ISE In-Depth
Tutorial

UG695 (v 11.2) June 24, 2009

QU XILINX®

2 XILINX®

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation™) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-I1S” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

ISE 11 In-Depth Tutorial www.xilinx.com

$7 XILINX®

Preface

About This Tutorial

About the In-Depth Tutorial

This tutorial gives a description of the features and additions to Xilinx® ISE™ 11. The
primary focus of this tutorial is to show the relationship among the design entry tools,
Xilinx and third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE
software or those wanting to refresh their skills and knowledge.

You may choose to follow one of the three tutorial flows available in this document. For
information about the tutorial flows, see “Tutorial Flows.”

Tutorial Contents

This guide covers the following topics.

Chapter 1, “Overview of ISE,” introduces you to the ISE primary user interface,
Project Navigator, and the synthesis tools available for your design.

Chapter 2, “HDL-Based Design,” guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch. This chapter also shows how to use
ISE accessories such as CORE Generator™, and ISE Text Editor.

Chapter 3, “Schematic-Based Design,” explains many different facets of a schematic-
based ISE design flow using a design of a runner’s stopwatch. This chapter also
shows how to use ISE accessories such as CORE Generator™, and ISE Text Editor.

Chapter 4, “Behavioral Simulation,” explains how to simulate a design before design
implementation to verify that the logic that you have created is correct.

Chapter 5, “Design Implementation,” describes how to Translate, Map, Place, Route,
and generate a Bit file for designs.

Chapter 6, “Timing Simulation,” explains how to perform a timing simulation using
the block and routing delay information from the routed design to give an accurate
assessment of the behavior of the circuit under worst-case conditions.

Chapter 7, “iMPACT Tutorial” explains how to program a device with a newly
created design using the IMPACT configuration tool.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 3

SUXILINX®

Preface: About This Tutorial

Tutorial Flows

This document contains three tutorial flows. In this section, the three tutorial flows are
outlined and briefly described, in order to help you determine which sequence of chapters
applies to your needs. The tutorial flows include:

HDL Design Flow
Schematic Design Flow
Implementation-only Flow

HDL Design Flow

The HDL Design flow is as follows:

Chapter 2, “HDL-Based Design”

Chapter 4, “Behavioral Simulation”

Note that although behavioral simulation is optional, it is strongly recommended in
this tutorial flow.

Chapter 5, “Design Implementation”

Chapter 6, “Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended in this
tutorial flow.

Chapter 7, “iMPACT Tutorial”

Schematic Design Flow

The Schematic Design flow is as follows:

Chapter 3, “Schematic-Based Design”

Chapter 4, “Behavioral Simulation”
Note that although behavioral simulation is optional, it is strongly recommended in
this tutorial flow.

Chapter 5, “Design Implementation”

Chapter 6,“Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended.

Chapter 7, “iMPACT Tutorial”

Implementation-only Flow

The Implementation-only flow is as follows:

Chapter 5, “Design Implementation”

Chapter 6, “Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended in this
tutorial flow.

Chapter 7, “iMPACT Tutorial”

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Additional Resources XX"JNX@

Additional Resources

To find additional documentation, see the Xilinx website at:

http:.//www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http:.//www.xilinx.com/support.

ISE 11 In-Depth Tutorial www.xilinx.com 5
UG695 (v 11.2)

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

::X"JNX® Preface: About This Tutorial

6 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Table of Contents

Preface: About This Tutorial

About the In-Depth Tutorial 3
Tutorial Contents 3
Tutorial FIOWS 4
HDL Design FIOW e 4
Schematic Design FIOW o 4
Implementation-only FIow 4
Additional RESOUICES 5

Chapter 1. Overview of ISE

Overview Of ISE 13
Project Navigator Interface. i 13
Design Panel 14

SOUICES VB, & o vttt et ettt e e e e e e 14
PrOCESSES VB & o o ettt e e e e 15
Files Panel o 15
Libraries Panel 16
Console Panel 16
Errors Panel. 16
Warnings Panel 16
Error Navigation t0 SOUICE oot vt ittt e 16
Error Navigation to ANSWer ReCOrd.ot it i it 16
RTA o T] o - Lot 16
Design Summary & Report VieWer 16

Using Project Revision Management Featuresccovve... 17
ISE Project File ... o 17
Making a Copy of aProject. i e 17
Using the Project BrOWSer. oot e e 18
Using Project ArChives i e 18

Creating an ArChiVe i e e 18
Restoring an ArChivet e e e e 18

Chapter 2: HDL-Based Design

Overview of HDL-Based DeSign.ot 19
Getting Started. 19
Required SOFtWare 19
Optional Software Requirements i e 20
VHDL Or Verilog? o e 20
Installing the Tutorial Project Files 20
Starting the ISE Software 21
Creatinga New Project 21
Creating a New Project: Using the New Project Wizard. 21

Stopping the Tutorial. 23
Design DesCription 23

ISE 11 In-Depth Tutorial www.xilinx.com

UG695 (v 11.2)

SUXILINX®

I PULS . L o 24
OULPULS o 24
Functional BIOCKSo 24
DesigN ENtry 25
Adding Source Files. 25
Checking the Syntax 26
Correcting HDL EFrOrsS . ..o e 26
Creating an HDL-Based Module e 26
Using the New Source Wizard and ISE TextEditorcvvu... 26
Using the Language TemMPIates.ot ittt e 29
Adding a Language Templateto Your File. i 30
Creating a CORE Generator Module i 31
Creating a CORE Generator Modulettt 31
Instantiating the CORE Generator Module inthe HDL Code. 34
Creatinga DCM Module. e e e e 35
Usingthe Clocking Wizard. it e e e e 35
Instantiating the dcm1 Macro - VHDL Designo oot 37
Instantiating the dcml Macro-Verilog i 38
SyNthesizing the Design e 39
Synthesizing the Design using XST e 40
Entering Synthesis Options. v it vt 41
Synthesizing the Design oot e 41

The RTL /Z Technology VieWErot e e e e 41
Synthesizing the Design using Synplify/Synplify Pro 43
Examining Synthesis ResUItS i e e 43
Synthesizing the Design Using Precision Synthesis 44
Entering Synthesis Options through ISE. i i e e 45

The RTL/ZTeChNology ViBWET . . . oot i e e e e e e 45

Chapter 3: Schematic-Based Design

Overview of Schematic-Based DeSignoiiiiiiiiiiiiinns 47
Getting Started. 47
Required SOFtWare 47
Installing the Tutorial Project Files e 48
Starting the ISE Software 48
Creatinga New Project 48
Creating a New Project: Using New Project Wizard.o, 48

Stopping the Tutorial. 50
Design DesCription 50
I PULS . L 51
OULPULS o e 52
Functional BIOCKS 52
DesigN ENtry 53
Opening the Schematic File in the Xilinx Schematic Editor. 53
Manipulating the Window View e 54
Creating a Schematic-Based Macro i 54
Defining the time_cnt Schematic....... i 55
Adding 170 Markers . ..ot e 56

Adding Schematic COMPONENTSo\ttt e e 56
Correcting MistaKesottt 59

DraWING WIS & o ot ittt et e e e e 59

AAAING BUSES .« v vttt ettt 59

8 www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

SUXILINX®

AdAiNG BUS TaPS + o v ettt ettt ettt e e 60
Adding Net NamMeS.t e e e e 61
Checkingthe Schematic it e e e 62
Saving the Schematic i e e 63
Creating and Placing the time_cntSymbol 63
Creating the time_cntsymbol. i i e 63
Placing the time_cnt Symbol. 63
Creating a CORE GeneratorModule i i, 64
Creatinga CORE Generator Module i e e 64
Creatinga DCM Module. i e e e e 66
Usingthe Clocking Wizard. it e e e 66
Creatingthedecml Symbol 67
Creatingan HDL-Based Module i e 68
Using the New Source Wizard and ISE TextEditor 68
Using the Language TeMPIates.o v ittt e e 70
Adding a Language Templateto Your File. i 71
Creating Schematic Symbols for HDL modules 72
Placing the statmach, timer_preset, dcm1 and debounce Symbols 72
Changing Instance Names 73
Hierarchy PUSh/ZPOp . .. o 74
Specifying Device INputs/OUtpULSot 74
Adding INPUL PINS ...t 74
Adding 170 Markers and Net Names.ot i 75
AsSIgNing PiN LOCatioNnsSo 76
Completing the Schematic i e 76

Chapter 4. Behavioral Simulation

Overview of Behavioral SimulationFlow.................................... 79
ModelSim Setup 79
ModelSImMPE and SE 80
ModelSim Xilinx Edition. 80

IS M S U . . oo 80
Getting Started. 80
Required Fileso 80
Design Files (VHDL, Verilog, or Schematic).covvv i 80
TestBENCh File . ..ot e 80

Xilinx Simulation Libraries. 80

Xilinx Simulation Libraries. o 81
Updating the Xilinx Simulation Libraries.o it 81

Mapping Simulation Libraries in the Modelsim.iniFile......................... 81
Addingan HDL TestBench i, 82
Adding Tutorial TestBench File i, 82
VHDL Simulationo 82

Verilog SIMUIation o e 84
Behavioral Simulation Using ModelSim..................................... 84
Locating the Simulation Processes 84
Specifying Simulation Properties 85
Performing Simulation 86
Adding Signals 86
AddiNg DIVIAErS . . .o 88
Rerunning Simulation. o 88
Analyzing the Signals.ot 89

ISE 11 In-Depth Tutorial www.xilinx.com 9

UG695 (v 11.2)

SUXILINX®

Savingthe Simulation 90
Behavioral Simulation Using ISIim 90
Locating the Simulation Processes 90
Specifying Simulation Properties i 91
Performing Simulation 92
Adding Signals 92
Rerunning Simulation 93
Analyzing the Signals. oot 93

Chapter 5: Design Implementation

Overview of Design Implementation................ 95
Getting Started. 96
Continuing from Design ENtry it e 96
Starting from Design Implementation i 96
Specifying OpLtioNS 97
Creating Timing Constraints it e 98
Translatingthe Design ... i 99
Using the Constraints Editor i, 100
Assigning 1/O Locations Using PlanAhead. 104
Mapping the Design 107
Using Timing Analysis to Evaluate Block Delays After Mapping............ 109
Estimating Timing Goals withthe 50/50Rule 109
Report Paths in Timing Constraints Option oo, 110
Placingand Routingthe Design i i i 111
Using FPGA Editor to Verify the Placeand Route........................... 112
Evaluating Post-Layout Timing. oo i i 114
Viewing the Post-Place & Route Static Timing Report......................... 114
Analyzing the Design using PlanAhead 115
Creating Configuration Data, 116
Creating a PROM File With IMPACT e 117
Command Line Implementation..................... i, 119

Chapter 6: Timing Simulation

Overview of Timing Simulation Flow 121
Getting Started. 121
Required SOftwWare 121
Required Files o 122
Specifyinga Simulator 122
Timing Simulation Using ModelSim 122
Specifying Simulation Process Properties ..., 123
Performing Simulation i 125
Adding Signalso e e 125

Adding DiVIders. e e 127
Rerunning Simulation. e 128
Analyzing the Signals. e 128

Saving the SIMUIAtioN o e 129

Timing Simulation Using Xilinx ISim 130
Specifying Simulation Process Properties 130

10 www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

SUXILINX®

Performing Simulation 131
Adding SIgNalsot e e 131
Viewing Full Signal Names.ot e e e 132
Rerunning Simulation. e 132
Analyzing the Signals.o 133

Chapter 7: iIMPACT Tutorial

DeVICE SUPPOIT ..t 135
Download Cable SUPPOrto 136
Parallel Cable IV 136
Platform Cable USB e 136
MUltiPRO Cable 136
Configuration Mode SUPPOIt. i 136
Getting Started. 136
Generating the Configuration Files. i 136
Connectingthe Cable 137
Starting the Software 137
Opening iIMPACT from Project Navigator 137

Opening IMPACT stand-aloneo v vttt e 137
Creating a iMPACT New ProjectFile............... 138
Using Boundary Scan ConfigurationMode 138
Specifying Boundary Scan ConfigurationMode............. 138
Assigning Configuration Files 140
Saving the Project File 141
Editing Preferences e 141
Performing Boundary Scan Operations, 141
Troubleshooting Boundary Scan Configuration............................. 144
Verifying Cable CoONNeCtionot 144
Verifying Chain Setup 145
Creating an SV File ... 146
Setting up Boundary Scan Chain. i 146
JTAG chain setup for SVF generation.t i 146

Manual JTAG chain setup for SVFgeneration, 146
Writingtothe SVEFile 147
Stop Writingtothe SVF. 148
Playing back the SVF or XSVFfile. 148
Other Configuration Modes i e 148
Slave Serial Configuration Mode. i 148
SelectMAP Configuration Mode i i i e 149

ISE 11 In-Depth Tutorial www.xilinx.com 11

UG695 (v 11.2)

SUXILINX®

12 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

SXILINX®
Chapter 1

Overview of ISE

This chapter includes the following sections:

e “Overview of ISE”
e “Using Project Revision Management Features”

Overview of ISE

ISE controls all aspects of the design flow. Through the Project Navigator interface, you can
access all of the design entry and design implementation tools. You can also access the files
and documents associated with your project.

Project Navigator Interface

The Project Navigator Interface, by default, is divided into four panel subwindows, as seen
in Figure 1-1. On the top left is the Design, Files and Libraries panels which include display
and access to the source files in the project, as well as access to running processes for the
currently selected source. At the bottom of the Project Navigator is the Console, Errors and
Warnings panels which display status messages, errors, and warnings. To the right is a
multi-document interface (MDI) window referred to as the Workspace. It enables you to
view design reports, text files, schematics, and simulation waveforms. Each window may
be resized, undocked from Project Navigator, moved to a new location within the main
Project Navigator window, tiled, layered, or closed. Panels may be opened or closed by
using the Vi ew - > Panel s -> * menu selections. The default layout can always be
restored by selecting View > Restore Default Layout. These windows are discussed in
more detail in the following sections.

ISE 11 In-Depth Tutorial www.xilinx.com 13
UG695 (v 11.2)

X XILINX® Preface:

i1 1. 1MSEvISEexam plesiwt n Summary (Programming
i File Edit Wiew Project Source Process Took Window Help
L3 E & X oo MAALPHKAR|AREOZFRiPCLEQ
Design 08 X 5 = Design O;S;V:a":‘y wtut_vhd Project Status (06/12/2009 - 15:02:09) e
D Sources for: |Implementation i) O @ 0B Properties Project File: whut _vhd ise Implementation State: Pragramming File Generated
£ HiE“?:;“Y », o % Module Level Utiization Module Name: | stopwatch «Errors: Mo Errors
" =] wiut_vhd Timing Constraints 5 = .
Ei):J 5 £ xcasToDe-4fgiet) @ Pinodt Report Target Devici xC3sT00a-4fg454 =\Warnings: 10 Warnings
= c @ Clock Report Product Yersion: |ISE 11.2 *Routing Results: All Signals Completely Routed
\{ t_preset - imer_preset (timer_preset.xco) @ @ Sty i) Design Goal: Balanced +Timing Constraints: | 4l Constraints Met
§{ Tnst_demt - dem1 (demt . xaw) =+ Errors and Warnings - -
P clk_divider - ch_div_262k - divide fck_div_262k, vhd) ﬁE @ Synthesis Messages Design Strategy: | %ilinx Default (unlocked) sFinal Timing Score: |0 (Setup: 0, Hold: 0, Companent
- =T - Switching Limit: 0) (Timing Report
5] e el inst - ed _conkrol-Ied_control_arch (cd_controlvhd) | g [E Translation Messages vitching Limic: 0) (Timing Repor
ﬂ mode_debounce - debounce - Behavioral {debounce.vhd) @ Map Messages
- [strbstop_debounce - debounce - Behavioral (debounce.whd) - E] p!EEE and Route Messages - —
un) [lap_load_debaunce - debounce - Behavioral (debounce. whd) E] T!’”‘”'J Messages Device Utilization Summary 1
['g] timer_inst - time_ent - time_cnt_arch (time _crit. vhd) v =) Btoen Messages Lagic Uktilization Used |Available |Utilization |Note(s)
5 B [2) Al Current Messages
[Detailed Reports Number of Slice Flip Flops 229 11,776 1%
| | Processes: stopwatch - stopwatch_arch % Synthesis Report Mumber of 4 input LUTs 371 11,776 3%
n Translation Report
Des!gn Sur!'n.'narw‘Rennrts 2 Map Report Number of occupied Slices 284 5,808 4%
Diesign Utilities - - -
Create Schematic Symbal [Place and Route Report Mumber of Slices containing orly related logic 254 284 100%
Wiew Cammand Line Lag File % EDSPMRR Stattwt Tining Report Mumber of Slices containing unrelated logic 0 264 0%
Yiew HDL Instantiation Template il Power Repon N
L e B sitgen Repart Total Number of 4 input LUTs 443 11,776 %
% Create Timing Canstraints Secondary Reports Humber used as logic 7L
1{O Pin Planning (PlanAhead) - Pre-Synthesis Mumber used as a route-thru 2
1JO Pin Planning (PlanAhead) - Post-Synthesis
Number of bonded I0B 16 372 4%
)] Floorplan Area/10{Logic (Planahead) sl
T Synthesize - ¥ST Number of BUFGMUXs 3 24 12%
= B2\ Tplement Design Number of DCMs 1 8 12%
1Y Translate
CL'S Design Propertizs Awerage Fanout of Man-Clack Nets 3.43
B2 Map Enable Enhanced Design Summary
) Place & Route [] Display Incremental Massages
2@ Generate Programming Fie [Enable Message Fikering
© 1@ Configure Target Device Optional Design Summary Contents Performance Summary -1
Esﬁ Generate Target PROM/ACE File [show CI?Ck peoit . Final Timing Score; 0 (Setup: 0, Hold: 0, Component Switching Limit; 03 |Pinout Data: | Pinout Repart
W Manage Configuration Project (MPACT) [Shows Failing Constraints
E Update Bikstream with Pracessor Data [show Warnings Routing Results: Al Signals Completely Routed Clock Data: Clock Report
&8 Analyze Design Using Chipscope [show Errors Timing Constraints: | All Constraints Met
[] Show Partition Data
‘ Detailed Reports ||'¢1|
< | b3 [Secondary Reports I -l
Design | Fies | Libraries = Design Summary (Programming File Generated) ‘ @ stopwatch,bwz
Console «+08x
Launching : "Generate PROM/ACE File"
Process "Generate PROM/ACE File" completed successfully
< f | >
Errars | Warnings | Find in Files Results

Figure 1-1: Project Navigator

Design Panel

Sources View

The Sources view displays the project name, the target device, and user documents and
design source files associated with the selected Design View. The Design View (“Sources
for””) drop-down list at the top of the Sources tab allows you to view only those source files
associated with the selected Design View, such as Synthesis/Implementation or
Simulation.

Each file in a Design View has an associated icon. The icon indicates the file type (HDL file,
schematic, core, or text file, for example). For a complete list of possible source types and

14 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Overview of ISE

SUXILINX®

their associated icons, see the ISE™ Help. Select Help > ISE Help Contents, select the
Index tab and search for “Source file types.”

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. You can
expand the hierarchy by clicking the +. You can open a file for editing by double-clicking
on the filename.

Processes View

The Processes view is context sensitive and it changes based upon the source type selected
in the Sources tab and the Top-Level Source in your project. From the Processes tab, you
can run the functions necessary to define, run and analyze your design. The Processes tab
provides access to the following functions:

e Design Summary/Reports

Provides access to design reports, messages, and summary of results data. Message
filtering can also be performed.

» Design Utilities

Provides access to symbol generation, instantiation templates, viewing command line
history, and simulation library compilation.

» User Constraints
Provides access to editing location and timing constraints.
e Synthesis

Provides access to Check Syntax, Synthesis, View RTL or Technology Schematic, and
synthesis reports. Available processes vary depending on the synthesis tools you use.

* Implement Design
Provides access to implementation tools, and post-implementation analysis tools.

e Generate Programming File
Provides access to bitstream generation.

e Configure Target Device

Provides access to configuration tools for creating programming files and
programming the device.

The Processes tab incorporates dependency management technology. The tools keep track
of which processes have been run and which processes need to be run. Graphical status
indicators display the state of the flow at any given time. When you select a process in the
flow, the software automatically runs the processes necessary to get to the desired step. For
example, when you run the Implement Design process, Project Navigator also runs the
Synthesis process because implementation is dependent on up-to-date synthesis results.

To view a running log of command line arguments used on the current project, expand
Design Utilities and select View Command Line Log File. See the Command Line
Implementation section of Chapter 5, “Design Implementation” for further details.

Files Panel

The Files panel provides a flat sortable list of all the source files in the project. Files can be
sorted by any of the columns in the view. Properties for each file can be viewed and
modified by right-clicking on the file and selecting Source Properties.

ISE 11 In-Depth Tutorial

UG695 (v 11.2)

www.xilinx.com 15

X XILINX® Preface:

Libraries Panel
The Libraries tab allows you to manage HDL libraries and their associated HDL source
files. You can create, view, and edit libraries and their associated sources.

Console Panel

The Console provides all standard output from processes run from Project Navigator. It
displays errors, warnings, and information messages. Errors are signified by a red (X) next
to the message, while warnings have a yellow exclamation mark (!).

Errors Panel

Displays only error messages. Other console messages are filtered out.

Warnings Panel

Displays only warning messages. Other console messages are filtered out.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Console, Errors or
Warnings panel to the location of the error in a source HDL file. To do so, select the error or
warning message, right-click the mouse, and select Go to Source from the right-click
menu.The HDL source file opens and the cursor moves to the line with the error.

Error Navigation to Answer Record

You can navigate from an error or warning message in the Console, Errors or Warnings
panel to relevant Answer Records on the http://www.xilinx.com/support website. To
navigate to the Answer Record(s), select the error or warning message, right-click the
mouse, and select Go to Answer Record from the right-click menu. The default web
browser opens and displays all Answer Records applicable to this message.

Workspace

The Workspace is where design editors, viewers, and analysis tools will open. These
include ISE Text Editor, Schematic Editor, Timing Constraint Editor, Design Summary &
Report Viewer, RTL and Technology Viewers, and Timing Analyzer.

Other tools such as PlanAhead for I/0 planning and floorplanning, ISE Simulator (ISim),
3rd party Text Editors, XPower Analyzer, and iMPACT open in separate windows outside
the main Project Navigator environment when invoked.

Design Summary & Report Viewer

The Design Summary provides a summary of key design data, as well as access to all of the
messages and detailed reports from the synthesis and implementation tools. The summary
lists high-level information about your project, including overview information, a device
utilization summary, performance data gathered from the Place & Route (PAR) report,
constraints information, and summary information from all reports with links to the

16 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/support

Using Project Revision Management Features XX"JNX@

individual reports. Messaging features such as message filtering, tagging, and incremental
messaging are also available from this view.

Using Project Revision Management Features

ISE Project File

The ISE® project file (.xise extension) is an XML file that contains all source-relevant data
for the project as follows:

¢ ISE software version information
¢ List of source files contained in the project
¢ Source settings, including design and process properties

The ISE project file does not contain the following:

¢ Process status information
¢+ Command history
¢+ Constraints data

Note: A .gise and .ise file also exist, which contain generated data, such as process status. You
should not need to directly interact with these file.

The ISE project file includes the following characteristics, which are compatible with
source control environments:

Contains all of the necessary source settings and input data for the project.

.
¢+ Can be opened in Project Navigator in a read-only state.

¢+ Only updated or modified if a source-level change is made to the project.
.

Can be kept in a directory separate from the generated output directory (working
directory).
Note: A source-level change is a change to a property or the addition or removal of a source file.

Changes to the contents of a source file or changes to the state of an implementation run are not
considered source-level changes and do not result in an update to the project file.

Making a Copy of a Project

You can create a copy of a project, Project > Copy Project, to experiment with different
source options and implementations. Depending on your needs, the design source files for
the copied project and their location can vary as follows:

+ Design source files can be left in their existing location, and the copied project
then points to these files.

+ Design source files, including generated files, can be copied and placed in a
specified directory.

+ Design source files, excluding generated files, can be copied and placed in a
specified directory.

ISE 11 In-Depth Tutorial www.xilinx.com 17
UG695 (v 11.2)

X XILINX® Preface:

Using the Project Browser

The Project Browser, accessible by selecting Project > Project Browser, provides a
convenient way to compare, view, and open projects as follows:

¢+ Compare key characteristics between multiple projects.

+ View Design Summary and Reports for a selected project before opening the full
project.

+ Open aselected project in the current Project Navigator session.
¢+ Open aselected project in a new Project Navigator session.

Using Project Archives

You can also archive the entire project into a single compressed file. This allows for easier
transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:

1. Select Project > Archive.
2. Inthe Create Zip Archive dialog box, enter the archive name and location.

Note: The archive contains all of the files in the project directory along with project settings. Remote
sources are included in the archive under a folder named remote_sources. For more information, see
the ISE Help.

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can
be extracted with any ZIP utility and you can then open the extracted file in Project
Navigator.

18 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

$7 XILINX®

Chapter 2

HDL-Based Design

This chapter includes the following sections:
e “Overview of HDL-Based Design”

» “Getting Started”

» “Design Description”

e “Design Entry”

» “Synthesizing the Design”

Overview of HDL-Based Design

This chapter guides you through a typical HDL-based design procedure using a design of
arunner’s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design.
This design targets a Spartan™-3A device; however, all of the principles and flows taught
are applicable to any Xilinx® device family, unless otherwise noted.

The design is composed of HDL elements and two cores. You can synthesize the design
using Xilinx Synthesis Technology (XST), Synplify/Synplify Pro, or Precision.

This chapter is the first chapter in the “HDL Design Flow.” After the design is successfully
defined, you will perform behavioral simulation (Chapter 4, “Behavioral Simulation”), run
implementation with the Xilinx Implementation Tools (Chapter 5, “Design
Implementation”), perform timing simulation (Chapter 6, “Timing Simulation”), and
configure and download to the Spartan-3A demo board (Chapter 7, “iMPACT Tutorial™).

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

To perform this tutorial, you must have the following software and software components
installed:

e Xilinx Series ISE™ 11.x

» Spartan-3A libraries and device files

Note: For detailed software installation instructions, refer to the ISE Design Suite: Installation,
Licensing and Release Notes.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 19

XX"JNX@ Chapter 2: HDL-Based Design

This tutorial assumes that the software is installed in the default location
¢:\xilinx\11.1\ISE. If you have installed the software in a different location, substitute your
installation path for c:\xilinx\11.1\ISE in the procedures that follow.

Optional Software Requirements

The following third-party synthesis tools are incorporated into this tutorial, and may be
used in place of the Xilinx Synthesis Tool (XST):

» Synplicity Synplify/Synplify C-2009.3 (or above)
* Mentor Precision Synthesis 2009a.76 (or above)

The following third-party simulation tool is optional for this tutorial, and may be used in
place of the ISE Simulator:

* ModelSim XE/SE/PE 6.4b or newer

VHDL or Verilog?

This tutorial supports both VHDL and Verilog designs, and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial, and download the appropriate
files for that language. XST can synthesize a mixed-language design. However, this tutorial
does not go over the mixed language feature.

Installing the Tutorial Project Files

The Stopwatch tutorial projects can be downloaded from
http://www.xilinx.com/support/techsup/tutorials/tutorials11.htm. Download either
the VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the web, unzip the tutorial
projectsintothec: \ xi I i nx\ 11. 1\ | SE\ | SEexanpl es directory, replacing any existing
files in that directory.

When you unzip the tutorial project filesintoc: \ xi | i nx\ 11. 1\ | SE\ | SEexanpl es, the
directory wt ut _vhd (for a VHDL design flow) or wt ut _ver (for a Verilog design flow) is
created withinc: \ xi | i nx\ 11. 1\ | SE\ | SEexanpl es, and the tutorial files are copied
into the newly-created directory.

The following table lists the locations of tutorial source files.

Table 2-1: Tutorial Directories

Directory Description
wt ut _vhd Incomplete VHDL Source Files
wt ut _ver Incomplete Verilog Source Files

wt ut _vhd\wt ut _vhd _conpl e | Completed VHDL Source Files
ted

wtut _ver\wtut_ver_conpl e | Completed Verilog Source Files
ted

Note: Do not overwrite any files in the solution directories.

20 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/support/techsup/tutorials/tutorials10.htm

Getting Started XX"JNX@

The completed directories contain the finished HDL source files.

This tutorial assumes that the files are unzipped under

c:\xilinx\11. 1\ 1 SE\ | SEexanpl es, but you can unzip the source files into any
directory with read-write permissions. If you unzip the files into a different location,
substitute your project path for in the procedures that follow.

Starting the ISE Software
To start ISE:

Double-click the ISE Project Navigator icon on your desktop or select Start > All
Programs > Xilinx ISE Design Suite 11 > ISE > Project Navigator.

/.

Figure 2-1: Project Navigator Desktop Icon

Creating a New Project

Creating a New Project: Using the New Project Wizard

1. From Project Navigator, select File > New Project.
The New Project Wizard appears.

EE New Project Wizard _|
Create New Project
Specify project location and type,
Enter a name, locations, and comment For the project
Mame: | wkut_vhd
Location: | CehEilined 11, 10 SEVISEexamplesiwiut_vhd E]
Warking Directory: | E]
Description: [
Select the type of top-level saurce Far the praject
Top-level source bype:
|HDL =

Figure 2-2: New Project Wizard - Create New Project

2. Inthe Project Location field, browsetoc: \ xi | i nx\ 11. 1\ | SE\ | SEexanpl es or to
the directory in which you installed the project.

Type wt ut _vhd or wt ut _ver in the Project Name field.
Verify that HDL is selected as the Top-Level Source Type and click Next.

ISE 11 In-Depth Tutorial www.xilinx.com 21
UG695 (v 11.2)

SUXILINX®

Chapter 2: HDL-Based Design

The New Project Wizard - Device Properties window appears.

ES New Project Wizard

Device Properties

Specify device and project properkies.

Seleck the device and design Flow For the project

Property MName
Product Category
Family

Device

Package

Speed

Top-Lewvel Source Type

Synthesis Tool

Simulakor

Preferred Language

Property Specification in Project File

Manual Compile Order
Enable Enhanced Design Summary

Enable Message Filtering

Display Incremental Messages

Walue

All

Spartanaf and Spartan3an
HC3S57004

Fa454

-4

HOL

=ST {WHDLS Yerilog)
ISim {YHDLfverilog)
WHDL

Stare non-default walues only

™

oo

X

LA B 9

$14%]¢

[

< Back] [Mext =] [Cancel]

Figure 2-3:

New Project Wizard - Device Properties

Select the following values in the New Project Wizard - Device Properties window:

* & & ¢ O o o o

Product Category: All

Family: Spartan3A and Spartan3AN

Device: XC3S700A
Package: FG484
Speed: -4

Synthesis Tool: XST (VHDL/Verilog)
Simulator: ISim (VHDL/Verilog)

Preferred Language: VHDL or Verilog depending on preference. This will
determine the default language for all processes that generate HDL files.

Other properties can be left at their default values.

Click Next, then Next, and then click Add Source in the New Project Wizard - Add

Existing Sources window.

Browsetoc:\ xilinx\11. 1\ | SE\ | SEexanpl es\wt ut _vhd or
c:\xilinx\11.1\I SE\| SEexanpl es\ wt ut _ver.

Select the following files (. vhd files for VHDL design entry or .v files for Verilog
design entry) and click Open.

¢

¢
¢
¢

cl k_div_262k
I cd_control
st at mach

st opwat ch

22

www.xilinx.com

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Description

$7 XILINX®
E= New Praject Wizard X
Add Existing Sources
Adding existing sources is optional. Additional sources can be added after the project is created using the "Project-
=add Source” or "Praject-3Add Copy of Source” commands.
Add existing sources
Source File Copy to Project
1 stopwatch.whd (]
2 clk_div_z62k.vhd] EEmOvE
3 Ied_conkral.vhd @]
4| statmach.vhd @]
5
| T

Figure 2-4: New Project Wizard - Adding Source Files Dialog

9. Click Next, then Finish to complete the New Project Wizard.

10. In the Adding Source Files dialog box, verify that all added HDL files are associated
with All, and that they are associated with the work library, then click OK.

[ndding Soures Files... X

The Following alows you to see the status of the source Files being added to the project, and
allows you to speciy the Design Yiew assadation for sources which are successfully added to
the project.

File Nare association
1 @ ick_dv_zszknd Al
& Ok\td_(untm\ rd
3 @ statmachvhd |al
4 @ stopwstchhd |al

Library

 |work

+ |work

 |uork

<l<]<l<

+ |uork

astatisto oyt (NRNNNRRRRRNRRRNNNNNNNN)+ 1 0 o)

Figure 2-5: Adding Source Files... View Association Selection

Stopping the Tutorial

You may stop the tutorial at any time and save your work by selecting File > Save All.

Design Description

The design used in this tutorial is a hierarchical, HDL-based design, which means that the

top-level design file is an HDL file that references several other lower-level macros. The
lower-level macros are either HDL modules or IP modules.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by generating some of the modules from scratch and by completing others from

existing files. When the design is complete, you will simulate it to verify the design’s
functionality.

ISE 11 In-Depth Tutorial www.xilinx.com 23
UG695 (v 11.2)

SUXILINX®

Chapter 2: HDL-Based Design

In the runner’s stopwatch design, there are five external inputs and four external output
buses. The system clock is an externally generated signal. The following list summarizes
the input and output signals of the design.

Inputs

The following are input signals for the tutorial stopwatch design.

Outputs

strtstop

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

reset
Puts the stopwatch in clocking mode and resets the time to 0:00:00.

clk
Externally generated system clock.

mode

Toggles between clocking and timer modes. This input is only functional while the
clock or timer is not counting.

lap_load

This is a dual function signal. In clocking mode it displays the current clock value in
the ‘Lap’ display area. In timer mode it loads the pre assigned values from the ROM to
the timer display when the timer is not counting.

The following are outputs signals for the design.

lcd_e, lcd_rs, led_rw

These outputs are the control signals for the LCD display of the Spartan-3A demo
board used to display the stopwatch times.

sf_d[7:0]
Provides the data values for the LCD display.

Functional Blocks

The completed design consists of the following functional blocks.

clk_div_262k

Macro which divides a clock frequency by 262,144. Converts 26.2144 MHz clock into
100 Hz 50% duty cycle clock.

dcmil

Clocking Wizard macro with internal feedback, frequency controlled output, and
duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the
Spartan-3A demo board to 26.2144 MHz.

debounce

Schematic module implementing a simplistic debounce circuit for the strtstop, mode,
and lap_load input signals.

24

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

Design Entry

e lcd_control
Module controlling the initialization of and output to the LCD display.

+ statmach
State machine HDL module which controls the state of the stopwatch.

» timer_preset

CORE Generator™ 64x20 ROM. This macro contains 64 preset times from 0:00:00 to
9:59:99 which can be loaded into the timer.

e time_cnt

Up/down counter module which counts between 0:00:00 to 9:59:99 decimal. This
macro has five 4-bit outputs, which represent the digits of the stopwatch time.

For this hierarchical design, you will examine HDL files, correct syntax errors, create an
HDL macro, and add a CORE Generator and a Clocking module. You will create and use
each type of design macro. All procedures used in the tutorial can be used later for your
own designs.

With thewt ut _vhd. i se orwt ut _ver. i se project open in Project Navigator, the
Hierarchy view in the Design tab displays all of the source files currently added to the
project, with the associated entity or module names (see Figure 2-6).

Instantiated components with no entity or module declaration are displayed with a red
guestion mark.

Hierarchy
'LE'"] wkut_vhd
= E§ xc3sFO00a-4fgasd
= ﬁ% stopwatch - skopwatch_arch (stopwatch. vhd)

m cli_divider - clk_div_262k - divide {clk_div_262k.vhd)
lcd_cntrl_inst - lcd_control - lcd_control_arch {lcd_control.vhd)
. mode_debounce - debounce)

. strtstop_debounce - debounce ()

. lap_load_debounce - debounce

2] timer_insk - tirme_cnt

E timer_skate - statmach - behavior (statmach. vhd)

Figure 2-6: Sources Tab Showing Completed Design

Adding Source Files

HDL files must be added to the project before they can be synthesized. Three HDL files
have already been added to this project. An additional file must be added.

1. Select Project > Add Source.
2. Selecttine_cnt.vhdortine_cnt.v from the project directory and click Open.

3. Inthe Adding Source Files dialog box, verify thatti me_cnt is associated with All
and that the associated library is work,and click OK.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 25

XX"JNX@ Chapter 2: HDL-Based Design

The red question-mark (?) for time_cnt should change to show the VHD file icon.

tirer_inzt - tirne_cnt - lime_cnt_arch [time_cnt.vhd)

Figure 2-7: time_cnt.vhd File in Sources Tab

Each source Design unit is represented under the sources tab using the following syntax:
<instance name> - <entity name> - <architecture name>* - (<file name>).

*VHDL only

Checking the Syntax
To check the syntax of source files:

1. Select st opwat ch. vhd or st opwat ch. v in the Sources tab.

When you select the HDL file, the Processes tab displays all processes available for this
file.

2. Inthe Processes tab, click the + next to Synthesize to expand the process hierarchy.
3. Double-click Check Syntax in the Synthesize hierarchy.
Note: Check Syntax is not available when Synplify is selected as the synthesis tool.

Correcting HDL Errors

The ti me_cnt module contains a syntax error that must be corrected. The red “x” beside
the Check Syntax process indicates an error was found during the analysis. In the Console
tab, Project Navigator reports errors with a red (X) and warnings with a yellow (!).

To display the error in the source file:

1. Click the file name in the error message in the Console or Errors tab. The source code
comes up in the main display tab, with an yellow arrow icon next to the line with the
error.

2. Correct any errors in the HDL source file. The comments above the error explain this
simple fix.

Select File > Save to save the file.

Re-analyze the file by selecting the HDL file and right-clicking on the Check Syntax
process and selecting Rerun

Creating an HDL-Based Module

Next you will create a module from HDL code. With ISE, you can easily create modules
from HDL code using the ISE Text Editor. The HDL code is then connected to your top-
level HDL design through instantiation and is compiled with the rest of the design.

You will author a new HDL module. This macro will be used to debounce the strtstop,
mode and lap_load inputs.

Using the New Source Wizard and ISE Text Editor

In this section, you create a file using the New Source wizard, specifying the name and
ports of the component. The resulting HDL file is then modified in the ISE Text Editor.

26 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

To create the source file:

1. Select Project > New Source.

The dialog box New Source Wizard opens in which you specify the type of source you
want to create.

Select VHDL Module or Verilog Module.
In the File Name field, type debounce.
Click Next.

25 New Source Wizard K

Select Source Type
Select source type, file name and ks location,

B il
@& ChipScope Defirtion and Canneion Fie
@ Inplementation Constraints Fil

1P (CORE Generator & Avchitecture Wizard)
MEM Fil
(o] schematic
[£] User Document Q
Yeriog Module debounce
] Verlog Test Fixture

File name:

Location:

SHOL Library i1 11SESEexamplesiuitet_vhd [
[F] WML Package
[ig] VHDL Test Berch
P Enbedied Processar
Add b praject

Figure 2-8: New Source Wizard

5. Enter two input ports named sig_in and clk and an output port named sig_out for the
debounce component in this way:

a. Inthe first three Port Name fields type si g_in, cl k and si g_out.
b. Set the Direction field to in for sig_in and clk and to out for sig_out.
c. Leave the Bus designation boxes unchecked.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 27

SUXILINX®

Chapter 2: HDL-Based Design

£ New Source Wizand

x)

Define Module
Specify ports For module,
Entity name |deb0unce |
Architecture name |Behavi0ra| |
Park Marme Direckion Bus MSE LSE B
sig_in in + |1
clk in ~|[C]
sig_ouk ouk b |:|
in +|[]
in ~|[]
in +|[]
in ~|]
in ~|]
in +|[] T
in ~|[]
in +|[] ~
[« Back] [Mext = l [Cancel

6. Click Next to complete the Wizard session.

A description of the module displays.
7. Click Finish to open the empty HDL file in the ISE Text Editor.

The VHDL file and Verilog file are displayed below.

7 —— HNodule Name: debounce - EBehavioral
=1 —— Project MName:

9 —— Target Devices:

1o —— Tool wersions:

11 —— Description:

1z -

13 —— Dependencies:

14 -

15 —— Revision:

15 —— BRevision 0.01 - File Created
17 —— Additional Comments:

18 -

19

Figure 2-9: New Source Wizard for Verilog

20 library IEEE;

21 use IEEE.STD LoGIC 1164.ALL:
2z use IEEE.STD_LOGIC ARITH. ALL:
23 use IEEE.STD _LOGIC UNIIGHNED.ALL:

24

25 ———- Uncomment the following library declaration if instantiating
26 ———— any Xilin® primitives in this code.
27 ——library UNISIMN:

28 ——use UNISIM.VComponents.all;

29

30 entity debounce is

31 Port (sig_in : in STD_LOGIC:

3z clk @ in STD_LOGIC:

33 Sig_out : out STD_LOGIC) ;
34 end debounce;

35

36 architecture Behavioral of debounce i=
37

35 begin

39

40

41 end Behawvioral:

a2

Figure 2-10: VHDL File in ISE Text Editor

28

www.xilinx.com

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

“timescale 1lns [/ 1ps

TS d i i i d i i iy idiirir i iiiiirslrrsyy
S Company:

/Y Engineer:

/4 Create Date: 14:12:53 03/15/2007
/4 Design MNasne:
/Y Module Namne: debounce

=1 ff Project Name:

10 /4 Target Devices:

11 S Tool wersions:

1z ff Description:

LIS [) [R s
.-
e

13 I
14 /4 Dependencies:
15 £

16 ff Revision:
17 /4 Rewision 0.01 - File Created
15 S hdditional Conments:

0SS S RS ASP S SRS RS ARSI A A RS

21 module debounce (sig_in, clk, sig_out);

22 input sig in;
23 input clk:

=21 output Sig out:
25

26

=7 endmodule

258

Figure 2-11: \Verilog File in ISE Text Editor

In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic
file structure is already in place. Keywords are displayed in blue, comments in green, and
values are black. The file is color-coded to enhance readability and help you recognize
typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will use the Debounce Circuit template for this exercise.

Note: You can add your own templates to the Language Templates for components or constructs
that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select Edit > Language Templates.

Each HDL language in the Language Templates is divided into five sections: Common
Constructs, Device Macro Instantiation, Device Primitive Instantiation, Simulation
Constructs, Synthesis Constructs and User Templates. To expand the view of any of
these sections, click the + next to the section. Click any of the listed templates to view
the template contents in the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs
hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and
select the template called Debounce Circuit (VHDL) or One Shot, Debounce Circuit
(\Verilog). Use the appropriate template for the language you are using.

Upon selection, the HDL code for a debounce circuit is displayed in the right pane.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 29

SUXILINX®

Chapter 2: HDL-Based Design

= [E9 T

~
- [E3 Uk —-- FProvides a one-shot pulse from & non-clock input, witl
= 53 WHDL ——**Insert the following hetween the 'architecture' and
+- [Common Constructs ———'begin' keywords+®¥
|[_:_r H- 23 Dev?ceMécro_lnstantiat.ion_ Signal @1, Q2, Q3 @ std logic:
+ [:I Device Primitive Instantiation
#1- [0 Simulation Conskructs ——**Insert the followving after the 'begin' keyword#®*
= &3 Synthesis Construcks process (<clocks)
#- [Assertions & Functions begin
H- [0 Attributes if (<clocks'event and <clocks> = '1l') then
= =3 Coding Examples if f(<reset> = '1'] then
#- [Accumulators QL <= '0';
+- [T Arithmetic Qz <= '0';
+- [Basic Gates 03 <= '0';
+- [Bi-directional 10 else
& [E Camparators Q1 <= D_IN:
#- [Counkers 0z <= 01;
% [Decaders Q3 <= Q2
+- [Encoders end if:
+- [Flip Flops end if;
+- [0 Logical shifters end process:
= 3 Misc
7-Segment Display Hex Conwersiar Q_OUT <= Q1 and Q2 and (not Q3]
Asynchronous Input Synchronizati
Barrel Shifter
bounce circuit
[T &pen Drain Qutput (bused reg)
Open Drain Output {single signal)
#- [0 oukput Clock Forwarding Using DD
4 [0 Multiplexers
+ [0 RAM v
4 > 4 >
E Diesign Summary] tirme_cnt,vhd] debounce. vhd E Language Templates

Figure 2-12: Language Templates

Adding a Language Template to Your File

You will now use “Use in File” method for adding templates to your HDL file. Refer to
“Working with Language Templates” in the ISE Help for additional usability options,
including drag and drop options.

To add the template to your HDL file:

1. Open or bring forward the debounce. v ordebounce. vhd source file. Position the
cursor under the architecture begin statement in the VHDL file, or under the module
and pin declarations in the Verilog file.

2. Return to the Language Templates window, right-click on the Debounce Circuit
template in the template index, and select Use In File.

unce circuit
ﬁ Open Drain Cutput
Open Drain Oukput P OUT <= Q1 and
+- [0 Output Clock Forw
#- (7 Multiplexers
- [0 RaM i® UseinFile
£ [rom
+
+

“nd process;

(27 shift Registers
(77 Srate-Marhines

Figure 2-13: Selecting Language Template to Use in File

3. Close the Language Templates window.

30

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

4. Openthe debounce. v or debounce. vhd source file to verify that the Language
Template was properly inserted.

5. (Verilog only) Complete the Verilog module by doing the following:

a. Remove the reset logic (not used in this design) by deleting the three lines
beginning with i f and ending with el se.

b. Change <reg_name> to q in all six locations.

Note: You can select Edit -> Find & Replace to facilitate this. The Find fields appear at the bottom
of the Text Editor.

c. Change <clock>to cl k; <input>to si g_i n; and <output>to si g_out .
6. (VHDL only) Complete the VHDL module by doing the following:

a. Move the line beginning with the word si gnal so that it is between the
archi t ectur e and begi n keywords.

b. Remove the reset logic (not used in this design) by deleting the five lines beginning
withi f (<reset>... andending with el se, and delete one of theend i f;
lines.

c. Use Edit > Find & Replace to change <clock>to cl k; D_INtosi g_i n;and
Q OUTtosig out.

You now have complete and functional HDL code.
Save the file by selecting File > Save.
Select one of the debounce instances in the Sources tab.

In the Processes tab, double-click Check Syntax. Verify that the syntax check passes
successfully. Correct any errors as necessary.

10. Close the ISE Text Editor.

Creating a CORE Generator Module

CORE Generator is a graphical interactive design tool that enables you to create high-level
modules such as memory elements, math functions and communications and 10 interface
cores. You can customize and pre-optimize the modules to take advantage of the inherent
architectural features of the Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s,
and distributed and block RAM.

In this section, you will create a CORE Generator module called ti mer _pr eset. The
module will be used to store a set of 64 values to load into the timer.

Creating a CORE Generator Module

To create a CORE Generator module:

1. In Project Navigator, select Project > New Source.

2. Select IP (CORE Generator & Architecture Wizard).

3. Typetiner_preset inthe File name field.

4. Click Next.

5. Expand the IP tree selector to locate Memories & Storage Elements > RAMs &
ROMs.

6. Select Distributed Memory Generator, then click Next and click Finish to open the
Distributed Memory Generator customization GUI. This customization GUI enables
you to customize the memory to the design specifications.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 31

SUXILINX®

Chapter 2: HDL-Based Design

B2 New Source Wizard]

Select 1P
Create Coregen or Archiecture Wizard IP Core.

View by Function | iew by Name

B

Name Sersion License
7 Math Functions

 Memores & Storage Elments

7 cas

FOs

ettory Interface Generators

|7 Rt & ROMs
{_Black Memary Generator 3.2

7 Standard Bus Interfaces
Storae, NAS and SAN
¥ viden & L]

Search P Catalog: [cear
[Al versions] oriy 9 compatie withchosen part

Figure 2-14:

settings:

New Source Wizard - New IP Module

Fill in the Distributed Memory Generator customization GUI with the following

¢+ Component Name:ti ner _preset - Defines the name of the module.

¢+ Depth: 64 - Defines the number of values to be stored

+ Data Width: 20 - Defines the width of the output bus.

¢+ Memory Type: ROM
8. Click Next.

% Distributed Memony Generator

Wiew
IP Symbol g x - =
e Distributed Memory
LogiC[FE
.
Generator at
Component Name |t\mer4::reset
Options
a[s:0] spo[18:0]
i Depth Range: 16..65536
- Data Width Range: 1..1024
Memory Type
& ROM O Single Port RAM
() Dual Port Rk) SRL16-hased Mamory
<pack Pagelof3 [Mext> | [Generate | [Cancel | [Help]

Figure 2-15: CORE Generator - Distributed Memory Generator Customization GUI

9. Leave Input and output options as Non Registered; Click Next.

32

www.xilinx.com

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry XX"JNX@

A Distributed Momory Genrator EEIX)
vew
1P Syrmbol 8 x o -
gCRE Distributed Memory
Generator a1
input cptens
© Non Registered O Registered
61— —
Input Clock Enable Qualify WE with I_CE
Dual Port Address
Non Registered Registered
output optiens
© Non Registered O Registered © Both
[Single Port Output CE Common Output CLK.
Dual Part Output CE Common Output CE
Pipelining Options
Pipeline Stages: [0

Figure 2-16: CORE Generator - Distributed Memory Generator Customization GUI

10. Specify the Coefficients File: Click the Browse button and select
definitionl_times. coe located in the project directory.

11. Check that only the following pins are used (used pins are highlighted on the symbol
on the left side of the customization GUI):

¢+ a[5:0]
¢ spo[19:0]
12. Click Generate.

& Distributed Memory Generator EEX
View

1P Symbol B

iR Distributed Memory

Generator a
Load COE File

If desired the initial memory content can be set by Using & COE file. This will be passed to
the core as a Memory Initialisation File (WIF).

Coecens i + [N

01— —>spolis]

COE Options

DefaultData : [0 Radix : [16 v

Reset Options
Reset QSPO Reset QPO
Synchronous Reset QSPO Synchronous Reset QOPO
CE Overtides Sync Cortrals Sy Controls Overrides CE

Figure 2-17: CORE Generator - Distributed Memory Generator Customization GUI

The module is created and automatically added to the project library.

Note: A number of files are added to the ipcore_dir sub-directory of the project directory. Some of
these files are:

¢ timer_preset.vho or timer_preset.veo

These are the instantiation templates used to incorporate the CORE Generator
module into your source HDL.

¢ timer_preset.vhd or timer_preset.v
These are HDL wrapper files for the core and are used only for simulation.

¢+ timer_preset.ngc

ISE 11 In-Depth Tutorial www.xilinx.com 33
UG695 (v 11.2)

SUXILINX®

Chapter 2: HDL-Based Design

This file is the netlist that is used during the Translate phase of implementation.

¢ timer_preset.xco

This file stores the configuration information for the timer_preset module and is
used as the project source in the ISE project.

¢ timer_preset.mif
This file provides the initialization values of the ROM for simulation.

Instantiating the CORE Generator Module in the HDL Code

Next, instantiate the CORE Generator module in the HDL code using either a VHDL flow
or a Verilog flow.

VHDL Flow

To instantiate the CORE Generator module using a VHDL flow:

1.
2.

121
122
123
1=4
125
1z 6
127
128
1=9
150
151
132

In Project Navigator, double-click st opwat ch. vhd to open the file in ISE Text Editor.
Place your cursor after the line that states:
-- Insert CORE Generator ROM conmponent decl aration here

Select Edit > Insert File, then selecti pcore_dir/ti mer_preset. vho and click
Open.

The VHDL template file for the CORE Generator instantiation is inserted.

————————————— Begin Cut here for COHPCHNENT Declarstion —----—- COMF_TAG
component timer preset

port |

a: IN =td logic VECTOR(S dounto 0):

spo: OUT std logic WECTOR (1% downto 0)):
end component;

——= Synplicity black box declaration
atctribute syn black box @ boolean;
attribute syn black box of timer preset: component is true;

—-— COMP_TAG END —————- End COMPCONENT Declaration ————————————

Figure 2-18: VHDL Component Declaration for CORE Generator Module

Highlight the inserted code from
-- Begin Cut here for | NSTANTIATION Tenpl ate ----
to
--INST_TAG END ------ END | NSTANTI ATI ON Tenpl ate -----
Select Edit > Cut.
Place the cursor after the line that states:
--Insert CORE Generator ROM Instantiation here
Select Edit > Paste to place the core instantiation.
Change the instance name from your _i nst ance_nane tot _preset.

34

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

9. Edit this instantiated code to connect the signals in the Stopwatch design to the ports
of the CORE Generator module as shown below.

169 -—————- Inzert CORE Generator ROM instantiation here

T - e e Begin Cut here for INITANTILTION Template —----—- INET TG

171 t preset : timer preset

172 port map |

173 a =+ address,

174 2po =r preset_time);

175 -- INST TiG END ----—- End INSTANTIATION Template ——---————-—-

Figure 2-19: VHDL Component Instantiation of CORE Generator Module

10. The inserted code of ti ner _pr eset . vho contains several lines of commented text
for instruction and legal documentation. Delete these commented lines if desired.

11. Save the design using File > Save, and close the ISE Text Editor.

Verilog Flow

To instantiate the CORE Generator module using a Verilog flow:

1.
2.

7.

In Project Navigator, double-click st opwat ch. v to open the file in the ISE Text Editor.
Place your cursor after the line that states:

/1 Place the Coregen nodule instantiation for tiner_preset here
Select Edit > Insert File, and selecti pcore_dir/ti mer_preset. veo.

The inserted code of t i mer _pr eset . veo contains several lines of commented text
for instruction and legal documentation. Delete these commented lines if desired.

Change the instance name from Your | nst anceNane tot _preset.

Edit this code to connect the signals in the Stopwatch design to the ports of the CORE
Generator module as shown below.

36 /4 Place the Coregen module instantiation for timer preset here

37 S Begin Cut here for INSTANTIATICHN Template ---// INST _TAG
38 timer preset t_preset |

39 .aladdress), // Bus [5 @ 0]

40 .Spo(preset time)): // Bus [19 : O]

41

432 rr IN3T TALG END ------ End INITANTIATION Temwplate —-—-—-———-——-

Figure 2-20: Verilog Component Instantiation of the CORE Generator Module

Save the design using File > Save and close st opwat ch. v in the ISE Text Editor.

The core module should now appear beneath the Stopwatch module in the hierarchy.

Creating a DCM Module

The Clocking Wizard, a part of the Xilinx Architecture Wizard, enables you to graphically
select Digital Clock Manager (DCM) features that you wish to use. In this section you will
create a basic DCM module with CLKO feedback and duty-cycle correction.

Using the Clocking Wizard

To create the dcml module:

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 35

SUXILINX®

Chapter 2: HDL-Based Design

© ©® N o g

10.
11.
12.
13.

In Project Navigator, select Project > New Source.

In the New Source dialog box, select IP (CoreGen & Architecture Wizard) source and
type decm1 for the file name.

Click Next.

In the Select IP dialog box, select FPGA Features and Design > Clocking > Spartan-
3E, Spartan-3A > Single DCM SP.

EE New Source Wizard

Select IP
Create Coregen or Architecture Wizard IP Core,

X

Wiew by Function ! View by Mame

Mame
', 7 Digital Signal Processing
= ', ./ FP&A Features and Design
= [Clacking
{; Clocking Wizard
=] 'r ./ Spartan-3E, Spartan-34
2w Board Deskew with an Internal Deskew (DCM_SP)
v Cascading in Series with Twao DCM_SP
v Clock Forwarding | Board Deskew (DCM_SP)
2w Clock, Switching with Two DCM_SPs
‘Single DCM_SP
[wirkex-4
L P

Yersion | License

1.2

1.z
1.2
1.z
11.z2

.

Search IP Catalog: i

[1 all 1P versions

| Clear

[only IP compatible with chosen part

|

Figure 2-21: Selecting Single DCM IP Type

Click Next, then Finish. The Clocking Wizard is launched.
Verify that RST, CLKO and LOCKED ports are selected.

Select CLKFX port.
Type 50 and select MHz for the Input Clock Frequency.

Verify the following settings:

¢
¢
¢
¢
¢

Phase Shift: NONE

CLKIN Source: External, Single
Feedback Source: Internal

Feedback Value: 1X

Use Duty Cycle Correction: Selected

Click the Advanced button.
Select Wait for DCM lock before DONE Signal goes high.
Click OK.

Click Next, and then click Next again.

36

www.xilinx.com

ISE 11 In-

Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

14. Select Use output frequency and type 26. 2144 in the box and select MHz.

(26.2144Mhz)/ 28 = 100Hz

15. Click Next, and then click Finish.

The dcnil. xawfile is added to the list of project source files in the Sources tab.

Instantiating the dcm1 Macro - VHDL Design

Next, you will instantiate the dcm1 macro for your VHDL or Verilog design. To instantiate
the dem1 macro for the VHDL design:

1.
2.

In Project Navigator, in the Sources tab, select dcml. xaw

In the Processes tab, right-click View HDL Instantiation Template and select Process
Properties.

Choose VHDL for the HDL Instantiation Template Target Language value and click
OK.

In the Processes tab, double-click View HDL Instantiation Template.

Highlight the component declaration template in the newly opened HDL Instantiation
Template (dcnil. vhi), shown below.

=} —— HNotes:

5 —— 1) Thi=s instantiation template has heen au
G —— std logic and std logic wvector for the por
7 —— 21 To usze thizs template to instantiate thi
=}

=] COMPONENT deml

10 PORT

11 CLEIN IN : IN =std logic:

12 R3T IN : IN std logic:

13 CLEFX OUT : OUT =td logic:

14 CLEIN IEUFG OUT : OUT std logic:

15 CLEO OUT : OUT std logic:

16 LOCEED OUT : OUT =td logic

17 i: = =

18 ENDr COMPONELNT;

Figure 2-22: VVHDL DCM Component Declaration

Select Edit > Copy.

Place the cursor in the st opwat ch. vhd file in a section labeled
-- Insert dcml conponent declaration here.

Select Edit > Paste to paste the component declaration.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 37

XX"JNX@ Chapter 2: HDL-Based Design

9. Highlight the instantiation template in the newly opened HDL Instantiation Template,
shown below.

19

20 Inst deml: deoml PORT MAP |
21 CLEIN IN => ,

22 RST IN => ,

23 CLEFX OUT => ,

24 CLEIN IBUFG OUT => ,
25 CLED oUT => ,

25 LOCKED OUT =»

27 I =

28

Figure 2-23: VHDL DCM Component Instantiation

10. Select Edit > Copy.

11. Place the cursor in the st opwat ch. vhd file below the line labeled
-- Insert dcml instantiation here.

12. Select Edit > Paste to paste the instantiation template.

13. Make the necessary changes as shown in the figure below.

141 —-—--- Insert deoml instantiation here
142 Inst_dewl: deml PORT MAR(

143 CLEIN_IN =» clk,

144 R3T _IN => reset,

145 CLEFE OUT = clk_Z6Zldk,

146 CLEIN IBUFG_OUT =» opemn,

147 CLEOD_OUT => open,

145 LOCEED OOT =» locked

149 1:

Figure 2-24: VHDL Instantiation for dcm1

14. Select File > Save to save the st opwat ch. vhd file.
The dcnil module should now appear beneath the stopwatch module in the design
hierarchy.

Instantiating the dcm1 Macro - Verilog

To instantiate the dcml macro for your Verilog design:

1. InProject Navigator, in the Sources tab, select dcml. xaw
2. Inthe Processes tab, double-click View HDL Instantiation Template.

38 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Synthesizing the Design

SUXILINX®

3.

From the newly opened HDL Instantiation Template (dcnil. t fi), copy the

instantiation template, shown below.

4
5
6
7
=3

g
10
11
iz

/f Instantiate the module

deml instance name |
.CLEIN IN(CLEIN IN),
.RST_IN(R3T IN),
.CLEFX_OUT (CLEFX_OUT],
.CLEIN IBUFG OUT(CLEIN IEUFG OUOT) ,
.CLED _CUT(CLED OUT),

.LOCEED OUT (LOCKED _OUT)

1:

Figure 2-25: dcm1 Macro and Instantiation Templates

4. Paste the instantiation template into the section in st opwat ch. v labeled
/llnsert dcml instantiation here.

5.

6.

The dcnil module should now appear beneath the stopwatch module in the design

Make the necessary changes as shown in the figure below.

g2
83
54
=3=]
=11
a7
=1=]
=1=]
Q0
91
9z

S/ Insert deowl instantiation here

doml inst_ deoml |
LCLEIN INiclk),
.EST_IMN(reset),
LCLEFX OUT(clk Z6214k),
.CLEKIN_IEUFG_OUT{),
LCLEO_OQUT() ,

LLOCKED OUT | locked)

1z

Figure 2-26: Verilog Instantiation for dcm1l

Select File > Save to save the st opwat ch. v file.

hierarchy.

Synthesizing the Design

So far you have been using XST (the Xilinx synthesis tool) for syntax checking. Next, you

will synthesize the design using either XST, Synplify/Synplify Pro or Precision. The

synthesis tool uses the design’s HDL code and generates a supported netlist type (EDIF or
NGC) for the Xilinx implementation tools. The synthesis tool performs three general steps
(although all synthesis tools further break down these general steps) to create the netlist:

Analyze / Check Syntax

Checks the syntax of the source code.

Compile

Translates and optimizes the HDL code into a set of components that the synthesis tool

can recognize.

Map

Translates the components from the compile stage into the target technology’s

primitive components.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com

39

SUXILINX®

Chapter 2: HDL-Based Design

The synthesis tool can be changed at any time during the design flow. To change the
synthesis tool:

1. Select the targeted part in the Sources tab.
2. Right-click and select Design Properties.

3. Inthe Design Properties dialog box, click on the Synthesis Tool value and use the pull-
down arrow to select the desired synthesis tool from the list.

Note: If you do not see your synthesis tool among the options in the list, you may not have the
software installed or may not have it configured in ISE. The Synthesis tools are configured in the
Preferences dialog box (Edit > Preferences, expand ISE General, then click Integrated Tools).

Note: Changing the design flow results in the deletion of implementation data. You have not yet
created any implementation data in this tutorial. For projects that contain implementation data, Xilinx
recommends that you make a copy of the project using File > Copy Project if you would like to make
a backup of the project before continuing.

Synthesizing the Design using XST

Now that you have created and analyzed the design, the next step is to synthesize the
design. During synthesis, the HDL files are translated into gates and optimized for the
target architecture.

Processes available for synthesis using XST are as follows:
* View RTL Schematic

Generates a schematic view of your RTL netlist.
* View Technology Schematic

Generates a schematic view of your Technology netlist.
e Check Syntax

Verifies that the HDL code is entered properly.

» Generate Post-Synthesis Simulation Model
Creates HDL simulation models based on the synthesis netlist.

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used option is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a flip-flop output or setting the desired frequency of
the design.

To enter synthesis options:

1. Select st opwat ch. vhd (or st opwat ch. v) in the Sources view.

2. Inthe Processes view, right-click the Synthesize process and select Process
Properties.

3. Ensure that the Property display level option is set to Advanced. This will allow you
to view to the full set of process properties available.

4. Under the Synthesis Options tab, set the Netlist Hierarchy property to a value of
Rebuilt.

5. Click OK.

40

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Synthesizing the Design XX"JNX@

Synthesizing the Design

The

Now you are ready to synthesize your design. To take the HDL code and generate a
compatible netlist;

1. Select st opwat ch. vhd (or st opwat ch. v).
2. Double-click the Synthesize process in the Processes view.

RTL / Technology Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code helps you analyze your design by displaying a graphical
connection between the various components that XST has inferred. There are two forms of
the schematic representation;

e RTL View - Pre-optimization of the HDL code.

e Technology View - Post-synthesis view of the HDL design mapped to the target
technology.

To view a schematic representation of your HDL code:

1. Inthe Processes tab, click the + next to Synthesize to expand the process hierarchy.
2. Double-click View RTL Schematic or View Technology Schematic.

3. Ifthe Set RTL/Tech Viewer Startup Mode dialog appears, select Start with the
Explorer Wizard.

4. Inthe Create RTL Schematic start page, select the clk_divider and debounce
components from the Available Elements list, then click the Add -> button to move the
selected items to the Selected Elements list.

5. Click Create Schematic.

Create RTL Schematic
1) Select iterns you want on the schematic from the “Available Elerents” list and move them 1 the “Selected Elements” list
-Use

the
2)Press the sing the fters in the *Selected Elements” list

Avalable Elements Selected Elements

& ck_dider
& lop_load _debounce

| [Fiker [create Schemetic

Figure 2-27: Create RTL Schematic start page

The RTL Viewer allows you to select the portions of the design to display as schematic.
When the schematic is displayed, double-click on the symbol to push into the schematic
and view the various design elements and connectivity. Right-click the schematic to view
the various operations that can be performed in the schematic viewer.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 41

XX"JNX@ Chapter 2: HDL-Based Design

clk_div_262k

‘:W@:;:HJ

clk_divider

debounce

clk sig_out
sig_in

lap_load_debounce

Figure 2-28: RTL Schematic

You have completed XST synthesis. An NGC file now exists for the Stopwatch design.
To continue with the HDL flow:
e Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.
OR

» Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Note: For more information about XST constraints, options, reports, or running XST from the
command line, see the XST User Guide. This guide is available in the collection of software manuals
and is accessible from ISE by selecting Help > Software Manuals, or from the web at
http://www.xilinx.com/support/software_manuals.htm.

Synthesizing the Design using Synplify/Synplify Pro

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify
outside of ISE.

To synthesize the design, set the global synthesis options:

1. Select st opwat ch. vhd (or st opwat ch. v).

2. Inthe Processes tab, right-click the Synthesize process and select Process
Properties.

Check the Write Vendor Constraint File box.
Click OK to accept these values.
Double-click the Synthesize process to run synthesis.

Note: This step can also be done by selecting st opwat ch. vhd (or st opwat ch. v), clicking
Synthesize in the Processes tab, and selecting Process > Run.

Processes available in Synplify and Synplify Pro synthesis include:
* View Synthesis Report

42 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/support/software_manuals.htm

Synthesizing the Design XX"JNX@

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.
* View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code

* View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code mapped to the primitives associated with
the target technology.

Examining Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the
Synthesize process. The report consists of the following four sections:

o “Compiler Report”

* “Mapper Report”

* “Timing Report”

* “Resource Utilization”

Compiler Report

The compiler report lists each HDL file that was compiled, names which file is the top
level, and displays the syntax checking result for each file that was compiled. The report
also lists FSM extractions, inferred memory, warnings on latches, unused ports, and
removal of redundant logic.

Note: Black boxes (modules not read into a design environment) are always noted as unbound in
the Synplify reports. As long as the underlying netlist (.ngo, .ngc or .edn) for a black box exists in the
project directory, the implementation tools merge the netlist into the design during the Translate
phase.

Mapper Report

The mapper report lists the constraint files used, the target technology, and attributes setin
the design. The report lists the mapping results of flattened instances, extracted counters,
optimized flip-flops, clock and buffered nets that were created, and how FSMs were coded.

Timing Report

The timing report section provides detailed information on the constraints that you
entered and on delays on parts of the design that had no constraints. The delay values are
based on wireload models and are considered preliminary. Consult the post-place and

ISE 11 In-Depth Tutorial www.xilinx.com 43
UG695 (v 11.2)

SUXILINX®

Chapter 2: HDL-Based Design

route timing reports discussed in Chapter 5, “Design Implementation,” for the most
accurate delay information.

Perfornance Summary
FXREXEEXXEEEXEEXXER

Worst slack in design: -1.581

Requested Estimated Requested Estinated
Starting Clock Frequency Frequency Pericd Pericd Slack
stopwatch|clk_divider clk_100_inferred clock 305.3 MHz 259.5 MHz 3.276 3.854 -0.578
stopwatch|denl_inst CIKFE_BUF derived_clock 111.6 MHz 94.9 MHz g.959 10.540 -1.581

Figure 2-29: Synplify’s Estimated Timing Data

Resource Utilization

This section of the report lists all of the resources that Synplify uses for the given target
technology.

You have now completed Synplify synthesis. At this point, a netlist EDN file exists for the
Stopwatch design.

To continue with the HDL flow:

Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of

this design.
OR

Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Synthesizing the Design Using Precision Synthesis

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available for Precision Synthesis include:

Check Syntax

Checks the syntax of the HDL code.

View Log File

Lists the synthesis optimizations that were performed on the design and gives a brief

timing and mapping report.

View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code

View Technology Schematic

44

www.xilinx.com

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Synthesizing the Design XX"JNX@

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code mapped to the primitives associated with the
target technology.

* View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of the critical path of your HDL code mapped to the primitives
associated with the target technology.

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize
according to the needs of the design. For the tutorial, the default property settings will be
used.

1. Select st opwat ch. vhd (or st opwat ch. v) in the Sources tab.
2. Double-click the Synthesize process in the Processes tab.

The RTL/Technology Viewer

Precision Synthesis can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code helps you analyze your design by seeing a graphical
connection between the various components that Precision has inferred. To launch the
design in the RTL viewer, double-click the View RTL Schematic process. The following
figure displays the design in an RTL view.

ll

E|i:|: stopwatch [INTERF

-5 Clocks
e[Ports
* -2 Mets
7. Instances —
1= =
+ fi— I i =

|

| K il

@ Tranzcript |P§ Design Eenterpg RTL Design I

Figure 2-30: Stopwatch Design in Precision Synthesis RTL Viewer

You have now completed the design synthesis. At this point, an EDN netlist file exists for
the Stopwatch design.

To continue with the HDL flow:

e Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

OR

» Proceed to Chapter 5, “Design Implementation,” to place and route the design.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 45

::X"JNX® Chapter 2: HDL-Based Design

46 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

SXILINX®
Chapter 3

Schematic-Based Design

This chapter includes the following sections:

e “Overview of Schematic-Based Design”
» “Getting Started”

» “Design Description”

e “Design Entry”

Overview of Schematic-Based Design

This chapter guides you through a typical FPGA schematic-based design procedure using
the design of a runner’s stopwatch. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices that you can apply to
your own designs. The stopwatch design targets a Spartan™-3A device; however, all of the
principles and flows taught are applicable to any Xilinx® device family, unless otherwise
noted.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you
will use the ISE™ design entry tools to complete the design. The design is composed of
schematic elements, CORE Generator™ component, and HDL macros. After the design is
successfully entered in the Schematic Editor, you will perform behavioral simulation
(Chapter 4, “Behavioral Simulation™), run implementation with the Xilinx Implementation
Tools (Chapter 5, “Design Implementation”), perform timing simulation (Chapter 6,
“Timing Simulation”), and configure and download to the Spartan-3A (XC3S700A) demo
board (see Chapter 7, “iMPACT Tutorial.”).

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

You must have Xilinx ISE11 installed to follow this tutorial. For this design you must install
the Spartan-3A libraries and device files.

A schematic design flow is supported on both Windows and Linux platforms.

ISE 11 In-Depth Tutorial www.xilinx.com 47
UG695 (v 11.2)

SUXILINX®

Chapter 3: Schematic-Based Design

This tutorial assumes that the software is installed in the default location, at
c:\xilinx\11. 1\ SE. If you have installed the software in a different location,
substitute t hat for your installation path.

Note: For detailed instructions about installing the software, refer to the ISE 11.1 Installation Guide
and Release Notes.

Installing the Tutorial Project Files

The tutorial project files can be downloaded to your local machine from
http://www.xilinx.com/support/techsup/tutorials/tutorials1l.htm.

Download the Watch Schematic Design Files (wt ut _sch. zi p). The download contains
two directories:

e wtut_sc\
(Contains source files for schematic tutorial. The schematic tutorial project will be
created in this directory).

e wut_sc\wut_sc_conpl et ed\
(Contains the completed design files for the schematic-based tutorial design,
including schematic, HDL, and State Machine files. Do not overwrite files under this
directory.)

Unzip the tutorial design files in any directory with read-write permissions. The schematic
tutorial files are copied into the directories when you unzip the files. This tutorial assumes
that the files are unarchived under c: \ xi I i nx\ 11. 1\ | SE\ | SEexanpl es. If you restore
the files to a different location, substitute c: \ xi | i nx\ 11. 1\ | SE\ | SEexanpl es with
the project path.

Starting the ISE Software

To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop, or select Start > All
Programs > Xilinx ISE Design Suite 11> ISE > Project Navigator.

IS

Figure 3-1: Project Navigator Desktop Icon

Creating a New Project

Creating a New Project: Using New Project Wizard

1. From Project Navigator, select File > New Project. The New Project Wizard appears.

2. Browsetoc:\xilinx\11. 1\ SE\ | SEexanpl es or enter the directory in the
Project Location field.

3. Typewt ut _sc as the Project Name. Notice that wt ut _sc is appended to the Project
Location value.

4. Select Schematic as the Top-Level Source Type, and then click Next.

48

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/support/techsup/tutorials/tutorials10.htm

Getting Started

SUXILINX®

ES New Project Wizard El
Device Properties
Specify device and project properties.

Select the device and design Flow For the project
Propetty Mame Halue
Product Category All ~
Fannily Spartan3a and Spartan3al w
Dievice ACISTO004 -
Package FG484 bt
Speed -4 ~
Top-Level Source Type Schermnatic
Synthesis Tool ®5T (YHDLjYerilog) bt
Simulator ISim (WHDL Verilog) -
Preferred Language YHOL “~
Property Specification in Project File Stare non-default values only ~
Manual Compile Order [
Enable Enhanced Design Summary
Enable Message Filtering (]
Display Incremental Messages [

T |

Figure 3-2: New Project Wizard - Device Properties

Select the following values in the New Project Wizard - Device Properties window:

* & & & o o o o

Product Category: All

Family: Spartan3A and Spartan3AN
Device: XC3S700A

Package: FG484

Speed: -4

Synthesis Tool: XST (VHDL/Verilog)
Simulator: 1ISim(VHDL/Verilog)

Preferred Language: VHDL or Verilog depending on preference. This will
determine the default language for all processes that generate HDL files.

Other properties can be left at their default values.

Click Next twice, and then click Add Source in the New Project Wizard - Add Existing
Sources window.

Browse to c: \ xi | i nx\ 11. 1\ | SE\ | SEexanpl es\ wt ut _sc.

Select the following files and click Open.

¢
¢
¢
¢
¢
¢

cd4rl ed. sch
ch4rl ed. sch

cl k_div_262k. vhd
I cd _control.vhd
st opwat ch. sch

st at mach. vhd

Click Next, then Finish to complete the New Project Wizard.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 49

XX"JNX@ Chapter 3: Schematic-Based Design

10. Verify that all added source files are set to Design View Association of All, and Library

iswork.
E [|
The Following allows you to see the status of the source files being added to the project, and
allows you to specify the Design Yiew assoriation for sources which are successfully added to
the project.
File Marne Associstion Library
1 (D cdérled.sch al | wark v
2 (@ chirled.sch Al v | work. -
3 (D ck_div_26zkvhd |al | work v
4@ lcd_control.vhd Al | work ~
5| (@ statmach.vhd 2l | work ~
& (@ stopwatch.sch 4l | wark. ~
fdding files to project: | & of & files (0 errors)
| e)
Figure 3-3: Adding Source Files
11. Click OK.

Stopping the Tutorial

If you need to stop the tutorial at any time, save your work by selecting File > Save All.

Design Description

The design used in this tutorial is a hierarchical, schematic-based design, which means that
the top-level design file is a schematic sheet that refers to several other lower-level macros.
The lower-level macros are a variety of different types of modules, including schematic-
based modules, a CORE Generator module, an Architecture Wizard module, and HDL
modules.

The runner’s stopwatch design begins as an unfinished design. Throughout the tutorial,
you will complete the design by creating some of the modules and by completing others
from existing files. A schematic of the completed stopwatch design is shown in the
following figure. Through the course of this chapter, you will create these modules,
instantiate them, and then connect them.

50

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Description XX"JNX@

After the design is complete, you will simulate the design to verify its functionality. For
more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

RET_M _::(E:_:.'jss—ﬂ Clk_dlv 262k

| ek_zezis ck_100

z KN
SLRBN 0ot —a
STATMACH
ck_100 =k zten n_en
debounce nates dmes L =
3p_load L sig_out ap_losd
d ——oad
— =k made_n
— made_contnl
res et rese
debounce lcd_confrol
n " ol risop st =t It
made B Hon 8 _t———— s D02) [][5 2 _MW. E_E
ok_28214k & ck_2624k S
debounce
[Ema ’ e =
™ END
o« oount [3:0)
st couni2(30
mode_o0i ntrol SUNEET)
ok SHNWE0) QT=Y15AB1E Y12.‘m1"' AS17AB13.Y13
ok_100 R —" SN0 | e 30
it
CB8CE timer_preset
ar %&] aw&:—-&aa: HED 5p0l 3 —

oad CE CE0 —a

XILINX

TheSanp Watth Tutors

Figure 3-4: Completed Watch Schematic
There are five external inputs and four external outputs in the completed design. The
following sections summarize the inputs and outputs, and their respective functions.
Inputs
The following are input signals for the tutorial stopwatch design.
e strtstop
Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.
* reset
ISE 11 In-Depth Tutorial www.xilinx.com 51

UG695 (v 11.2)

SUXILINX®

Chapter 3: Schematic-Based Design

Outputs

Puts the stopwatch in clocking mode and resets the time to 0:00:00.

clk
Externally generated system clock.

mode

Toggles between clocking and timer modes. This input is only functional while the
clock or timer is not counting.

lap_load

This is a dual function signal. In clocking mode it displays the current clock value in
the ‘Lap’ display area. In timer mode it will load the pre-assigned values from the
ROM to the timer display when the timer is not counting.

The following are outputs signals for the design.

lcd_e, lcd_rs, led_rw

These outputs are the control signals for the LCD display of the Spartan-3A demo
board used to display the stopwatch times.

sf_d[7:0]
Provides the data values for the LCD display.

Functional Blocks

The completed design consists of the following functional blocks. Most of these blocks do
not appear on the schematic sheet in the project until after you create and add them to the
schematic during this tutorial.

The completed design consists of the following functional blocks.

clk_div_262k

Macro which divides a clock frequency by 262,144. Converts 26.2144 MHz clock into
100 Hz 50% duty cycle clock.

dcmil

Clocking Wizard macro with internal feedback, frequency controlled output, and
duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the
Spartan-3A demo board to 26.2144 MHz.

debounce

Module implementing a simplistic debounce circuit for the strtstop, mode, and
lap_load input signals.

lcd_control

Module controlling the initialization of and output to the LCD display.
statmach

State machine module which controls the state of the stopwatch.

timer_preset

CORE Generator™ 64X20 ROM. This macro contains 64 preset times from 0:00:00 to
9:59:99 which can be loaded into the timer.

52

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

Design Entry

e time_cnt

Up/down counter module which counts between 0:00:00 to 9:59:99 decimal. This
macro has five 4-bit outputs, which represent the digits of the stopwatch time.

In this hierarchical design, you will create various types of macros, including schematic-
based macros, HDL-based macros, and CORE Generator macros. You will learn the
process for creating each of these types of macros, and you will connect the macros
together to create the completed stopwatch design. All procedures used in the tutorial can
be used later for your own designs.

Opening the Schematic File in the Xilinx Schematic Editor

The stopwatch schematic available in the wt ut _sc project is incomplete. In this tutorial,
you will update the schematic in the Schematic Editor. After you have created the projectin
ISE, you can now open the st opwat ch. sch file for editing. To open the schematic file,
double-click st opwat ch. sch in the Sources window.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 53

SUXILINX®

Chapter 3: Schematic-Based Design

The stopwatch schematic diagram opens in the Project Navigator Workspace. You will see
the unfinished design with elements in the lower right corner as shown in the figure below.

lcd_control

rstint

ok 25214k

—ED
— Mo
. D
oountl (3:9) —
— e ey
. o
oount2(3:9)
—
counti{.q) oesi0
e ———

countd(3:.0)

|

oount(3:G

CBSCE
ar ""‘r‘:—d =

Jog———— & =]
1D

O
o:e_aornob—l

Figure 3-5: Incomplete Stopwatch Schematic

Manipulating the Window View

The View menu commands enable you to manipulate how the schematic is displayed.
Select View > Zoom > In until you can comfortably view the schematic.

The schematic window can be undocked from the Project Navigator framework by
selecting Window > Float while the schematic is selected in the workspace.

After being undocked, the schematic window can be redocked by selecting
Window > Dock.

Creating a Schematic-Based Macro

A schematic-based macro consists of a symbol and an underlying schematic. You can

create either the underlying schematic or the symbol first. The corresponding symbol or
schematic file can then be generated automatically.

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry XX"JNX@

In the following steps, you will create a schematic-based macro by using the New Source
Wizard in Project Navigator. An empty schematic file is then created, and you can define
the appropriate logic. The created macro is then automatically added to the project’s
library.

The macro you will create is called t i me_cnt . This macro is a binary counter with five, 4-
bit outputs, representing the digits of the stopwatch.

To create a schematic-based macro:

1. InProject Navigator, select Project > New Source. The New Source dialog box opens:

= New Source Wizard &|

Select Source Type
Select source bype, file name and its location,

EMM File

&2 ChipScope Definttion and Connection File
E Implementation Constraints File

J TP (CORE Generator & Architecture Wizard)
MEM File
Schematic
E User Docurment
Werilog Module File: riame:
4] Werilog Test Fixture
'y WHDOL Madule
|T'| WHIL Library Location:
g ::gt :eascr;ge:ch Ceiilireed 11, 1 ISENISEexamplesiwhut_sc E]
| Embedded Processor

kirne _cnt

Add to project

Figure 3-6: New Source Dialog Box

The New Source dialog displays a list of all of the available source types.

2. Select Schematic as the source type.
3. Entertime_cnt asthe file name.
4. Click Next and click Finish.

A new schematic called t i ne_cnt . sch is created, added to the project, and opened for
editing.
5. Change the size of the schematic sheet by doing the following.

+ Right-click on the schematic page and select Object Properties.

¢+ Click on the down arrow next to the sheet size value and select D = 34 x 22.

¢+ Click OK and then click Yes to acknowledge that changing the sheet size cannot
be undone with the Edit > Undo option.

Defining the time_cnt Schematic

You have now created an empty schematic for t i me_cnt . The next step is to add the
components that make up thet i me_cnt macro. You can then reference this macro symbol
by placing it on a schematic sheet.

ISE 11 In-Depth Tutorial www.xilinx.com 55
UG695 (v 11.2)

XX"JNX@ Chapter 3: Schematic-Based Design

Adding I/0 Markers

I/0 markers are used to determine the ports on a macro, or the top-level schematic. The
name of each pin on the symbol must have a corresponding connector in the underlying
schematic. Add I/0 markers to thet i ne_cnt schematic to determine the macro ports.

To add the 170 markers:
1. Select Tools > Create I/O Markers.
The Create 1/0 Markers dialog box opens.
In the Inputs box, enter q(19: 0), | oad, up, ce, cl k, clr.

In the Outputs box, enter
hundredt hs(3:0),tenths(3:0), sec_Isb(3:0),sec_nsb(3:0), m nutes(3
:0).

ES Create 170 Markers E

[mputs

Iq['l 9:0)loadup.ce.clk.ch

Ouputz
Ihundredths[S:I:I],tenths[S:EI],SE::_ISI::[S:D],Sec_msl:u[S:I:I],minutes[B:D]

Bidirection

OF. Cancel Help

Figure 3-7: Creating I/O Markers

4. Click OK. The eleven I/0 markers are added to the schematic sheet.

Note: The Create I/0O Marker function is available only for an empty schematic sheet. However, 1/0
markers may be added to nets at any time by selecting Add > I/O Marker and selecting the desired
net.

Adding Schematic Components

Components from the device and project libraries for the given project are available from
the Symbol Browser, and the component symbol can be placed on the schematic. The
available components listed in the Symbol Browser are arranged alphabetically within

each library.
1. From the menu bar, select Add > Symbol or click the Add Symbol icon from the Tools
toolbar.
Note: The Options window changes depending on which tool you have selected in the Tools
toolbar.
-
(=)
"
Figure 3-8: Add Symbol Icon
56 www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

Design Entry

SUXILINX®

This opens the Symbol Browser to the left of the schematic editor, displaying the
libraries and their corresponding components.

Symbols =]

Categories

<l Symbok-—> -
Ceffim11.11SE/15Eexamplesfutut_sc>

Arithmetic

Buffer

Carty_Logic

Comparator

Counter

DOR Fip_Flop

Decoder

I
10_FlpFlop
10_Latch 3

Symbols

Figure 3-9: Symbol Browser

The first component you will place is a cd4rled, a 4-bit, loadable, bi-directional, BCD
counter with clock enable and synchronous clear.

Select the cd4rled component, using one of two ways:

¢

Move the mouse back into the schematic window.

Highlight the project directory category from the Symbol Browser dialog box and
select the component cd4rled from the symbols list.

Select All Symbols and type cd4r | ed in the Symbol Name Filter at the bottom of
the Symbol Browser window.

You will notice that the cursor has changed to represent the cd4rled symbol.

Move the symbol outline near the top and center of the sheet and click the left mouse

button to place the object.

Note: You can rotate new components being added to a schematic by selecting Ctrl+R. You
can rotate existing components by selecting the component, and then selecting Ctrl+R.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com

57

XX"JNX@ Chapter 3: Schematic-Based Design

5. Place three more cd4rled symbols on the schematic by moving the cursor with
attached symbol outline to the desired location, and clicking the left mouse button. See
Figure 3-10

cddried

_ b

COared

PLTTI

T it i fprint T

I

=
Cddried

T ¢

= X
||

= Chdried

— .
= X =

cddried

ey

Figure 3-10: Partially Completed time_cnt Schematic

6. Follow the procedure outlined in steps 1 through 4 above to place the following
components on the schematic sheet:

¢+ AND2bl
¢+ chérled
¢+ ANDS5

Refer to Figure 3-10 for placement locations.

To exit the Symbols Mode, press the Esc key on the keyboard.

58 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

For a detailed description of the functionality of Xilinx Library components, right-click on
the component and select Object Properties. In the Object Properties window, select
Symbol Info. Symbol information is also available in the Libraries Guides, accessible from
the collection of software manuals on the web at
http:.//www.xilinx.com/support/software_manuals.htm.

Correcting Mistakes

If you make a mistake when placing a component, you can easily move or delete the
component.

To move the component, click the component and drag the mouse around the window.
Delete a placed component in one of two ways:

e Click the component and press the Delete key on your keyboard.
or

* Right-click the component and select Delete.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called nets) to connect the
components placed in the schematic.

Perform the following steps to draw a net between the AND2b1 and top cd4rled
components on the ti me_cnt schematic.

1. Select Add > Wire or click the Add Wire icon in the Tools toolbar.

(=

Figure 3-11: Add Wire Icon

2. Click the output pin of the AND2b1 and then click the destination pin CE on the
cd4rled component. The Schematic Editor draws a net between the two pins.

3. Draw a net to connect the output of the AND5 component to the inverted input of the
AND2b1 component. Connect the other input of the AND2b1 to the ce input IO
marker.

4. Connect the load, up, clk, and clr input 10 markers respectively to the L, UP, C,and R
pins of each of the five counter blocks and connect the CEO pin of the first four
counters to the CE pin of the next counter as shown in Figure 3-10.

To specify the shape of the net:

1. Move the mouse in the direction you want to draw the net.
2. Click the mouse to create a 90-degree bend in the wire.

To draw a net between an already existing net and a pin, click once on the component pin
and once on the existing net. A junction point is drawn on the existing net.

Adding Buses

In the Schematic Editor, a bus is simply a wire that has been given a multi-bit name. To add
a bus, use the methodology for adding wires and then add a multi-bit name. Once a bus

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 59

http://www.xilinx.com/support/software_manuals.htm

SUXILINX®

Chapter 3: Schematic-Based Design

has been created, you have the option of “tapping” this bus off to use each signal
individually.

The next step is to create three buses for each of the five outputs of theti me_cnt
schematic. The results can be found in the completed schematic.

To add the buses hundredths(3:0), tenths(3:0), sec_Isb(3:0), sec_msb(3:0) and minutes(3:0)
to the schematic, perform the following steps:

1. Select all of the output 10 markers by drawing a box around them and then drag the
group so that minutes(3:0) is below the Q3 output of the bottom counter block.
Select Add > Wire or click the Add Wire icon in the Tools toolbar.

Click in the open space just above and to the right of the top cd4rled and then click
again on the pin of the hundredths(3:0) I/0 marker. The thick line should
automatically be drawn to represent a bus with the name matching that of the I/0
marker.

cddrled

1l
TTTT

Figure 3-12: Adding a Bus

4. Repeat Steps 2 and 3 for the four remaining buses.

5. After adding the five buses, press Esc or right-click at the end of the bus to exit the
Add Wire mode.

Adding Bus Taps

Next, add nets to attach the appropriate pins from the cd4rled and chérled counters to the
buses. Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic enables greater precision when drawing the nets.
To tap off a single bit of each bus:
1. Select Add > Bus Tap or click the Add Bus Tap icon in the Tools toolbar.

EEED

Figure 3-13: Add Bus Tap Icon

The cursor changes, indicating that you are now in Draw Bus Tap mode.

2. From the Options tab to the left of the schematic, choose the --< Right orientation for
the bus tap.

60

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

3.

6.

Click on the hundreths(3:0) bus with the center bar of the cursor.

The Selected Bus Name and the Net Name values of the options window are now
populated.

Note: The indexes of the Net Name may be incremented or decremented by clicking the arrow
buttons next to the Net Name box.

With hundredths(3) as the Net Name value, move the cursor so the tip of the attached
tap touches the Q3 pin of the top cd4rled component.

Note: Four selection squares appear around the pin when the cursor is in the correct position.
Click once when the cursor is in the correct position.

A tap is connected to the hundredths(3:0) bus and a wire named hundreths(3) is drawn
between the tap and the Q3 pin.

Click successively on pins Q2, Q1, and QO to create taps for the remaining bits of the
hundredths(3:0) bus.

Repeat Steps 3 to 6 to tap off four bits from each of the five buses.

Note: ltis the name of the wire that makes the electrical connection between the bus and the wire
(e.g sec_msh(2) connects to the third bit of sec(3:0)). The bus tap figure is for visual purposes only.
The following section shows additional electrical connections by name association.

7.
8.

Press Esc to exit the Add Net Name mode.

Compareyourt i ne_cnt schematic with Figure 3-15 to ensure that all connections are
made properly.

Adding Net Names

First, add a hanging wire to each of the five inputs of the AND5 component and to the TC
pin of each of the counter blocks.

Next, add net names to the wires. To add the net names:

1.

Select Add > Net Name or click the Add Net Name icon in the Tools toolbar.

EE

Figure 3-14: Add Net Name Icon

Typet c_out 0 in the Name box and select Increase the Name in the Add Net Names
Options dialog box.

The net name tc_out0 is now attached to the cursor.

Click the net attached to the first input of the AND5 component.

The name is then attached to the net. The net name appears above the net if the name
is placed on any point of the net other than an end point.

Click on the remaining input nets of the AND5 to add tc_outl, tc_out2, tc_out3 and
tc_out4.

The Schematic Editor increments the net Name as each name is placed on a net.
Alternatively, name the first net tc_out4 and select Decrease the name in the Add Net
Names Options dialog box, and nets are named from the bottom up.

Repeat step 2 and then click successively on the nets connected to the TC output to add
tc_out0, tc_outl, tc_out2, tc_out3, and tc_out4 to these nets.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 61

SUXILINX®

Chapter 3: Schematic-Based Design

Note: Each of the wires with identical names are now electrically connected. In this case, the nets
do not need to be physically connected on the schematic to make the logical connection.

Finally, connect the input pins of the counters through net name association.

1. Select Add > Wire or click the Add Wire icon and add a hanging net to the four data
pins of each of the five counters.

Select Add > Net Name or click the Add Net Name icon in the Tools toolbar.
Type q(0) in the Name box of the Add Net Name options dialog box.
Select Increase the name in the Add Net Name options dialog box.

The net name q(0) is now attached to the cursor.

5. Click successively on each of the nets connected to data inputs, starting from the top so
that the net named q(0) is attached to the DO pin of the top counter and the net named
g(19) is attached to the D3 pin of the bottom counter. Refer to Figure 3-15.

Note: If the nets appear disconnected, select View > Refresh to refresh the screen.

cddrled
J—
E— = I
cddried
......
= S I I
I
codred -
—— ==
== _
= chdred
e
E . T
cddrled
- P _
. I -
L 7

Figure 3-15: Completed time_cnt Schematic

Checking the Schematic
Theti me_cnt schematic is now complete.

Verify that the schematic does not contain logical errors by running a design rule check
(DRC). To do this, select Tools > Check Schematic. The Console window should report
that no errors or warnings are detected. If an error or warning is displayed, fix the reported
problem before proceeding.

62

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry XX"JNX@

Saving the Schematic

1. Save the schematic by selecting File > Save, or by clicking the Save icon in the toolbar.

=]

Figure 3-16: Save Icon

2. Closetheti me_cnt schematic.

Creating and Placing the time_cnt Symbol

The next step is to create a “symbol” that represents the t i me_cnt macro. The symbol is
an instantiation of the macro. After you create a symbol fort i ne_cnt, you will add the
symbol to a top-level schematic of the stopwatch design. In the top-level schematic, the
symbol of thet i me_cnt macro will be connected to other components in a later section in
this chapter.

Creating the time_cnt symbol

You can create a symbol using either a Project Navigator process or a Tools menu
command.

To create a symbol that represents the t i me_cnt schematic using a Project Navigator
process:

1. Inthe Sources window, selectt i ne_cnt . sch.
2. Inthe Processes window, click the + beside Design Utilities to expand the hierarchy.
3. Double-click Create Schematic Symbol.

To create a symbol that represents the t i me_cnt schematic using a Tools menu command:

1. With the time_cnt schematic sheet open, select Tools > Symbol Wizard.

2. In the Symbol Wizard, select Using Schematic, and then selectt i me_cnt in the
schematic value field.

Click Next, then Next, then Next again, and then Finish to use the wizard defaults.

3. View and then close the time_cnt symbol.

Placing the time_cnt Symbol

Next, place the symbol that represents the macro on the top-level schematic
(stopwatch.sch).

1. Inthe Sources window, double-click st opwat ch. sch to open the schematic.
2. Select the Add Symbol icon.

—

Figure 3-17: Add Symbol Icon

ISE 11 In-Depth Tutorial www.xilinx.com 63
UG695 (v 11.2)

SUXILINX®

Chapter 3: Schematic-Based Design

3.

5.

In the Symbol Browser, select the local symbols library
(c:\xilinx\11. 1\ I SE\ I SEexanpl es\ wt ut _sc), and then select the newly
created time_cnt symbol.

Place the time_cnt symbol in the schematic so that the output pins line up with the five
buses driving inputs to the Icd_control component. This should be close to grid
position [1612,1728]. Grid position is shown at the bottom right corner of the Project
Navigator window, and is updated as the cursor is moved around the schematic.

Note: Do not worry about connecting nets to the input pins of the time_cnt symbol. You will do
this after adding other components to the stopwatch schematic.

Save the changes and close st opwat ch. sch.

Creating a CORE Generator Module

CORE Generator is a graphical interactive design tool that enables you to create high-level
modules such as memory elements, math functions, communications, and 10 interface
cores. You can customize and pre-optimize the modules to take advantage of the inherent
architectural features of the Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s,
and distributed and block RAM.

In this section, you will create a CORE Generator module called timer_preset. The module
is used to store a set of 64 values to load into the timer.

Creating a CORE Generator Module

To create a CORE Generator module:

o ks~ w Pk

In Project Navigator, select Project > New Source.

Select IP (Coregen & Architecture Wizard).

Typeti ner _preset in the File name field.

Click Next.

Double-click Memories & Storage Elements > RAMs & ROMs.

Select Distributed Memory Generator, then click Next and click Finish to open the
Distributed Memory Generator customization GUI. This customization GUI enables
you to customize the memory to the design specifications.

Figure 3-18: New Source Wizard - New IP Module

Fill in the Distributed Memory Generator customization GUI with the following
settings:

¢+ Component Name: timer_preset - Defines the name of the module.

64

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry XX"JNX@

+ Depth: 64 - Defines the number of values to be stored
+ Data Width: 20 - Defines the width of the output bus.
¢ Memory Type: ROM
8. Click Next.
9. Leave Input and Output options as Non Registered; Click Next.

4 Distributed Memory Generator

Wiew

IP Symbol 8 X &5 i
LGSR Distributed Memory
g} LR
Generator i

Component Marme [timer_preset

Options
a[50] m b <0 [19:0]

Cepth 64 Range: 16,.65336
Data Width |20 Range: 1..1024
Memory Type
& ROM (O Single Port RAM
() Dual Port RamM () SRL16-based Memory

< Back Page 1of 3 [MNext =] [Generate] [Cancel] [Help]

Figure 3-19: CORE Generator - Distributed Memory Generator Customization GUI

10. Specify the Coefficients File; Click the Browse button and select
definitionl_tines.coe.

11. Check that only the following pins are used (used pins are highlighted on the symbol
on the left side of the customization GUI):

¢+ a[5:0]
¢+ spo[19:0]
12. Click Generate.
The module is created and automatically added to the project library.
Note: A number of files are added to the project directory. Some of these files are:
¢+ timer_preset.sym
This file is a schematic symbol file.

¢+ timer_preset.vhd or timer_preset.v
These are HDL wrapper files for the core and are used only for simulation.

¢ timer_preset.ngc
This file is the netlist that is used during the Translate phase of implementation.

¢+ timer_preset.xco

ISE 11 In-Depth Tutorial www.xilinx.com 65
UG695 (v 11.2)

SUXILINX®

Chapter 3: Schematic-Based Design

This file stores the configuration information for the timer_preset module and is
used as a project source.

¢+ timer_preset.mif

This file provides the initialization values of the ROM for simulation.

Creating a DCM Module

The Clocking Wizard, a Xilinx Architecture Wizard, enables you to graphically select
Digital Clock Manager (DCM) features that you wish to use. In this section, you will create
a basic DCM module with CLKO feedback and duty-cycle correction.

Using the Clocking Wizard

Create the dcml module as follows:

1.
2.

© © N o o

In Project Navigator, select Project > New Source.

In the New Source dialog box, select the IP (Coregen & Architecture Wizard) source
type, and type dcmil for the file name.

Click Next.

In the Select IP dialog box, select FPGA Features and Design > Clocking > Spartan-
3E, Spartan-3A > Single DCM SP.

ES New Source Wizand El

select IP
Create Coregen or Architecture Wizard IP Core.

Yiew by Function iew by Mame
Mame Version | License

E2 Digital Signal Processing
= FPGA Features and Design
= Clacking
{; Clacking wWizard 1.2
= Spartan-3E, Spartan-3A

v Board Deskew with an Internal Deskew (DCM_SP) 11.2
« Cascading in Series with Two DCM_SP 1.z
' Clock Forwarding § Board Deskew (DCM_SP) 11.2
«_Clack Switching with Twao DCV_SPs 11,2
" Single DCM_5 i11,2

il

Search IP Catalog:
[] all 1P versions [] only IP compatible with chosen part
e) o> J[_cowent]

Figure 3-20: Selecting Single DCM Core Type

Click Next, then click Finish. The Clocking Wizard is launched.
Verify that RST, CLKO and LOCKED ports are selected.

Select CLKFX port.

Type 50 and select MHz for the Input Clock Frequency.

Verify the following settings:

¢ Phase Shift: NONE

¢+ CLKIN Source: External, Single

¢+ Feedback Source: Internal

66

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

10.
11.
12.
13.
14.

15.

¢ Feedback Value: 1X
¢ Use Duty Cycle Correction: Selected

Ep Xilinx Clocking Wizard - General Setup

g0 00000000

Irpwit Clock Frequency Phase Shit
@ MHz (O ns Type: [MONE
Vahae: [0
CLEIN Source Feedback Sowce
@) External Y Internal) Esternal @ Ioternal () Nore
&) Single Single
) Differental Differential
Dirvade By Value Feedback Walus
2 | @ 1% O 2
Usze Duty Cycle Comection
I Mare Info i[Adwanced] < Back [Mext >] | Cancel |

Figure 3-21: Xilinx Clocking Wizard - General Setup

Click the Advanced button.

Select the Wait for DCM Lock before DONE Signal goes high option.
Click OK.

Click Next, and then Next again.

Select Use output frequency and type 26.2144 in the box and select MHz.

(26.2144Mhz)/ 28 = 100Hz

Click Next, and then click Finish.

The dcml. xawfile is created and added to the list of project source files in the Sources tab.

Creating the dcm1 Symbol

Next, create a symbol representing the dcm1 macro. This symbol will be added to the top-
level schematic (st opwat ch. sch) later in the tutorial.

1.
2.

In Project Navigator, in the Sources tab, select dcnil. xaw
In the Processes tab, double-click Create Schematic Symbol.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 67

::X"JNX® Chapter 3: Schematic-Based Design

Creating an HDL-Based Module

With ISE, you can easily create modules from HDL code. The HDL code is connected to
your top-level schematic design through instantiation and compiled with the rest of the
design.

You will author a new HDL module. This macro will be used to debounce the strtstop,
mode and lap_load inputs.

Using the New Source Wizard and ISE Text Editor

In this section, you create a file using the New Source wizard, specifying the name and
ports of the component. The resulting HDL file is then modified in the ISE Text Editor.

To create the source file:

1. Select Project > New Source.

A dialog box opens in which you specify the type of source you want to create.
Select VHDL Module or Verilog Module.

In the File Name field, type debounce.

Click Next.

Enter two input ports named sig_in and clk and an output port named sig_out for the
debounce component as follows:

g k~ wbd

a. Inthe first three Port Name fields type si g _in, cl k and si g_out.
b. Set the Direction field to input for sig_in and clk and to output for sig_out.
¢. Leave the Bus designation boxes unchecked.

EZ New Source Wizard El
Define Module
Specify ports For module,
Entity name | debounce
architecture name | Behavioral
Port Marne Direction Bus MSE LSE e
sig_in in ~|[]
clk in >~
sig_out out |1
in (]
in I
in ~[
in ~[
in ~\
in ~|[]
in ~|[]
in ~|[] w
T | e

Figure 3-22: New Source Wizard for Verilog
6. Click Next to complete the Wizard session.
A description of the module displays.
7. Click Finish to open the empty HDL file in the ISE Text Editor.
The VHDL file is displayed in Figure 3-23. The Verilog HDL file is displayed in Figure 3-24.

68 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

12
13
14
15
18
17
18
19
20
21
22
23
EEs
&
26
an
28
e
30
31
32
33
34
s
36
37
38
HEl
40

w oM -1 m ok L by

(I S T oS I S S S N R o T e L e e e e e =
[I B R I R S O .= Y N | I (= o I SO I S i |

-- Dependencies:

-- Revision:

-- Rewvision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.STD LOGIC 1164.ALL:
use IEEE.STD LOGIC_ARITH.ALL;
use IEEE.ZTD LOGIC UNIIGNED.ALL;

-——- Tncomment the following library declaration if instantiating
-——- any Zilinx primitives in this code.

-=library UNISIM;

--use UWNISIM.VComponents.all:

entity debounce is
Port | sig in : in 3TD LOGIC:
clk ¢ in STD_LOGIC;
sig out : out 3TD LOGIC):
end debounce;

architecture Behavioral of debounce is

hegin

Figure 3-23: VHDL File in ISE Text Editor

FEEEEEEEE T d i i i diddididdddddididiidiiididiiiiiiiiy
// Company:
/¢ Engineer:

/{ Create Date: 14:12:53 03/15/2007
/¢ Design Name:

/¢ Module Nawme: dehounce

/¢ Project Name:

/{ Target Devices:

/¢ Tool wversions:

// Description:

/¢ Dependencies:

/¢ Revision:
// Rewision 0.01 - File Created
/¢ hdditional Comments:

FEEEETTTEEEEia i i i i didididdidddiddiiddddisdiiiiiidiiid
module debounce{sig_in, clk, sig out);

input sig in;

input clk;

output sig out;

endmodule

Figure 3-24: \erilog File in ISE Text Editor

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 69

SUXILINX®

Chapter 3: Schematic-Based Design

#- [0 Tl
#- [0 UcF
= 53 vHDL

In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic
file structure is already in place. Keywords are displayed in blue, comments in green, and
values are black. The file is color-coded to enhance readability and help you recognize

typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will use the Debounce Circuit template for this exercise.

Note: You can add your own templates to the Language Templates for components or constructs

that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select Edit > Language Templates.

Each HDL language in the Language Templates is divided into five sections: Common
Constructs, Device Primitive Instantiation, Simulation Constructs, Synthesis

Constructs and User Templates. To expand the view of any of these sections, click the
+ next to the section. Click any of the listed templates to view the template contents in

the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs
hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and
select the template called Debounce Circuit. Use the appropriate template for the
language you are using.

When the template is selected in the hierarchy, the contents display in the right pane.

+- [0 Common Constructs

i) B

(7] Device Macro Instantiation
[77 Device Primitive Instantiation
(273 simulation Canstructs

3 synthesis Construcks

#- [[1 Assertions & Functions
- (01 Attributes
= £3 Coding Examples

+

(N R R = S e

+

[Accumulators

[Arithmetic

[Basic Gates

23 Bi-directional 1/0

7 Comparators

[T Counters

(77 Decoders

(71 Encoders

(23 Flip Flops

[Logical Shifters

S5 Misc
7-Seqgment Display Hex Conversior
Asynchranous Input Synchronizati

Open Drain Oukput (single signal)
+- (77 output Clock Forwarding Using DD
[Mulkiplexers
23 RAM

= Design Summaryy] time_cnt.vhd

-— Prowvidez & one-shot pulse from a non-clock input, witl
——**Insert the following between the 'architecture' and
———'begin' keywords¥¥

signal Q1, Qz2, Q3 : std_logie:

——*#*Insert the following after the 'hegin' keyword#**®
process (<clock:)
begin
if (<elocks:'ewent and <clock: = '1') then
if (<reset> = '1') then
Q1 <= '0';
Qz <= '0';
Q3 <= '0';
Q1 <= D_IN:
Q2 <= 0Q1:
Q03 <= QzZ:

end if;
end process:

Q OUT <= Q1 and Q2 and (not Q3F);:

debounce. vhd @ Language Templates

Figure 3-25: Language Templates

70

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry

SUXILINX®

Adding a Language Template to Your File

You will now use “Use in File” method for adding templates to your HDL file. Refer to
“Working with Language Templates” in the ISE Help for additional usability options,
including drag and drop options.

To add the template to your HDL file:

1.

10.

Open or bring forward the debounce. v ordebounce. vhd source file. Position the
cursor under the architecture begin statement in the VHDL file, or under the module
and pin declarations in the Verilog file.

Return to the Language Templates window, right-click on the Debounce Circuit
template in the template index, and select Use In File.

B Debounce circult
Drain Cukput

Open Drain Qukput P OUT <= Q1 and
+- [Output Clack Farw
- [Multiplesers
© [Ram
- [ROM
+
+

“nd process;

[shift Registers
77 srabe-Marhines

Figure 3-26: Selecting Language Template to Use in File

Close the Language Templates window.

Open the debounce. v or debounce. vhd source file to verify that the Language
Template was properly inserted.

(\Verilog only) Complete the Verilog module by doing the following:

a. Remove the reset logic (not used in this design) by deleting the three lines
beginning with i f and ending with el se.

b. Change <reg_name>to g in all six locations.
c. Change <clock>tocl k; <D_IN>tosig in;and<Q _OUT>tosig out.
(VHDL only) Complete the VHDL module by doing the following:

a. Move the line beginning with the word si gnal so that it is between the
archi t ect ur e and begi n keywords.

b. Remove the resetlogic (not used in this design) by deleting the five lines beginning
withif (<reset>... andending with el se, and delete one of theend i f;
lines.

c. Use Edit > Find & Replace to change <clock>to cl k; D_INtosi g_i n; and
Q_OUTtosig out.

You now have complete and functional HDL code.

Save the file by selecting File > Save.
Select one of the debounce instances in the Sources tab.

In the Processes tab, double-click Check Syntax. Verify that the syntax check passes
successfully. Correct any errors as necessary.

Close the ISE Text Editor.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 71

XX"JNX@ Chapter 3: Schematic-Based Design

Creating Schematic Symbols for HDL modules
Next, create the schematic symbols for both the debounce and statmach HDL files.

1. Inthe Sources tab, select debounce. vhd or debounce. v.

2. Inthe Processes tab, click the + beside Design Utilities to expand the hierarchy.
3. Double-click Create Schematic Symbol.

4. Repeat this procedure for the st at mach. vhd file.

You are now ready to place the symbols on the stopwatch schematic.

Placing the statmach, timer_preset, dcm1 and debounce Symbols

You can now place the statmach, timer_preset, dcm1, and debounce symbols on the
stopwatch schematic (st opwat ch. sch). In Project Navigator, double-click
st opwat ch. sch. The schematic file opens in the Workspace.

1. Select Add > Symbol or click the Add Symbol icon from the Tools toolbar.

—

Figure 3-27: Add Symbol Icon

This opens the Symbol Browser to the left of the Schematic Editor, which displays the
libraries and their corresponding components.
View the list of available library components in the Symbol Browser.

Locate the project-specific macros by selecting the project directory name in the
Categories window.

4. Select the appropriate symbol, and add it to the stopwatch schematic in the
approximate location, as shown in Figure 3-28.

Note: Do not worry about drawing the wires to connect the symbols. You will connect components
in the schematic later in the tutorial.

72 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry XX"JNX@

5. Save the schematic.

dem1
—RST N LOCKEQ.OUT[—n C|k_di\:’_252k
e R I
CUKFK OUT kil XN o I ok 10
KN BUFG OUT —=
—J0KN_ N QKOO —a
—]ch ohen —a
o—Jom jod
debounce S —
iz o3
aJsin T - [—
—mde
a—{ck - oot |—a
lcd_control
debounce JR IO -
R e ole ret_int ot control) — od_ Jed_ruJod_e
P ok 28214k lox
debounce . = — [F®
a—mn s out|—s tim e_Cnt - o
PT——— B [<)]
. [==ClE S - ——— [Ty
- cant2(30)
e cant3{30)
e caunt4{30) I o LGS B A VT2 AA T B
- cunt5B0) —{mnues (30,
i
CBaCE fimer_preset
dress(70)
@ =
o ———F E0
ok_100 b -
Qar
g M
‘Thie:Siop YV akch Tuborkl
NameM Tuorel
e Thu Mer 22 111509 2007 Sreeti of 1

Figure 3-28: Placing Design Macros

Changing Instance Names

When a symbol is placed on a schematic sheet it is given a unique instance name beginning
with the prefix XLXI_. To help make the hierarchy more readable in the Project Navigator
Sources window, change the names of the added symbol instances as follows.

1. Right-click on the dcm1 symbol instance and select Object Properties from the right-
click menu

2. Change the value of the | nst Nane field to dcm_inst and then click OK.
Repeat steps 1 and 2 to change the following symbol instance names.

* Name the statmach instance t i ner _st at e.

* Name the top debounce instance | ap_| oad_debounce

* Name the middle debounce instance node_debounce.

ISE 11 In-Depth Tutorial www.xilinx.com 73
UG695 (v 11.2)

SUXILINX®

Chapter 3: Schematic-Based Design

* Name the bottom debounce instance st rt st op_debounce.

» Name the timer_preset instancet _pr eset .
 Name the time_cntinstanceti ner_cnt.

Hierarchy Push/Pop

First, perform a hierarchy “push down,” which enables you to focus in on a lower-level of
the schematic hierarchy to view the underlying file. Push down into the time_cnt macro,
which is a schematic-based macro created earlier in this tutorial, and examine its

components.
To push down into t i me_cnt from the top-level, st opwat ch, schematic:

1. Click time_cnt symbol in the schematic, and select the Hierarchy Push icon. You can
also right-click the macro and select Symbol > Push into Symbol.

(@A A =

Figure 3-29: Hierarchy Push Icon

Intheti me_cnt schematic, you see five counter blocks. Push into any of the counter
blocks by selecting the block and clicking on the Hierarchy Push icon. This process
may be repeated until the schematic page contains only Xilinx primitive components.
If a user pushes into a symbol that has an underlying HDL or IP core file, the
appropriate text editor or customization GUI will open and be ready to edit the file.

2. After examining the macro, return to the top-level schematic by selecting View > Pop
to Calling Schematic, or select the Hierarchy Pop icon when nothing in the
schematic is selected. You can also right-click in an open space of the schematic and
select Pop to Calling Schematic.

AR =

Figure 3-30: Hierarchy Pop Icon

Specifying Device Inputs/Outputs

Use the 1/0 marker to specify device 1/0 on a schematic sheet. All of the Schematic Editor
schematics are netlisted to VHDL or Verilog and then synthesized by the synthesis tool of
choice. When the synthesis tool synthesizes the top-level schematic’s HDL, the I/0
markers are replaced with the appropriate pads and buffers.

Adding Input Pins

Next, add five input pins to the stopwatch schematic: reset, clk, lap_load, mode and
strtstop.
To add these components:

« Draw a hanging wire to the two inputs of dcm1 and to the sig_in pin of each debounce
symbol
Refer to “Drawing Wires” for detailed instructions.

74

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry XX"JNX@

Adding 1/0 Markers and Net Names

It is important to label nets and buses for several reasons:

e Itaids in debugging and simulation, as you can more easily trace nets back to your
original design.

* Any nets that remain unnamed in the design will be given generated names that will
mean nothing to you later in the implementation process.

« Naming nets also enhances readability and aids in documenting your design.

Label the five input nets you just drew. Refer to the completed schematic below. To label
the reset net:

1. Select Add > Net Name.

2. Typereset into the Name box.
The net name is now attached to the cursor.
Place the name on the leftmost end of the net, as illustrated in Figure 3-31.
Repeat Steps 1 through 3 for the clk, lap_load, mode, and strtstop pins.
Once all of the nets have been labeled, add the 1/0 marker.
Select Add > 1/0O Marker.

Click and drag a box around the name of the five labeled nets, as illustrated in
Figure 3-31, to place an input port on each net.

dem
= RET_IN LOCKED_OUT |— =
CLKFX_OUT | ol 222idk
CLEON IBUFG OUT |—=
ik LB 1N CLMO_OUT|— o
debounce
lap load =g In Sig_oul |—a
—]
debounce
oD =g In Sig_oul —mn
— o
debounce
=hrtsiop =g In Sig_oul —mn
4E:_ — ok

Figure 3-31: Adding I/O Markers to Labeled Nets

ISE 11 In-Depth Tutorial www.xilinx.com 75
UG695 (v 11.2)

XX"JNX@ Chapter 3: Schematic-Based Design

Assigning Pin Locations

Xilinx recommends that you let the automatic placement and routing (PAR) program
define the pinout of your design. Pre-assigning locations to the pins can sometimes
degrade the performance of the place-and-route tools. However, it may be necessary at
some point to lock the pinout of a design so that it can be integrated into a Printed Circuit
Board (PCB).

For this tutorial, the inputs and outputs will be locked to specific pins in order to place and
download the design to the Spartan-3A demo board. Because the tutorial stopwatch
design is simple and timing is not critical, the example pin assignments will not adversely
affect the ability of PAR to place and route the design.

Assign a LOC parameter to the output nets on the stopwatch schematic, as follows:

1. Right-click on the clk net and select Object Properties from the right-click menu.
2. Click the New button under Net Attributes to add a new property.

3. Enter LOCfor the Attribute Name and E12 for the Attribute Value.

4. Click OK to return to the Object Properties dialog box.

Category
= Nets View and edit the attributes of the selected nets
clk| | Name Walue Wisible Mew
Mame clk Add - -
PartPolarity Irput ~ Add
—— T
I oK I I Close] [Apply] [Help]

Figure 3-32: Assigning Pin Locations

5. To make the LOC attribute visible, select the Add button adjacent to the LOC attribute
in the Attribute window.

6. Inthe Net Attribute Visibility window, click on a location near the center of the
displayed net and then select OK.

This will display the LOC attribute on the schematic above the clk net.
Click OK to close the Object properties window.

The above procedure constrains clk to pin E12. Notice that the LOC property has
already been added to the sf_d(7:0) bus. The remaining pin location constraints will be
added in “Using the Constraints Editor” and “Assigning I/O Locations Using PlanAhead” of
Chapter 5, “Design Implementation”.

Note: To turn off the Location constraint without deleting it, select the loc attribute, and click Edit
Traits. Select VHDL or Verilog and select Ignore this attribute.

Completing the Schematic

Complete the schematic by wiring the components you have created and placed, adding
any additional necessary logic, and labeling nets appropriately. The following steps guide
you through the process of completing the schematic. You may also want to use the
completed schematic shown below to complete the schematic. Each of the actions referred

76 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Design Entry XX"JNX@

to in this section has been discussed in detail in earlier sections of the tutorial. Please see
the earlier sections for detailed instructions.

RET.N _.:(E:_:_'—b*‘s;—ﬂ Clk_d|V_262k

K_16214K

ck_100
) =

CLEN_N L —a
STATMACH
ok_100 B zuen ok _en_
debounce Kkeo I)
lap ko Lin sig_oun ap_load
IE aad —————4oad
—zk made_n
made mode_catel
de bounceJ = . lcd_control
N . Temop =t =1t
mas - e 181_ff—————————— = DTI0HE) [e][5 2 _MW, E0_E
o _I8214k =* ok_26314k =
debounce -
. : =
siristop _in won t“ﬂe_cﬂt —
I Y P DT —— T st 30
i 19 vunared it 3 [T
oad —
mode_coninal s
ke " C=Y15AB1E ‘r12.q.-\1°' AS17AB13.Y13
k_100 © mnoesEn =
rE_I:
CB8CE timer_preset

I 55(7-0) aodress(50)
] %ﬂs«;ﬁ O i) —

20—

b3l

¢k_100

'*103&_-30".!)!—‘

XILINX

DateThu Mar 22 135137 2007 [aneest a1

TheSip Watch Tutorial

M et Tuore

Figure 3-33: Completed Stopwatch Schematic

To complete the schematic diagram:

1. Draw a hanging wire to the LOCKED_OUT pin of DCM1 and name the wire | ocked.
See “Drawing Wires” and “Adding Net Names.”

2. Draw a hanging wire to the clk input of both the time_cnt and statmach macros. (See
“Drawing Wires.”)

ISE 11 In-Depth Tutorial www.xilinx.com 77
UG695 (v 11.2)

SUXILINX®

Chapter 3: Schematic-Based Design

10.

11.

12.

Name both wires cl k_100. (See “Adding Net Names.”)

Note: Remember that nets are logically connected if their names are the same, even if the net
is not physically drawn as a connection in the schematic. This method is used to make the logical
connection of clk_100 and several other signals.

Draw a wire to connect the clk inputs of the three debounce macros and name the wire
cl k_26214k.

Draw wires between the sig_out pins of the debounce components and the lap_load,
mode_in and strtstop pin of the statmach macro. Label the nets| | _debounced,
node_debounced, and st rt st op_debounced. See “Drawing Wires” and “Adding
Net Names.”

Add hanging wires to the dcm_lock pin and the reset pin of the statmach macro. Name
them | ocked and r eset , respectively.

Draw a hanging wire to the clken output of the statmach component and another
hanging wire to the ce pin of the time_cnt component. Name both wirescl k_en_i nt..

Draw hanging wires from the rst output pin of the statmach macro and the clr pin of
the time_cnt macro. See “Drawing Wires.” Label both wiresr st _int.

Draw a wire from the bus output of the timer_preset to the q(19:0) input of the
time_cnt macro. See “Drawing Wires.” Notice how the wire is automatically converted
to a bus.

Draw a hanging bus on the input of the timer_preset macro and name the bus
address(5:0).

Draw wires from the lap_trigger and mode outputs of the statmach macro to the lap
and mode inputs of the Icd_control macro. See “Drawing Wires.” Name the nets | ap
and node_cont r ol respectively.

Draw hanging wires from the load output of the statmach macro and the load input of
the time_cnt macro. See “Drawing Wires.” Name both wires | oad.

Draw a hanging wire to the up input time_cnt macro. See “Drawing Wires.” Name the
wire node_control .

The schematic is now complete.

Save the design by selecting File > Save.

You have now completed the schematic design.

To continue with the schematic flow, do the following:

Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

Proceed to Chapter 5, “Design Implementation,” to place and route the design.

78

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

SXILINX®
Chapter 4

Behavioral Simulation

This chapter contains the following sections.

* “Overview of Behavioral Simulation Flow”
* “ModelSim Setup”

e “ISim Setup”

e “Getting Started”

» “Adding an HDL Test Bench”

» “Behavioral Simulation Using ModelSim”
e “Behavioral Simulation Using ISim”

Overview of Behavioral Simulation Flow

Xilinx® ISE™ provides an integrated flow with the Mentor ModelSim simulator and the
Xilinx ISim simulator that allows simulations to be run from the Xilinx Project Navigator.
The examples in this tutorial demonstrate how to use the integrated flow. Whether you use
the ModelSim simulator or the ISim simulator with this tutorial, you will achieve the same
simulation results.

For additional information about simulation, and for a list of other supported simulators,
see Chapter 7 of the Synthesis and Simulation Design Guide. This Guide is accessible from
within ISE by selecting Help > Software Manuals, and from the web at
http://www.xilinx.com/support/software _manuals.htm.

This tutorial provides an introduction to the simulation flow within ISE Project Navigator,
including highlights of features within the ModelSim and ISim simulators. For more
detailed information about using these simulators, see ModelSim documentation at
http://www.model.com, or the ISim in-depth tutorial available at
http://www.xilinx.com/support/techsup/tutorials/tutorialsll.htm.

ModelSim Setup

In order to use this tutorial, you must install ModelSim on your computer. The following
sections discuss requirements and setup for ModelSim PE, ModelSim SE, and
ModelSim XE.

ISE 11 In-Depth Tutorial www.xilinx.com 79
UG695 (v 11.2)

XX"JNX@ Chapter 4: Behavioral Simulation

ModelSim PE and SE

ModelSim PE and ModelSim SE are full versions of ModelSim available for purchase
directly from Mentor Graphics. In order to simulate with the ISE 11 libraries, use ModelSim
6.4b or newer. Older versions may work but are not supported. For more information
about ModelSim PE or SE, please contact Mentor Graphics.

ModelSim Xilinx Edition

ModelSim Xilinx Edition I1l (MXE I1) is the Xilinx version of ModelSim which is based on
ModelSim PE. There are two versions of MXE Il available for purchase from Xilinx: a free
“starter” version, and a full version. For more information about MXE I, including how to
purchase the software, please visit http://www.xilinx.com/ise/optional _prod/mxe.htm

ISim Setup

ISim is automatically installed and set up with the ISE 11.1 installer on supported
operating systems. Please see list of operating systems supported by ISim on the web at
http:.//www.xilinx.com/ise/ossupport/index.htm#simulator

Getting Started

The following sections outline the requirements for performing behavioral simulation in
this tutorial.

Required Files

The behavioral simulation flow requires design files, a test bench file, and Xilinx
simulation libraries.

Design Files (VHDL, Verilog, or Schematic)

This chapter assumes that you have completed the design entry tutorial in either
Chapter 2, “HDL-Based Design,” or Chapter 3, “Schematic-Based Design.” After you
have completed one of these chapters, your design includes the required design files
and is ready for simulation.

Test Bench File

In order to simulate the design, a test bench file is required to provide stimulus to the
design. VHDL and Verilog test bench files are available with the tutorial files. You may
also create your own test bench file.

Xilinx Simulation Libraries

Xilinx simulation libraries are required when a Xilinx primitive or IP core is
instantiated in the design. The design in this tutorial requires the use of simulation
libraries because it contains instantiations of a digital clock manager (DCM) and a
CORE Generator™ component. For information on simulation libraries and how to
compile them, see the next section, “Xilinx Simulation Libraries.”

80 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/ise/optional_prod/mxe.htm

Getting Started

SUXILINX®

Xilinx Simulation Libraries

To simulate designs that contain instantiated Xilinx primitives, CORE Generator
components, and other Xilinx IP cores you must use the Xilinx simulation libraries. These
libraries contain models for each component. These models reflect the functions of each
component, and provide the simulator with the information required to perform
simulation.

For a detailed description of each library, see Chapter 5 of the Synthesis and Simulation
Design Guide. This Guide is accessible from within ISE by selecting Help > Software
Manuals, and from the web at

http://www.xilinx.com/support/documentation/dt _isell-1.htm.

Updating the Xilinx Simulation Libraries

The Xilinx simulation libraries contain models that are updated on a regular basis.

» The XilinxCoreLib models are updated each time an IP Update is installed.

« All other models are updated each time a service pack is installed.

When the models are updated, you must recompile the libraries. The compiled Xilinx
simulation libraries are then available during the simulation of any design.

ModelSim PE or SE

If you are using ModelSim PE or SE, you must compile the simulation libraries with the
updated models. See Chapter 6 of the Synthesis and Simulation Design Guide. This Guide is
accessible from within ISE by selecting Help > Software Manuals, or from the web at
http:.//www.xilinx.com/support/documentation/dt_isell-1.htm.

ModelSim Xilinx Edition 11|

Updated models for ModelSim Xilinx Edition 11 (MXE I1) are precompiled and available
on the Xilinx support website. Download the latest precompiled models from the
Download Center at http://www.xilinx.com/support/download/index.htm.

Xilinx ISim

Updated simulation libraries for the 1Sim are precompiled and installed with ISE
installations and software updates.

Mapping Simulation Libraries in the Modelsim.ini File

ModelSim uses the nodel si m i ni file to determine the location of the compiled libraries.
For instance, if you compiled the UNISIM library toc: \ | i b\ UNI SI M the following
mapping appears in the model si m i ni file:

UNISIM = c:\Ilib\UNI SI M
Note: The nmodel si m i ni is not applicable to the ISE Simulator.
ModelSim searches for a nodel si m i ni file in the following locations until one is found:
 Thenodel si mini file pointed to by the MODELSIM environment variable.
* Thenodel si mi ni filein the current working directory.
e Thenodel si mini filein the directory where ModelSim is installed.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 81

http://www.xilinx.com/support/download/index.htm

SUXILINX®

Chapter 4: Behavioral Simulation

If the MODELSIM environment variable is not set, and the nodel si m i ni file has not
been copied to the working directory, the nodel si m i ni file in the ModelSim installation
directory is used.

ModelSim PE or SE

If you are using ModelSim PE or SE, refer to the Development System Reference Guide and use
COMPXLIB to compile the libraries. While compiling the libraries, COMPXLIB also
updates the nodel si m i ni file with the correct library mapping. Open the

nodel si m i ni file and make sure that the library mappings are correct.

For future projects, you can copy the nodel si m i ni file to the working directory and
make changes that are specific to that project, or you can use the MODELSIM environment
variable to point to the desired nodel si m i ni file.

ModelSim Xilinx Edition 11|

If you are using ModelSim Xilinx Edition 1l (MXE I11), open the nodel si m i ni filein the
directory where MXE Ill was installed. All of the Xilinx simulation libraries are already
mapped to the proper location.

ISE Simulator

The nodel si m i ni file is not applicable to the ISE Simulator.

Adding an HDL Test Bench

In order to add an HDL test bench to your design project, you can either add a test bench
file provided with this tutorial, or create your own test bench file and add it to your project.

Adding Tutorial Test Bench File

This section demonstrates how to add a pre-existing test bench file to the project. A VHDL
test bench and Verilog test fixture are provided with this tutorial.

Note: To create your own test bench file in ISE, select Project > New Source, and select either
VHDL Test Bench or Verilog Text Fixture in the New Source Wizard. An empty stimulus file is
added to your project. You must define the test bench in a text editor.

VHDL Simulation

To add the tutorial VHDL test bench to the project:

1. Select Project > Add Source.

2. Select the test bench file st opwat ch_t b. vhd.

3. Click Open.

4. Check that Simulation is selected for the file Association type.

82

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Adding an HDL Test Bench

SUXILINX®

5.

Click OK.

= Adding Source Files... _|
The following allows you to ses the status of the source files being added to the praject, and
allows you to specify the Design ¥iew assaciation for sources which are successfully added to
the praject.
File Name Assotiation Library
1 (@) stopwatch_tb.vhd | Simulation | wark. ~
Adding files to project: []1 of 1 Files (O errors)
[ok J[conesl J[reo]

Figure 4-1: Adding Source Files... adding VHDL Test Bench

ISE recognizes the top-level design file associated with the test bench, and adds the test
bench in the correct order.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com

83

SUXILINX®

Chapter 4: Behavioral Simulation

Verilog Simulation

To add the tutorial Verilog test fixture to the project;

1.

2
3.
4.
5

Select Project > Add Source.

Select the file st opwat ch_t b. v.

Click Open.

Check that Simulation is selected for the file association type.

Click OK.

The Following allows you to see the status of the source files being added to the project, and
allows you to specify the Des\gn Wiew association for sources which are successfully added o
the project

File Mame: Associal kon Library
1| @ istopwatch_tb.v : Simulation | work -

Adding files to project:] 1 of 1 files (0 errors)

T e e

Figure 4-2: Adding Source Files... Adding Verilog Test Fixture

ISE recognizes the top-level design file associated with the test fixture, and adds the test
fixture in the correct order.

Behavioral Simulation Using ModelSim

Now that you have a test bench in your project, you can perform behavioral simulation on
the design using the ModelSim simulator. ISE has full integration with the ModelSim
Simulator. ISE enables ModelSim to create the work directory, compile the source files,
load the design, and perform simulation based on simulation properties.

To simulate with 1Sim, skip to “Behavioral Simulation Using ISim.” Whether you choose to
use the ModelSim simulator or the 1Sim simulator for this tutorial, the end result is the
same.

To select ModelSim as your project simulator:

1.
2.
3.

In the Sources tab, right-click the device line (xc3s700A-4fg484).
Select Properties.

In the Simulator field of the Project Properties dialog box, select the Modelsim type
and HDL language combination you are using.

Locating the Simulation Processes

The simulation processes in ISE enable you to run simulation on the design using
ModelSim. To locate the ModelSim simulator processes:

1.
2.
3.

In the Sources tab, select Behavioral Simulation in the Sources for field.
Select the test bench file (st opwat ch_t b).

In the Processes tab, click the + beside ModelSim Simulator to expand the process
hierarchy.

84

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Behavioral Simulation Using ModelSim XX"JNX@

If ModelSim is installed but the processes are not available, the Project Navigator
preferences may not be set correctly.

To set the ModelSim location:

1.

2.
3.
4

Select Edit > Preferences.
Click the + next to ISE General to expand the ISE preferences
Click Integrated Tools in the left pane.

In the right pane, under Model Tech Simulator, browse to the location of the
nodel si m execut abl e. For example,

C.\ nodel t ech_xe\ wi n32xoem nodel si m exe

The following simulation processes are available:

Simulate Behavioral Model
This process starts the design simulation.

Specifying Simulation Properties

You will perform a behavioral simulation on the stopwatch design after you have set some
process properties for simulation.

ISE allows you to set several ModelSim Simulator properties in addition to the simulation
netlist properties. To see the behavioral simulation properties, and to modify the
properties for this tutorial:

1.
2.

In the Sources tab, select the test bench file (st opwat ch_t b).

Click the + sign next to ModelSim Simulator to expand the hierarchy in the Processes
tab.

Right-click Simulate Behavioral Model.
Select Properties.

In the Process Properties dialog box, (Figure 4-3) set the Property display level to
Advanced. This global setting enables you to now see all available properties.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 85

SUXILINX®

Chapter 4: Behavioral Simulation

6. Change the Simulation Run Time to 2000 ns.

E= Process Properties - Simulation Properties x

Cateqgary

Simulation Properties
Display Properties

Property Hame | Value |
Uze Custam Do File r
Custom Do File |
Usze Autarnatic: Do File IV_
Custom Compile File List | |

Other ¥SIM Command Line O ptions
Other YLOG Command Line Options |
Other WCOM Commatd Line Options |

Simulation Run Time) .ZﬂDDns

Simulation R ezalution J Default [1 pz) _ﬂl
\."HDL_S_lrlnt;;-; wisdin | 93_ _v_ﬂ
Use Explicit Declarations Only ls |
Use Configuation Mame [

Configuration Mame ;.[Sef;,l.l-t

Property display level | Advanced - [refault
[1].4 | Cancel I Apply | Help ‘

Figure 4-3: Behavioral Simulation Process Properties

7. Click OK.

For a detailed description of each property available in the Process Properties dialog box,
click Help.

Performing Simulation

Once the process properties have been set, you are ready to run ModelSim. To start the
behavioral simulation, double-click Simulate Behavioral Model. ModelSim creates the
work directory, compiles the source files, loads the design, and performs simulation for the
time specified.

The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. The first outputs to transition after RESET is released are the SF_D and LCD_E
control signals at around 33 mS. This is why the counter may seem like it is not working in
a short simulation. For the purpose of this tutorial, only the DCM signals are monitored to
verify that they work correctly.

Adding Signals

To view internal signals during the simulation, you must add them to the Wave window.
ISE automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window.

e Drag and drop from the Signal/Object window.

» Highlight signals in the Signal/Object window, and select Add > Wave > Selected
Signals.

86

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Behavioral Simulation Using ModelSim XX"JNX@

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

If you are using ModelSim version 6.0 or higher, all the windows are docked by default. To
undock the windows, click the Undock icon.

g

Figure 4-4: Undock icon

To add additional signals in the design hierarchy:

1. Inthe Structure/Instance window, click the + next to uut to expand the hierarchy.

Figure 4-5 shows the Structure/Instance window for the VHDL flow. The graphics and
the layout of the Structure/Instance window for a schematic or Verilog flow may be
different.

—
'11nstance L
Bl vpka
W vital_timing
W vital_priritives
W vcomponents
W textio
=+l stopwatch_th
il—ﬂ tirmer_state
i—!—ﬂ timer _inst
-l b preset
l»ﬂ skrbstop_debounce
Lk
++- @l mode_debounce
T—O line__22a
-l led_cnbrl_inst
_-;;;—: lap_load_debounce
-l dem_inst
i!—ﬂ clk_divider
— ol lire__53
Lo line__73
W std_logic_unsigned
W std_logic_textio
W std_logic_arith s
B std_logic_11e4

B standard Li
SEy H
5 r |
J:IlLibrary & sim | £ Files | B Memories | Al

Figure 4-5: Structure/lnstance Window - VHDL flow

2. Selectdcm_inst in the Structure/Instance window. The signals listed in the
Signal/Object window are updated.

Click and drag CLKIN_IN from the Signal/Object window to the Wave window.

In the Signal/Object window, select the following signals. To select multiple signals,
hold down the Ctrl key.

¢ RST_IN
¢ CLKFX_OUT
¢ CLKO_ OuT
¢ LOCKED_OUT
ISE 11 In-Depth Tutorial www.xilinx.com 87

UG695 (v 11.2)

XX"JNX@ Chapter 4: Behavioral Simulation

5. Right-click in the Signal/Object window.
6. Select Add to Wave > Selected Signals.

Adding Dividers

In ModelSim, you can add dividers in the Wave window to make it easier to differentiate
the signals. To add a divider called DCM Signals:

1. Right click anywhere in the signal section of the Wave window. If necessary, undock
the window and maximize the window for a larger view of the waveform.

Select Insert Divider.

Enter DCM Signals in the Divider Name box.

Click OK.

Click and drag the newly created divider to above the CLKIN_IN signal.

g~ b

After adding the DCM Signals divider, the waveform will look like Figure 4-6.

Figure 4-6: Waveform After Adding DCM Signals Divider

The waveforms have not been drawn for any of the newly added signals. This is because
ModelSim did not record the data for these signals. By default, ModelSim records data
only for the signals that have been added to the Wave window while the simulation is

running. After new signals are added to the Wave window, you must rerun the simulation
for the desired amount of time.

Rerunning Simulation

To rerun simulation in ModelSim:

1. Click the Restart Simulation icon.

Figure 4-7: Restart Simulation Icon

88 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Behavioral Simulation Using ModelSim XX"JNX@

7] Restart | [Of =]

— Keem
I List Format

W awe Format

Breakpaoints
Logged Sianalz
Wirtual Definitions
Agzertions

Cover Directives
TTY Format

CUEY BCYIER N B R

CHestat] Cancel |

Figure 4-8: Restart Dialog Box

In the Restart dialog box, click Restart.
At the ModelSim command prompt, enter run 2000 ns.
Press Enter.

WSk 5 run 2000 Nz

Figure 4-9: Entering the Run Command

The simulation runs for 2000 ns. The waveforms for the DCM are now visible in the Wave
window.

Analyzing the Signals

The DCM signals can be analyzed to verify that they work as expected. The CLKO_OUT
needs to be 50 MHz and the CLKFX_OUT should be ~26 MHz. The DCM outputs are valid
only after the LOCKED_OUT signal is high; therefore, the DCM signals are analyzed only
after the LOCKED_OUT signal has gone high.

ModelSim enables you to add cursors to measure the distance between signals. To measure
the CLKO_OUT:

1. Select Add > Wave > Cursor twice to add two cursors.

2. Click and drag one cursor to the first rising edge transition on the CLK0_OUT signal
after the LOCKED_OUT signal has gone high.

Click and drag the second cursor just to the right of the first.

Click the Find Next Transition icon twice to move the cursor to the next rising edge on
the CLKO_OUT signal.

md

Figure 4-10: Find Next Transition Icon

ISE 11 In-Depth Tutorial www.xilinx.com 89
UG695 (v 11.2)

SUXILINX®

Chapter 4: Behavioral Simulation

5. Look at the bottom of the waveform for the distance between the two cursors.

The measurement should read 20000 ps. This converts to 50 MHz, which is the input
frequency from the test bench, which in turn should be the DCM CLKO output.

6. Measure CLKFX_OUT using the same steps as above. The measurement should read
38462 ps. This comes out to approximately 26 MHz.

Saving the Simulation

The ModelSim simulator enables you to save the signals list in the Wave window after new
signals or stimuli are added, and after simulation is rerun. The saved signals list can easily
be opened each time the simulation is started.

To save the signals list:

1. Inthe Wave window, select File > Save as.

2. Inthe Save Format dialog box, rename the file name from the default wave. do to
dcm si gnal . do.

3. Click Save.
After restarting the simulation, select File > Load in the Wave window to load this file.

Your behavioral simulation is complete. To implement the design, follow the steps in
Chapter 5, “Design Implementation.”

Behavioral Simulation Using ISim

Follow this section of the tutorial if you have skipped the previous section, “Behavioral
Simulation Using ModelSim.”

Now that you have a test bench in your project, you can perform behavioral simulation on
the design using the ISE Simulator (1Sim). ISE has full integration with 1Sim. ISE enables
ISim to create the work directory, compile the source files, load the design, and perform
simulation based on simulation properties.

To select ISim as your project simulator:
1. Inthe Sources view, right-click the device line (xc3s700A-4fg484).

2. Select Design Properties.
3. Inthe Project Properties dialog box, select ISim (VHDL/Verilog) in the Simulator field.

Locating the Simulation Processes

The simulation processes in ISE enable you to run simulation on the design using ISim. To
locate the ISim processes:

1. Inthe Sources view, select Behavioral Simulation in the Sources for field.
2. Select the test bench file (st opwat ch_t b).

3. Click the + beside ISim Simulator in the Processes view to expand the process
hierarchy.

90

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Behavioral Simulation Using I1Sim XX"JNX@

The following simulation processes are available:

Check Syntax
This process checks for syntax errors in the test bench.

Simulate Behavioral Model
This process starts the design simulation.

Specifying Simulation Properties

You will perform a behavioral simulation on the stopwatch design after you set some
process properties for simulation.

ISE allows you to set several 1Sim properties in addition to the simulation netlist
properties. To see the behavioral simulation properties, and to modify the properties for
this tutorial:

1.
2
3.
4.
5

6.
7.

In the Sources tab, select the test bench file (st opwat ch_t b).

Click the + sign next to ISim Simulator to expand the hierarchy in the Processes tab.
Right-click the Simulate Behavioral Model process.

Select Process Properties.

In the Process Properties dialog box, set the Property display level to Advanced. This
global setting enables you to now see all available properties.

Change the Simulation Run Time to 2000 ns.
Click OK.

Note: For adetailed description of each property available in the Process Property dialog box, click
Help.

EE Process Properties - ISim Properties

Property Mame Yalue
Use Custom Simulation Command File [7]

Custom Simulation Command File

Incremental Compilation

Compile for HOL Debugging

Use Custom Project File |

Custom Project Filename

Run for Spedfied Time

Simulation Run Time 2000 ns

Waveform Database Filename Cifilinef11,115ETSEexamples wtut_vhdstopwatch_th_isim_beh, wdb B
Other Compiler Options

Yalue Range Check Il

Specify Search Directoties for 'Tnclude [

Specify 'define Macro Mame and Yalue

Specify Top Level Instance Mames stopwatch_th

Praperty display level: |Advanced | [] Display switch names Default

C o J o) o [e]

Figure 4-11: Behavioral Simulation Process Properties

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 91

::X"JNX® Chapter 4: Behavioral Simulation

Performing Simulation

Once the process properties have been set, you are ready to run ISim to simulate the
design. To start the behavioral simulation, double-click Simulate Behavioral Model. ISim
creates the work directory, compiles the source files, loads the design, and performs
simulation for the time specified.

The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. The first outputs to transition after RESET is released are SF_D and LCD_E at
around 33 mS. This is why the counter may seem like it is not working in a short
simulation. For the purpose of this tutorial, only the DCM signals are monitored to verify
that they work correctly.

Adding Signals

To view signals during the simulation, you must add them to the Waveform window. ISE
automatically adds all the top-level ports to the Waveform window. Additional signals are
displayed in the Instances and Processes panel. The following procedure explains how to
add additional signals in the design hierarchy. For the purpose of this tutorial, add the
DCM signals to the waveform.

To add additional signals in the design hierarchy:

1. Inthe Instances and Processes panel, click the > next to stopwatch_tb to expand the
hierarchy.

2. Click the > next to UUT to expand the hierarchy.

The figure below shows the contents of the Instances and Processes panel for the VHDL
flow. The graphics and the layout of the window for a schematic or Verilog flow may be

different.
Drestances o Processes e+ 1] ® X
LJ L= 115 || L.l = I
I Initance and Procesi Maima Hiock. Ty -t
{} stopwatch_th WHIHL. Ericy
@ wn WML Enkity
i t_presst WHIN, Erkiby
lal dnet_domi WHEM, Enkiby
el _chichar WHIOL Entity
L b _cridel_irek: WHOL Endtity
Ll reade_debounce WHIDL Endtky
il srtstop debounce WHIL Endky
Ll lap load_deboanos WHDL Entity
Ll tirrer_inat WHIH. Entity
Ll brrar_statw WHIM, Enkity
1y 28 WHOL Precass
0 7 WHDL Process
1 a2 WHIOL Process
W shd_bowgic L Lt WHOL Packuage
@ numeric_shd WHIDL Package
gl beehin WHIH. Packasge
d vital_bimireg WHOH, Package
? vital pravkwus FHOH. Paceagm
i abdl_loegec_aiithy WHOL Padhads
@ sl _bogic_besbin WHDL P e
o shd_boegic_unsigresd WHOL Paduspe =
€ E
Irestances anad Processes Zowrce Files
Figure 4-12: Sim Hierarchy Window - VHDL flow
92 www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

Behavioral Simulation Using I1Sim XX"JNX@

Selec the Inst_dcm1 in the Instances and Processes panel.
Click and drag CLKIN_IN from the Sim Objects window to the Waveform window.
5. Select the following signals:

¢+ RST_IN
s CLKFX_OUT
+ CLKO_OUT

¢+ LOCKED_QUT
To select multiple signals, hold down the Ctrl key.

6. Drag all the selected signals to the waveform. Alternatively, right click on a selected
signal and select Add To Wave Window.

Shijects 0O &8 x
Sirulation Objects For Tnsk_dcm1

% I Y Y Y Y =

% clko_buf
L& and_bit

< > Default.wcFg®

Figure 4-13: Adding Signals to the Simulation Waveform

Notice that the waveforms have not been drawn for the newly added signals. This is
because 1Sim did not record the data for these signals. By default, ISim records data only
for the signals that have been added to the waveform window while the simulation is
running. Therefore, when new signals are added to the waveform window, you must rerun
the simulation for the desired amount of time.

Rerunning Simulation
To rerun the simulation in 1Sim:

1. Click the Restart Simulation icon.

Figure 4-14: ISE Simulator Restart Simulation Icon
2. Atthe ISE Simulator command prompt in the Console, enter r un 2000 ns and press
Enter.

The simulation runs for 2000 ns. The waveforms for the DCM are now visible in the
Waveform window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that they work as expected. The
CLKO_OUT should be 50 MHz and the CLKFX_OUT should be ~26 MHz. The DCM

ISE 11 In-Depth Tutorial www.xilinx.com 93
UG695 (v 11.2)

XX"JNX@ Chapter 4: Behavioral Simulation

outputs are valid only after the LOCKED_OUT signal is high; therefore, the DCM signals
are analyzed only after the LOCKED_OUT signal has gone high.

ISim can add markers to measure the distance between signals. To measure the
CLKO_OUT:

1. If necessary, zoom in on the waveform using the zoom local toolbar icons.
2. Click on the Snap to Transition toolbar button in the waveform viewer local toolbar.

il

Figure 4-15: Snap to Transition toolbar button

3. Click on the first rising edge transition on the CLKO_OUT signal after the
LOCKED_OUT signal has gone high, then drag the cursor to the right to the next rising
edge transition of the CLKO_OUT signal.

4. Atthe bottom of the waveform window, the start point time, end point time, and delta
times are shown. The delta should read 20, 000 ps (or 20 ns) . This converts to 50
MHz which is the input frequency from the test bench, which in turn is the DCM CLKO
output. .

Default wcfg*

Figure 4-16: Waveform viewer displaying time between transitions
5. Measure CLKFX_OUT using the same steps as above. The measurement should read
38, 500 ps (or 38.5 ns). This equals approximately 26 MHz.

Your behavioral simulation is complete. To implement the design, follow the steps in
Chapter 5, “Design Implementation.”

94 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

$7 XILINX®

Design Implementation

Chapter 5

This chapter contains the following sections.

“Overview of Design Implementation”
“Getting Started”

“Specifying Options”

“Creating Timing Constraints”
“Translating the Design”

“Using the Constraints Editor”

“Assigning 1/0 Locations Using PlanAhead”

“Mapping the Design”

“Using Timing Analysis to Evaluate Block Delays After Mapping”

“Placing and Routing the Design”

“Using FPGA Editor to Verify the Place and Route”

“Evaluating Post-Layout Timing”
“Creating Configuration Data”
“Command Line Implementation”

Overview of Design Implementation

Design Implementation is the process of translating, mapping, placing, routing, and
generating a BIT file for your design. The Design Implementation tools are embedded in

the ISE™ software for easy access and project management.

This chapter is the first in the “Implementation-only Flow” and is a subsequent chapter for

the “HDL Design Flow” and the “Schematic Design Flow”.

This chapter demonstrates the ISE Implementation flow. The front-end design has already
been compiled in an EDA interface tool. For details about compiling the design, see
Chapter 2, “HDL-Based Design” or Chapter 3, “Schematic-Based Design.” In this chapter,
you will be passing a synthesized netlist (EDN, NGC) from the front-end tool to the back-
end Design Implementation tools, and you will be incorporating placement constraints
through a User Constraints File (UCF). You will also add timing constraints as well as
additional placement constraints.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com

95

SUXILINX®

Chapter 5: Design Implementation

Getting Started

The tutorial design emulates a runner’s stopwatch with actual and lap times. There are five
inputs to the system: CLK, RESET, LAP_LOAD, MODE, and SRTSTP. This system
generates a traditional stopwatch with lap times and a traditional timer on a LCD display.

Continuing from Design Entry

If you have followed the tutorial using either the HDL Design flow or the Schematic
Design flow, you have created a project, completed source files, and synthesized the
design.

If you do not have a st opwat ch. ucf constraint file in your project, create one as follows:

1. Inthe Sources tab, select the top-level source file st opwat ch.
2. Select Project > New Source.

3. Select Implementation Constraints File.

4. Type stopwat ch. ucf as the file name.

5. Click Next.

6. Click Finish.

With a UCF in the project, you are now ready to begin this chapter. Skip to the “Specifying
Options” section.

Starting from Design Implementation

If you are beginning the tutorial from this chapter, you will need to download the pre-
synthesized design files provided on the Xilinx® web-site, create a project in ISE and then
add the downloaded source files to the project.

1. Unzip the tutorial zip file wtut_edif.zip to an empty working directory.
2. The following files are included in the ZIP file.

Table 5-1: Tutorial Files

File Name Description
st opwat ch. edf Input netlist file (EDIF)
timer_preset. ngc Timer netlist file (NGC)
st opwat ch. ucf User Constraints File
96 www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

Specifying Options

SUXILINX®

3. Open ISE.
a. Onaworkstation, enteri se.
b. OnaPC, select Start > Programs > Xilinx ISE 11 > Project Navigator.
4. Create a new project and add the EDIF netlist as follows:
a. Select File > New Project.
b. Type EDI F_FI owfor the Project Name.
c. Select EDIF for the top_level SourceType.
d. Click Next.
e. Selectst opwat ch. edf for the Input Design file.
f. Selectst opwat ch. ucf for the Constraints file.
g. Click Next.
h. Select the following:
- Spartan3a for the Device Family
- xc3s700a for the Device
- -4 for the Speed Grade, fg484 for the Package
i. Keep the rest of the properties at their default values.
j- Click Next.
k. Click Finish.

Copy theti ner _preset. ngc file into the EDIF_Flow directory.

In the Sources tab, select the top-level module, st opwat ch. edf or st opwat ch. edn.
This enables the design to be implemented.

Specifying Options

This section describes how to set some properties for design implementation. The
implementation properties control how the software maps, places, routes, and optimizes a

design.

To set the implementation property options for this tutorial:

1. Inthe Sources view in the Design tab, select the st opwat ch top-level file.

Note: Be sure the Implementation view is active by selecting it from the Sources for: dropdown
menu in the Sources view.

2. Inthe Processes view in the Design tab, right-click the Implement Design process.

3. Select Process Properties from the right-click menu.

The Process Properties dialog box provides access to the Translate, Map, Place and
Route, and Timing Report properties. You will notice a series of categories, each
contains properties for one of these phases of design implementation.

4. Ensure that you have set the Property display level to Advanced. This global setting
enables you to see all available properties.

Click the Place & Route Properties category.
Change the Place & Route Effort Level (Overall) to High.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 97

::X"JNX® Chapter 5: Design Implementation

This option increases the overall effort level of Place and Route during
implementation.

2 Process Properties - Place & Route Properties E|

Categary Property Name Value
Translate Properties Place And Route Mode Mormal Place and Route b

Map Properties

Place & Route Properties Place & Route Effart Level (Overall)

|

Post-Map Static Timing Report Prope | placer Effort Level (Overrides Overall Level) |Mone -
zion:;i:gaoc:;DT;;TDS;::EEZWW . Rauter Effart Level (Overrides Cverall Level) |Mone -
Extra Effort: (Highest PAR level only) one i
Starting Placer Cost Table {1-100) 1 =
Ignore User Timing Constrainks D
Timing Mode |Performance Evaluation
Use Bonded [{0s 1
Generate Asynchronous Delay Report 1
Generate Clock Region Report 1
Generate Post-Place & Route Simulation Model 7]
Generate Post-Flace & Route Power Report 1
Power Reduction 1

Power Activity File
Other Place & Route Command Line Options

€ S Property display level: [Advanced v| [[] Display switch names Default

I (o4 l [Cancel] l Apply] [Help]

Figure 5-1: Place & Route Properties

7. Click OK to exit the Process Properties dialog box.

Creating Timing Constraints

The User Constraints File (UCF) is a text file and may be edited directly with a text editor.
To facilitate editing of this file, graphical tools are provided to create and edit constraints.
The Constraints Editor and PlanAhead are graphical tools that enable you to enter timing
and 1/0 and placement constraints.

To launch the Constraints Editor:

1. Inthe Sources tab, select the St opwat ch module.
2. Inthe Processes tab, expand the User Constraints hierarchy.

98 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Translating the Design XX"JNX@

3. Double-click Create Timing Constraints.

Processes: stopwatch - stopwatch_arch

i
& Design Summary/Reporks
l?t + Diesign Utilities
| B Iser Constraints
_ EI:Ireate Tirming Conskrainks
: {: 117 Pin Planning (Flandhead) - Pre-Synthesis
— | IiQ Pin Planning (Planshead) - Post-Synthesis
- Floorplan ArealI0fLogic (Plandhead)
2.1\ Synthesize - ¥5T
P2 Implement Design
P2 Generate Programming File
+ ; Configure Target Device
é LIpdate Bitstream with Processor Data
&% fAnalvze Design Using Chipscope

=

F

Figure 5-2: Create Timing Constraints Process

This automatically runs the Translate step, which is discussed in the following section.
Then the Constraints Editor opens.

Translating the Design

ISE manages the files created during implementation. The ISE tools use the settings that
you specified in the Process Properties dialog box. This gives you complete control over
how a design is processed. Typically, you set your options first. You then run through the
entire flow by running Implement Design. The Implement Design process includes the
three sub-processes Translate, Map and Place&Route. You can simply run the Implement
Design process to automate the running of all three sub-processes, or you may run the sub-
processes individually. In this tutorial you will run the processes individually in order to
more easily see and understand each step.

During translation, the NGDBuild program performs the following functions:

» Converts input design netlists and writes results to a single merged NGD netlist. The
merged netlist describes the logic in the design as well as any location and timing
constraints.

» Performs timing specification and logical design rule checks.
» Adds constraints from the User Constraints File (UCF) to the merged netlist.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 99

SUXILINX®

Chapter 5: Design Implementation

Using the Constraints Editor

When you run the Create Timing Constraints process, Translate is automatically run and
ISE launches the Constraints Editor.

The Constraints Editor enables you to:

e Edit constraints previously defined in a UCF file.
e Add new constraints to your design.

Input files to the Constraints Editor are;

 NGD (Native Generic Database) File

The NGD file serves as input to the mapper, which then outputs the physical design
database, an NCD (Native Circuit Description) file.

» Corresponding UCF (User Constraint File)
All UCF files that are part of the ISE project are passed to Constraints Editor.

Multiple UCF files are supported in ISE projects. All constraint files in the project are read
by the Constraints Editor and constraints that are edited are updated in the constraint file
they originated in. New constraints are written to the UCF file specified in Constraints
Editor.

The Translate step (NGDBuild) uses the UCF file, along with design source netlists, to
produce a newer NGD file, which incorporates the changes made. The Map program (the
next section in the design flow) then reads the NGD. In this design, the st opwat ch. ngd
and st opwat ch. ucf files are automatically read into the Constraints Editor.

In the following section, a PERIOD, Global OFFSET IN, Global OFFSET OUT, and
TIMEGRP OFFSET IN constraint will be created and written in the UCF and used during
implementation. The Clock Domains branch of the Timing Constraints tab automatically
displays all the clock nets in your design, and enables you to define the associated period,
pad to setup, and clock to pad values. Note that many of the internal names will vary
depending on the design flow and synthesis tool used.

m
>

H\e Edt View Project Source Process Tools Window Help
na 0 NRAPENZRAREDDERIPELY
Timing Canstraints +08x
Create Timing Constraints for Clock Domains (PERIOD)

Constraint Fies
TIMESPEC Hame * Clack Time Name: Clock het * Reference TIMESPEC Period Duty Cycle Factar Edge Phase Shift Input Jitter | Source

175 0K CUk_GROUP stopwatah/EXPANDED ok W00ps 0% HiGH

() Show constraints from speciied File oy 2

stopwatch.uef v

(%) Show constraits from al s

Constraint Type
= Timing Constraints
SDEVE Demains Validate Constraints - Right click ko create or edit constraints, Click "vaidate Constraints" button after direct input of amy new constraint
Iputs
Oftputs
¥ Exceptions
Operating Conditions Uncanstrained Clocks

1tk
2 ck_dwiderfdiv_2e21441

- faroup Constraints
e Miscelaneous

Filer:

Design | Fles | Lbr. | TimingConstr. ﬁ Wehat's Mew in I5E Design Suite 11 E Design Summary (Translated) a Tiring Constraints

Figure 5-3: Constraints Editor in Project Navigator - Clock Domains

In the Constraints Editor, edit the constraints as follows:

100

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Using the Constraints Editor XX"JNX@

Double-click the row containing the clk signal in the Unconstrained Clocks table. The
Clock Period dialog box opens.

For the Clock Signal Definition, verify that Specify Time is selected.
This enables you to define an explicit period for the clock.

Enter a value of 7. 0 in the Time field.

Verify that ns is selected from the Units drop-down list.

Clock signal definition
() Specify time
Time: |7 Unitst [ns %

Intial clock edge: (3 Rising (HIGH) (O Falling (LOW)

Rising duty cycle: |50 Units: (%

Figure 5-4: PERIOD Constraint Values

For the Input Jitter section, enter a value of 60 in the Time field.
Verify that ps is selected from the Units drop-down list.

Input jitker: | &0 Units: |ps

Pricriky:

Figure 5-5: INPUT JITTER Constraint Value

Click OK.

The period constraint is displayed in the constraint table at the top of the window. The
period cell is updated with the global clock period constraint that you just defined
(with a default 50% duty cycle).

Select the Inputs branch under Timing Constraints in the Constraint Type tree view.

Double-click on the clk signal in the Global OFFSET IN Constraint table to bring up
the Create Setup Time (OFFSET IN) wizard.

10. Keep the default values on the first page of the screen and click Next.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 101

SUXILINX®

Chapter 5: Design Implementation

M Create Setup Time (OFFSET IN) L))

Interface type

(]
(0]

barate o e —

© singe datarate (SDR)
O Double datarate (DOR) | Daia I g0)

System Synchranous SOR Rising

Clockedge
Center digned
Edge aligned

© Rising edge

O Faling edge

O Both edges

The System Synchronous DataRats ol

vising lack edge. The clackin the System Synchvonous nterface i typical the same for botf the transmiting and
voperly the iing a OFFSET

N constrain. tocs ektouse with the OFFSET I

constrai.

Figure 5-6: Offset In Constraint

11. In the External setup time (offset in) field, enter 6 ns.
12. In the Data valid duration field, enter 6 ns.
This creates a Global OFFSET IN constraint for the CLK signal.

13. Click Finish.

B Crente Setup Time (OFFSET IN) @3]

Cltk pad et and period
*Input cockpadet:

ok)

System Synchronous SDR Rising

* Input cock perod information: i
Clock Name : chc Createfedt,] | o
Period 715

Duty Cyele 1 50%

ooa [(e =

e

Input pad imecroupnet

Create...
Rising edge constraints Input Pad Group =
« The input

the scope of dfal
s ta ol those data pins defined nthe Pad Group.

9

"
button,

Rising Constraint Parameters

Falng edge constraints 5 s d the dack and
*Extornal setup tine (offset infs Unit:
(OFFSET

ldduation: Uik the rising data becomes valid
ui « Rising YALID is the duration of the daka valid window For the rising data,

« The Input Registr Group s use o it the scope of the constraint to & subset

Create. of the ising edge egisters,

[<bok J[Cpmsn J[ol J[hee]

Figure 5-7: Offset In Constraint

14. Select the Outputs branch under Timing Constraints in the Constraint Type tree view
15. Double-click the clk signal in the Global OFFSET OUT Constraint table.
16. In the External clock to pad (offset out) field, enter a value of 38 ns.

102

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Using the Constraints Editor XX"JNX@

This creates a Global OFFSET OUT constraint for the CLK signal
17. Click OK.

= Create Clock to Pad (OFFSET OUT))
Clock pad net and periad
@ SDR (both sdgesy (3 DDR

* OukpUE clock pad net:
=3 ~|

Clkin

* OUERLE clack period inFarmation: :
Clock Mame © clk | P
Period @ 7 |

ns
Duky Cycle | S0%

Sutput pad Eimegroupinet

[output pad timegroup: ~ < >

Gutput tnterface Detail

= The Single Data Rate and Dual Data Rate determine the output interface

Rising edge constraints
type

* External clock to pad (offset out): _ Units:

=] | [ns =] = The Output clock Pad Met is the clock net used to trigger the outgoing data
©ubput skewe reference pin: = e = The optional Cutput pad timegroup limits the scope of the OFFSET OUT
<Default = ~| constraint to only Ehose data pins defined in the PAD timegroup
Subput register timsgroupi = & new Pad Group may be defined by selecting the Create New Pad Group

o e e Rising Constraint Parameters:

= External clock Eo pad (offset out): _ Units: = The optional Rising Clock-to-Output (OFFSET OUT) is the time From the rising
B [r= | clock edge at the input pin of Ehe FPGA until dats becomes valid at Ehe oukput pin
of the FPGA. For source-synchronous designs, the OFFSET OUT walue can be
RN i R e IeFt blank and only @ skew report will be generated.
| =Default =
= The Gutput Skew Reference Pin is the reference signal in which the skew of all
OuEpUE register timegroup bits in the bus will be reported against.
Create ...
= The optional Sutput Register Timegroup is used te limik the scope of the b
[oK][close][create | [rem]

Figure 5-8: Offset Out Constraintr

18. In the Unconstrained Output Ports table, select the sf_d<0> through sf_d<7> signals
using Shift-Click to select multiple rows.

19. Right-click and select Create Time Group.

20. In the Create Time Group dialog, type di spl ay_gr p for the Time group name, then
click OK. .

E= Create Time Group ﬁ

Time: group name | display_grp|
Selected ports

sf_d<i>
sf_d<1>
sf_d<z>
sf_d<3>
sf_d<ds>
sf_d<g>
sf_d
sf_d<7>

C o [][e]

Figure 5-9: Creating a Time Group

21. When asked if you would like to create an offest constraint, click OK.
22. In the External clock to pad (offset out) field, enter 32 ns.

ISE 11 In-Depth Tutorial www.xilinx.com 103
UG695 (v 11.2)

SUXILINX®

Chapter 5: Design Implementation

Assigning 1/O

23. Click OK.
M Create Clock to Pad (OFFSET OUT) X
Clock pad net and period
(%) SDR (both edges) () DOR
Clkin
* output clock pad net: D Q TxData p—
ek, ~| REG [
* Dutput clock period information: CLK
|Clock Name : clk. vee | TxData
Period : 7 ns —
Duty Cycle : 50% i D @ TxClk
REG
T T — 5
| REFERENCE_PIN | TxClk
Output pad timegroup/net
|output pad timegroup: | |display_arp v| |2
Output Interface Detail: |
(B Sl e - tThe single Data Rate and Dual Data Rate determine the output interface
e,
* External clock to pad (offsetout): Units; i
=] v ns * The Oukput clock Pad ket is the clock net used o trigger the outgoing data.
Dutput skew reference pin: i = The optional Qutput pad timegroup limits the scope of the OFFSET OUT
<Default = | constraint to anly those data pins defined in the PAD timegroup,
Qutput register Hmegroup: » & new Pad Group may be defined by selecting the Create New Pad Group
Falling edge constraints Rising Constraint Parameters:
*External clock to pad (offsetout): . Unitsi * The aptional Rising Clock-ta-Output (OFFSET OUT) is the time From the rising
7 ns clock edge at the input pin of the FPGA until data becomes walid at the oukput pin
of the FPGA, For source-synchronous designs, the OFFSET OUT walue can be
Dutput skew reference pin: S IsFt blark and only & skew report wil be generated,
| £Default =
i - » The Output Skew Reference Pin is the reference signal in which the skew of all
Output register timegroup: bits i the bus will be reported against.
Create ...
* The optional Qutput Register Timegroup is used to limit the scope of the bt
I QK] [Close] [Create] [Help

Figure 5-10: Clock to Pad Dialog Box

24.

Select File > Save in the Constraints Editor.

The changes are now saved in the st opwat ch. ucf file in your current working

directory.
25.

Close the Constraints Editor by selecting File > Close.

Locations Using PlanAhead

Use PlanAhead to add and edit the pin locations and area group constraints defined in the
NGD file. PlanAhead writes the constraints to the project UCF file. In the case of multiple
UCF files in the project, you will asked to specify which constaint file new constraints
should be written to. If you modify existing constraints they will be written back to the
same constraint file they originated in. PlanAhead also provides device specific design rule
checks to aid you in pin planning and placement.

The Translate step uses the design UCF file, along with the design source netlists, to
produce a newer NGD file. The NGD file incorporates the changes made in the design and
the UCF file from the previous section.

This section describes the creation of 10B assignments for several signals.

1. Select the st opwat ch module in the Sources window of the Design tab.

2. Click the + next to User Constraints to expand the process hierarchy in the Processes

window.

3. Double-click I/O Pin Planning (PlanAhead) - Post-Synthesis, located under User

Constraints.

104

www.xilinx.com

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Assigning I/O Locations Using PlanAhead XX"JNX@

I/0 Pin Planning can be performed either Pre- or Post- Synthesis. Whenever possible
it is recommended that the process be run Post-Synthesis since the design then
contains information needed for 1/0 and clock related design rule checks that can be
performed by PlanAhead.

Processes: stopwatch - stopwatch_arch

% Design summaryReports
+ Design Utilikies
User Conskrainks
Create Timing Constraints
I/ Fin Planning (Planahead) - Pre-3vnthesis

Fin Planning (FlanAhe Synith
Floorplan AreafI0fLogic (Plandhead)
+ F.1\ Synthesize - ¥5T
+ () Implement Design
Generate Programming File
+ Configure Target Device
|Ipdate Bitstream with Processor Data
Analyze Design Using Chipscope

Figure 5-11: Floorplan Area/lO/Logic - Post Synthesis

This process launches PlanAhead. If the design has not yet completed synthesis, Project
Navigator will first automatically run synthesis before launching PlanAhead for 1/0
Planning.

The Welcome to PlanAhead screen provides links to detailed documentation, tutorials, and
other training material to help you learn more about PlanAhead. This tutorial provides a
simple overview of the use and capabilities of PlanAhead; for more information and to
learn about the full capabilities, please visit the other resources available.

T8 welcome &3]

Welcome to Plan

13E Integration Fl

The Plan&head™ software provides an environment to help improve your design results throughout the desion flow. Intearated
within the Project Navigator environmert, Planhead is automatically launched at four different design process steps. These include:
1O Pin planning (Pre-synihesis), O Pin planning (Post-synthesis), Floorplan Areso/Logic (Post-syrthesis), Analyze Timing and
Floarplan Design (Post-implementation). Each of these steps offers unique and powerful capabilies previously only available inthe
standsione Planshesd environment. The PlanAhead software repiaces PACE snd Floorplanner for all pin planning, design viewing,
and floarplanning fiovws.

When Planahead is invoked from Project Navigator, the interface provides acoess orly to the Planahead festures specific to the
selected task. The standalone Planhead environment offers the ful range of PlanAhead RTL to bitstream design and analysis
capabilties. For more information ahout the standalane Planahead emvronment, please refer to the Planahead Uiser Guide, Tutorial

or visit www xiineconblanahesd

For more infarmetion, please review the various documents below.

Introduction

] Project Navigator and PlanAhead Integration Gverview
PLEASE READ THIS DOCUMENT BEFORE USING PLANAHEAD.

Documentation - PlanAhead User Guide chapters

] Planahead Liser Guide
Suggested chapters to browse:
@ Chapter 3 - Using Flanahead with Project Navigator
® Chapter 4 - Using the Viewing Environmert:
@ chapter 5 -1/0 Fin Flanning
@ Chapter & - Analyzing the Design
® Chapter 3 - Analyzing Implementation Results
@ chapter 10 - Floorplanning the Design

These chapters are all available with the [SE Help documentation as well.

Video Demonstrations
Wisit www xilinx comidesion for s varisty of seff running video demonstrtions describing ISE Design Sute™ softwere features
and methodology.

Tutorial
Select Hakp > Tutorfals for & list of avallabls Planahead Tutorials

Always show this dialag on startup

Figure 5-12: PlanAhead Welcome screen

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 105

SUXILINX®

Chapter 5: Design Implementation

4. Click Close on the Welcome dialog to proceed into PlanAhead.

@ wiut_vhd - [C:\Xilinxy1 1. 1MSEVSEexamplesiwtut_vhd\planthead_run_1iwtut_vhd.ppr]- PlanAhead 11.2.LR0.

P Fle Edt Vew Tooks Window Select Layout Help
RE #H1GQ KSR XENEAR]E L F | |
Hetist oa % x ~ a
%[E] | |
W stopwatch
Nets (878)
Primiives (351
- [33 t_preset (imer_preset)

5 Propertiet,] Netlist
Clock Regions Og % x
4 Neme Row Colmn
1x0v0 0 0
2 xov1 1 0
3x1v0 0 1
4x1¥1 1 1
v v
1 Clock Regians | selection | 2 Constraints @ Device x 4@ [Hrackage x wpE
1o Ports o8 x
Q| Hame Or | NegDifPsr | Locston Bank | 1OSd | Drivestrength | SkwType | PulType
= Al ports (15)
B . 8) Ouput Lcoszs 1250w
#0 Scalar ports (5)
Package Fins 038
O Hame Pohibt | Port | OStd | Dr Vo | Bak | Type DifPar Clock | Vokage MinTraceDly(ps) | MaxTraceDlyips) | IOBAlias | SteType

S

R

Al pins (454
s 1j0Bank 0 (95

- 10 Bank 1 (100)
®m 1f0Bank 2 (58]

i 1j0 Bark 3 (100)
05 Bankless Pins (8]

HOPAD33 1SE Integration Flow agmofsoM | |

7.

Figure 5-13: PlanAhead for I/O Planning
In the 170 Ports tab, expand the Scalar Ports tree under All ports. You will now create
pin assignments for thel cd_e,l cd_rs,and | cd_r wl/O signals.

Locate the Icd_e output signal, then click and drag it into the Package view and drop
it on the AB4 pin location.

2980000900
o svevolle
e o9 Nieme

Figure 5-14: Assigning I/O pins by dragging into Package view

Repeat the previous step to place the following additional output pins.

106

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Mapping the Design

SUXILINX®

+ LCD RS Y14
+ LCD RW W3

Alternatively, you can type the location in the Site field in the 1/0 Port Properties tab
when the 1/0 signal is selected.

1jO Part Praperties Og & x

& & B[k] ¥

Qled_rs

Hame: led_rs
Direction; | Qutput
Site: 14| Fixed

Instance: [JENENEEN

het: B ledrs | b

o]
") Properties |] Metlist

Figure 5-15: Assigning I/O pins via I/O Port Properties

Using either the drag and drop or Port Properties method, place the following input
signals onto the appropriate 1/0 pin locations:

¢ LAP_LOAD: T16
¢ RESET: Ul5

¢ MODE: T14

¢ STRTSTOP: T15

Once the pins are locked down, select File > Save Project. The changes are saved in
the project’s st opwat ch. ucf file.

10. Close PlanAhead by selecting File > Exit.

Mapping the Design

Now that the implementation properties and constraints have been defined, continue with
the implementation of the design.

1.
2.

Select the st opwat ch module in the Sources window.

In the Processes tab, expand the Implement Design process, then run the Map process
by right-clicking on Map and selecting Run.

Note: This can also be accomplished by double-clicking Map.

If the Translate process is not up-to-date, Project Navigator automatically runs that process
as well.

The design is mapped into CLBs and I0Bs. Map performs the following functions:

Allocates CLB and IOB resources for all basic logic elements in the design.

Processes all location and timing constraints, performs target device optimizations,
and runs a design rule check on the resulting mapped netlist.

ISE 11 In-Depth Tutorial

UG695 (v 11.2)

www.xilinx.com 107

XX"JNX@ Chapter 5: Design Implementation

Each step generates its own report as shown in the following table. .

Table 5-2: Reports Generated by Map

Includes warning and error messages from the translation
process.

Translation Report

Includes information on how the target device resources are
Map Report allocated, references to trimmed logic, and device
utilization.

For detailed information on the Map reports, refer to the
Development System Reference Guide. This Guide is available
with the collection of software manuals and is accessible
from ISE by selecting Help > Software Manuals, or from the

Al NGDBUILD and

MAP Reports web at
http://www.xilinx.com/support/documentation/dt _isell

-1.htm

To view a report:

1. Open the Design Summary/Reports window. If it is not already open in the
Workspace you can open it by running the Design Summary/Reports process.

- Lepal

n Litilities

& User Constraints

#- P21\ Synthesize - X5T

+- P Implement Design
¥) Generate Programming File

e Configure Target Device
é Update Bitstream with Processor Data
€% analyze Design Using Chipscope

¥
¥

Figure 5-16: Opening the Design Summary/Reports

ISE 11 In-Depth Tutorial

108 www.xilinx.com
UG695 (v 11.2)

Using Timing Analysis to Evaluate Block Delays After Mapping

SUXILINX®

S Design Overview

5 e wtut_vhd Project Status (06,/12,/2009 - 10:04:39) L)
@ [108 Properties Project File: whut_vhdl.isz Implementation State: Mapped
,@ Maduls Level Utlization Module Name: stopwatch «Errors: Mo Errars
(5] [O) Timing Canstraints -~ - .
B Prout Repert Target Device: xe3s700a-4fg454 «Warnings: 28 wiarnings
(%] [Clock Repart Product Version: ISE11.2 «Routing Results:
@ (@ static Timing Design Goal: Balanced « Timing Constraints:
= Errors and Warrings
38 [2 Syrthesis Messages Design Strategy: ¥ilir: DeFault (unlocked) «Final Timing Score:
[Translation Messages
* [2) Map Messages
[Place and Routs Messages Device Utilization Summary 1
Ti Ll
L Timing Messages Logic Utilization Used |Available |Utilization |Note(s)
[Bitgen Messages
[All Current Messages Humber of Slce Fiip Flops 229 1,776 1%
= Detailed Reports Humber of 4 input LUTs 349 11,776 2%
Synthesis Report
2 Transiation Repart Humber of occupied Slices 275 5,808 4%
[2) Map Report Number of Slices cantaining only related logic 275 275 100%
O e d Route Report
1= P;:::ﬂ”R S;'B‘EIST‘;:?“’Q'REDM Number of Slicss containing unrelated logic o 275 %
Paver Report Total Number of 4 input LUTs 420 11,776 3%
L] Bitgen Report Mumber used as logic 348
= Secondary Reports
[7) 1510 Simudator Log Number used 5 & raute-thru 7
Humber of borded 0Bs 16 a7z 4%
Humber of BUFGHUSS 3 24 12%
Humber of DCMs 1 5 12%
Average Fanout of Non-Clock Nets 3.39
Design Properties
Enable Enhanced Design Summary
[] Display Incremental Messages
[] Enable Message Filtering Detailed Reports 1
OD“ED”E‘ ;e;ﬁzlz‘ém:xrf“m"ts Report Name Status | Generated Errors |Warnings | Infos
[] show Faiing Constraints Sunthesis Report Current | Thudun 11 16:02:44 2008 |0 Suarnings |4Infes
[[] Show warnings y o
H oont Translation Report Current | Fridun 12 10:04:262009 |0 22 warnings | Lnfe
ow Errars
[Show Parttion Data Msp Report Current | Fridun 12 10:04:38 2009 |0 2uarnings | Zlnfes
Place and Route Report
Power Repart
Post-PAR Static Timing Report
Bitgen Repart 3
T Design Summary (Mapped) |

Figure 5-17: Design Summary/Report Viewer

2. Selectareport such as the Translation Report or Map Report in the Detailed Reports
section of the Design Summary.

Review the report.

The Design Summary also provides a Summary of the design results, and a list of all of
the messages (Errors, Warnings, INFO) generated by the implementation run.

Using Timing Analysis to Evaluate Block Delays After Mapping

After the design is mapped, evaluate the Logic Level details in the Post-Map Static Timing
Report to evaluate the logical paths in the design. Evaluation verifies that block delays are
reasonable given the design specifications. Because the design is not yet placed and routed,
actual routing delay information is not available. The timing report describes the logical
block delays and estimated routing delays. The net delays provided are based on an
optimal distance between blocks (also referred to as unplaced floors).

Estimating Timing Goals with the 50/50 Rule

For a preliminary indication of how realistic your timing goals are, evaluate the design
after the map stage. A rough guideline (known as the 50/50 rule) specifies that the block
delays in any single path make up approximately 50% of the total path delay after the
design is routed. For example, a path with 10 ns of block delay should meet a 20 ns timing
constraint after it is placed and routed.

If your design is extremely dense, the Post-Map Static Timing Report provides a summary
analysis of your timing constraints based on block delays and estimates of route delays.

ISE 11 In-Depth Tutorial

UG695 (v 11.2)

www.xilinx.com 109

XX"JNX@ Chapter 5: Design Implementation

This analysis can help to determine if your timing constraints are going to be met. This
report is produced after Map and prior to Place and Route (PAR).

Report Paths in Timing Constraints Option

Use the Post-Map Static Timing Report to determine timing violations that may occur prior
to running PAR. Since you defined timing constraints for the stopwatch design, the timing
report will display the path for each of the timing constraints.

To view the Post-Map Static Timing Report and review the PERIOD Constraints that were
entered earlier:

1. Inthe Processes tab, click the + next to Map to expand the process hierarchy.
2. Double-click Generate Post-Map Static Timing.

3. To open the Post-Map Static Timing Report, double-click Analyze Post-Map Static
Timing.

Processes: stopwatch - stopwatch_arch
= Design Summary/Reports
Design Ltilities
User Constraints
P21\ Synthesize - ¥5T
P2) Implement esign
- BQLY Translate
= LA Map
= f3 Generate Post-Map Static Timing
= ost-Map Static Timing
@ Manually Place & Route (FPGA Editor)
P) Generate Post-Map Simulation Model
#- P2 Place & Route
P2 Generate Programming File
B Configure Target Device
g Update Bitstream with Processor Data
&u Analyze Design Using Chipscope

1] -

Figure 5-18: Post-Map Static Timing Report Process

Timing Analyzer automatically launches and displays the report.

4. Selectthe TS inst_ dcml CLKFX_BUF timing constraint under the Timing tab.

- Component switching limits
B TS inst_deml_CLKFY,_BLF = PERICD TIMEGRP inst_deml_CLKFX_BUF" T5 ¢
OFFSET = IN & s YALID 6 nis BEFORE COMP " "RISING';
- OFFSET = OUIT 38 nis AFTER COMP "dl";
£ TIMEGRP "display_grp" OFFSET = OUT 32 ns AFTER COMP "k
#)- Derived Constraint Report
Constraint compliance
4 Data sheet report
Trace sethings

Figure 5-19: Selecting Post-Map Static Timing constraint

The work space shows the report for the selected constraint. At the top of this report, you
will find the selected period constraint and the minimum period obtained by the tools after
mapping. By default, only three paths per timing constraint will be shown. Selecting one of

110 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Placing and Routing the Design XX"JNX@

the three paths allows you to see a breakdown of the path which contains the component
and routing delays.

Notice that the report displays the percentage of logic versus the percentage of routing at
the end of each path (e.g. 88.0% logic, 12.0% route). The unplaced floors listed are estimates
(indicated by the letter “e” next to the net delay) based on optimal placement of blocks.

5. After viewing the report, close the Timing Analyzer by selecting File > Close.

Note: Even if you do not generate a timing report, PAR still processes a design based on the
relationship between the block delays, floors, and timing specifications for the design. For example, if
a PERIOD constraint of 8 ns is specified for a path, and there are block delays of 7 ns and unplaced
floor net delays of 3 ns, PAR stops and generates an error message. In this example, PAR fails
because it determines that the total delay (10 ns) is greater than the constraint placed on the design
(8 ns). The Post-Map Static Timing Report will list any pre-PAR timing violations.

Placing and Routing the Design

After the mapped design is evaluated, the design can be placed and routed.

One of two place-and-route algorithms is performed during the Place & Route (PAR)
process:

e Timing Driven PAR

PAR is run with the timing constraints specified in the input netlist and/or in the
constraints file.

* Non-Timing Driven PAR
PAR is run, ignoring all timing constraints.

Since you defined timing constraints earlier in this chapter, the Place & Route (PAR)
process performs timing driven placement and routing.

1. Torun PAR, in the Processes tab, double-click Place & Route under the Implement
Design process group.

To review the reports that are generated after the Place & Route process is completed:

2. Open the Design Summary window by running the Design Summary/Reports
process or by clicking on the Design Summary/Reports toolbar icon.

3. Select the Place & Route Report in the Detailed Reports section.

Note: Additional optional Place & Route Reports can also be generated by enabling their creation in
the Place & Route process properties. When these are created, they will appear in the Design
Summary in the Secondary Reports section.

Table 5-3: Reports Generated by PAR

Report Description

Provides a device utilization and delay summary.
Place & Route Report Use this report to verify that the design successfully
routed and that all timing constraints were met.

Lists all nets in the design and the delays of all

Asynchronous Delay Report loads on the net.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 111

SUXILINX®

Chapter 5: Design Implementation

Table 5-3: Reports Generated by PAR

Report Description

Clock Region Report

For detailed information on the PAR reports, refer
to the Development System Reference Guide. This
Guide is available with the collection of software
All PAR Reports manuals and is accessible from ISE by selecting
Help > Online Documentation, or from the web at
http://www.xilinx.com/support/documentation
/dt_isell-1.htm

=} Design Orverview 4
@ Summary
E 108 Properties

Constraints file: stopwatch.pef.
[2] Module Level Utiization

"stopwatch™ is an NCD, wversion 3.2, device xc3s700a, package f£g4G64, speed -4
E Tining Constrainks
[E] Pinout Repart i1 i
@ Clock Report In?t?al?z?ng tewperature to §5.000 Celsius. (default - Range: 0.000 to 85.000 Celsius)
Gstat\cﬂmmg Initializing voltage to 1,140 Volts. (default - Range: 1.140 to 1.260 Volts)
=} Errars and Warnings
@ Synthesis Messages WARNING:Timing:3224 - The clock clk associated with OFFSET = IN 6 ns VALID & ns BEFORE COMP
E Translation Messages "olk™ "RISING"; does not
@ Map Messages clock any registered input components.
E Place and Route Messages WARNING: Timing:3225 - Timing constraint OFF3ET = IN 6 ns VALID 6 ns BEFORE COMP "clk"
2] Timing Messages "RISING"; ignored during timing
Bitgen Messages analysis
Dt'ladgncurtrentmessages INFO: Timing:3386 - Intersecting Constraints found and resolwed. For wore inforwation, see the
=+ Detaled Reparts

TSI report. Please
consult the Xilinx Comeand Line Tools User Guide for information on generating a TSI
report.

E Synthesis Report

[Translation Report

@ Map Repart

[5] Place and Raute Report

2] Pust-PAR Static Tiing Repart Device speed data version: "PRODUCTION 1.41 2009-03-03",

Power Report
| Bitgen Repart
= Secondary Reports Dezign Swmary Report:
E Post-Map Static Timing Report
Munber of External IOEs 16 out of 372 4%
Nuwkher of External Input IOBs 5

Figure 5-20: Design Summary of the Place & Route Report

Using FPGA Editor to Verify the Place and Route

Use the FPGA Editor to display and configure Field Programmable Gate Arrays (FPGAS).

The FPGA Editor reads and writes Native Circuit Description (NCD) files, Macro files
(NMC) and Physical Constraints Files (PCF).

Use FPGA Editor to:

Place and route critical components before running the automatic place-and-route
tools.

Finish placement and routing if the routing program does not completely route your
design.

Add probes to your design to examine the signal states of the targeted device. Probes
are used to route the value of internal nets to an 10B (Input/Output Block) for
analysis during debugging of a device.

Run the BitGen program and download the resulting bitstream file to the targeted
device.

112

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Using FPGA Editor to Verify the Place and Route XX"JNX@

* View and change the nets connected to the capture units of an Integrated Logic
Analyzer (ILA) core in your design.

To view the actual design layout of the FPGA.:

1. Click the + next to Place & Route to expand the process hierarchy, and double-click
View/Edit Routed Design (FPGA Editor).

(]_Ksynthesize - %sT
= c}_g Implement Design
C]_ﬁ Translate
2.1\ Map
=- B Place & Raute
T2 Generate Post-Place & Route Static Timing
Analyze Timing [Flaorplan Design {Planahead)
Wiew/Edit Routed Design (FPGA Editar)
ower Analyzer

LY mmmembe Plmme Fimk o

Figure 5-21: View/Edit Routed Design (FPGA Editor) Process

2. In FPGA Editor, change the List Window from All Components to All Nets. This
enables you to view all of the possible nets in the design.

2| jst1 IZI[E[ZI

Al Mets
Routed Mets
Urrouted Mets

Power Metsz

Zero-pin Mets

Al Components

Flaced Components
Unplaced Components
Component Groups

AllHard Macros

Placed Hard Macios
Unplaced Hard M acros

All Hard Macro External Pins

Layers

Paths v
7 21 |12 7 o color

a addresz<0> |28 ? |no colar]

] address<1> |23 |7
10 address<2: |24 ? [o caolor

11 address<3: |24 ? [no color

Figure 5-22: List Window in FPGA Editor

ISE 11 In-Depth Tutorial www.xilinx.com
UG695 (v 11.2)

113

XX"JNX@ Chapter 5: Design Implementation

3. Select the clk_262144K (Clock) net to see the fanout of the clock net.

Figure 5-23: Clock Net

4. To exit FPGA Editor, select File > Exit.

Evaluating Post-Layout Timing

After the design is placed and routed, you can analyze the Post-Place & Route timing
results to verify how the design performs against your specified timing goals.

There are multiple ways in which you can analyze timing:

* Viewing the Post-Place & Route Static Timing Report

» Using PlanAhead for Post-Place & Route Timing Analysis

e Using hyperlinks in Design Summary to analyze individual timing constraints

Viewing the Post-Place & Route Static Timing Report

This report evaluates the logical block delays and the routing delays. The net delays are
now reported as actual routing delays after the Place and Route process. To display this
report:

1. Inthe Design Summary/Reports, select Static Timing in the Design Overview
section. Alternatively you can run the Analyze Post-Place & Route Static Timing
process in the Process view under Implement Design > Place & Route > Generate Post-
Place & Route Static Timing.

2. The Timing Report will open in Timing Analyzer.

114 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Evaluating Post-Layout Timing XX"JNX@

The following is a summary of the Post-Place & Route Static Timing Report for the
stopwatch design:

¢+ The minimum period value increased due to the actual routing delays.

The Post-Map timing report showed logic delays contributed to 80% to 90% of the
minimum period attained. The post-layout report indicates that the logical delay
value now equals between 30% and 40% of the period. The total unplaced floors
estimate changed as well.

¢+ The post-layout result does not necessarily follow the 50/50 rule previously
described because the worst case path primarily includes component delays.

+ For some hard to meet timing constraints, the worst case path is mainly made up
of logic delay. Since total routing delay makes up only a small percentage of the
total path delay spread out across two or three nets, expecting the timing of these
paths to be reduced any further is unrealistic. In general, you can reduce excessive
block delays and improve design performance by decreasing the number of logic
levels in the design.

Analyzing the Design using PlanAhead

PlanAhead can be used to perform post-layout design analysis. Graphical layout analysis
and timing path viewing, as well as floorplanning can be performed to both analyze
design results as well as aid in design closure.

1. From the process tree, run the Analyze Timing/Floorplan Design (PlanAhead)
process under Place & Route.

- BN Synthesize - %5T
(= 3.1 Implement Design

& A\ Translate

H- B\ Map

= P Place & Route

- PAC) Generate Post-Flace & Route Static Timing
‘analyze Timing § Floorplan Design (Planahead)

Yiew Edit Routed Design (FPGA Editor)
“Power Analzer

Figure 5-24: Analyze Timing / Floorplan Design (PlanAhead) process

2. When PlanAhead opens, select one of the timing paths in the Timing Results tab. You
will be able to view the path graphically in the Device view, and also view details of
the path and the associated delays in the Properties tab.

ISE 11 In-Depth Tutorial www.xilinx.com 115
UG695 (v 11.2)

XX"JNX@ Chapter 5: Design Implementation

{8l _onir_intstete _FSH_FFzt
{7 ld_criel_insstate_FSH_FFdz:
i (il _srir|_insstate_FSM_FRdz:

--------- ¥ (i led_cnirl_instystate_F3M_FFd2:
Path Properties Og.8 X i le]_crirl_instfstate_FSM_FFd2s

N Y l i lecl_entrl_instjstat_FsM_Frdze

(i led_enir|_insseeke FSH_FFe27

e {73 lcd_crir|_ntfstate_FSM_FFze
Py i ed_entrl_instfstate_FSM_FFd2s

lame: Path 1 {8 led_srir|_insstete _FSH_FFA30
Constraint: OFFSET = OUT 38 ns AFTER COP i ld_entrl_instistate_F3M_FFd31
Slack: 21,302 i lecl_entrl_inststate_F3M_FFd3z
i ed]_entrl_jnstfstate_FSM_FFd3:

Source: Lod_entrl_inot/state P FRc {7 e_enil_nsfsae_FSM_FRc
Destination: lede i lecl_entrl_instjstate_F3M_FFd3:

Requirement: 38.000 (0l _crtr_insystate_FSM_FFd34

v
< 3 ::ld trl_instfstats FSMFFd3f
Generdl Instences | Options | ¢

) Properties | 1 Selection 50 Netlist | & Constraints

Timing Resuks - TRCE - resubs_| (12 paths)

Q[Hame Type | Slack To | TotaDely | logicDelay | Met% | Stages
X =ME OFFSET = OUT 38 ns AFTER C

‘: @ Pathz Setup T 16.191

|: ? Path3 Setp 21670 ed ekl Instjstae_F3M_FFL1 ked e 16.05 93 42013 14
% FPah1D Hdd 52,158 Icd_coblinstjstate_FoM_FFS7 ke rs £.805 5006 %6143 9
3 FRathil Hdd 52,248 Icd ot instjstate_FoM_FFS1 ld_rs 6702 5026 25007 9
- 2 path 12 Hald % 8501 Ied enbel instlstate ESHL EEAIS led rs 6134 4512 26443 8
a

& Console, (3 Timing Results | O 10 Parts

Figure 5-25: Viewing Timing Path in PlanAhead

3. Zoom inon the path in the Device view by clicking and dragging a box around the area
of interest.

For a detailed tutorial on the full set of capabilities in PlanAhead related to timing analysis
and design closure, see the Design Analysis and Floorplanning tutorial available in
PlanAhead by selecting Help > Tutorial > Design Analysis and Floorplanning.

4. Close PlanAhead by selecting File > Exit.

Creating Configuration Data

After analyzing the design, you need to create configuration data. A configuration
bitstream is created for downloading to a target device or for formatting into a PROM
programming file.

In this tutorial, you will create configuration data for a Xilinx Serial PROM. To create a
bitstream for the target device, set the properties and run configuration as follows:

1. Right-click the Generate Programming File process.

2. Select Process Properties. The Process Properties dialog box opens.

3. Click the Startup Options category.

4. Change the FPGA Start-Up Clock property from CCLK to JTAG Clock.

116 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Creating Configuration Data XX"JNX@

Category Property Hame alue

General Options FPGA Start-Up Clock ITAG Clock v

Configuration Options

Startup Options Enable Internal Done Pipe]

Readback Options Done {Output Events) Default (4] v

Suspendjwake Options Enable Outputs (Dutput Events) Default (5) v
Release Write Enable (Output Events) | Default (6] v
Wit for DLL Lock {Output Events) Defaul (NoWait) v
Drive Dane Pin High]

Property display level: |Advanced | [] Display switch names Default

| TR T T

Figure 5-26: Process Properties Startup Options

Note: You can use CCLK if you are configuring Select Map or Serial Slave.
5. Click OK.

In the Processes tab, double-click Generate Programming File to create a bitstream of
this design.

The BitGen program creates the bitstream file (in this tutorial, the st opwat ch. bi t
file), which contains the actual configuration data.

7. To review the Programming File Generation Report, open the Bitgen Report in the
Design Summary/Report Viewer. Verify that the specified options were used when
creating the configuration data

Creating a PROM File with IMPACT

To program a single device using iMPACT, all you need is a bitstream file. To program
several devices in a daisy chain configuration, or to program your devices using a PROM,
you must use iIMPACT to create a PROM file. iIMPACT accepts any humber of bitstreams
and creates one or more PROM files containing one or more daisy chain configurations.

In iMPACT, a wizard enables you to do the following:

» Create a PROM file.
» Add additional bitstreams to the daisy chain.
e Create additional daisy chains.

* Remove the current bitstream and start over, or immediately save the current PROM
file configuration.

For this tutorial, create a PROM file in iMPACT as follows:
1. IntheProcesses tab, double-click Generate Target PROM/ACE File, located under the
Configure Target Device process hierarchy.

2. IniMPACT, double-click on Create PROM File (PROM File Formatter) in the
iMPACT Flows window.

MPACT Flows +0F X

‘B4l Boundary Scan
Bl Slaveserial
‘Bl Direct SPI

[=] SystemAcE
E Create PROM File (PROM File Formatter)

Figure 5-27: Create PROM File

ISE 11 In-Depth Tutorial www.xilinx.com 117
UG695 (v 11.2)

SUXILINX®

Chapter 5: Design Implementation

3. Inthe PROM File Formatter window, select Xilinx Flash/PROM in the Select Storage
Target section.

Click the green arrow to activate the next section.

In the Add Storage Device(s) section, click the Auto Select PROM checkbox.
Click the green arrow to activate the next section.

In the Enter Data section, enter an Output File Name of st opwat ch1.
Verify that the Checksum Fill Value is set to FF and the File Format is MCS. .

£, PROM File Formatier @

Step 1, Select Storage Target Step 2, Add Storage Device(s) Stap 3. Enter Data

© N o g &

Storage Device Type : R— e Generdl Fi Detai e
il Flash/PROM Chedsum Al
= Non-belatle FRGA Device (bits) afils [1M] value [
Spartandeil
= SPIFC‘I:WESW‘EFPGA Add Storage Device || Remove Storage Device Output Fie Name | stopwatehi]
Configure MukiBact FAGA
& BPIFlash
Corfigure Sngls FPGA
Configure MulkiBact FPGA

Configure from Paralleled PROMs
Generic Parallel PROM E B Flash/PROM File: Property Value

File Format MCS v

CQutput File

Location _tempahFaleft_profibft_prof) D

Enable Revisioning es
Nurber OF Revisions

Enable Compression Mo

Auta Select PROM

Figure 5-28: PROM File Formatter

9. Click OK to close the PROM File Formatter.
10. In the Add Device dialog box, click OK and then select the st opwat ch. bi t file.
Note: You will receive a warning that the startup clock is being changed from jtag to CCLK.

11. Click No when you are asked if you would like to add another design file to the
datastream.

12. Click OK to complete the process.

13. Select the device graphic in the workspace area, then in the iIMPACT Processes view,
select Generate File...

iIMPACT displays the PROM associated with your bit file.

-~

=
PROM F

xc3s700a
stopwatch bit

xef0ds

Figure 5-29: PROM File

14. To close IMPACT, select File > Exit.

15. If prompted to save the project, select Yes, then name the project file
st opwat ch_i npact . i pf.

With the resulting st opwat ch. bi t, st opwat chl. nts and a MSK file generated along
with the BIT file, you are ready for programming your device using iMPACT. For more

118

www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

Command Line Implementation XX"JNX@

information on programming a device, see the IMPACT Help, available from the iIMPACT
application by selecting Help > Help Topics.

This completes the Design Implementation chapter of the tutorial. For more information
on this design flow and implementation methodologies, see the ISE Help, available from
the ISE application by selecting Help > Help Topics.

Command Line Implementation

ISE allows a user to easily view and extract the command line arguments for the various
steps of the implementation process. This allows a user to verify the options being used or
to create a command batch file to replicate the design flow.

At any stage of the design flow you can look at the command line arguments for completed
processes by double-clicking View Command Line Log File from the Design Utilities
process hierarchy in the Processes view. This process opens a file named

<sour ce_nane>. cnd_I og in read-only mode.

To create an editable batch file, select File > Save As and enter the desired file name.

Sections of the Command Line Log File may also be copied from
<sour ce_nane>. cnd_I og using either the copy-and-paste method or the drag-and-
drop method into a text file.

For a complete listing of command line options for most Xilinx executables, refer to the
Command Line Tools User Guide. Command line options are organized according to
implementation tools. This Guide is available with the collection of software manuals and
is accessible from ISE by selecting Help > Software Manuals, or from the web at
http://www.xilinx.com/support/software_manuals.htm. Command line options may
also be obtained by typing the executable name followed by the - h option at a command
prompt.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 119

http://toolbox.xilinx.com/docsan/xilinx10/books/manuals.pdf

::X"JNX® Chapter 5: Design Implementation

120 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

$7 XILINX®

Chapter 6

Timing Simulation

This chapter includes the following sections.
e “Overview of Timing Simulation Flow”
» “Getting Started”

* “Timing Simulation Using ModelSim”

e “Timing Simulation Using Xilinx ISim”

Overview of Timing Simulation Flow

Timing simulation uses the block and routing delay information from a routed design to
give a more accurate assessment of the behavior of the circuit under worst-case conditions.
For this reason, timing simulation is performed after the design has been placed and
routed.

Timing (post-place and route) simulation is a highly recommended part of the HDL design
flow for Xilinx® devices. Timing simulation uses the detailed timing and design layout
information that is available after place and route. This enables simulation of the design,
which closely matches the actual device operation. Performing a timing simulation in
addition to a static timing analysis will help to uncover issues that cannot be found in a
static timing analysis alone. To verify the design, the design should be analyzed both
statically and dynamically.

In this chapter, you will perform a timing simulation using either the ModelSim simulator
or the Xilinx ISE Simulator.

Getting Started

The following sections outline the requirements to perform this part of the tutorial flow.

Required Software

To simulate with ModelSim, you must have Xilinx ISE™ 11 and ModelSim simulator
installed. Refer to Chapter 4, “Behavioral Simulation” for information on installing and
setting up ModelSim. Simulating with the Xilinx ISE simulator requires that the ISE 11
software is installed

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 121

SUXILINX®

Chapter 6: Timing Simulation

Required Files

The timing simulation flow requires the following files:

e Design Files (VHDL or Verilog)

This chapter assumes that you have completed Chapter 5, “Design Implementation,”
and thus, have a placed and routed design. The Netgen tool will be used in this chapter
to create a simulation netlist from the placed and routed design which will be used to
represent the design during the Timing Simulation.

» Test Bench File (VHDL or Verilog)

In order to simulate the design, a test bench is needed to provide stimulus to the
design. You should use the same test bench that was used to perform the behavioral
simulation. Please refer to the “Adding an HDL Test Bench” in Chapter 4 if you do not
already have a test bench in your project.

e Xilinx Simulation Libraries
For timing simulation, the SIMPRIM library is needed to simulate the design.

To perform timing simulation of Xilinx designs in any HDL simulator, the SIMPRIM
library must be set up correctly. The timing simulation netlist created by Xilinx is
composed entirely of instantiated primitives, which are modeled in the SIMPRIM library.

If you completed Chapter 4, “Behavioral Simulation”, the SIMPRIM library should already
be compiled. For more information on compiling and setting up Xilinx simulation
libraries, see to “Xilinx Simulation Libraries” in Chapter 4.

Specifying a Simulator

To select either the desired simulator to simulate the stopwatch design, complete the
following:

1. Inthe Sources tab, right-click the device line (xc3s700A-4fg484) and select Properties.

2. Inthe Project Properties dialog box click the down arrow in the Simulator value field
to display a list of simulators.

Note: ModelSim and Xilinx ISim are the only simulators that are integrated with Project
Navigator. Selecting a different simulator (e.g. NC-Sim or VCS) will set the correct options for
Netgen to create a simulation netlist for that simulator but Project Navigator will not directly open
the simulator. For additional information about simulation, and for a list of other supported
simulators, see Chapter 5 of the Synthesis and Verification Guide. This Guide is accessible from
within ISE by selecting Help > Software Manuals, and from the web at
http://lwww.xilinx.com/support/software_manuals.htm

3. Select ISim (VHDL/Verilog) or Modelsim with the appropriate version and language
in the Simulator value field.

Timing Simulation Using ModelSim

Xilinx ISE provides an integrated flow with the Mentor ModelSim simulator. ISE enables
you to create work directories, compile source files, initialize simulation, and control
simulation properties for ModelSim.

Note: To simulate with ISim, skip to “Timing Simulation Using Xilinx ISim”. Whether you choose to
use the ModelSim simulator or ISim for this tutorial, the end result is the same.

122

www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/support/software_manuals.htm

Timing Simulation Using ModelSim XX"JNX@

Specifying Simulation Process Properties

To set the simulation process properties:

1. Inthe Sources tab, select Post-Route Simulation in the Sources for field.
2. Select the test bench file (st opwat ch_t b).

3. Inthe Processes tab, click the + next to ModelSim Simulator to expand the process
hierarchy.

Note: If the ModelSim Simulator processes do not appear, it means that either ModelSim is not
selected as the Simulator in the Project Properties dialog box, or Project Navigator cannot find
modelsim.exe.

If ModelSim is installed but the processes are not available, the Project Navigator
preferences may not be set correctly. To set the ModelSim location, select Edit >
Preferences, click the + next to ISE General to expand the ISE preferences, and click
Integrated Tools in the left pane. In the right pane, under Model Tech Simulator, browse to
the location of nodel si m exe file. For example,

c:\ nodel t ech_xe\ wi n32xoem nodel si m exe.
Right-click Simulate Post-Place & Route Model.
Select Properties.

The Process Properties dialog box displays.

6. Select the Simulation Model Properties category.

The properties should appear as shown in Figure 6-1. These properties set the options
that NetGen uses when generating the simulation netlist. For a description of each
property, click the Help button.

7. Ensure that you have set the Property display level to Advanced.
This global setting enables you to see all available properties.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 123

::X"JNX® Chapter 6: Timing Simulation

For this tutorial, the default Simulation Model Properties are used.

B2 Process Properties - Simulation Model Properties
Categary Property Name Yalue
ng;:[:;iop':D?;?g:ies Simulation Model Target YHOL w
Simulation Model Properties Dievice Speed Grade/Select ABS Minimum 4 w
sPower Analyzer Properties Retain Hierarchy
Generate Multiple Hisrarchical Metlist Files]
Bring Out Global Tristate Met as a Part]
Global Triskate Port Mame GT5_PORT
Ering Out Global SetfReset Net as a Port]
Global Set/Reset Port Mame G5R_PORT
Generate Testhench Fils]
Rename Design Instance in Testhench File to uut
Insert Buffers to Prevent Pulse Swallowing]
Other NETGEN Command Line Options
Rename Top Level Entity to stopwatch
Rename Top Level Architecture To Struckure
Tristate On Configuration Pulse Width i] &
Reset On Configuration Pulse Width 100 £
Generate Architecture Only (Mo Entity Declaration) []
Qutput Extended Identifisrs]
Rename Top Level Module To
Include ‘uselib Directive in Verilog File
Inchude saf _annotate task in Yerilog File
Path Used in sdf _annotate task Default
Do Mok Escape Signal and Instance Mames in Metlist
Include SIMPRIM Models in Verilog File
Automatically Insert glbl Module in the Netlist
Property display level: |advanced | [] Display switch names Default
I OF } i Cancel] [Apply] [Help]

Figure 6-1: Simulation Model Properties

8. Select the Display Properties category.

This tab gives you control over the ModelSim simulation windows. By default, three
windows open when timing simulation is launched from ISE. They are the Signal
window, the Structure window, and the Wave window. For more details on ModelSim
Simulator windows, refer to the ModelSim User Guide.

9. Select the Simulation Properties category.

The properties should appear as shown in Figure 6-2. These properties set the options
that ModelSim uses to run the timing simulation. For a description of each property,
click the Help button.

124 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Timing Simulation Using ModelSim XX"JNX@

10. In the Simulation Properties tab, set the Simulation Run Time property to 2000 ns.

E8 Process Properiies - Simulation Properties

Categary

Property Mame Value
Simulation Properties \Use Custom Do File]
Display Propetties
Simulation Model Properties Custam Do File
WPower Analyzer Properties Use &utornatic Do File
Dielay Walues To Be Read from SDF Setup Time hd

Other ¥SIM Command Line Options
Other WLOG Command Line Options
Other WCOM Command Line Options

Simulation Run Time 2000ns

Simulation Resolution Default {1 ps) b

YHOL Syntax 93 b

Use Explicit Declarations Only

Log Al Signals In Sirulation O

MadelSim Post-Par UUT Instance Mame uuT

izenerate SAIF File for Power OptimizationyEstimation [

SAIF File Mame “eamnplesfwbut_vhdfxpower_time_sir, saif
Property display level; |Advanced | [Display switch names

[o4 l [Cancel] [Apply] ’ Help]

Figure 6-2: Simulation Properties

11. Click OK to close the Process Properties dialog box.

Performing Simulation

To start the timing simulation, double-click Simulate Post-Place and Route Model in the
Processes tab.

ISE will run Netgen to create the timing simulation model. ISE will then call ModelSim and
create the working directory, compile the source files, load the design, and run the
simulation for the time specified.

Note: The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose
of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

Adding Signals

To view signals during the simulation, you must add them to the Wave window. ISE
automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window.

» Drag and drop from the Signal/Object window.

» Highlight signals in the Signal/Object window and then select Add > Wave >
Selected Signals.

ISE 11 In-Depth Tutorial www.xilinx.com 125
UG695 (v 11.2)

SUXILINX®

Chapter 6: Timing Simulation

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

Note: If you are using ModelSim version 6.0 or higher, all the windows are docked by default. All
windows can be undocked by clicking the Undock icon.

cp

Figure 6-3: Undock icon

1. Inthe Structure/Instance window, click the + next to uut to expand the hierarchy.

Figure 6-4 shows the Structure/Instance window for the Schematic flow. The graphics and
the layout of the Structure/Instance window for a Verilog or VHDL flow may appear
different.

‘FI Instance |De&ign itk :‘I
++al albl glbl
stopwatch_th stopwatch_th
B stopwatch
o HBASSIGHH#218.. stopwatch
o BASSIGHH21S.. stopwatch
o HASSIGHH#218.. stopwatch
o HBASSIGHMH#2138 stopwatch
bl Sed_cnbrl_instdL . s_AMD2
bl Sed_enbrl_inst/L. < _AMDE
bl Sed_enbrl_instdL . R_AMD2
bl Sed_enbrl_instd . R_aAMD2
bl Sed_cnbrl_instdL . s_AMD2
bl Sed_enbrl_inst/L. < _AMDE
bl Sed_enbrl_instdL . R_AMD2
bl Sed_enbrl_instdL . R_AMD2
bl Sed_cnbrl_instdL . s_AMD2
bl Sed_enbrl_inst/L. < _AMDE
kgl Med cnbrl_inst/L . x_aND2
bl Sed_enbrl_instdL . R_AMD2
bl Sed_cnbrl_instdL . s_AMD2
bl Sed_enbrl_inst/L. < _AMDE
+ ol Med el inst/l.. 3 AMD2 A
JEN [2
-lm 424 sim l ! Files 1 B Memorie:ﬂ—’l

Figure 6-4: Structure/lnstance Window - Schematic Flow

Click the Structure/Instance window and select Edit > Find.
Type in X_DCMin the search box and select Entity/Module in the Field section.

4. Once ModelSim locates X_DCM, select X_DCM_SP and click on the signals/objects
window. All the signal names for the DCM will be listed.

Select the Signal/Object window and select Edit > Find.
Type CLKIN in the search box and select the Exact checkbox.
Click and drag CLKIN from the Signal/Object window to the Wave window.

126

www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

Timing Simulation Using ModelSim XX"JNX@

8. Click and drag the following signals from the Signal/Object window to the Wave

window:

¢ RST

¢ CLKFX

¢+ CLKO

¢+ LOCKED

Note: Multiple signals can be selected by holding down the Ctrl key. In place of using the drag and
drop method select Add to Wave > Selected Signals.

Adding Dividers

Modelsim has the capability to add dividers in the Wave window to make it easier to
differentiate the signals. To add a divider called DCM Signals:

1. Click anywhere in the Wave window.

2. If necessary, undock the window and then maximize the window for a larger view of
the waveform.

3. Right-click the Wave window and click Insert > Divider.
4. Enter DCM Signals in the Divider Name box.
5. Click and drag the newly created divider to above the CLKIN signal.

Note: Stretch the first column in the waveform to see the signals clearly. The hierarchy in the signal
name can also be turned off by selecting Tools > Options > Wave Preferences. In the Display
Signal Path box, enter 2 and click OK.

The waveform should look as shown in Figure 6-5.

T eve-defad BER

lopieatch_th/elk
fstopwatch_th/lap_load
/stopwatch_fb/mode
Istopwatch_Ibheset
Istopwatch_ib/sttstop
felopwaich_iblcd e
{stopweatch_tbAcd_ s
fstopwatch_th/icd_w
etopwatch th/sf d

et R R N R R R S R

t \dom_inst/DCM_INST/DCH_SPA/CLKIN

* \dem_nst/DCM_INST/DCM_SPARST

' \dem_ingt/DCM_INST/DCM_SPAVCLKRY.
dom_ingt/DCM_INST/DCH_SPACLKD

\dem_nat/DCH_INST/DCM_SPALOCKED

Now | 2000000 ps

= Hg H4 =y |

1§ tave 4
Figure 6-5: The Resulting Waveform

ISE 11 In-Depth Tutorial www.xilinx.com 127

UG695 (v 11.2)

XXILINX® Chapter 6: Timing Simulation
Notice that the waveforms have not been drawn for the newly added signals. This is
because ModelSim did not record the data for these signals. By default, ModelSim will
only record data for the signals that have been added to the Wave window while the
simulation is running. Therefore, after new signals are added to the Wave window, you
need to rerun the simulation for the desired amount of time.

Rerunning Simulation
To restart and re-run the simulation:
1. Click the Restart Simulation icon.
Figure 6-6: Restart Simulation Icon
The Restart dialog box opens.
Iﬁ]‘ﬁestart =] E3
— keem
¥ List Format
M ave Format
¥ Breakpoints
M Logged Signals
M Wirtual D efinitions
M Asszertions
M Cowver Directives
M TT% Formnat
CHestat. | | Cancel |
Figure 6-7: Restart Dialog Box
2. Click Restart.
3. At the ModelSim command prompt, enter r un 2000 ns and hit the Enter key.
WSl B run 2000 nz
Figure 6-8: Entering the Run Command
The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in
the Wave window.
Analyzing the Signals
Now the DCM signals can be analyzed to verify that it works as expected. The CLKO needs
to be 50 Mhz and the CLKFX should be ~26 Mhz. The DCM signals should only be
analyzed after the LOCKED signal has gone high. Until the LOCKED signal is high the
DCM outputs are not valid.
Modelsim has the capability to add cursors to carefully measure the distance between
signals.
To measure the CLKO:
128 www.xilinx.com ISE 11 In-Depth Tutorial

UG695 (v 11.2)

Timing Simulation Using ModelSim XX"JNX@

Select Add > Cursor twice to place two cursors on the wave view.

2. Click and drag the first cursor to the rising edge transition on the CLKO signal after the
LOCKED signal has gone high.

3. Click and drag the second cursor to a position just right of the first cursor on the CLKO
signal.

4. Click the Find Next Transition icon twice to move the cursor to the next rising edge on
the CLKO signal.

ndll
Figure 6-9: Find Next Transition Icon

Look at the bottom of the waveform to view the distance between the two cursors. The
measurement should read 20000 ps. This converts to 50 Mhz, which is the input frequency
from the test bench, which in turn should be the DCM CLKO output.

Measure CLKFX using the same steps as above. The measurement should read 38462 ps.
This equals approximately 26 Mhz.

Saving the Simulation

The ModelSim Simulator provides the capability of saving the signals list in the Wave
window. Save the signals list after new signals or stimuli are added, and after simulation is
rerun. The saved signals list can easily be loaded each time the simulation is started.

1. Inthe Wave window, select File > Save Format.

2. Inthe Save Format dialog box, rename the filename from the default wave. do to
dcm si gnal _ti m do.

ﬁ' Save Format

|dcm_signa|_tim. fuls} Browze. .. I

Save contents
¥ wiaveform formats

[T wiaveform edits

Ok I Lancel I

Figure 6-10: Save Format Dialog Box

3. Click Save.

After restarting the simulation, you can select File > Load in the Wave window to reload
this file.

Your timing simulation is complete and you are ready to program your device by
following Chapter 7, “iMPACT Tutorial.”

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 129

XX"JNX@ Chapter 6: Timing Simulation

Timing Simulation Using Xilinx 1Sim

Follow this section of the tutorial if you have skipped the previous section, “Timing
Simulation Using ModelSim.”

Specifying Simulation Process Properties
To set the simulation process properties:
1. Inthe Sources tab, select Post-Route Simulation in the Sources for field.

2. Select the test bench file (st opwat ch_t b).

3. Inthe Processes tab, click the + next to Xilinx ISE Simulator to expand the process
hierarchy.

Right-click Simulate Post-Place & Route Model.
Select Process Properties.
The Process Properties dialog box displays.

6. Select the Simulation Model Properties category.

These properties set the options that NetGen uses when generating the simulation
netlist. For a description of each property, click the Help button.

7. Ensure that you have set the Property display level to Advanced.
This global setting enables you to now see all available properties.
For this tutorial, the default Simulation Model Properties are used.

8. Select the ISE Simulator Properties category.

The properties should appear as shown in Figure 6-11. These properties set the options
the simulator uses to run the timing simulation. For a description of each property,
click the Help button.

9. Inthe Simulation Properties tab, set the Simulation Run Time property to 2000 ns.

Category Property Mame Value
15im Properties Use Custom Simulation Command File]
Simulation Maodel Properties
sPower Analyzer Properties Custom Simulation Commeand File
Incremental Complation
Compile For HOL Debugging
Use Custom Project File (]
‘Custom Project Filename
Run for Specified Time
Sirnulation Run Time 2000 ns
Waveform Database Filename mples{wtut_shdstopwatch_th_isim_par.db [

Generake SATF File for Power Optimization/Estimation [

SAIF File hare: [SEexamples/wkut_vhd]xpower_time_sim.saf |
Delay Values To Be Read from SDF Setup Time v
Other Compiler Options

Value Range Check]
specify Search Directories for ‘Include]
Specify 'define Macro Mame and Yalue
Specify Top Level Instance Mames stopwatch_th
I3im LT Instance Mame uur
Propetty display level: |Advanced | [Display switch names Default
[[+3 ‘ [Cance]] [Apply] l Help]

Figure 6-11: Simulation Properties

10. Click OK to close the Process Properties dialog box.

130 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Timing Simulation Using Xilinx 1Sim

SUXILINX®

Performing Simulation

To start the timing simulation, double-click Simulate Post-Place and Route Model in the
Processes tab.

When a simulation process is run, Project Navigator automatically runs Netgen to generate
a timing simulation model from the placed and routed design. The ISE Simulator will then
compile the source files, load the design, and run the simulation for the time specified.

Note: The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose
of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

Adding Signals

To view signals during the simulation, you must add them to the waveform window. ISE
automatically adds all the top-level ports to the waveform window. All available external
(top-level ports) and internal signals are displayed in the Sim Hierarchy window.

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

1. Inthe Instances and Processes panel, click the > next to stopwatch_tb to expand the
hierarchy.

2. Click the > next to UUT to expand the hierarchy.

3. Locate and select Inst dcm1 DCM_SP_INST

4. Inthe Objects window, select the locked signal and click on Add to Wave Window.
Figure 6-12 shows the Sim Instances and Sim Objects window for the VHDL flow. The

signal names and layout in the Sim Instances window for a schematic or VHDL flow may
appear different.

73 ISim - [Default.wefa?]
@ Fle FEdt WYiew Smuation window Help

Bl o B oo Mix QiFEDE AN
Instances and Praocesses <+ [0 A X| Objects +08 X
glalala gl 3lc Simulation Objects for Inst_demi_DCM_5...

M Ak
Lol 1B]11p) &
Instance and Pracess Name Block Type # -é -é d.] 2 ;o
[bed_crtel_inst_count_temp_22_F.. VHOL Entity Object Name alue &

3 led_entl_inst _count _temp_22_C... YHDL Entiy
[bed_cntel_inst_count_temp_22_C... VHOL Entity
} led_cntrl_inst _count _temp_22 ... YHOL Entity
j led_enttl_inst_count_temp_22_C... YHOL Entity
:E led_cntrl_inst_count_temp 22 5... YHOL Entity
} led_entrl_inst_count_temp 22 _C... YHOL Entity
} Inst_dem! CLKIN_IBUFG_INST VHOL Entity
[J Inst_demi CLKD_BUFGINST YHOLEntity
[} Inst_dei_CLKD_BUFG_INST_SI... YHOL Entity
[} Inst_dem1_CLKD_BUFG_INST_I0. YHOL Entity

|} Tnst_dem1_CLKF¥_BUFG_INST YHOL Entty

j Inst_dem1_CLKF:_BUFG_INST_.. VHOL Entity {5 status[7:0] 0000000

[} Inst_demi_CLKF_BUFG_INST 1. YHOL Entity 1 i 1

} clk_divider_div_262144_EUFG WYHEL Entity 7] chin 1

[} ch_dwider_div_262144 BUFG S... VHOL Entity) dssen u

:i clk_divider_div_262144 BUFG_I... YHOL Entity fz) psclk. 0

J Inst_dcml_DCM_SP_INST YHOL Entity 1) psen 0

3 Inst_deml DM _SP_INST_CLKF.. VHOL Entity 7] psincdec 0

[} Inst_deml DCM_SP_INST_CLKL.. YHOL Entity rst i

|} timer_state_sreg_ FSM_FFd9_DX... VHOL Entity Ly dkib ipd 1

[} timer_state_sreq_FSM_FFd9_FS... YHOL Entity ¥ Lg chin_ipd 1
< * i) dssen_ipd] v L Ll 3|«
Instances and Frocesses | Source Files < b3 Default wefg*

Figure 6-12: Sim Instances and Sim Objects Windows- VHDL Flow

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 131

XX"JNX@ Chapter 6: Timing Simulation

5. Click and drag the following X_DCM_SP signals from the SIM Hierarchy window to
the waveform window:

¢ RST

¢ CLKFX
¢+ CLKO
¢ CLKIN

Note: Multiple signals can be selected by holding down the Ctrl key.

Viewing Full Signal Names

A signal name may be viewed with either the complete hierarchical name or by the short
name which omits hierarchy information. To change the signal name display;

1. Right click the desired signal in the waveform window.
2. Select Name > Long or Name > Short as desired.

Note: Stretch the first column in the waveform to see the signals clearly.

The waveform should appear as shown in Figure 6-13.

EBRBFOO WX %%

3
—]

(Elf

Default, wcFg* | stopwatch_timesim, vhd

Figure 6-13: The Resulting Waveform

Notice that the waveforms have not been drawn for the newly added signals. This is
because the ISE Simulator did not record the data for these signals. The ISE Simulator will
only record data for the signals that have been added to the waveform window while the
simulation is running. Therefore, after new signals are added to the waveform window,
you need to rerun the simulation for the desired amount of time.

Rerunning Simulation

To restart and re-run the simulation:

132 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Timing Simulation Using Xilinx 1Sim XX"JNX@

1. Click the Restart Simulation icon.
Figure 6-14: Restart Simulation Icon

2. At the Sim Console command prompt, enter r un 2000 ns and hit the Ent er key.

% frun 2000 ns
Figure 6-15: Entering the Run Command

The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in
the Simulation window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that it does work as expected. The CLKO
needs to be 50 Mhz and the CLKFX should be ~26 Mhz. The DCM signals should only be
analyzed after the LOCKED signal has gone high. Until the LOCKED signal is high the
DCM outputs are not valid.

ISE Simulator has the capability to add cursors to carefully measure the distance between
signals.

To measure the CLKO:

1. If necessary, zoom in on the waveform using the zoom local toolbar buttons.
2. Click the Snap to Transition toolbar button in the waveform viewer local toolbar.

3. Click on the first rising edge transition on the CLKO signal after the LOCKED signal
has gone high, then drag the cursor to the right to the next rising edge transition of the
CLKO signal.

At the bottom of the waveform window, the start point time, end point time, and delta
times are shown. The delta should read 20. 0 ns. This converts to 50 Mhz, which is the
input frequency from the test bench, which in turn should be the DCM CLKO output.

Measure CLKFX using the same steps as above. The measurement should read 38. 5 ns,
this equals approximately 26 Mhz.

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com 133

XX"JNX@ Chapter 6: Timing Simulation

Your timing simulation is complete and you are ready to program your device by
following Chapter 7, “iMPACT Tutorial.”.

PROO WX W%

4=
ph

X

.
Mimior | @ | i | oooooomn |

| oioier | R [

I S

Bl

I

U]

Figure 6-16: Measuring Transitions

134 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

SXILINX®
Chapter 7

IMPACT Tutorial

This chapter takes you on a tour of iMPACT, a file generation and device programming
tool. iIMPACT enables you to program through several parallel cables, including the
Platform Cable USB. iMPACT can create bit files, System ACE files, PROM files, and
SVF/XSVF files. The SVF/XSVF files can be played backed without having to recreate the
chain.

This tutorial contains the following sections:

» “Device Support”

e “Download Cable Support”

» “Configuration Mode Support”

» “Getting Started”

e “Creating a iMPACT New Project File”

» “Using Boundary Scan Configuration Mode”

* “Troubleshooting Boundary Scan Configuration”
e “Creating an SVF File”

» “Other Configuration Modes”

Device Support

The following devices are supported.

e Virtex™/-E/-1I/-11 PRO/4/5/6

» Spartan™/-l1lI/-1IE/XL/3/3E/3A/6
o XC4000™/E/L/EX/XL/XLA/XV

* CoolRunner™XPLA3/-II

e XC9500™/XL/XV

» XC18VO00P
» XCF00S
* XCFOOP
ISE 11 In-Depth Tutorial www.xilinx.com 135

UG695 (v 11.2)

XX"JNX@ Chapter 7: iMPACT Tutorial

Download Cable Support

Parallel Cable IV

The Parallel Cable connects to the parallel port and can be used to facilitate Slave Serial and
Boundary-Scan functionality. For more information, go to
http://www.xilinx.com/support, select Documentation > Devices > Configuration
Solutions > Configuration Hardware > Xilinx Parallel Cable IV.

Platform Cable USB

The Platform Cable connects to the USB port and can be used to facilitate Slave Serial, and
Boundary Scan functionality. For more information, go to
http://www.xilinx.com/support, select Documentation > Devices > Configuration
Solutions > Configuration Hardware > Platform Cable USB.

MultiPRO Cable

The MultiPRO cable connects to the parallel port and can be used to facilitate Desktop
Configuration Mode functionality. For more information, go to
http://www.xilinx.com/support, select Documentation > Devices > Configuration
Solutions > Configuration Hardware > MultiPRO Desktop Tool.

Configuration Mode Support

Impact currently supports the following configuration modes:

* Boundary Scan —FPGAs, CPLDs, and PROMs(18V00,XCFS,XCFP)
» Slave Serial—FPGAs

* SelectMAP—FPGAs

» Desktop —FPGAs

Getting Started

Generating the Configuration Files
In order to follow this chapter, you must have the following files for the stopwatch design:

e aBIT file—a binary file that contains proprietary header information as well as
configuration data.

* aMCS file—an ASCII file that contains PROM configuration information.

» aMSK file—a binary file that contains the same configuration commands as a BIT file,
but that has mask data in place of configuration data. This data is not used to
configure the device, but is used for verification. If a mask bit is 0, the bit should be
verified against the bit stream data. If a mask bit is 1, the bit should not be verified.
This file generated along with the BIT file.

136 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

Creating a iMPACT New Project File XX"JNX@

These files are generated in Chapter 5, “Design Implementation.”

e The Stopwatch tutorial projects can be downloaded from
http.//www.xilinx.com/support/techsup/tutorials/tutorials1l.htm. Download the
project files for either the VHDL, Verilog or Schematic design flow.

Connecting the Cable

Prior to launching iMPACT, connect the parallel side of the cable to your computer’s
parallel port, and connect the cable to the Spartan-3 Starter Kit demo board. Be sure that
the board is powered.

Starting the Software

This section describes how to start the iMPACT software from ISE™ and how to run it
stand-alone.

Opening iIMPACT from Project Navigator

To start iIMPACT from Project Navigator, double-click Manage Configuration Project
(iIMPACT) in the Processes tab in the Processes window (see Figure 7-1).

Processes: stopwatch

% iDesign Summary/Reports
Design Lkilities
User Constraints

2@ syrthesize - ¥sT

?2.1\, Implement Design

= PRty Translate
2 L\ Map

= P2ty Place & Raute
[‘_}O Gzenerate Programming File
=] E‘_‘% Configure Target Device
! Generate Target PROMIACE File

T[]

®. Manage Confiquration Project (MPACT)
E |Update Bitstream with Processor Data
&% Analyze Design Using Chipscope

Figure 7-1: Opening iMPACT from ISE

Opening IMPACT stand-alone

To open iIMPACT without going through an ISE project, use one of the following methods.

+ PC — Click Start > All Programs > Xilinx® ISE Design Suite 11 > Accessories >
iMPACT.

* PC, UNIX, or Linux — Type i mpact ata command prompt.

Creating a IMPACT New Project File

If an IMPACT project doesn’t yet exist, you can create one that will store the settings of the
project for future use. To create a new project for this tutorial:

1. IniMPACT, select File -> New Project.

ISE 11 In-Depth Tutorial www.xilinx.com 137
UG695 (v 11.2)

http://www.xilinx.com/support/techsup/tutorials/tutorials10.htm

XX"JNX@ Chapter 7: iMPACT Tutorial

£.iMPACT Project x|

| want to

£ tload most recent project: 1 stopwatch.ipf _:j Browse. . i

I Load most recent project file when MPACT starts

{* create a new project [ipf] idefault_lpf Browse. .. i

Ok 1 Cancel

Figure 7-2: Creating an iMPACT Project

2. Inthe iIMPACT Project dialog box, select create a new project (.ipf).

3. Click the Browse button.

4. Browse to the project directory and then enter stopwatch in the File Name field.
5. Click Save.

6. Click OK.

This creates a new project file in iIMPACT. You are prompted to define the project, as
described in the next section.

Using Boundary Scan Configuration Mode

For this tutorial, you will be using the Boundary Scan Configuration Mode. Boundary Scan
Configuration Mode enables you to perform Boundary Scan Operations on any chain
comprising JTAG compliant devices. The chain can consist of both Xilinx® and non-Xilinx
devices; however, limited operations will be available for non-Xilinx devices. To perform
operations, the cable must be connected and the JTAG pins, TDI, TCK, TMS, and TDO need
to be connected from the cable to the board.

Specifying Boundary Scan Configuration Mode

After opening iMPACT, you are prompted to specify the configuration mode and which
device you would like to program.

To select Boundary Scan Mode:

1. Select Configure Devices using Boundary-Scan (JTAG) and leave the selection box
value of Automatically connect to a cable and identify Boundary-Scan chain.

Note: The selection box also gives you the option to Enter a Boundary Scan Chain, which
enables you to then manually add devices to create chain. This option enables you to generate
an SVF/XSVF programming file, and is discussed in a later section in this chapter. Automatically
detecting and initializing the chain should be performed whenever possible.

138 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Using Boundary Scan Configuration Mode XX"JNX@

2. Click OK.

£ Welcome to iMPACT

Please select an action From khe list below
(®) Configure devices using Boundary-Scan (I1TAG)
Automatically connect o a cable and identify Boundary-Scan chain |+ |
) Prepare a PROM File
) Prepare a System &CE File
() Prepare a Boundary-Scan File
) Configure devices

using Slave Serial mode

Figure 7-3: Selecting automatic boundary scan from Wizard

iMPACT will pass data through the devices and automatically identify the size and
composition of the boundary scan chain. Any supported Xilinx device will be recognized
and labeled in iIMPACT. Any other device will be labeled as unknown. The software will

then highlight each device in the chain and prompt you to assign a configuration file or
BSDL file.

Note: If you were not prompted to select a configuration mode or automatic boundary scan mode,
right-click in the IMPACT window and select Initialize Chain. The software will identify the chain if the

connections to the board are working. Go to “Troubleshooting Boundary Scan Configuration” if you
are having problems.

ISE 11 In-Depth Tutorial www.xilinx.com 139
UG695 (v 11.2)

XX"JNX@ Chapter 7: iMPACT Tutorial

Assigning Configuration Files

After initializing a chain, the software prompts you for a configuration file (see Figure 7-4).
The configuration file is used to program the device. There are several types of
configuration files.

e A Bitstream file (*.bit, *.rbt, *.isc) is used to configure an FPGA.
» A JEDEC file (*.jed,*.isc) is used to configure a CPLD.
« A PROM file (*.mcs, .exo, .hex, or .tek) is used to configure a PROM.

When the software prompts you to select a configuration file for the first device

(XC3S700A):
1. Select the BIT file from your project working directory.
2. Click Open.

If the startup clock has not already been set to JtagClk, you will receive a warning stating
that the startup clock has been changed to JtagCIk.

3. When prompted to attach SPI or BPI PROMs to the device, select No.

£

DPE s D DEDXmammX: DO AN
IMPACT Flows «+08&F x

‘B8 Boundary Scan

B8 SlaveSerial

B8 Direct SPI

[=] swstemacE
E Create PROM File (PROM File Formatter)

xc3700a xcf0ds
bypass bypass

E_ Agsign New Configuration File

Look in: i@c:\xi\inxlll‘1\ISE\ISEaxampIes\wtut_ver Vi (2= B 1 J @ @

IMPACT Processes 4 D <

Awailable Operations are: =) g

) _xmsgs

1= ipcore_dir

13 planahead_run_1
1) templates

1) whut_ver_completed
15 whut_ver_xdb

1) st

= stopwatch_ccktemp.bit

Open -
File name: istnpwatch.hlt !
Console
PROGRESS END — End Oper| Bypass
pELE e s =N Fies of type: [all Design Files (.6t * rbE * rky * isc *bsd ~
s/ Tv% BATCH CHD : ide iles of bype: | esign Files (*.bit *.rbt *.nky *.isc * hsd) T

< |

Consale | Errors Warnings |

Figure 7-4: Selecting a Configuration File

4. When the software prompts you to select a configuration file for the second device
(XCF045S), select the MCS file from your project working directory.

5. Click Open.

Note: If a configuration file is not available, a Boundary Scan Description File (BSDL or BSD) file
can be applied instead. The BSDL file provides the software with the necessary Boundary Scan
information that allows a subset of the Boundary Scan Operations to be available for that device. To

140 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Using Boundary Scan Configuration Mode XX"JNX@

have ISE automatically select a BSDL file (for both Xilinx and non-Xilinx devices), select Bypass in
the Assign New Configuration File dialog box.

6. When the Device Programming Properties Dialog Box appears (see Figure 7-5). Select
the Verify option.

The Verify option enables the device to be readback and compared to the BIT file using
the MSK file that was created earlier.

7. Click OK to begin programming.

E= pevice Programming Properties - Device 2 Programming Properties

Category
= Boundary-Scan
Device 1 [FPGA, xc3s700a)

Device 2 [PROM, xcf04s) Property Name

Werify

General CPLD And PROM Properties

Erase Before Programming

Read Protect

FPROM/CoolRunner-l Usercode (8 Hex Digit)
PROM Specific Properties

Load FPGA

&

< <
.E.

0®

a

I OK] [Cancel l [Apply] [Help l

Figure 7-5: Device Programming Options

The options available in the Device Programming Properties dialog box vary based on the device you
have selected.

Saving the Project File

Once the chain has been fully described and configuration files are assigned, you should
save your iMPACT Project File (IPF) for later use. To do this, select File > Save Project As.
The Save As dialog box appears and you can browse and save your project file accordingly.
To restore the chain after reopening iMPACT, select File >Open Project and browse to the
IPF.

Note: Previous versions of ISE use Configuration Data Files (CDF). These files can still be opened
and used in IMPACT. iMPACT Project Files can also be exported to a CDF.

Editing Preferences

To edit the preferences for the Boundary Scan Configuration, select Edit > Preferences.
This selection opens the window shown in Figure 7-6. Click Help for a description of the
Preferences.

ISE 11 In-Depth Tutorial www.xilinx.com 141
UG695 (v 11.2)

::X"JNX® Chapter 7: iMPACT Tutorial

In this tutorial, keep the default values and click OK.

£ Preferences - iMPACT General Options

Category Set the general behavior of iMPACT,
[Comsole
=) WilinxUpdate General Settings
Proxy Settings
8 1PaCT [use IMPACT Main Wizard
Configuration Preferences ! m——
File Generation Controls ffles=ane LevelifDetailed g
Project Settings Controls [] validate BSCAM Chain After Loading Project of CDF File
< >
I [+]4 I [Cancel] [Apply] [Help

Figure 7-6: Edit Preferences

Performing Boundary Scan Operations

You can perform Boundary Scan operations on one device at a time. The available
Boundary Scan operations vary based on the device and the configuration file that was
applied to the device. To see a list of the available options, right-click on any device in the
chain. This brings up a window with all of the available options.

When you select a device and perform an operation on that device, all other devices in the
chain are automatically placed in BYPASS or HIGHZ, depending on your iMPACT
Preferences setting. (For more information about Preferences, see “Editing Preferences.”)

To perform an operation, right-click on a device and select one of the options. In this
section, you will retrieve the device ID and run the programming option to verify the first
device.

1. Right-click on the XC3S700A device.

142 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Using Boundary Scan Configuration Mode XX"JNX@

2. Select Get Device ID from the right-click menu.

£ ISE iMPACT - C:\Xilime\111 - IMSEMSEexamplesiwiut_veristopwatch.ipf - [Boundary Scan]

4 File Edit View Operations Output Debug SWindow Help

DPE XDEXuEnmX: DO FR
IMPACT Flows 08 x
‘B8 Boundary Scan TSFIBET
. z]
oa SlaveSerial | -t
B3 Direct SPI i E
[=] SystemacE ol Ly
|=] Create PROM File (PROM File Formatter) Fragram
Get (5]}
®ol Get Device Signature/Usercode
stopy
o0 one Skep SYF
One Skep XSWF
Add SPLJEPI Flash. ..
Assign Meww Configuration File. ..
Set Prograrming Properties. ..
Set Erase Properties, ..
Launch File Assignment Wizard
Set T: t Dievi
iMPACT Processes + 08 % Ll
Available Operations are:
=P Program
=P Get Device ID
= Get Device Signature/Usercode
= Check Ideode
=P Read Status Reqister
=P One Step SWF
= One Step XSYF
@ Boundary Scan
Console
'1': IDCODE is '00000010001000101000000010010011°"
'1': IDCODE is '0O2228093' (in hex) .
'1': : Manufacturer's ID = Hilinx xc3s700a, Version : 0O
< [l |
Consale | Errors || ‘Warnings |

Figure 7-7: Available Boundary Scan Operations for an XC3S700A Device

The software accesses the IDCODE for this Spartan-3 device. The result is displayed in the
log window (see Figure 7-8).

/{ *** BATCH CMD : ReadIdcode -p 1

Naximwn TCK operating frequency for this device chain: 0.
Validating chain...

Boundary-scan chain validated successfully.

'1': IDCODE is '00000010011000101000000010010011"

'1's IDCODE 1is '02628093' (in hex).

'1': ¢ Nanufacturer's ID =Xilinx xc33700a , Version : O

Figure 7-8: Log Window Showing Result of Get Device ID

3. Right-click on the XC3S700A device
4. Right-click on the xc3s700a device again and then click on Program.

The Programming operation begins and an operation status window displays. At the same
time, the log window reports all of the operations being performed.

ISE 11 In-Depth Tutorial www.xilinx.com 143
UG695 (v 11.2)

::X"JNX® Chapter 7: iMPACT Tutorial

When the Program operation completes, a large blue message appears showing that
programming was successful (see Figure 7-9). This message disappears after a couple of
seconds.

£ ISE iMPACT - C:Xilinxk11 IMSEMSEexamplestwiut_ver\stopwatch.ipf - [Boundary Scan]

G+ File Edit View Operations Output Debug Window Help -8 x
DPH$sbOxmnmX: 2O LR
iMPACT Flows +08 X
‘2] Boundary Scan
‘aal Slaveserial
‘52l Direct SP1

[2] SvstemacE
E Create PROM File (PROM File Formatter)

*3s700a xcflds
stopestch bit stopwatch! mes
T,

iMPACT Processes +08 X
Available Operations are:

= Program

=P Get Device ID

o Gek Device Signature/Usercode

= Check [deode

=) Read Status Register

= One Step SYF

=) One Step KSYF

Program Succeeded

@ Boundary Scan |
Console +0F X
'1': Programmed successfully. »~
PROGRESS_END - End Operation.
Elap=zed time = 1 =ec. =
Y
£ | ¥

T T T
Console | Errors | Warnings |

Configuration | | Platform Cable USE | | & MHz usb-hs

Figure 7-9: Programming Operation Complete

Your design has been programmed and has been verified. The board should now be
working and should allow you to start, stop and reset the runner’s stopwatch.

Troubleshooting Boundary Scan Configuration

Verifying Cable Connection

When an error occurs during a Boundary Scan operation, first verify that the cable
connection is established and that the software auto detect function is working. If a
connection is still not established after plugging the cable into the board and into your
machine, right-click in a blank portion of the iMPACT window and select either Cable
Auto Connect or Cable Setup. Cable Auto Connect will force the software to search every
port for a connection. Cable Setup enables you to select the cable and the port to which the
cable is connected.

144 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Troubleshooting Boundary Scan Configuration XX"JNX@

When a connection is found, the bottom of the iIMPACT window will display the type of
cable connected, the port attached to the cable, and the cable speed (see Figure 7-10).

| Configuration | Parallel I¥ | S MHz | LPT1

Figure 7-10: Cable Connection Successful

If a cable is connected to the system and the cable autodetection fails, refer to Xilinx
Answer Record #15742. Go to http://www.xilinx.com/support and search for “15742”.

Verifying Chain Setup

When an error occurs during a Boundary Scan operation, verify that the chain is set up
correctly and verify that the software can communicate with the devices. The easiest way
to do this is to initialize the chain. To do so, right-click in the iMPACT window and select
Initialize Chain. The software will identify the chain if the connections to the board are
working.

If the chain cannot be initialized, it is likely that the hardware is not set up correctly or the
cable is not properly connected. If the chain can be initialized, try performing simple
operations. For instance, try getting the Device ID of every device in the chain. If this can be
done, then the hardware is set up correctly and the cable is properly connected.

The debug chain can also be used to manually enter JTAG commands (see Figure 7-11).
This can be used for testing commands and verifying that the chain is set up correctly. To
use this feature, select Debug > Enable/Disable Debug Chain in iMPACT.

£, ISE IMPACT - C:\Xilima 1 .1\SEMSEexamplesiwiut_veristopwatch.ipf - [Boundary Scan]

‘_@ Fle Edit View Operations Output Debug ‘window Help 48R
NP EHGR XD TOAR
IMPACT Flows «+08x o’

- . LA
Right click device to select operations
- 53 Boundary Scan " BT

B Slavegerid | e m
B3I Direct SPI @(Run-Testidie . { Select-DR-Scan |- { SelectR-S 1
[2] systemace 9| ™ S e =

1 1

iMPACT Processes «08 X

a
Avaiable Operations are: — T
stapwstch kit shitDR_ X0) iR)

Ext1-DR - Ext-R_ -
To To
iMPACT Boundary Scan Chain Debug o008 x (Pause-DR)@ (Pause-IR)@
— I

1 1
e 0 EazDR) L ezR)
1 1
010+ Bl { Updaie:DR {_UpdateR
stopwatchl mos 1$ ‘ i 1l T
5o v oo ‘ J
Pulse TCK
Test Logic Reset
|4 2
B Boundary Scan
Console 08X
PROGRESS_END - End Operation. A
Elapsed time = 1 sec.
/¢ ®** BATCH CHD : badebug -start
v
< >

Console | Errors | Warnings

Configuration | Platform Cable USE |6 MHz ush-hs

Figure 7-11: Debug Chain

ISE 11 In-Depth Tutorial www.xilinx.com 145
UG695 (v 11.2)

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

XX"JNX@ Chapter 7: iMPACT Tutorial

For help using iMPACT Boundary-Scan Debug, use the iMPACT Help (accessible from
Help > Help Topics), or file a Web case at http://www.xilinx.com/support.

Creating an SVF File

This section is optional and assumes that you have followed the “Using Boundary Scan
Configuration Mode” section and have successfully programmed to a board. In this
section, all of the configuration information is written to the SVF file.

iIMPACT supports the creation of device programming files in three formats, SVF, XSVF,
and STAPL. If you are using third-party programming solutions, you may need to set up
your Boundary Scan chain manually and then create a device programming file. These
programming files contain both programming instructions and configuration data, and
they are used by ATE machines and embedded controllers to perform Boundary Scan
operations. A cable normally does not need to be connected because no operations are
being performed on devices.

Setting up Boundary Scan Chain

This section assumes that you are continuing from the previous sections of this chapter and
already have the chain detected. If not, skip to “Manual JTAG chain setup for SVF
generation” to define the chain manually.

JTAG chain setup for SVF generation
1. Select Output > SVF File > Create SVF File to indicate that you are creating a
programming file.

2. Enter getid in the File Name field of the Create a New SVF File dialog box and click
Save.

3. Aninformational message appears stating that all device operations will be directed to
the .svf file. Click OK.

Manual JTAG chain setup for SVF generation

For this tutorial, you may skip this section if you completed the “Using Boundary Scan
Configuration Mode.” section.

The Boundary-Scan chain can be manually created or modified as well. To do this,
1. Ensure that you are in Boundary Scan Mode (click the Boundary-Scan tab).
You can now add one device at a time.

2. Right-click on an empty space in the iIMPACT Boundary-Scan window and select Add
Xilinx Device or Add Non-Xilinx device.

An Add Device dialog box appears allowing you to select a configuration file.

3. Select st opwat ch. bi t and then click Open.

The device is added where the large cursor is positioned. To add a device between
existing devices, click on the line between them and then add the new device.

Repeat steps 2 and 3 to add the stopwatch.mcs file to the chain.

Note: The boundary scan chain that you manually create in the software must match the chain on
the board, even if you intend to program only some of the devices. All devices must be represented
in the IMPACT window.

146 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

Creating an SVF File

SUXILINX®

Writing to the SVF File

The process of writing to an SVF file is identical to performing Boundary Scan operations
with a cable. You simply right-click on a device and select an operation. Any number of
operations can be written to an SVF file.

In this section, you will be writing the device ID to the programming file for the first
device, and performing further instructions for the second device.

To write the device ID:

1. Right-click the first device (XC3S700A).
2. Select Get Device ID from the right-click menu.

xc3s Program
stopwwa -
DO Werify

Get Device SignaturefUsercode

Assign News Configuration File.. .
Set Programming Properties...
Set Erase Properties...

Figure 7-12: Selecting a Boundary Scan Operation

The instructions that are necessary to perform a Get Device ID operation are then
written to the file.

3. To see the results, select View > View SVF-STAPL File. Figure 7-13 shows what the

SVF file looks like after the Get Device ID operation is performed.

// Created using Xilinx iMPACT Software [ISE - 10.1]
// Date: Mon May 19 21:44:00 2008

TRST OFF:

ENDIR IDLE:

ENDDR IDLE:

STATE RESET:

STATE IDLE:

FREQUENCY 1E6 HZ:
o

TIER
HIR

HDE
TIR
HIR
HDR
TDR

O0O0O0O0OO0OO0DO0OO0OOO0OO

1
]

o ;

4 TDI (3££ff) SMASK (3£ff) :
TDI (00} SHASK (03) :

//Loading device with 'idcode' instruction.

SIR
SDR

HIER

&
3

TDI (09) SHASK (3f)

o :

]
o
L]
o :
o
o
o
o
1

4 TDI (3fff) SMASEKE (3£ff) :

2 TDI (00000D00D0) SHASK (f£Lffffff) TDO (£fZ628053) MASK (Ofbfffff) :

Figure 7-13: SVF File that Gets a Device ID from the First Device in the Chain

ISE 11 In-Depth Tutorial
UG695 (v 11.2)

www.xilinx.com

147

::X"JNX® Chapter 7: iMPACT Tutorial

To write further instructions to the SVF for the second device:

1. Right-click the second device (XCF02S).
2. Select Program from the right-click menu.

Veri
xc3s700a xcflds y
stoprwatch bit stopwatch2 mi Erase

0O Blank Check
Get Device ID
Get Device SignaturefUsercode

Assign New Configuration File. ..
Set Programming Properties...
Set Erase Properties...

Set Target Device

Figure 7-14: Available Boundary Scan Operations for a XCF04S Device

3. Click OK in the Programming Properties window.

The instructions and configuration data needed to program the second device are added to
the SVF file.

Stop Writing to the SVF

After all the desired operations have been performed, you must add an instruction to close
the file from further instructions. To stop writing to the programming file:

Select Output > SVF File > Stop Writing to SVF File.

To add other operations in the future, you can select Output > SVF File > Append to SVF
File, select the SVF file and click Save.

Playing back the SVF or XSVF file

To play back the SVF file that you created to verify the instructions, you will

* Manually create a new chain.

» Assign the SVF file to the chain by right clicking and selecting Add Xilinx Device and
selecting the SVF file in the search window.

e Right-click on the SVF file in the Boundary-Scan chain and select Execute XSVF/SVF.

Other Configuration Modes

Slave Serial Configuration Mode

Slave Serial Configuration mode allows you to program a single Xilinx device or a serial
chain of Xilinx devices. To use the Slave Serial Configuration Mode, double-click Slave
Serial in the Configuration Modes tab.

148 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

SUXILINX®

SelectMAP Configuration Mode

With iMPACT, SelectMAP Configuration mode allows you to program up to three Xilinx
devices. The devices are programmed one at a time and are selected by the assertion of the
correct CS pin. To use the SelectMAP Configuration Mode, double click SelectMAP in the

Configuration Modes tab. Only the MultiPRO cable can be used for SelectMAP
Configuration.

Note: These modes cannot be used with the Spartan-3 Starter Kit.

ISE 11 In-Depth Tutorial www.xilinx.com 149
UG695 (v 11.2)

::X"JNX® Chapter 7: iMPACT Tutorial

150 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

	ISE In-Depth Tutorial
	About This Tutorial
	About the In-Depth Tutorial
	Tutorial Contents
	Tutorial Flows
	HDL Design Flow
	Schematic Design Flow
	Implementation-only Flow

	Additional Resources

	Table of Contents
	Overview of ISE
	Overview of ISE
	Project Navigator Interface
	Design Panel
	Files Panel
	Libraries Panel
	Console Panel
	Errors Panel
	Warnings Panel
	Workspace
	Design Summary & Report Viewer

	Using Project Revision Management Features
	ISE Project File
	Making a Copy of a Project
	Using the Project Browser
	Using Project Archives

	HDL-Based Design
	Overview of HDL-Based Design
	Getting Started
	Required Software
	Optional Software Requirements
	VHDL or Verilog?
	Installing the Tutorial Project Files
	Starting the ISE Software
	Creating a New Project
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Adding Source Files
	Checking the Syntax
	Correcting HDL Errors
	Creating an HDL-Based Module
	Creating a CORE Generator Module
	Creating a DCM Module

	Synthesizing the Design
	Synthesizing the Design using XST
	Synthesizing the Design using Synplify/Synplify Pro
	Synthesizing the Design Using Precision Synthesis

	Schematic-Based Design
	Overview of Schematic-Based Design
	Getting Started
	Required Software
	Installing the Tutorial Project Files
	Starting the ISE Software
	Creating a New Project
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Opening the Schematic File in the Xilinx Schematic Editor
	Manipulating the Window View
	Creating a Schematic-Based Macro
	Defining the time_cnt Schematic
	Creating and Placing the time_cnt Symbol
	Creating a CORE Generator Module
	Creating a DCM Module
	Creating the dcm1 Symbol
	Creating an HDL-Based Module
	Creating Schematic Symbols for HDL modules
	Placing the statmach, timer_preset, dcm1 and debounce Symbols
	Changing Instance Names
	Hierarchy Push/Pop
	Specifying Device Inputs/Outputs
	Assigning Pin Locations
	Completing the Schematic

	Behavioral Simulation
	Overview of Behavioral Simulation Flow
	ModelSim Setup
	ModelSim PE and SE
	ModelSim Xilinx Edition

	ISim Setup
	Getting Started
	Required Files
	Xilinx Simulation Libraries

	Adding an HDL Test Bench
	Adding Tutorial Test Bench File

	Behavioral Simulation Using ModelSim
	Locating the Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Saving the Simulation

	Behavioral Simulation Using ISim
	Locating the Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Rerunning Simulation

	Design Implementation
	Overview of Design Implementation
	Getting Started
	Continuing from Design Entry
	Starting from Design Implementation

	Specifying Options
	Creating Timing Constraints
	Translating the Design
	Using the Constraints Editor
	Assigning I/O Locations Using PlanAhead
	Mapping the Design
	Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals with the 50/50 Rule
	Report Paths in Timing Constraints Option

	Placing and Routing the Design
	Using FPGA Editor to Verify the Place and Route
	Evaluating Post-Layout Timing
	Viewing the Post-Place & Route Static Timing Report
	Analyzing the Design using PlanAhead

	Creating Configuration Data
	Creating a PROM File with iMPACT

	Command Line Implementation

	Timing Simulation
	Overview of Timing Simulation Flow
	Getting Started
	Required Software
	Required Files
	Specifying a Simulator

	Timing Simulation Using ModelSim
	Specifying Simulation Process Properties
	Performing Simulation

	Timing Simulation Using Xilinx ISim
	Specifying Simulation Process Properties
	Performing Simulation

	iMPACT Tutorial
	Device Support
	Download Cable Support
	Parallel Cable IV
	Platform Cable USB
	MultiPRO Cable

	Configuration Mode Support
	Getting Started
	Generating the Configuration Files
	Connecting the Cable
	Starting the Software

	Creating a iMPACT New Project File
	Using Boundary Scan Configuration Mode
	Specifying Boundary Scan Configuration Mode
	Assigning Configuration Files
	Saving the Project File
	Editing Preferences
	Performing Boundary Scan Operations

	Troubleshooting Boundary Scan Configuration
	Verifying Cable Connection
	Verifying Chain Setup

	Creating an SVF File
	Setting up Boundary Scan Chain
	Writing to the SVF File
	Stop Writing to the SVF
	Playing back the SVF or XSVF file

	Other Configuration Modes
	Slave Serial Configuration Mode
	SelectMAP Configuration Mode

