CS473-Algorithms I

Lecture 16

Strongly Connected Components

CS 473 Lecture 16

Strongly Connected Components

Definition: a strongly connected component (SCC) of a

directed graph G=(V,E) 1s a maximal set of vertices UC
V such that

— For each u,y €U we have bothut>vand vi> u
i.e., # and v are mutually reachable from each other (u %i v)

Let G'=(V,ET) be the transpose of G=(V,E) where
E={(u,v): (u,v) € E}
— i.e., ET consists of edges of G with their directions reversed

Constructing G! from G takes O(V+E) time (adjacency list rep)
Note: G and G! have the same SCCs (¢ i vin Ge u i vin G)

CS 473 Lecture 16 2

Strongly Connected Components

Algorithm

(1) Run DFS(G) to compute finishing times for all u€V

(2) Compute G'

(3) Call DFS(G') processing vertices in main loop in
decreasing f[«] computed 1n Step (1)

(4) Output vertices of each DFT 1n DFF of Step (3) as a
separate SCC

CS 473 Lecture 16 3

Strongly Connected Components

Lemma 1: no path between a pair of vertices in
the same SCC, ever leaves the SCC

Proof: let # and v be in the same SCC = u S v

let w be on some path u hw > v=| ut>w
butvibu=dapathwvi u=|wu

therefore # and w are in the same SCC

QED

CS 473 Lecture 16

SCC: Example

b

C d

O—0
9/;@%?

(0O

CS 473

ecture 16

SCC: Example

(1)Run DFS(G) to compute finishing times for all u&V

1
a c d

O—O—C0
0 0=0

@ f g h

CS 473 Lecture 16 6

SCC: Example

(1)Run DFS(G) to compute finishing times for all u&V

a b c d

CS 473 Lecture 16 7

SCC: Example

(1)Run DFS(G) to compute finishing times for all u€V

a

@

CS 473 Lecture 16 8

SCC: Example

e

Vertices sorted according to the finishing times:

<b9 e a, C, da S haf)

CS 473 Lecture 16

SCC: Example

(2) Compute GT

CS 473 Lecture 16 10

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: {b, e, a, ¢, d, g, h, [

a b » C d

CS 473 Lecture 16 11

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: {b, e, a, ¢, d, g, h, [

C d

Lecture 16 12

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a, ¢, d, g, h, [)

Lecture 16 13

SCC: Example

(3) Call DFS(G') processing vertices in main loop in
decreasing f[u] order: (b, e, a, ¢, d, g, h, [)

CS 473 Lecture 16

SCC: Example

(3) Call DFS(G') processing vertices in main loop in

decreasing f[u] order: (b, e, a, ¢, d, g, h, f)

Lecture 16

15

SCC: Example

(3) Call DFS(G') processing vertices in main loop in
decreasing f[u] order: (b, e, a, ¢, d, g, h, f)

-
"’
\’
- a» a» a» Ghad v v a»
e ar Gb Gb Gb GD Gb D a» o e b

------------\
N\

CS 473 Lecture 16

16

SCC: Example

(3) Call DFS(G') processing vertices in main loop in
decreasing f[u] order: (b, e, a, ¢, d, g, h, [)

-
"’
\’
- a» a» a» Ghad v v a»
e ar Gb Gb Gb GD Gb D a» o e b

------------\
N\

CS 473 Lecture 16

17

SCC: Example
(3) Call DFS(G') processing vertices in main loop in
decreasing f[u] order: (b, e, a, ¢, d, g, h, [)

r

"""""""

=g

Lecture 16

b
\
:b\
\
V4
V4
V4
V4
P4

18

CS 473

SCC: Example

(4) Output vertices of each DFT in DFF as a separate SCC

CS 473 Lecture 16 19

SCC: Example

Acyclic component C
graph ' ¢
f Ch>
Co g C,

8

CS 473 Lecture 16

Strongly Connected Components

Thrm 1: 1mn any DFS, all vertices in the same SCC
are placed in the same DFT

Proof: let » be the first vertex discovered in SCC S,
because 7 is first, color[x]=wHITE VXES -{r} at time d[r]
So all vertices are WHITE on each » — x path Vx&S -{r}

— since these paths never leave S,

Hence each vertex in S -{r}becomes a descendent of »

(White-path Thrm) | ™
at time d[7]

QED S,

CS 473 Lecture 16 21

Notation for the Rest of This
[ecture

e d[u] and f[u] refer to those values computed
by DFS(G) at step (1)

e ur> vrefersto G not G!

Definition: forefather ¢(u) of vertex u

I. ¢(u) = That vertex w such that u — w and fJu] 1s
maximized

2. ¢(u) = u possible because u > u = (flu] < {{o(u)]

CS 473 Lecture 16 22

Strongly Connected Components

Lemma 2: ¢(¢(u)) = ¢(u)

Proof try to show that f[¢(¢(u))] = fo(v)] :

Forany uvy€Vs;u—>v=R C R = {[¢o(V)] = {[¢(v)]
S0, u > p(u) = [@(¢(u))] = t{P(u)]

Due to definition of ¢(u) we have {[¢(p(u))] = To(1)]

Theretore f{¢(p(u))] = [p(u)] QED
Note:
flx] =1ly] =

X=y
(same vertex)

CS 473 Lecture 16 23

Strongly Connected Components

Properties of forefather:

« Every vertex 1n an SCC has the same forefather which 1s in
the SCC

» Forefather of an SCC 1s the representative vertex of the SCC
e Inthe DFS of G, forefather of an SCC 1s the

— first vertex discovered 1n the SCC

— last vertex finished in the SCC

CS 473 Lecture 16 24

Strongly Connected Components

THM?2: ¢(u) of any u € V' 1n any DFS of G 1s an ancestor of u

PROOF: Trivial 1f ¢(u1) = u.

If ¢(u) = u, consider color of ¢(u) at time d[u]
o Mu)1s GRAY: ¢(u) 1s an ancestor of u = proving the theorem
o (u)is BLACK: f[(u)] <f[u] = contradiction to def. of ¢(u)

o ¢(u)is WHITE: 3 2 cases according to colors of intermediate
vertices on p(u, ¢(u))

Path p(u, ¢(u2)) at time d[u]:
G ? ? ? Du)

CS 473 Lecture 16 25

Strongly Connected Components

Case 1: every intermediate vertex x. € p(u, ¢(u)) 1s WHITE
= ¢@(u) becomes a descendant of u (WP-THM)
= fl(u)] <flu]
=> contradiction
Case 2: d some non-WHITE intermediate vertices on p(u, ¢(u))

* Let x, be the last non-WHITE vertex on

p(ua ¢(u)) = <u9 X1 Xsees X ¢(u)>
* Then, x, must be GRAY since BLACK-to-WHITE edge (x,
X,,1) cannot exist

 But then, p(x,, §(u)) = x,.{, X;19,..., X, ¢(1)) is @ white path
= () 1s a descendant of x, (by white-path theorem)

= flx]>f1gw)]

nteadietin OED
_7 \/ULLLL(«LUL\/LLLL& UUL \/11\}1\/\/ 1U1L UL} \(.J_J.U.

CS 473 Lecture 16 26

Strongly Connected Components

Cl:m any DFS of G = (V, E) vertices u and ¢(u) lie in the same
SCC,Vue/V

PROOF: u +— ¢(u) (by definition) and ¢(u) — u since ¢(u) 1s an
ancestor of u (by THM2)

THM3: two vertices u,v& V lie in the same SCC < ¢(u) = ¢(v)
imaDFSof G=(V, E)

PROOQF: let u and v be in the same SCC C,, = u Si v

CS 473 Lecture 16 27

Strongly Connected Components

Vw.vBbw=u—wand Vw:u—> w= v w, l.e.,
every vertex reachable from u is reachable from v and vice-versa

So, w=@(u) =w=@(v)and w = ¢v) = w = ¢u) by definition of
forefather

PROOF: Let ¢(u) = ¢(v) = weC,,= ucC by Cl and veC by Cl

By THM3: SCCs are sets of vertices with the same forefather

By THM2 and parenthesis THM: A forefather 1s the first vertex
discovered and the last vertex finished 1n 1ts SCC

CS 473 Lecture 16 28

SCC: Why do we Run DFS on GT?

Consider » € J with largest finishing time computed by DFS on G

r must be a forefather by definition since » +— » and f[r] 1s
maximum in J’

C.=7C =verticesin7’s SCC={uin V: Ju) =r}

=C={uceViur>randf[x]<f[r] VxER }

where R ={vE V: ur- v}

= C.={u &€ V: umr> r} since f[r] 1s maximum

= C.=R!"={u € V:r+— uin G'} = reachability set of » in G’
i.e., C = those vertices reachable from » in G
Thus DFS-VISIT(G?, r) identifies all vertices in C. and

blackens them

CS 473 Lecture 16 29

SCC: Why do we Run DFS on GT?

BFS(GY, r) can also be used to identify C.
dj -
) N0 O

Then, DFS on G’ continues with DFS-VISIT(G?, ")
where f[r'] > f[w]VweE V- C,

r must be a forefather by definition since '+ »” and
f[r"]1s maximum in V- C,

CS 473 Lecture 16

30

SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT(G?, »”) identifies C .

Impossible since otherwise
,we& C,=r’,wwould have been blackened

Thus, each DFS-VISIT(G?, x) in DFS(G7)
identifies an SCC C_ with ¢ = x

CS 473 Lecture 16

31

