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Abstract—Publish/subscribe communication systems where
nodes subscribe to many different topics of interest are becoming
increasingly more common. Designing overlay networks that
connect the nodes subscribed to each distinct topic is hence
a fundamental problem in these systems. For scalability and
efficiency, it is important to keep the degree of the nodes in
the publish/subscribe system low. Ideally one would like to be
able not only to keep the average degree of the nodes low, but
also to ensure that all nodes have equally the same degree, giving
rise to the following problem: Given a collection of nodes and
their topic subscriptions, connect the nodes into a graph with
low average and maximum degree such that for each topic t,
the graph induced by the nodes interested in t is connected.
We present the first polynomial time parameterized sublinear
approximation algorithm for this problem.

We also propose two heuristics for constructing topic-
connected networks with low average degree and constant di-
ameter and validate our results through simulations. In fact, the
results in this section are a refinement of the preliminary results
by Onus and Richa in INFOCOM’09.

I. INTRODUCTION

In publish/subscribe (pub/sub) systems, publishers and sub-
scribers interact in a decoupled fashion. They use logical
channels for delivering messages according to the nodes
subscription to the services of interest. Publishers publish their
messages through logical channels that deliver the messages
to the nodes that subscribed to the respective services.

Pub/sub systems can be either topic-based or content-based.
In a topic-based pub/sub system, messages are published to
“topics”, where each topic is uniquely associated with a logical
channel. Subscribers in a topic-based system will receive all
messages published to the topics to which they subscribe. The
publisher is responsible for defining the classes of messages
to which subscribers can subscribe. In a content-based system,
messages are only delivered to a subscriber if the attributes of
those messages match constraints defined by the subscriber;
each logical channel is characterized by a subset of these
attributes. The subscriber is responsible for classifying the
messages.

This work was supported in part by NSF awards CCF-0830791 and CCF-
0830704.

Given their simplicity and wide applicability, we have seen
many implementations of those systems in recent years (see
e.g., [1]–[4], [6]–[10], [16], [19], [24]–[28]), as well as
many applications built on top of them, such as stock-market
monitoring engines, RSS feeds [20], [27], on-line gaming and
several others. For a survey on pub/sub systems, see [15].

We will implement a topic-based pub/sub system by de-
signing a connected (peer-to-peer) overlay network for each
pub/sub topic: more specifically, for each topic t, we will
enforce that the subgraph induced by the nodes interested in
t will be connected. This translates into a fully decentralized
topic-based pub/sub system since any given topic-based over-
lay network will be connected and thus nodes subscribed to
a given topic do not need to rely on other nodes (agents) for
forwarding their messages. Such an overlay network is said to
be topic-connected.

Low node degrees are desirable in practice for scalability
and also due to bandwidth constraints. Nodes with a high
number of adjacent links will have to manage all these links
(e.g., monitor the availability of its neighbors, incurring in
heartbeats and keep-alive state costs, and connection state
costs in TCP) and the traffic going through each of the links,
without being able to take great advantage of aggregating the
traffic (which would also reduce the number of packet headers,
responsible for a significant portion of the traffic for small
messages). See [11], [21] for further motivation.

The node degrees and number of edges required by a topic-
connected overlay network will be low if the node subscrip-
tions are well-correlated. In this case, by connecting two nodes
with many coincident topics, one can satisfy connectivity of
many topics for those two nodes with just one edge. Several
recent empirical studies suggest that correlated workloads are
indeed common in practice [20], [27].

In this paper, we focus on building overlay networks with
low (average and maximum) node degrees. The importance
of minimizing both the maximum and average degree has
been recognized in some network domains, such as that
of survivable network design [18] and that of establishing
connectivity in wireless networks [13]. To the best of our
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knowledge, minimizing both the maximum and the average
degree in topic-connected pub/sub overlay network design had
not been directly addressed prior to this work.

As in many other systems, a space-time trade-off exists
for pub-sub systems: On one hand, one would like the total
time taken by a topic-based broadcast (which directly depends
on the diameter of each topic-connected subnetwork) to be
as small as possible; on the other hand, for memory and
node bandwidth considerations, one would like to keep the
total degree of a node small. Those two measures are often
conflicting.

Most of the current solutions adopted in practice actually
fail at maintaining both the diameter and the node degrees low.
Take the naive, albeit popular, solution to topic connected-
overlay network design to construct a cycle connecting all
nodes interested in a topic independently for each given
topic [28]: This construction results both in very large diameter
for each topic-connected network (proportional to the total
number of nodes subscribed to a topic) and in node de-
grees proportional to the nodes’ subscription sizes, whereas a
more careful construction, taking into account the correlations
among the node subscription sets might result in much smaller
node degrees (and total number of edges) and topic-based
diameters. Even the more recent advances on approximating
the average or maximum degree alone have been made [11],
[21] still fail at approximating the diameter well.

Whereas in the main contribution of our work (see Sec-
tion III), we completely neglect the diameter of the networks
constructed, in Section VI, we propose some heuristics for
constructing topic-connected networks with low average de-
gree and constant diameter. In fact, the results in Section VI
are a refinement of the preliminary results presented in [21].

A. Our contributions

In this work, we consider the problem of devising topic-
based pub/sub overlay networks with low node degrees. One
could argue for keeping the maximum degree of a node low
or for keeping the overall average node degree low, since
both are important and relevant measures of the complexity
and scalability of a system [13], [18]. Unfortunately, previous
attempts at minimizing either one of these degree measures
alone [11], [21] resulted in a linear explosion for the other
measure (see Table I).

In this work, we present the first algorithm that aims at
keeping both the average and the maximum degree low. More
specifically, we consider the following problem:

Low Degree Topic-Connected Overlay (Low-TCO) Problem:
Given a collection of nodes V , a set of topics T , and the node
interest assignment I , connect the nodes in V into a topic-
connected overlay network G which has both low average and
low maximum degree.

We present a parameterized sublinear approximation algo-
rithm, Low Degree Overlay Design Algorithm(Low-ODA), for
this problem which approximates both the average and the

Avg Degree Max Degree
Chockler et. al. [11] O(log(n · t)) θ(n)
Onus and Richa [21] θ(n) O(log(n · t))

This Paper O(k · log(n · t)) O((n/k) · log(n · t))
Lower Bound Ω(logn) Ω(logn)

TABLE I
SUMMARY OF KNOWN RESULTS ON APPROXIMATION RATIOS OF

MAXIMUM/AVERAGE DEGREE IN OVERLAY NETWORK CONSTRUCTION FOR
PUBLISH/SUBSCRIBE COMMUNICATION (n: NUMBER OF NODES, t:

NUMBER OF TOPICS, k IS ANY PARAMETER BETWEEN 1 AND n)

maximum degree well. More specifically, the Low-ODA algo-
rithm achieves an average degree approximation of O(min{k ·
log(n · t), n}) and a maximum degree approximation of
O(min{(n/k) · log(n · t), n}), where n = |V | is the number
of nodes in the network, t = |T | is the number of topics and
k is any parameter chosen from [1, n] (See also Table I). To
the best of our knowledge, this is the first overlay network
design algorithm that achieves sublinear approximations on
both the average and maximum degrees (e.g., for k =

√
n).

The Low-ODA algorithm is a greedy algorithm which relies on
repeatedly evaluating the trade-off of greedily adding an edge
that would not increase the maximum degree versus greedily
adding an edge that would lead to a small number of total
edges in the final overlay network. The main contribution of
this work is therefore to show that such a greedy approach can
work and indeed leads to non-trivial sublinear approximation
on both the average and maximum degree. We expect that the
greedy parameterized template introduced by our algorithm
will lead to applications in other network design domains
where scalability is a key issue (see Section VII).

In addition, we present two algorithms (heuristics), Constant
Diameter Overlay Design Algorithm I (CD-ODA-I) and Con-
stant Diameter Overlay Design Algorithm II (CD-ODA-II),
for building topic-based pub/sub networks where each topic-
connected component is guaranteed to be of constant diameter
— more specifically of diameter 2 —and where we aim at
keeping the average degree low. Our experimental results show
that our algorithms improve on the previous heuristic presented
in [21] by a reduction of 20% on the average degree. As we
mentioned earlier, keeping the node degrees and the network
diameter low are key to the design of scalable topic-based
pub/sub systems. We provide some preliminary results along
these lines.

B. Related Work

Chockler et al. [11] introduced the Minimum Topic Con-
nected Overlay (MinAv-TCO) problem [In the original paper,
this problem was called Min-TCO.], which aims at minimizing
the average degree alone of a topic-connected overlay network.
They present an algorithm, called Greedy Merge GM, which
achieves a logarithmic approximation on the minimum average
degree of the overlay network. The GM algorithm follows the
greedy approach described below:
The Greedy-Merge (GM) Algorithm [11]: The GM algorithm
greedily adds the edge which maximally reduces the total
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number of topic-connected components at each step of the
algorithm (initially we have the set of nodes V and no edges
between the nodes).

While minimizing the average degree is a step forward to-
wards improving the scalability and practicality of the pub/sub
system, their algorithm may still produce overlay networks of
very uneven node degrees where the maximum degree may
be unnecessarily high. In [21], it is shown that GM algorithm
may produce a network with maximum degree |V | while a
topic-connected overlay network of constant degree exists for
the same configuration of I (See Table I).

In [21], the problem of minimizing the maximum degree of
a topic-connected overlay network, Minimum Maximum De-
gree Topic Connected Overlay (MinMax-TCO), is considered,
and a logarithmic approximation algorithm on the minimum
maximum degree of the overlay network, Minimum Max-
imum Degree Overlay Design Algorithm (MinMax-ODA),
is presented. The MinMax-ODA algorithm is also a greedy
algorithm, as described below:

Min-Max Overlay Design Algorithm (MinMax-ODA) [21]:
Initially there are no edges between the set of nodes V . At each
step of the algorithm, add the edge which maximally reduces
the total number of topic-connected components among the
edges which increases maximum degree of the current graph
minimally.

The MinMax-ODA algorithm may produce overlay net-
works of very high average degree: As we will show in Section
II-A, this algorithm may produce a network with average
degree |V | − 2 while a topic-connected overlay network of
constant average degree exists for the same configuration of I
(See Table I).

In this work, we are, to the best of our knowledge, the
first to formally address the problem of minimizing both
the maximum and the average degree in topic-connected
pub/sub overlay network design. As we mentioned earlier,
minimizing both maximum and average degree is important
in many network domains, such as that of survivable network
design [18] and that of establishing connectivity in wireless
networks [13]. The overlay networks resulting from [2], [5],
[10] are not required to be topic-connected. In [4], [9], [12],
[28], topic-connected overlay networks are constructed, but
they make no attempt to minimize the average or maximum
node degree. The first papers to directly consider node degrees
when building topic-connected pub/sub systems were [11]
and [21], as we mentioned above. Minimizing the diameter
in topic-connected pub/sub overlay network design first ad-
dressed in [21].

Some of the high level ideas and proof techniques of [11]
and [21] have their roots in techniques used for the classical
Set-Cover problem. We benefit from some of the ideas in [11],
[21] and also build upon their constructions for Set-Cover,
extending and modifying them to be able to handle the
maximum degree and the average degree altogether.

C. Structure of the paper

In Section II, we present some definitions and restate the
formal problem definition. In Section II-A, we present an
outline of the related problem of minimizing the maximum
node degree, namely the MinMax-TCO problem, and the
corresponding logarithmic approximation algorithm MinMax-
ODA proposed by Onus and Richa [21], since some of the
ideas presented will be useful for the Low-TCO problem. Sec-
tion III presents our topic-connected overlay design algorithm
Low-ODA, whose approximation ratio is proved in Section IV.
Section V presents our simulation results which validate the
performance of the Low-ODA algorithm. Section VI presents
our two new heuristics for the the problem of minimizing
the average node degree while enforcing a 2-diameter overlay
network. We conclude the paper, also presenting some future
work, in Section VII.

II. PRELIMINARIES

Let V be the set of nodes, and T be the set of topics. Let
n = |V |. The interest function I is defined as I : V × T →
{0, 1}. For a node v ∈ V and topic t ∈ T , I(v, t) = 1 if
and only if node v is subscribed to topic t, and I(v, t) = 0
otherwise.

For a set of nodes V , an overlay network G(V,E) is an
undirected graph on the node set V with edge set E ⊆ V ×V .
For a topic t ∈ T , let Vt = {v ∈ V |I(v, t) = 1}. Given a topic
t ∈ T and an overlay network G(V,E), the number of topic-
connected components of G for topic t is equal to the number
of connected components of the subgraph of G induced by
Vt. An overlay network G is topic-connected if and only if it
has one topic-connected component for each topic t ∈ T . The
diameter of a graph is the length of the longest shortest path
in the graph. The degree of a node v in an overlay network
G(V,E) is equal to the total number of edges adjacent to v
in G.

A. Minimizing the maximum degree only

The MinMax-ODA algorithm (see Section I-B), proposed
by Onus and Richa [21], addressed the MinMax-TCO prob-
lem, in which they aim at minimizing the maximum node
degree. Unfortunately, while the MinMax-ODA algorithm
produces a logarithmic approximation on the maximum node
degree, it fails to approximate well the average node degree of
a topic-connected overlay network: The approximation ratio on
the average degree obtained by the MinMax-ODA algorithm
may be as bad as Θ(n), as we show in the lemma below.

Lemma 1. The MinMax-ODA algorithm can only guarantee
an approximation ratio of Θ(n) on the average node degree,
where n is number of nodes in the pub/sub system.

Proof: Consider the example where we have n nodes
v1, v2, ..., vn, and n2 topics T = {ti,j |1 ≤ i, j ≤ n}. Node
v1 is interested in all topics in T and each vi is interested
in ti,j and tj,i, 2 ≤ i ≤ n, 1 ≤ j ≤ n. W.l.o.g., assume
that n is even. The MinMax-ODA algorithm will produce
an overlay network with n(n − 2)/2 edges, by repeatedly
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connecting a maximal matching of the nodes v1, . . . , vn, n−2
times. The optimal overlay network with minimum number of
edges is E = {(v1, vi)|1 < i ≤ n}, – the number of edges
of this overlay network is n − 1. Hence the approximation
ratio of the MinMax-ODA algorithm can be as large as
(n(n− 2)/2)/(n− 1) = Θ(n).

III. LOW DEGREE OVERLAY DESIGN ALGORITHM
(LOW-ODA)

In this section we present our overlay design algorithm
(Low-ODA) for the Low-TCO problem. The weight of an
edge {u, v} is given by the reduction on the number of topic-
connected components which would result from the addition
of {u, v} to the current overlay network. Let 1 ≤ k ≤ n.
Low-ODA starts with the overlay network G(V, ∅). In each
iteration of Low-ODA, the algorithm considers two edges:

e1 : a maximum weight edge among the ones which
minimally increases maximum degree of the current graph
e2 : a maximum weight edge

If the weight of edge e1 is greater than the weight of e2
divided by k, edge e1 is added to edge set of the overlay
network; otherwise edge e2 is added.

Let NC(V,E) denote total number of topic connected
components in the overlay network given by (V,E).

Algorithm 1 Low Degree Overlay Design Algorithm (Low-
ODA)

1: OverlayEdges ← ∅
2: V ← Set of all nodes
3: G′(V,E′)← Complete graph on V
4: for {u, v} ∈ E′ do
5: w{u, v} ← Number of topics that both of nodes u and

v have
6: end for
7: while G(V,OverlayEdges) is not topic-connected do
8: Let e1 be a maximum weight edge in G′(V,E′, w)

among the ones which increase the maximum degree
of G(V,OverlayEdges) minimally.

9: Let e2 be a maximum weight edge in G′(V,E′, w)
10: if w(e1) ≥ w(e2)/k then
11: e = e1
12: else
13: e = e2
14: end if
15: OverlayEdges = OverlayEdges

∪
{e}

16: E′ ← E′ − {e}
17: for {u, v} ∈ E′ do
18: w{u, v} ← NC(V , OverlayEdges) -

NC(V ,OverlayEdges
∪
{u, v} )

19: end for
20: end while

Steps 1-6 of Low-ODA build an initial weighted graph
G′(V,E′, w) on V , where E′ = V × V and w({u, v}) is

equal to the amount of decrease in the number of topic-
connected components resulting from the addition of the edge
{u, v} to the current overlay network (represented by the edges
in OverlayEdges). Initially, this amount will be equal to the
number of topics that nodes u and v have in common.

At each iteration of the while loop, two edges are consid-
ered: an edge (e1) with maximum weight among the edges
in E′ that increase the maximum degree of the current graph
minimally and an edge (e2) with maximum weight in all of
E′. If weight of the first one (e1) is greater than or equal to
weight of the second one (e2) over k, e1 is added to the set of
overlay edges; otherwise e2 is added. Note that the addition
of an edge to OverlayEdges can either increase the maximum
degree by 1 or not increase it at all. The crux in the analysis of
this algorithm is to show that each of the edges will reduce the
number of connected components by a “large” amount without
increasing the maximum degree by too much.

While at a first glance the Low-ODA algorithm may seem
like a trivial combination of the GM and MinMax-ODA
algorithms, the analysis show that such a combination is far
from trivial: Once we allow the algorithm (Low-ODA) to
select some edges based solely on their weight (edges of type
e2), the “perfect matching” behavior of the edges selected by
MinMax-ODA (basically one could show that the first n/2
edges selected by MinMax-ODA formed a perfect matching in
G′, as did the second set of n/2 edges, etc.) is no longer valid
and the approximation ratio analysis used in MinMax-ODA
(which heavily relied on this perfect matching decomposition
of the edges selected) can no longer be directly used here.

Before we proceed in proving the approximation ratio on the
maximum degree and the approximation ratio on the average
degree guaranteed by Low-ODA, we prove that the algorithm
terminates in O(|V |4|T |) time.

Lemma 2. The Low-ODA algorithm terminates within
O(|V |2) iterations of the while loop.

Proof: At each iteration of the while loop, exactly one
edge is added to the current overlay network. Hence the
algorithm will terminate in at most O(|V |2) iterations.

Lemma 3. The running time of Low-ODA is O(|V |4|T |).

Proof: The weight initialization takes O(|V |2|T |) time.
Updating the weight of each of the remaining edges takes O(1)
time( [11], Lemma 6.4). Finding the edge with max weight
will take at most O(|V |2) time. Since the total weight of the
edges is O(|V |2|T |) at the beginning and greater than 0 at
the end, Low-ODA takes O(|V |2|T |) ·O(|V |2) = O(|V |4|T |)
time.

IV. APPROXIMATION RATIO

In this section, we will prove that our overlay design
algorithm (Low-ODA) approximates the average degree by a
factor O(k·log(

∑
v∈V sv)) and the maximum degree by factor

O((n/k) · log(
∑

v∈V sv)), where sv = |{t ∈ T |I(v, t) = 1}|.
As we mentioned in the previous section, the main challenge

in the analysis is to overcome the fact that we can no longer
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think of the algorithm as selecting a sequence of perfect
matchings of the nodes in V when bounding the approximation
ratio on the maximum degree (the analysis of MinMax-ODA
algorithm heavily relied on this “perfect matching behavior”).

Now we present some definitions which will be useful for
the proofs of both Theorems 1 and 2. Recall that we use
sv to denote |{t ∈ T |I(v, t) = 1}|. At the beginning of
the algorithm, the total number of connected components is
Cstart =

∑
v∈V sv and at the end Cend = |{t|t ∈ T and

∃v ∈ V such that I(v, t) = 1}|. Note that since we count
the connected components for each topic separately, once we
get down to Cend components, there must exist exactly one
component for each active topic t (i.e., each t such that there
exists some v with I(v, t) = 1) — i.e., the overlay network is
topic-connected.

Theorem 1. The overlay network output by Low-ODA has
average node degree within a factor of O(k · log(

∑
v∈V sv))

from the minimum possible average node degree for any topic-
connected overlay network on V .

Proof: The proof follows the general lines as the proof
of the logarithmic approximation ratio for the classic set cover
problem (which was also the basis for the approximation ratio
proof of the GM algorithm for the MinAv-TCO problem [11]).
Assume we have an instance of the Low-TCO problem and
that G(V,Eopt) is a solution for this instance with minimum
number of edges. Let |Eopt| = m.

Let ei be the ith edge added to the set by the algorithm
Low-ODA. Let ni be total number of connected components
before we add the ith edge, so n1 = Cstart. Let Si =
{e1, e2, ..., ei−1} be the set of all edges found before the
algorithm starts adding the i-th edge. Before Low-ODA starts
adding the ith edge, we have ni components and we know
that if we add all the edges Eopt−Si, to the current solution,
the total number of connected components will be reduced
to Cend. Since |Eopt − Si| ≤ m, there exists an edge which
decreases the total number of connected components by at
least (ni−Cend)/m. Since our algorithm always adds at least
a (1/k)-optimal edge, the edge ei that our algorithm adds
must decrease the total number of connected components at
that time by at least (1/k) of this amount. Therefore,
ni − ni+1 ≥ (ni − Cend)/(m · k)
⇒ ni+1 − Cend ≤ (1− 1/(m · k))(ni − Cend).

Hence, the number of iterations of our algorithm Low-ODA
is less than or equal to the smallest z which satisfies
1 > (n1 − Cend)(1− 1/(m · k))z
⇒ z ≤ m · k ln(Cstart − Cend)
⇒ z ≤ m · k ln(Cstart).

Theorem 2. The overlay network output by Low-ODA
has maximum node degree within a factor of O((n/k) ·
log(

∑
v∈V sv)) from the minimum possible maximum node

degree for any topic-connected overlay network on V .

Proof: As with the proof of Theorem 1, the proof follows
the general lines of the proof of the logarithmic approximation

ratio for the classic set cover problem.
However, before we can apply the set cover framework, we

first need to carefully relate the sequence of edges selected by
the Low-ODA algorithm to a sequence of optimal matchings
which reduce the current number of connected components
maximally. Note that we no longer can break the sequence
of edges selected by our algorithm into a sequence of perfect
matchings, as in the MinMax-ODA algorithm.

Assume we have an instance of the Low-TCO problem
and that G(V,Eopt) is a solution with minimum possible
maximum degree for this instance. Let this maximum degree
be dopt. We will use the following well-known result in graph
theory for the proof.

Lemma 4 ((Lemma 4 in [21])). Given a graph G(V,E) with
maximum degree d, we can partition the edge set E into d+1
matchings Mi, 1 ≤ i ≤ (d+ 1).

Using the lemma above, we can partition the edge set Eopt

of the optimum solution into dopt +1 matchings Mi, 1 ≤ i ≤
(dopt + 1).

At the start, all nodes have degree zero. At each iteration of
the while loop, a maximum weight edge among the ones that
increase the maximum degree of the current graph minimally
or a maximum weight edge is added to the set of overlay
edges.

After a number of iterations, the weight of a maximum
weight edge among the ones that increase the maximum degree
of the current graph minimally will be less than the weight
of a maximum weight edge over k and we will add this
maximum weight edge to the graph — this edge will increase
the maximum degree of the graph by 1.

Let Si be the edge set containing all edges added by Low-
ODA from the time an edge e′ increased the maximum degree
of G′ from i−1 to i until the last time an edge is added to G′

without increasing its maximum degree further (i.e., without
increasing the maximum degree to i+1). Let h = n/(2k)+1.
Let Ri = Sh·(i−1)+1

∪
Sh·(i−1)+2

∪
...
∪
Sh·(i−1)+h — i.e.,

Ri denotes the set of all edges added by Low-ODA while the
resulting maximum degree was between h(i−1)+1 and hi. Let
RAi = R1

∪
R2

∪
...
∪

Ri−1 be the union of all edges added
before the algorithm starts adding the set Ri. Let ni be the
total number of connected components before the algorithm
adds Ri, so n1 = Cstart.

The following lemma proves that each set Ri chosen by
our algorithm decreases the current total number of connected
components by at least 1/3 of the number of current compo-
nents connected by any optimal matching, where an optimal
matching is one that reduces the current number of connected
components maximally among all possible maximal matchings
in G′. Note that a matching increases the maximum degree of
G′ by at most 1.

Lemma 5. Joining the set Ri to the edges of G(V,RAi) re-
duces the total number of connected components of G(V,RAi)
by at least 1/3 of the number of current components connected
by any optimal matching.
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Proof: Let P be the edge set of the matching that
reduces the total number of connected components of the
G(V,RAi) by the maximum amount, which we denote by
c. Let Q = {e1, e2, . . . , ej} be the edge set of Ri. Let
el = ulvl for 1 ≤ l ≤ j. For ea and eb, if a < b, then ea
is found before eb by our algorithm. Let Q reduce the total
number of connected components of G(V,RAi) by c′. Let
G0 = G(V,RAi) and Gl = Gl−1

∪
{el}, for 1 ≤ l ≤ j. Let

el reduce the total number of connected components of Gl−1

by yl. Then,

c′ =
∑

1≤l≤j yl (1)

Consider the case where el does not increase the maximum
degree of the current graph, or l = 1, or el increases the
maximum degree of current graph and there is no possible
edge which does not increase the maximum degree of the
current graph, 1 ≤ l ≤ j. In this scenario, we let Xl be the
set of edges in P which are incident to ul or vl, 1 ≤ l ≤ j,
and not in Xl′ , 1 ≤ l′ ≤ l − 1. Thus, Xl will have zero, one
or two edges for 1 ≤ l ≤ j.

Now consider the case where el increases the maximum
degree of the current graph and there are some edges that
do not increase the maximum degree of the current graph,
2 ≤ l ≤ j. In this case, we define Xl to be the set of the
first k maximum weight edges in P which are not in Xl′ ,
1 ≤ l′ ≤ l − 1. If there are less than k elements in P which
are not in Xl′ , 1 ≤ l′ ≤ l− 1, Xl will only have these edges.
If there are edges which are incident to ul or vl and not in
Xl′ , 1 ≤ l′ ≤ l, then replace any edges from Xl with those
edges (note that there may be at most two edges of this kind).

Let P0 = P and Pl = Pl−1 − Xl for 1 ≤ l ≤ j. Let Xl

reduce the total number of connected components of Gl−1 by
xl for 1 ≤ l ≤ j. Let Pl reduce the total number of connected
components of Gl by cl for 0 ≤ l ≤ j.

If there is an edge el that increases the maximum degree
of current graph and there is no possible edge which does not
increase maximum degree of the current graph, 2 ≤ l ≤ j,
then for each vertex of the graph, there is at least one edge
el′ incident to this vertex, 1 ≤ l′ ≤ l − 1. So, union of
sets Xl′ , 1 ≤ l′ ≤ l − 1, contains all the edges in P . Thus,
Pj = ∅. Now, consider the case when there is no edge which
satisfies these properties (so, when algorithm chooses an
edge el which increases the maximum degree, there is always
an edge which does not increase maximum degree of the
current graph). Since Ri contains h sets of Si′ , there are
h − 1 = n/(2k) edges that increase the maximum degree of
the current graph. Thus there are at least n/(2k) of the sets
Xl with k edges each — we call them X ′

1, . . . , X
′
n/(2k) — (if

Xl has less than k edges than all edges of set P are already
in one of sets Xl′ , 1 ≤ l′ ≤ l − 1, and hence Pj = ∅). The
union of sets X ′

l has at least (n/2k) · k = n/2 edges. On
the other hand, since P is a matching, this union can have at
most n/2 edges. Hence, Pj = ∅. Hence,

c0 = c, cj = 0 (2)

Consider the case where el does not increase the maximum
degree of current graph or l = 1 or el increases the maximum
degree of current graph and there is no possible edge which
does not increase maximum degree of the current graph, 1 ≤
l ≤ j. If Xl has two edges, then our algorithm did not choose
one of these two edges at that step and choose el instead,
0 ≤ l ≤ j. Since our algorithm greedily chooses the edges, el
reduces the total number of connected components of Gl−1 by
at least as much as each of the edges in Xl. Hence, yl ≥ xl/2.
Similarly, if Xl has one or zero edges, then yl ≥ xl.

Now consider the case where el increases the maximum
degree of current graph and there are some edges which
does not increase maximum degree of the current graph,
2 ≤ l ≤ j. Xl has at most k edges. Our algorithm did
not choose one of these k edges at that step and choose
el instead, 0 ≤ l ≤ j. Since our algorithm greedily
chooses the edges, el reduces the total number of connected
components of Gl−1 by at least as much as k times any
of the edges in Xl. Since Xl has at most k edges, yl ≥ xl. So,

yl ≥ xl

2 , 1 ≤ l ≤ j
⇒

∑
1≤l≤j yl ≥

1
2

∑
1≤l≤j xl (3)

Since Pl+1 = Pl − Xl+1 and Gl+1 = Gl

∪
{el+1},

0 ≤ l ≤ j − 1, the amount that Pl reduces the total number
of connected components of Gl is smaller than sum of the
amount that Pl+1 reduces the total number of connected
components of Gl+1 and the amount that el+1 reduces the
total number of connected components of Gl and the amount
Xl+1 reduces the total number of connected components of
Gl. Hence,

cl+1 ≥ cl − (xl+1 + yl+1) for 0 ≤ l ≤ j − 1 (4)

If we add all the inequalities (2) and (4), we will have∑
1≤l≤j xl +

∑
1≤l≤j yl ≥ c (5)

From the inequalities (3) and (5), we will have

3
∑

1≤l≤j yl ≥ c (6)

From the inequalities (1) and (6), we will have

c′ ≥ c/3

Before Low-ODA starts adding the set Ri, we have ni

components and we know that if we add all the (dopt + 1)
matchings Mj − RAi, 1 ≤ j ≤ (dopt + 1), to the current
solution, the total number of connected components will be
reduced to Cend. Therefore, there exists a matching Mj−RAi

which decreases the total number of connected components
by at least (ni − Cend)/(dopt + 1). Our algorithm always
finds the set Ri that reduces the total number of connected
components of G(V,RAi) by at least 1/3 of any optimal
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matching which reduces the current number of connected
components by the maximum amount (Lemma 5). Hence, the
set Ri that our algorithm uses must decrease the total number
of connected components at that time by at least (1/3) of the
optimal amount. Therefore,

ni − ni+1 ≥ (ni − Cend)/(3(dopt + 1))
⇒ ni+1 − Cend ≤ (1− 1/(3(dopt + 1)))(ni − Cend).

Hence, the number of iterations for our algorithm Low-ODA
is less than or equal to the smallest m which satisfies
1 > (n1 − Cend)(1− 1/(3(dopt + 1)))m

⇒ m ≤ 3(dopt + 1) ln (Cstart − Cend)
⇒ m ≤ 3(dopt + 1) ln(Cstart)

Since h = n/(2k)+1, the maximum degree of resulting graph
is less than or equal to (n/(2k)+1) · 3(dopt+1) · ln (Cstart).

V. EXPERIMENTAL RESULTS

The GM algorithm [12], the MinMax-ODA algorithm [21]
and the Low-ODA algorithm are implemented in Java. These
three algorithms are compared according to maximum degree
and average degree in the resulting overlay graphs. Our
experimental results show that the Low-ODA algorithm has
better maximum degree than the GM algorithm and has
better average degree than the MinMax-ODA algorithm, at
the expense of a small degradation of the other corresponding
degree parameter (recall that the GM algorithm has proven
approximation bounds on the average degree only and the
MinMax-ODA on the maximum degree only).

A. Maximum Node Degree

For these experiments, the number of nodes varies between
100 and 1000, and the number of topics is fixed at 100.
Each experiment is done 1000 times. We also fix number of
subscriptions to s = 10. For the Low-ODA algorithm, the
parameter k is chosen to be equal to 3 (k is chosen as a
number close to

√
8, since the Low-ODA algorithm behaves

pretty much like the MinMax-ODA algorithm when k = 8 –
see results in Section V-C). Each node subscribes to each topic
ti with probability pi. The value of pi is distributed according
to a Zipf distribution (α = 0.5). This experimental setting is
similar to previous studies [12].

Figure 1 presents a comparison of the GM, MinMax-
ODA and Low-ODA algorithms according to the maximum
degree. When we compare the results of the algorithms, Low-
ODA takes values in between the GM and the MinMax-ODA
algorithms.

B. Average Node Degree

The experimental setting is the same as in the previous
subsection. Figure 2 is a comparison of the GM, MinMax-
ODA and Low-ODA algorithms according to the average
degree. When we compare the results of the algorithms, Low-
ODA takes values in between the GM and the MinMax-ODA
algorithms’.

Fig. 1. Maximum node degree for GM, MinMax-ODA and Low-ODA

Fig. 2. Average node degree for GM, MinMax-ODA and Low-ODA

C. Different Parameters

The experimental setting is similar to previous subsections.
The number of nodes is 100. The parameter k of the Low-ODA
algorithm varies between 1 and 8. When k = 1, the Low-
ODA algorithm behaves basically in the same way as the GM
algorithm, and when k = 8, the Low-ODA algorithm behaves
basically in the same way as the MinMax-ODA algorithm. As
k increases, the maximum degree decreases and the average
degree increases (Figure 3 and Figure 4).

VI. CONSTANT DIAMETER OVERLAYS FOR
PUBLISH-SUBSCRIBE

In this section, we study the following optimization
problem, intially proposed in [21]:

Constant Diameter Topic-Connected Overlay (CD-TCO)
Problem: [21] Given a collection of nodes V , a set of topics
T , and a node–interest assignment I , connect the nodes in
V into a topic-connected overlay network G which has least
possible average degree and constant diameter.

We present two new overlay network construction heuristics
that guarantee constant diameter and topic-connectivity, which
are most important factors for efficient routing. Our heuristic
also aims at keeping the average node degree low.

In [21], a heuristic (CD-ODA) is presented for this problem.
CD-ODA starts with the overlay network G(V, ∅). At each
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Fig. 3. Maximum node degree for different parameters

Fig. 4. Average node degree for different parameters

iteration of CD-ODA, a node which has maximum number
neighbors with non-empty interest intersection is chosen.
Number of neighbors is equal to nu = |{v ∈ V |∃t ∈
T, Int(v, t) = Int(u, t) = 1}|. After that, an edge between
this node and each of its neighbors is added and the topics
in this node’s interest assignment are removed from the set of
topics.

We present two new heuristics for this problem when the
diameter is restricted to be equal to 2, validating our heuristics
via experimental results. Our experimental results show that
our heuristics improves CD-ODA [21] by a factor of 20%.

A. Constant Diameter Overlay Design Algorithm I(CD-ODA-
I)

The first heuristic presented, the Constant Diameter Over-
lay Design Algorithm I (CD-ODA-I), starts with the overlay
network G(V, ∅). At each iteration of CD-ODA-I, a node u
which has maximum weight neighbors is chosen. The neighbor
weight of a node z is equal to

wz =
∑

t∈T |{v ∈ V |Int(v, t) = Int(z, t) = 1}|.

We add an edge between u and each of its neighbors and
then remove the topics in this node’s interest assignment from
the set of topics.

B. Constant Diameter Overlay Design Algorithm II(CD-ODA-
II)

The second heuristic presented, Constant Diameter Overlay
Design Algorithm II (CD-ODA-II), also starts with the overlay
network G(V, ∅). At each iteration of CD-ODA-II, a node u
which has maximum connection density, du, is chosen. The
connection density of a node u, du, is given by

du =

∑
t∈T

|{v∈V |Int(v,t)=Int(u,t)=1}|
|{v∈V |∃t∈T,Int(v,t)=Int(u,t)=1}| .

Note that du = wu

nu
. We add an edge between a node u with

maximum density and each of its neighbors and then remove
the topics in this node’s interest assignment from the set of
topics.

C. Analysis of Algorithms

Lemma 6. Both CD-ODA-I and CD-ODA-II algorithms ter-
minate within O(|V |2 · |T |) time.

Lemma 7. Both CD-ODA-I and CD-ODA-II algorithms gen-
erate a 2-diameter overlay for each topic.

Proof: Since the algorithms generate a star for each topic,
each topic overlay network will have diameter 2.

D. Experimental Results

The GM algorithm [11], the CD-ODA algorithm [21] and
the two heuristics presented above are implemented in Java.
These algorithms are compared according to the average
degree in the resulting graph. Experiments are done 1000
times. The diameter is always 2 for our algorithms and for
the CD-ODA algorithm of [21], and it may be θ(n) for the
GM algorithm. When we compare the results of GM, CD-
ODA, CD-ODA-I, and CD-ODA-II according to the average
degree, CD-ODA require at most 2.3 times more edges than
GM, and CD-ODA-II requires at most 1.8 times more edges
than the GM algorithm. The CD-ODA-II algorithm improves
CD-ODA [21] by a factor of 20%.

1) Average Node Degree with Varying Subscription Size:
The number of nodes and the number of topics are fixed to
100. The subscription size varies between 10 and 50. Each
node is interested in each topic uniformly at random. This
experimental setting is similar to previous studies [11], [24].

Figure 5 is a comparison of GM, CD-ODA and our algo-
rithms according to the average degree. The average degree
of the overlay network decreases for both GM, CD-ODA and
our algorithms as the subscription size increases, since the
algorithms can find edges with higher correlations. When we
compare the results of GM and our algorithm CD-ODA-II,
our algorithm requires at most 1.8 times more edges than GM
(Figure 5). CD-ODA-II improves CD-ODA by factor 20% on
average and CD-ODA-I by factor 1% on average.

VII. CONCLUSIONS

In this paper, we study a new optimization problem (Low-
TCO) that constructs a practical and scalable overlay network
for publish/subscribe communication with many topics. We
present a topic-connected overlay network design algorithm
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Fig. 5. Average node degree for GM, CD-ODA, CD-ODA-I and CD-ODA-II

(Low-ODA) which approximates both average and maximum
degree well. We anticipate that the parameterized algorithmic
framework proposed by Low-ODA will be applicable in other
network design domains where, for scalability, it is important
to keep both the maximum degree as well as the average de-
gree of an overlay network low. Examples of such application
domains are in the design of survivable networks [18] and in
wireless networks [13].

As future work, we would like to build upon our CD-ODA-I
and CD-ODA-II algorithms, by formally and experimentally
evaluating the hardness of obtaining a topic-connected overlay
design algorithm which achieves a “good” trade-off between
low diameter and low node degree. This basically amounts
to a bicriteria optimization problem and we have to be able
to “quantify” the relative importance of optimizing over these
two parameters (e.g., in the CD-ODA-I algorithm and the CD-
ODA-II algorithm we restrict our attention to networks of
diameter 2, while aiming at maintaining the average degree
low). Two other important lines for future work would be
to design efficient distributed algorithms for the Low-TCO
problem, and to look at this problem under the line of a
dynamic configuration of the node set V and the interest
assignment I .
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