# CS473-Algorithms I

#### Lecture 16

#### Strongly Connected Components

- **Definition:** a strongly connected component (SCC) of a directed graph G=(V,E) is a maximal set of vertices  $U\subseteq V$  such that
  - For each  $u, v \in U$  we have both  $u \mapsto v$  and  $v \mapsto u$

- i.e.,  $E^{T}$  consists of edges of G with their directions reversed Constructing  $G^{T}$  from G takes O(V+E) time (adjacency list rep) Note: G and  $G^{T}$  have the same SCCs ( $u \rightarrowtail v$  in  $G \Leftrightarrow u \backsim v$  in  $G^{T}$ )

#### Algorithm

- Run DFS(G) to compute finishing times for all *u*∈V
   Compute G<sup>T</sup>
- (3) Call **DFS**( $G^T$ ) processing vertices in main loop in decreasing f[*u*] computed in Step (1)
- (4) Output vertices of each DFT in DFF of Step (3) as a separate SCC

Lemma 1: no path between a pair of vertices in the same SCC, ever leaves the SCC

Proof: let *u* and *v* be in the same SCC  $\Rightarrow$  *u*  $\rightarrowtail v$ let *w* be on some path  $u \mapsto w \mapsto v \Rightarrow u \mapsto w$ but  $v \mapsto u \Rightarrow \exists$  a path  $w \mapsto v \mapsto u \Rightarrow w \mapsto u$ therefore *u* and *w* are in the same SCC



HÌ



(1) Run **DFS**(G) to compute finishing times for all  $u \in V$ 



(1) Run **DFS**(G) to compute finishing times for all  $u \in V$ 



(1) Run **DFS**(G) to compute finishing times for all  $u \in V$ 





#### (2) Compute $G^T$























Thrm 1: in any DFS, all vertices in the same SCC are placed in the same DFT

**Proof:** let *r* be the first vertex discovered in SCC  $S_r$ because *r* is first, color[*x*]=WHITE  $\forall x \in S_r - \{r\}$  at time d[*r*] So all vertices are WHITE on each  $r \mapsto x$  path  $\forall x \in S_r - \{r\}$ – since these paths never leave  $S_r$ Hence each vertex in  $S_r - \{r\}$  becomes a descendent of *r* 

(White-path Thrm)

**OED** 



# Notation for the Rest of This Lecture

- d[*u*] and f[*u*] refer to those values computed by **DFS**(G) at step (1)
- $u \mapsto v$  refers to G not  $G^T$
- Definition: forefather  $\phi(u)$  of vertex u
  - 1.  $\phi(u)$  = That vertex *w* such that  $u \mapsto w$  and f[u] is maximized

2.  $\phi(u) = u$  possible because  $u \mapsto u \Rightarrow f[u] \le f[\phi(u)]$ 

Lemma 2:  $\phi(\phi(u)) = \phi(u)$ **Proof** try to show that  $f[\phi(\phi(u))] = f[\phi(u)]$ : For any  $u, v \in V$ ;  $u \mapsto v \Rightarrow R_v \subseteq R_u \Rightarrow f[\phi(v)] \le f[\phi(u)]$ So,  $u \mapsto \phi(u) \Rightarrow f[\phi(\phi(u))] \le f[\phi(u)]$ Due to definition of  $\phi(u)$  we have  $f[\phi(\phi(u))] \ge f[\phi(u)]$ Therefore  $f[\phi(\phi(u))] = f[\phi(u)]$ 

Note:  $f[x] = f[y] \Rightarrow$  $\mathbf{R}_{v} = \{ w: v \mapsto w \}$ x = y(same vertex)

QED

#### Properties of forefather:

- Every vertex in an SCC has the same forefather which is in the SCC
- Forefather of an SCC is the representative vertex of the SCC
- In the DFS of *G*, forefather of an SCC is the
  - first vertex discovered in the SCC
  - last vertex finished in the SCC

THM2:  $\phi(u)$  of any  $u \in V$  in any DFS of *G* is an ancestor of *u* 

**PROOF**: Trivial if  $\phi(u) = u$ .

If  $\phi(u) \neq u$ , consider color of  $\phi(u)$  at time d[u]

- $\phi(u)$  is GRAY:  $\phi(u)$  is an ancestor of  $u \Rightarrow$  proving the theorem
- $\phi(u)$  is BLACK:  $f[\phi(u)] < f[u] \Rightarrow$  contradiction to def. of  $\phi(u)$
- $\phi(u)$  is WHITE:  $\exists 2$  cases according to colors of intermediate vertices on  $p(u, \phi(u))$



Case 1: every intermediate vertex  $x_i \in p(u, \phi(u))$  is WHITE

- $\Rightarrow \phi(u)$  becomes a descendant of u (WP-THM)
- $\Rightarrow f[\phi(u)] < f[u]$
- $\Rightarrow$  contradiction

Case 2:  $\exists$  some non-WHITE intermediate vertices on  $p(u, \phi(u))$ 

- Let  $x_t$  be the last non-WHITE vertex on  $p(u, \phi(u)) = \langle u, x_1, x_2, ..., x_r, \phi(u) \rangle$
- Then,  $x_t$  must be GRAY since BLACK-to-WHITE edge ( $x_t$ ,  $x_{t+1}$ ) cannot exist
- But then,  $p(x_t, \phi(u)) = \langle x_{t+1}, x_{t+2}, \dots, x_r, \phi(u) \rangle$  is a white path  $\Rightarrow \phi(u)$  is a descendant of  $x_t$  (by white-path theorem)

$$\Rightarrow f[x_t] > f[\phi(u)]$$

 $\Rightarrow$  contradicting our choice for  $\phi(u)$  Q.E.D. CS 473 Lecture 16 C1: in any DFS of G = (V, E) vertices u and  $\phi(u)$  lie in the same SCC,  $\forall u \in V$ 

PROOF:  $u \mapsto \phi(u)$  (by definition) and  $\phi(u) \mapsto u$  since  $\phi(u)$  is an ancestor of u (by THM2)

THM3: two vertices  $u, v \in V$  lie in the same SCC  $\Leftrightarrow \phi(u) = \phi(v)$ in a DFS of G = (V, E)

**PROOF**: let *u* and *v* be in the same SCC  $C_{uv} \Rightarrow u \stackrel{l}{\rightarrow} v$ 



 $\forall w: v \mapsto w \Rightarrow u \mapsto w \text{ and } \forall w: u \mapsto w \Rightarrow v \mapsto w, \text{ i.e.,}$ 

every vertex reachable from *u* is reachable from *v* and vice-versa So,  $w = \phi(u) \Rightarrow w = \phi(v)$  and  $w = \phi(v) \Rightarrow w = \phi(u)$  by definition of forefather

**PROOF:** Let  $\phi(u) = \phi(v) = w \in C_w \Rightarrow u \in C_w$  by C1 and  $v \in C_w$  by C1 By THM3: SCCs are sets of vertices with the same forefather By THM2 and parenthesis THM: A forefather is the first vertex discovered and the last vertex finished in its SCC Consider  $r \in V$  with largest finishing time computed by DFS on Gr must be a forefather by definition since  $r \mapsto r$  and f[r] is maximum in V

$$C_r = ?: C_r = \text{vertices in } r \text{'s SCC} = \{u \text{ in } V: \phi(u) = r\}$$
  

$$\Rightarrow C_r = \{u \in V: u \mapsto r \text{ and } f[x] \le f[r] \forall x \in R_u\}$$
  
where  $R_u = \{v \in V: u \mapsto v\}$   

$$\Rightarrow C_r = \{u \in V: u \mapsto r\} \text{ since } f[r] \text{ is maximum}$$
  

$$\Rightarrow C_r = R_r^T = \{u \in V: r \mapsto u \text{ in } G^T\} = \text{reachability set of } r \text{ in } G^T$$
  
i.e.,  $C_r = \text{those vertices reachable from } r \text{ in } G^T$   
Thus DFS-VISIT( $G^T$ ,  $r$ ) identifies all vertices in  $C_r$  and  
blackens them

#### SCC: Why do we Run DFS on GT?

**BFS**( $G^T$ , r) can also be used to identify  $C_r$ 



Then, DFS on  $G^T$  continues with DFS-VISIT( $G^T$ , r') where  $f[r'] > f[w] \forall w \in V - C_r$ r must be a forefather by definition since  $r' \mapsto r'$  and f[r'] is maximum in  $V - C_r$ 

#### SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT( $G^T$ , r') identifies  $C_{r'}$ 



Impossible since otherwise  $i, w \in C_r \Rightarrow r', w$  would have been blackened Thus, each DFS-VISIT( $G^T, x$ ) in DFS( $G^T$ ) identifies an SCC  $C_r$  with  $\phi = x$ 

r