
CS 473 Lecture 16 1

CS473-Algorithms I

Lecture 16

Strongly Connected Components

CS 473 Lecture 16 2

Strongly Connected Components
Definition: a strongly connected component (SCC) of a

directed graph G=(V,E) is a maximal set of vertices U⊆
V such that
– For each u,v ∈U we have both u v and v u
i.e., u and v are mutually reachable from each other (u v)

Let GT=(V,ET) be the transpose of G=(V,E) where
ET ={(u,v): (u,v) ∈ E}

–  i.e., ET consists of edges of G with their directions reversed
Constructing GT from G takes O(V+E) time (adjacency list rep)
Note: G and GT have the same SCCs (u v in G⇔ u v in GT)

CS 473 Lecture 16 3

Strongly Connected Components
Algorithm

(1)  Run DFS(G) to compute finishing times for all u∈V
(2)  Compute GT
(3)  Call DFS(GT) processing vertices in main loop in

decreasing f[u] computed in Step (1)
(4)  Output vertices of each DFT in DFF of Step (3) as a

separate SCC

CS 473 Lecture 16 4

Strongly Connected Components
Lemma 1: no path between a pair of vertices in

the same SCC, ever leaves the SCC
Proof: let u and v be in the same SCC ⇒ u v
let w be on some path u w v ⇒ u w
but v u ⇒ ∃ a path w v u ⇒ w u
therefore u and w are in the same SCC

QED

u

v
w SCC

CS 473 Lecture 16 5

SCC: Example

CS 473 Lecture 16 6

SCC: Example
(1) Run DFS(G) to compute finishing times for all u∈V

CS 473 Lecture 16 7

SCC: Example
(1) Run DFS(G) to compute finishing times for all u∈V

CS 473 Lecture 16 8

SCC: Example
(1) Run DFS(G) to compute finishing times for all u∈V

CS 473 Lecture 16 9

SCC: Example

Vertices sorted according to the finishing times:

〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 10

SCC: Example
(2) Compute GT

CS 473 Lecture 16 11

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 12

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 13

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 14

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 15

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 16

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 17

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 18

SCC: Example
(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: 〈b, e, a, c, d, g, h, f 〉

CS 473 Lecture 16 19

SCC: Example
(4) Output vertices of each DFT in DFF as a separate SCC

Cb={b,a,e}
Cg={g,f} Ch={h}

Cc={c,d}

CS 473 Lecture 16 20

SCC: Example

Cb Cg

Cc

Ch

CS 473 Lecture 16 21

Strongly Connected Components
Thrm 1: in any DFS, all vertices in the same SCC

are placed in the same DFT
Proof: let r be the first vertex discovered in SCC Sr

because r is first, color[x]=WHITE ∀x∈Sr-{r} at time d[r]
So all vertices are WHITE on each r x path ∀x∈Sr-{r}

–  since these paths never leave Sr
Hence each vertex in Sr-{r}becomes a descendent of r

(White-path Thrm)

QED

r W

Sr
W

G
W

at time d[r]

CS 473 Lecture 16 22

Notation for the Rest of This
Lecture

•  d[u] and f[u] refer to those values computed
by DFS(G) at step (1)

•  u v refers to G not GT

Definition: forefather φ (u) of vertex u
1. φ (u) = That vertex w such that u w and f[u] is

maximized
2. φ (u) = u possible because u u ⇒ f[u] ≤ f[φ (u)]

CS 473 Lecture 16 23

Strongly Connected Components
Lemma 2: φ (φ (u)) = φ (u)
Proof try to show that f[φ (φ (u))] = f[φ (u)] :
For any u,v ∈V; u v ⇒ Rv ⊆ Ru ⇒ f[φ (v)] ≤ f[φ (u)]

So, u φ (u) ⇒ f[φ (φ (u))] ≤ f[φ (u)]
Due to definition of φ (u) we have f[φ (φ (u))] ≥ f[φ (u)]
Therefore f[φ (φ (u))] = f[φ (u)] QED

u v Rv ={w: v w}

v =φ (u)

Note:
f[x] = f[y] ⇒
x = y
(same vertex)

CS 473 Lecture 16 24

Strongly Connected Components

Properties of forefather:
•  Every vertex in an SCC has the same forefather which is in

the SCC
•  Forefather of an SCC is the representative vertex of the SCC
•  In the DFS of G, forefather of an SCC is the
- first vertex discovered in the SCC
- last vertex finished in the SCC

CS 473 Lecture 16 25

Strongly Connected Components
THM2: φ(u) of any u ∈ V in any DFS of G is an ancestor of u

PROOF: Trivial if φ(u) = u.
If φ(u) ≠ u, consider color of φ(u) at time d[u]

•  φ(u) is GRAY: φ(u) is an ancestor of u ⇒ proving the theorem
•  φ(u) is BLACK: f [φ(u)] < f [u] ⇒ contradiction to def. of φ(u)
•  φ(u) is WHITE: ∃ 2 cases according to colors of intermediate

vertices on p(u, φ(u))

Path p(u, φ(u)) at time d[u]:

CS 473 Lecture 16 26

Strongly Connected Components
Case 1: every intermediate vertex xi ∈ p(u, φ(u)) is WHITE

⇒  φ(u) becomes a descendant of u (WP-THM)
⇒ f [φ(u)] < f [u]
⇒ contradiction

Case 2: ∃ some non-WHITE intermediate vertices on p(u, φ(u))
•  Let xt be the last non-WHITE vertex on

p(u, φ(u)) = 〈u, x1, x2,…, xr, φ(u)〉
•  Then, xt must be GRAY since BLACK-to-WHITE edge (xt,

xt+1) cannot exist
•  But then, p(xt, φ(u)) = 〈 xt+1, xt+2,…, xr, φ(u)〉 is a white path
⇒ φ(u) is a descendant of xt (by white-path theorem)
⇒  f [xt] > f [φ(u)]
⇒  contradicting our choice for φ(u) Q.E.D.

CS 473 Lecture 16 27

Strongly Connected Components

C1: in any DFS of G = (V, E) vertices u and φ(u) lie in the same
SCC, ∀u ∈ V

PROOF: u φ(u) (by definition) and φ(u) u since φ(u) is an
ancestor of u (by THM2)

THM3: two vertices u,v∈ V lie in the same SCC ⇔ φ(u) = φ(v)
in a DFS of G = (V, E)

PROOF: let u and v be in the same SCC Cuv ⇒ u v

CS 473 Lecture 16 28

Strongly Connected Components

∀w: v w ⇒ u w and ∀w: u w ⇒ v w, i.e.,
every vertex reachable from u is reachable from v and vice-versa

So, w = φ(u) ⇒ w = φ(v) and w = φ(v) ⇒ w = φ(u) by definition of
forefather

PROOF: Let φ(u) = φ(v) = w∈Cw ⇒ u∈Cw by C1 and v∈Cw by C1
By THM3: SCCs are sets of vertices with the same forefather
By THM2 and parenthesis THM: A forefather is the first vertex

discovered and the last vertex finished in its SCC

CS 473 Lecture 16 29

SCC: Why do we Run DFS on GT?

Consider r ∈ V with largest finishing time computed by DFS on G
r must be a forefather by definition since r r and f [r] is

maximum in V
Cr = ?: Cr = vertices in r’s SCC = {u in V: φ(u) = r}

⇒ Cr = {u ∈ V: u r and f [x] ≤ f [r] ∀x ∈ Ru}
where Ru ={v ∈ V: u v}

⇒ Cr = {u ∈ V: u r} since f [r] is maximum
⇒ Cr = Rr

T = {u ∈ V: r u in GT} = reachability set of r in GT
i.e., Cr = those vertices reachable from r in GT
Thus DFS-VISIT(GT, r) identifies all vertices in Cr and

blackens them

CS 473 Lecture 16 30

SCC: Why do we Run DFS on GT?

BFS(GT, r) can also be used to identify Cr

Then, DFS on GT continues with DFS-VISIT(GT, r′)
where f [r′] > f [w] ∀w ∈ V- Cr

r must be a forefather by definition since r′ r′ and
f [r′] is maximum in V- Cr

CS 473 Lecture 16 31

SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT(GT, r′) identifies Cr′

 Impossible since otherwise r
′, w ∈ Cr ⇒ r′, w would have been blackened

Thus, each DFS-VISIT(GT, x) in DFS(GT)
identifies an SCC Cx with φ = x

