1$ **PROOF**: $s \rightarrow u \Rightarrow s \rightarrow v$. Then, consider the path $p(s, v) = sp(s, u) \sim (u, v)$ • $|\mathbf{p}(s, v)| = |\mathbf{sp}(s, u)| + 1 = \delta(s, u) + 1$ • therefore, $\delta(s, v) \le |\mathbf{p}(s, v)| = \delta(s, u) + 1$ sp(s, u)p(s, v)S CS473 – Lecture 14 Cevdet Aykanat - Bilkent University 17 **Computer Engineering Department**

Proofs of BFS Theorems

DEF: shortest path distance $\delta(s, v)$ from *s* to *v* $\delta(s, v) =$ minimum number of edges in any path from *s* to *v* L1: for any $s \in V \& (u, v) \in E; \delta(s, v) \le \delta(s, u) + 1$ C1 of L1: if G=(V,E) is undirected then $(u, v) \in E \Rightarrow (v, u) \in E$ • $\delta(s, v) \le \delta(s, u) + 1$ and $\delta(s, u) \le \delta(s, v) + 1$

- $\Rightarrow \delta(s, u) 1 \le \delta(s, v) \le \delta(s, u) + 1$ and $\delta(s, v) - 1 \le \delta(s, u) \le \delta(s, v) + 1$
- $\Rightarrow \delta(s, u) \& \delta(s, v)$ differ by at most 1



L2: upon termination of BFS(G, s) on G=(V,E); $d[v] \ge \delta(s, v) \quad \forall v \in V$

PROOF: by induction on the number of **ENQUEUE** operations

- basis: immediately after 1st enqueue operation $ENQ(Q, s): d[s] = \delta(s, s)$
- hypothesis: $d[v] \ge \delta(s, v)$ for all v inserted into Q
- induction: consider a white vertex *v* discovered during scanning Adj[*u*]
- d[v] = d[u] + 1 due to the assignment statement $\geq \delta(s, u) + 1$ due to the inductive hypothesis since $u \in Q$ $\geq \delta(s, v)$ due to L1
- vertex *v* is then enqueued and it is never enqueued again

d [*v*] never changes again, maintaining inductive hypothesis CS473 – Lecture 14 Cevdet Aykanat - Bilkent University Computer Engineering Department L3: Let $Q = \langle v_1, v_2, ..., v_r \rangle$ during the execution of BFS(*G*, *s*), then, $d[v_r] \le d[v_1] + 1$ and $d[v_i] \le d[v_{i+1}]$ for i = 1, 2, ..., r-1

PROOF: by induction on the number of **QUEUE** operations

- basis: lemma holds when $Q \leftarrow \{s\}$
- hypothesis: lemma holds for a particular Q (i.e., after a certain # of QUEUE operations)
- induction: must prove lemma holds after both DEQUEUE & ENQUEUE operations

• DEQUEUE(Q):
$$Q = \langle v_1, v_2, ..., v_r \rangle \Rightarrow Q' = \langle v_2, v_3, ..., v_r \rangle$$

 $\neg d [v_r] \le d [v_1] + 1 \& d [v_1] \le d [v_2] \text{ in } Q \Rightarrow$
 $d [v_r] \le d [v_2] + 1 \text{ in } Q'$
 $\neg d [v_i] \le d [v_{i+1}] \text{ for } i = 1, 2, ..., r-1 \text{ in } Q \Rightarrow$
 $d [v_i] \le d [v_{i+1}] \text{ for } i = 2, ..., r-1 \text{ in } Q'$
CS473 - Lecture 14 Cevdet Aykanat - Bilkent University
Computer Engineering Department 20

Proofs of BFS Theorems

• ENQUEUE(Q, v): $Q = \langle v_1, v_2, \dots, v_r \rangle \Rightarrow$ $Q' = \langle v_1, v_2, \dots, v_r, v_{r+1} = v \rangle$

- v was encountered during scanning Adj[u] where $u = v_1$

- thus,
$$d[v_{r+1}] = d[v] = d[u] + 1 = d[v_1] + 1 \Rightarrow d$$

 $[v_{r+1}] = d[v_1] + 1 \text{ in } Q'$

$$-\operatorname{but} d[v_r] \le d[v_1] + 1 = d[v_{r+1}]$$

 $\neg \Rightarrow d[v_{r+1}] = d[v_1] + 1 \text{ and } d[v_r] \le d[v_{r+1}] \text{ in } Q'$

C3 of L3 (monotonicity property):

if: the vertices are enqueued in the order $v_1, v_2, ..., v_n$ then: the sequence of distances is monotonically increasing,

i.e., $d[v_1] \le d[v_2] \le \dots \le d[v_n]$

THM (correctness of BFS): BFS(G, s) achieves the following on G=(V,E)

- discovers every $v \in V$ where $s \rightarrow v$
- upon termination: $d[v] = \delta(s, v) \quad \forall v \in V$
- for any $v \neq s$ & $s \rightarrow v$; sp $(s, \Pi[v]) \sim (\Pi[v], v) = sp(s, v)$

PROOF: by induction on *k*, where $V_k = \{v \in V: \delta(s, v) = k\}$

- hypothesis: for each $v \in V_k$, \exists exactly one point during execution of BFS at which color[v] \leftarrow GRAY, d [v] $\leftarrow k$, $\Pi[v] \leftarrow u \in V_{k-1}$, and then ENQUEUE(Q, v)
- basis: for k = 0 since $V_0 = \{s\}$; color[s] \leftarrow GRAY, $d[s] \leftarrow 0$ and ENQUEUE(Q, s)
- induction: must prove hypothesis holds for each $v \in V_{k+1}$

CS473 – Lecture 14

Proofs of BFS Theorems

Consider an arbitrary vertex $v \in V_{k+1}$, where $k \ge 0$

- monotonicity (L3) + $d[v] \ge k + 1$ (L2) + inductive hypothesis $\Rightarrow v$ must be discovered after all vertices in V_k were enqueued
- since $\delta(s, v) = k + 1$, $\exists u \in V_k$ such that $(u, v) \in E$
- let $u \in V_k$ be the first such vertex grayed (must happen due to hyp.)
- *u* ← head(*Q*) will be ultimately executed since BFS enqueues every grayed vertex

- *v* will be discovered during scanning Adj[*u*]

color[v]=WHITE since v isn't adjacent to any vertex in V_i for $j \le k$

− color[v] ← GRAY, $d[v] \leftarrow d[u] + 1$, $\Pi[v] \leftarrow u$

- then, ENQUEUE(Q, v) thus proving the inductive hypothesis

To conclude the proof

• if $v \in V_{k+1}$ then due to above inductive proof $\Pi[v] \in V_k$

- thus $sp(s, \Pi[v]) \sim (\Pi[v], v)$ is a shortest path from *s* to *v* CS473 – Lecture 14 Cevdet Aykanat - Bilkent University Computer Engineering Department DEF: $\delta(s, v) =$ shortest path distance from *s* to *v* LEMMA 1: for any $s \in V \& (u, v) \in E$; $\delta(s, v) \le \delta(s, u) + 1$

For any BFS(G, s) run on G=(V,E)

LEMMA 2: $d[v] \ge \delta(s, v) \quad \forall v \in V$

LEMMA 3: at any time of BFS, the queue $Q = \langle v_1, v_2, ..., v_r \rangle$ satisfies

- $d[v_r] \le d[v_1] + 1$
- $d[v_i] \le d[v_{i+1}]$, for i = 1, 2, ..., r 1

THM1: BFS(G, s) achieves the following

- discovers every $v \in V$ where $s \rightarrow v$ (i.e., v is reachable from s)
- upon termination, $d[v] = \delta(s, v) \quad \forall v \in V$
- for any $v \neq s \& s \rightarrow v$; sp $(s, \Pi[v]) \sim (\Pi[v], v)$ is a sp(s, v)

CS473 – Lecture 14

Breadth-First Tree Generated by BFS

LEMMA 4: predecessor subgraph $G_{\Pi} = (V_{\Pi}, E_{\Pi})$ generated by BFS(G, s), where $V_{\Pi} = \{v \in V: \Pi[v] \neq \text{NIL}\} \cup \{s\}$ and $E_{\Pi} = \{(\Pi[v], v) \in E: v \in V_{\Pi} - \{s\}\}$

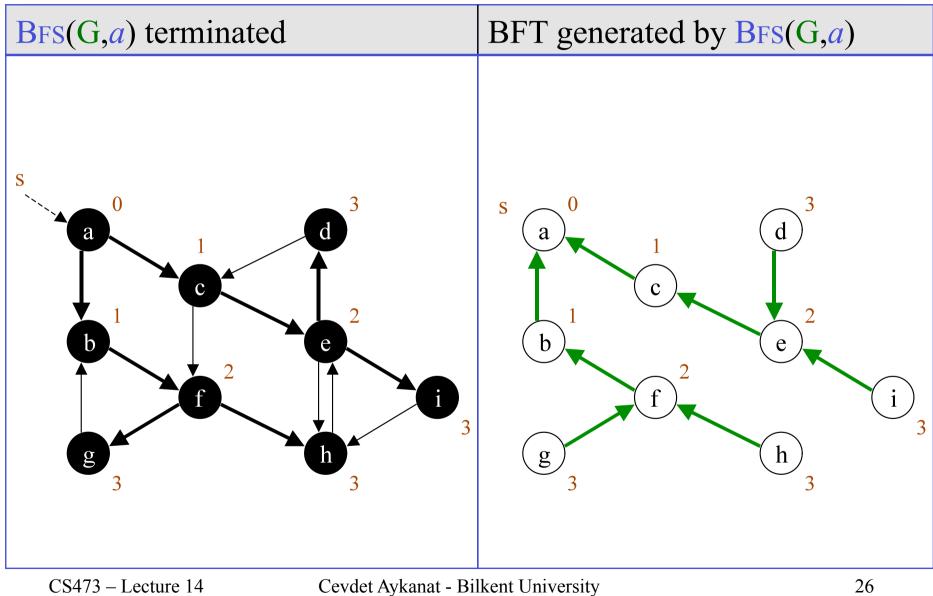
is a breadth-first tree such that

- V_{Π} consists of all vertices in V that are reachable from s

 $- \forall v \in V_{\Pi}$, unique path p(v, s) in G_{Π} constitutes a sp(s, v) in G

```
PRINT-PATH(G, s, v)Prints out vertices on a<br/>s \rightarrow v shortest pathif v = s then print sPrints out vertices on a<br/>s \rightarrow v shortest pathelseNIL then<br/>print no "s \rightarrow v path"<br/>elsePRINT-PATH(G, s, \Pi[v])print vCs473 - Lecture 14Cevdet Aykanat - Bilkent University<br/>Computer Engineering Department25
```

Breadth-First Tree Generated by BFS



Computer Engineering Department