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Strongly Connected Components 
Definition:  a strongly connected component (SCC)  of a 

directed graph G=(V,E) is a maximal set of vertices U⊆ 
V such that 
– For each u,v ∈U we have both u  v and v  u  
i.e., u and v are mutually reachable from each other (u  v)  

Let GT=(V,ET) be the transpose of G=(V,E) where  
ET ={(u,v): (u,v) ∈ E} 

–  i.e., ET consists of edges of G with their directions reversed 
Constructing GT from G takes O(V+E) time (adjacency list rep) 
Note: G and GT have the same SCCs (u  v in G⇔ u  v in GT) 
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Strongly Connected Components 
Algorithm 

(1)  Run DFS(G) to compute finishing times for all u∈V 
(2)  Compute GT 
(3)  Call DFS(GT) processing vertices in main loop in 

decreasing f[u] computed in Step (1) 
(4)  Output vertices of each DFT in DFF of Step (3) as a 

separate SCC 
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Strongly Connected Components 
Lemma 1: no path between a pair of vertices in 

the same SCC, ever leaves the SCC 
Proof: let u and v be in the same SCC ⇒ u  v 
let w be on some path u w  v ⇒   u w  
but v  u ⇒ ∃ a path w v  u ⇒  w u  
therefore u and w are in the same SCC  

QED 

u 

v 
w SCC 
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SCC: Example 
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SCC: Example 

Vertices sorted according to the finishing times: 

〈b, e, a, c, d, g, h, f 〉 
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SCC: Example 
(2) Compute GT 
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SCC: Example 
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SCC: Example 
(4) Output vertices of each DFT in DFF as a separate SCC 

Cb={b,a,e} 
Cg={g,f} Ch={h} 

Cc={c,d} 
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SCC: Example 

Cb Cg 

Cc 

Ch 
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Strongly Connected Components 
Thrm 1: in any DFS, all vertices in the same SCC 

are placed in the same DFT 
Proof: let r be the first vertex discovered in SCC Sr 

because r is first, color[x]=WHITE ∀x∈Sr-{r} at time d[r] 
So all vertices are WHITE on each r  x path ∀x∈Sr-{r} 

–  since these paths never leave Sr 
Hence each vertex in Sr-{r}becomes a descendent of r 

(White-path Thrm) 

QED 

r W

Sr 
W

G 
W

at time d[r] 
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Notation for the Rest of This 
Lecture 

•  d[u] and f[u] refer to those values computed 
by DFS(G) at step (1) 

•  u  v refers to G not GT 

Definition: forefather φ (u) of vertex u 
1. φ (u) = That vertex w such that u  w and f[u] is 

maximized 
2. φ (u) = u possible because u  u ⇒ f[u] ≤ f[φ (u)]  
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Strongly Connected Components 
Lemma 2: φ (φ (u)) = φ (u) 
Proof try to show that f[φ (φ (u))] = f[φ (u)] : 
For any u,v ∈V; u  v ⇒ Rv ⊆ Ru ⇒ f[φ (v)] ≤ f[φ (u)]  

So, u  φ (u) ⇒ f[φ (φ (u))] ≤ f[φ (u)]  
Due to definition of φ (u) we have f[φ (φ (u))] ≥ f[φ (u)]  
Therefore f[φ (φ (u))] = f[φ (u)]  QED 

u v Rv ={w: v w} 


v =φ (u) 

Note:  
f[x] = f[y] ⇒ 
x = y 
(same vertex) 
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Strongly Connected Components 

Properties of forefather: 
•  Every vertex in an SCC has the same forefather which is in 

the SCC 
•  Forefather of an SCC is the representative vertex of the SCC 
•  In the DFS of G, forefather of an SCC is the 
- first vertex discovered in the SCC 
- last vertex finished in the SCC 
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Strongly Connected Components 
THM2: φ(u) of any u ∈ V in any DFS of G is an ancestor of u 

PROOF: Trivial if φ(u) = u.  
If φ(u) ≠ u, consider color of φ(u) at time d[u] 

•  φ(u) is GRAY: φ(u) is an ancestor of u ⇒ proving the theorem 
•  φ(u) is BLACK: f [φ(u)] < f [u] ⇒ contradiction to def. of φ(u) 
•  φ(u) is WHITE: ∃ 2 cases according to colors of intermediate 

vertices on p(u, φ(u)) 

Path p(u, φ(u)) at time d[u]: 
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Strongly Connected Components 
Case 1: every intermediate vertex xi ∈ p(u, φ(u)) is WHITE 

⇒  φ(u) becomes a descendant of u (WP-THM)  
⇒ f [φ(u)] < f [u]  
⇒ contradiction 

Case 2: ∃ some non-WHITE intermediate vertices on p(u, φ(u))  
•  Let xt be the last non-WHITE vertex on                                      

p(u, φ(u)) = 〈u, x1, x2,…, xr, φ(u)〉 
•  Then, xt must be GRAY since BLACK-to-WHITE edge (xt, 

xt+1) cannot exist 
•  But then, p(xt, φ(u)) = 〈 xt+1, xt+2,…, xr, φ(u)〉 is a white path 
⇒ φ(u) is a descendant of xt (by white-path theorem) 
⇒  f [xt] > f [φ(u)]  
⇒  contradicting our choice for φ(u)    Q.E.D. 
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Strongly Connected Components 

C1: in any DFS of G = (V, E) vertices u and φ(u) lie in the same 
SCC, ∀u ∈ V 

PROOF: u  φ(u) (by definition) and φ(u)  u since φ(u) is an 
ancestor of u (by THM2) 

THM3: two vertices u,v∈ V lie in the same SCC ⇔ φ(u) = φ(v) 
in a DFS of G = (V, E) 

PROOF: let u and v be in the same SCC Cuv ⇒ u  v 
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Strongly Connected Components 

∀w: v  w ⇒ u  w and ∀w: u  w ⇒ v  w, i.e.,                   
every vertex reachable from u is reachable from v and vice-versa 

So, w = φ(u) ⇒ w = φ(v) and w = φ(v) ⇒ w = φ(u) by definition of 
forefather 

PROOF: Let φ(u) = φ(v) = w∈Cw ⇒ u∈Cw by C1 and v∈Cw by C1 
By THM3: SCCs are sets of vertices with the same forefather 
By THM2 and parenthesis THM: A forefather is the first vertex 

discovered and the last vertex finished in its SCC 
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SCC: Why do we Run DFS on GT? 

Consider r ∈ V with largest finishing time computed by DFS on G 
r must be a forefather by definition since r  r  and f [r] is 

maximum in V 
Cr = ?: Cr = vertices in r’s SCC = {u in V: φ(u) = r} 

⇒ Cr = {u ∈ V: u  r and f [x] ≤ f [r] ∀x ∈ Ru}                   
where Ru ={v ∈ V: u  v} 

⇒ Cr = {u ∈ V: u  r} since f [r] is maximum 
⇒ Cr = Rr

T = {u ∈ V: r  u in GT} = reachability set of r in GT 
i.e., Cr = those vertices reachable from r in GT 
Thus DFS-VISIT(GT, r) identifies all vertices in Cr and             

blackens them 
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SCC: Why do we Run DFS on GT? 

BFS(GT, r) can also be used to identify Cr 

Then, DFS on GT continues with DFS-VISIT(GT, r′ )           
where f [r′ ] > f [w] ∀w ∈ V- Cr 

r must be a forefather by definition since r′  r′  and                           
f [r′ ] is maximum in V- Cr 
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SCC: Why do we Run DFS on GT? 

Hence by similar reasoning DFS-VISIT(GT, r′ ) identifies Cr′ 

                   Impossible since otherwise                                      r
′, w ∈ Cr ⇒ r′, w would have been blackened 

Thus, each DFS-VISIT(GT, x) in DFS(GT)                          
identifies an SCC Cx with φ = x 


