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Abstract. Distance is widely used in most lazy classification systems. Rather than using distance, we make
use of the frequency of an instance’s subsets of features and the frequency-change rate of the subsets among
training classes to perform both knowledge discovery and classification. We name the system DeEPs. Whenever
an instance is considered, DeEPs can efficiently discover those patterns contained in the instance which sharply
differentiate the training classes from one to another. DeEPs can also predict a class label for the instance by
compactly summarizing the frequencies of the discovered patterns based on a view to collectively maximize the
discriminating power of the patterns. Many experimental results are used to evaluate the system, showing that the
patterns are comprehensible and that DeEPs is accurate and scalable.
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1. Introduction

Lazy learning (Aha, 1997), as exemplified by k-nearest neighbor (k-NN) (Cover & Hart,
1967), is an extensively and thoroughly studied topic in the machine learning field (Aha,
Kibler, & Albert, 1991; Dasarathy, 1991; Salzberg, 1991; Zhang, 1992; Langley & Iba
1993; Wettscherech, 1994; Datta & Kibler 1995, 1997; Wettschereck & Dietterich, 1995;
Devroye, Gyorfi, & Lugosi, 1996; Domingos, 1996; Wilson & Martinez, 1997, 2002; Keung
& Lam, 2000; Kubat & Cooperson, 2000). The intuition behind the k-NN classifier is that
the class of a test instance is most likely to be the prevailing class among the k nearest

∗Parts of the results presented in this paper appear in the Proceedings of the Fourth European Conference on
Principles and Practice of Knowledge Discovery in Databases, Lyon, France, 2000, and the Proceedings of the
Fifth Pacific-Asia Conference On Knowledge Discovery and Data Mining, Hong Kong, 2001.
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training instances (examples) of the test instance according to some distance measure.
The most common characteristic of the k-NN classifiers is that they always locate “raw”
training instances or their prototypes in the whole training set without any extraction of high
level patterns or rules. Such a classification that is based solely on a distance measure is
insufficient for sophisticated applications, like cell type classification and patients diagnosis
(Li & Wong, 2002), where comprehensible knowledge patterns and rules are needed for
explaining prediction outcome.

This paper considers lazy learning from a new direction. Instead of focusing on distance,
we are interested in regular patterns contained in an instance which frequently occur in one
class of training data but less frequently, perhaps even not occurring at all, in the other
classes of training data. Note that we define here an instance as a set of attribute-value pairs.
Those patterns satisfying the above frequency-change requirement are generally called
Emerging Patterns (EPs) (Dong & Li, 1999; Li, 2001). We name our system DeEPs.1 This
new lazy learning and classification approach goes beyond distance to take into account
pattern frequency and makes use of the change ratio of frequency.

The number of subsets of a test instance is exponential in terms of the number of attributes
describing the instance. Suppose a training data set consists of two classes of instances, the
naive enumeration of all subsets of a test instance, and the calculation and comparison of
their frequency in the two classes is very expensive.

We attack this problem with an effective data reduction method. Whenever a new instance
is being considered, the method uses that instance as a filter to remove irrelevant training
values, making the original training data table sparse in terms of both dimension (number
of attributes) and volume (number of instances). The reduced training instances are further
compressed along the volume direction by selecting only those maximal ones. After this
remarkable reduction, the discovery of our interesting patterns becomes much less expensive
than operating on the whole original training data as valid candidate subsets of the considered
instance have already been identified in the reduction process. This is a fundamental idea
of our DeEPs system.

According to our previous experiments, using an eager learning approach to discover
all EPs from training data is time consuming. Sometimes, it is impossible to complete
the learning phase. As a significant data reduction can be achieved, we choose to use the
proposed lazy learning approach.

Specifically, three main issues are investigated in this work:

1. Efficient instance-based discovery. Given an instance (either training or test), we discover
the subsets of the instance which most frequently occur in one class of the training data, but
do not occur in the other classes, namely with a frequency-change ratio of infinity. Being
most frequently means the patterns are minimal (or most general) in the set-containment
sense among all patterns having the infinity rate. As will be seen, such patterns are
boundary elements of some pattern spaces, and they can be efficiently discovered by
our border-based algorithms. By focusing on the most frequent EPs, the EPs which are
proper supersets of the boundary EPs (and have lower frequencies) can be ignored. Then
the complexity of our system is much simplified.

2. Ranking the discovered patterns. In some situations, the number of the discovered bound-
ary patterns is large. To help assess the importance of the individual patterns, we rank
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them according to some interestingness measurements such as the pattern’s frequency,
length, and frequency-change ratio.

3. Aggregating the frequencies of the patterns to predict the class label for test instances.
The usefulness of the patterns is a primary motivation of this work. To show the useful-
ness, we apply our patterns to many classification problems. Basically, the classification
is performed by comparing aggregated frequencies of the discovered patterns in different
classes.

Good solutions to the problems in the first issue can quickly provide comparative and
discriminating knowledge for us to understand a new instance. For example, to diagnose a
new heart disease patient, medical doctors would like to know what physical and clinical
features, of this patient, or their combinations could best match other patients and best
differentiate this patient from healthy people. The patterns that the doctors would need
were exactly those we discussed in the first issue.

Top-ranked patterns in different orderings of the patterns, as addressed in the second issue,
can help us thoroughly understand an instance from different angles. Reliable and accurate
predictions by a classification system is an important factor in evaluating the system. Accord-
ing to our experimental results on 40 data sets (Blake & Murphy, 1998), DeEPs is accurate.
Its performance is comparable to and often better than classifiers such as k-NN and C5.0
(Quinlan, 1993). DeEPs can handle both continuous and discrete attributes and is scalable
over the number of training instances. Due to the lazy-learning scheme, DeEPs is extremely
useful for practical applications where the training data must be frequently updated.

The remainder of this paper is organized as follows: Section 2 outlines the basic ideas
and essential features of the DeEPs approach. Section 3 presents detailed steps for instance-
based pattern discovery, including an explanation on how the discovered EPs are concisely
represented by borders, and why instance-based discovery is highly efficient. Section 4
describes how DeEPs can predict a class label of a test instance by using summarized
frequencies of the discovered patterns. Sections 5 describes an example to illustrate the en-
tire process of DeEPs. Section 6 describes the algorithms JEPPRODUCER and BORDER-DIFF

which are used by DeEPs. Section 7 presents methods to rank the discovered patterns, as
human users might want to examine ordered patterns according to some bias. Section 8
provides thorough experimental results on the accuracy, speed, and scalability of DeEPs.
Section 9 combines the strength of pattern frequency and distance for instance-based classi-
fication. Section 10 discusses some interesting topics related to the current work. Section 11
concludes this paper with a brief summary.

2. Overview of DeEPs

Firstly, we again stress that this paper defines an instance as a set of attribute-value pairs
with a cardinality equal to the number of attributes describing the underlying relational
data. Next, we specify a definition of emerging patterns.2

Definition 2.1. Given two data sets D1 and D2, an emerging pattern is an itemset (a set of
attribute-value pairs) whose frequency-change ratio either from D1 to D2 or from D2 to D1

is infinite.
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Table 1. Weather conditions and Saturday morning activity.

Class P (suitable for activity) Class N (not suitable)

outlook temperature humidity windy outlook temperature humidity windy

overcast hot high false sunny hot high false

rain mild high false sunny hot high true

rain cool normal false rain cool normal true

overcast cool normal true sunny mild high false

sunny cool normal false rain mild high true

rain mild normal false

sunny mild normal true

overcast mild high true

overcast hot normal false

Note that a pattern X ’s frequency-change rate from D1 to D2 is freq2(X ) (its frequency
in D2) divided by freq1(X ). It is infinite if freq2(X ) > 0, but freq1(X ) = 0.

Next we present an example (Li, Dong, & Ramamohanarao, 2000) to briefly illustrate
the basic ideas of DeEPs and the data reduction techniques used in DeEPs.

Example 2.2. Table 1 (Quinlan, 1986) contains a training data set for predicting if the
weather is good for some “Saturday morning” activity. The instances, each described by
four attributes, are divided into two classes: class P and class N .

Consider an instance T = {sunny, mild, high, true}.3 How does DeEPs predict its class
label? First of all, DeEPs calculates the frequency (in both classes) of the proper sub-
sets of T . We organize the proper subsets of T and their frequencies into three
groups:

1. those that only occur in Class N but not in Class P:

Subset of T Frequency in class P (freqP ) freqN (%)

{sunny, high} 0 60

{sunny, mild, high} 0 20

{sunny, high, true} 0 20

2. those that only occur in Class P but not in Class N :

Subset of T freqP freqN

{sunny, mild, true} 11% 0
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3. those that occur in both classes:

Subset of T freqP (%) freqN (%)

∅ 100 100

{mild} 44 40

{sunny} 22 60

{high} 33 80

{true} 33 60

{sunny, mild} 11 20

Subset of T freqP (%) freqN (%)

{mild, high} 22 40

{sunny, true} 11 20

{high, true} 11 40

{mild, true} 11 20

{mild, high, true} 11 20

Intuitively, we have three main classification arguments:

1. The first group of subsets—which are indeed emerging patterns of Class N as they do
not appear in Class P—favors the prediction that T should be classified as Class N .

2. However, the second group of subsets gives us a contrasting indication that T should be
classified as Class P , though this indication is not as strong as that of the first group.

3. The third group also strongly suggests that we should favor Class N as T ’s label, though
the pattern {mild} contradicts this slightly.

Viewing these EPs in a collective manner, not separately, DeEPs decides that T ’s label is
Class N since the “aggregation” of EPs occurring in Class N is much stronger than that in
Class P .

Normally, an instance may contain tens or hundreds attributes. To examine all the sub-
sets and to discover relevant EPs contained in such instances by naive enumeration is too
expensive. DeEPs is made efficient and scalable for high dimensional data by the following
data reduction, concise pattern representation, and important pattern selection techniques.

• Training data sets are reduced firstly by removing those values that do not occur in the test
instance being considered, resulting in sparse training instances. Secondly, the maximal
ones are selected from the processed training instances,4 leading to a significant reduction
of the volume of the original training data. Using these ideas, the original training data
tables can be transformed to be much sparser in both horizontal and vertical directions.

• Borders (Dong & Li, 1999; Li, Ramamohanarao, & Dong, 2000; Li, 2001), which are two-
bound structures of the form 〈L,R〉, are used to succinctly represent all EPs contained in
an instance without the heavy computation of enumerating all the subsets. Importantly, the
borders are derived from the reduced training data sets. This concise pattern representation
technique greatly saves the cost of DeEPs.

• Boundary EPs, namely those EPs covered by left bounds Ls, are considered in DeEPs’
classification. This is because boundary EPs maximally differentiate EPs and non-EPs.
The selection also significantly reduces the number of EPs that are used in the classifica-
tion. For example, the number of boundary EPs used in the mushroom data set is around
81, which is much smaller than the millions of EPs contained in the training data.
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Table 2. Reduced training data after removing values which are irrelevant to the instance {sunny, mild, high,
true}. A “–” indicates that an item is discarded. There are only two maximal itemsets in the Reduced Class P .
They are {sunny, mild, true} and {mild, high, true}. And only 3 maximal itemsets are in the Reduced Class N .

Reduced class P Reduced class N

outlook temperature humidity windy outlook temperature humidity windy

– – high – sunny – high –

– mild high – sunny – high true

– – – – – – – true

– – – true sunny mild high –

sunny – – – – mild high true

– mild – –

sunny mild – true

– mild high true

– – – –

Detailed discussions and illustrations of these ideas are presented in the subsequent
sections. Table 2 illustrates the first stage of the sparsifying effect on both the volume and
dimension of DP and DN after the removal of all values that do not occur in T . Observe
that the transformed DP and DN are sparse, whereas the original DP and DN are dense
since there is a value for each attribute of any instance. In Sections 3 and 6, we formally
discuss how to select the maximal itemsets from the reduced training instances and how to
utilize the reduced training data with the use of borders to gain more efficiency. That is the
second stage of the sparsifying effect.

Since EPs usually have very low frequency, they are not suitable to be used individually for
classification. We present the compact summation method to aggregate the discriminating
power contributed by all selected EPs to form classification scores. Interestingly, the compact
summation method avoids duplicate contribution of training instances.

3. Instance-based pattern discovery

We provide in this section detailed steps to discover important EPs contained in par-
ticular instances. Borders (Dong & Li, 1999; Li, Ramamohanarao, & Dong, 2000; Li,
2001) are used to concisely represent all EPs. The border representation and its associated
algorithms

• can avoid enumerating the whole collection of the subsets of an instance in the discovery
process, and

• can avoid the enumeration of all patterns in the output.

More importantly, the two bounds themselves are precisely the EPs we are most interested
in.
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Definition 3.1. A border, denoted 〈L,R〉, is defined as an ordered pair of two bounds L
and R such that L and R are two anti-chains5 satisfying

• ∀X ∈ L, ∃Y ∈ R such that X ⊆ Y ,
• ∀Y ∈ R, ∃X ∈ L such that Y ⊇ X .

In this work, bounds are sets of itemsets. Semantically, the border 〈L,R〉 represents a
collection which consists of patterns (itemsets) Z satisfying X ⊆ Z ⊆ Y for any X ∈ L
and any Y ∈ R. This collection is denoted [L,R] (Dong & Li, 1999; Li, 2001).

For example, the border 〈{{a}, {b}}, {{a, b, c}, {b, c, d}}〉 represents the collection {{a},
{b}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {b, c, d}}. We also say that the latter can
be concisely represented by the former.

3.1. Three steps in the discovery

Assume a classification problem has a setDp = {P1, . . . , Pm} of positive training instances,
a set Dn = {N1, . . . , Nn} of negative training instances, and a set of test instances.

Consider a fixed test instance T . DeEPs uses the steps below to discover two borders
representing two special sub-collections of the subsets of T ; those subsets are required to
satisfy the definition of emerging patterns with respect to Dp and Dn .

1. Take the intersection of each training instance with T , namely T ∩ P1, . . . , T ∩ Pm and
T ∩ N1, . . . , T ∩ Nn . This operation is equivalent to the removal of irrelevant training
values. We will discuss later how to conduct this intersection operation when continuous
attributes are present.

2. Select the maximal itemsets from {T ∩ P1, . . . , T ∩ Pm}, and similarly from {T ∩
N1, . . . , T ∩ Nn}. Denote the former collection of maximal itemsets as max Rp and the
latter as max Rn .

3. Discover two EP borders: (i) Discover a border which represents those subsets of T which
occur in Dp but not in Dn , by taking the border difference operation [{∅}, max Rp] −
[{∅}, max Rn]; (ii) On the other hand, to discover a border which represents those subsets
of T which occur in Dn but not in Dp class, by similarly taking another border difference
operation [{∅}, max Rn] − [{∅}, max Rp].

Observe that, by intersecting the training data with T , all zero-frequency subsets of T
are removed from the training data. By selecting the maximal itemsets, the completeness
of all non-zero-frequency subsets of T is retained. By conducting the difference operation,
the boundary EPs contained in T can be derived.

3.2. Important knowledge: The two borders

Step 3 above is used to efficiently discover the two borders. Observe that the compressed
training data 〈{∅}, max Rp〉 or 〈{∅}, max Rn〉 can still represent large collections of sets,
despite the previous tremendous reduction. To enumerate all itemsets covered by 〈{∅},
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max Rp〉 or 〈{∅}, max Rn〉 and to conduct the difference operation naively on them is
costly. DeEPs uses the efficient JEPPRODUCER algorithm (Li, Dong, & Ramamohanarao,
2000; Li, Ramamohanarao, & Dong, 2000; Li, 2001) to conduct the border difference
operation

[{∅}, max Rp] − [{∅}, max Rn]

and

[{∅}, max Rn] − [{∅}, max Rp].

The algorithm only manipulates elements in the bounds max Rp and max Rn without
the enumeration of [{∅}, max Rp] and [{∅}, max Rn]. The algorithm produces a border

〈epLp, epRp〉 and, respectively, 〈epLn, epRn〉

as a succinct representation of all the EPs.
The JEPPRODUCER (Li, Dong, & Ramamohanarao, 2000; Li, Ramamohanarao, & Dong,

2000; Li, 2001) will be briefly reviewed in Section 6.

3.3. Comprehensibility of the borders

Suppose T = {a, b, c, d, e, f, g, h} and

〈epLp, epRp〉 = 〈{{a, b}, {c, d}}, {{a, b, c, d}}〉
〈epLn, epRn〉 = 〈{{e}, { f, g, h}}, {{c, d, e}, {e, f, g, h}}〉.

Taking a pattern, for example {a, b}, in the left bound of the border 〈epLp, epRp〉, we know
that

• {a, b} occurs most frequently in the positive data but never occur in the negative data.
• The pattern {a} or {b} may have larger frequency than their parent {a, b} in the positive

data, but {a} or {b} definitely occur in the negative data as well.

The left boundary elements in 〈epLn, epRn〉 can be understood in a symmetrical manner
with respect to the positive and negative data.

The right boundary elements in the above borders are always the most specific subsets
of T which occur in one class but not the other.

A special border 〈∅, ∅〉 is used to represent an empty collection. We have occasionally
seen the case of epLp = epRp = ∅ in our experiments. This happens only when two or
more identical instances of a considered test instance exist in both positive and negative
training data. Such a training set is obviously not clean.

Note that the patterns covered by 〈epLp, epRp〉 and 〈epLn, epRn〉 are significantly
different from patterns covered by a version space (Mitchell, 1977, 1982; Hirsh, 1994) where
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each pattern must have a 100% frequency in the positive data. Our patterns relax this strict
constraint by considering the most occurrence (not the full completeness). Conceptually,
our patterns are very similar to patterns covered by a disjunctive version space (Sebag,
1996). However, no patterns like ours are explicitly derived in the work of Sebag (1996).

3.4. The efficiency of the data reduction process

With the intersection operation in step 1, the dimension of the training data is substan-
tially reduced, as many values from the original training data do not occur in the test
instance T . Secondly, with the maximal itemset selection step, the volume of the training
data is also substantially reduced since itemsets T ∩ Pi are frequently contained in some
other itemsets T ∩ Pj . Then, max Rp can be viewed as a compressed Dp, and max Rn a
compressed Dn .

We use the mushroom data set to demonstrate this point.6 The original mushroom data
has a volume of 3788 edible training instances, with 22 attributes per instance. The aver-
age number of items (or length) of the 3788 processed instances (by intersection with a
test instance) is 11, and those processed instances are further compressed into 7 maximal
itemsets. Thus there is a reduction in volume from 3788 to 7, and a reduction in dimension
from 22 to 11. See Table 3 for more details. We can see this reduction effect from another
example previously shown in Table 2 which is about weather conditions data.

3.5. Neighborhood-based intersection for discretizing continuous attributes

Suppose attri A is a continuous attribute and its domain is [0, 1]. All attri A values in
the training instances can be normalized into the range of [0, 1] if its domain is not [0, 1];
and all testing values can be scaled down or up similarly. In this work, we use the formula

x−min
max−min to scale every value x of any attribute attri A, where max and min are respectively
the largest and smallest values of attri A in the training data.

Given a training instance S, T ∩ S will contain the attri A value of T , if the attri A
value of S is in the neighborhood

[x1 − α, x1 + α],

where x1 is the normalized attri A value for T . The parameter α is called the neighborhood
factor, which can be used to adjust the length of the neighborhood. Usually, we set it as

Table 3. Data reduction in the mushroom data set after intersecting with an instance.

Volume

Mushroom data Poisonous Edible Dimension

Original 3525 3788 22

After reduction 9 7 11
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Table 4. The original training data are transformed into binary transaction data after removing values which are
irrelevant to a test instance T = {square, 0.30, 0.25}. A chosen neighborhood of 0.30 is [0.28, 0.32] and a chosen
neighborhood of 0.25 is [0.23, 0.27].

Original training data Binary data

Circle 0.31 0.24 → 0 1 1

Square 0.80 0.70 → 1 0 0

Diamond 0.48 0.12 → 0 0 0

T = {square, 0.30, 0.25}.

0.12. We use Table 4 to demonstrate how DeEPs deals with both categorical and continuous
attributes and how it transforms the intersected data into binary transaction data, when a
test instance is given.

4. Classification by DeEPs

The discovered boundary EPs not only provide differentiating knowledge for us to under-
stand the instance T , but can also be used to classify T if it is a test instance. In this section,
we describe how to make use of the frequencies of the boundary EPs to predict a class label
for a test instance.

Note that 〈epLp, epRp〉 and 〈epLn, epRn〉 represent two non-overlapping sub-
collections of the whole subsets of the instance T . The patterns in the first sub-collection
occur in the positive class only; particularly, the patterns in epLp occur in the positive class
most frequently. Similarly, the patterns covered by epLn occur in the negative class only and
most frequently. It is apparent that the patterns in the first sub-collection favor the prediction
of T as positive class, but the patterns in the second sub-collection favor the prediction as
negative class. As sometimes the two borders can represent a very large number of EPs (of
the order of 106 in mushroom, waveform, ionosphere, and sonar data), we select important
representatives (Li, Dong, & Ramamohanarao, 2001; Li, Ramamohanarao, & Dong, 2000)
and collectively compare their frequencies to make a prediction.

We select the boundary EPs covered in epLp and epLn as representative EPs. The ideas
of this selection include: (i) The left boundary elements always have larger frequency than
their supersets; and (ii) the proper subsets of those left boundary elements are no longer
EPs.

4.1. Determining collective scores for classification

After selecting the boundary EPs, DeEPs proceeds to calculate classification scores based on
the frequencies of the EPs. The collective score of T for any specific class C (positive class,
negative class, or other classes where a database contains over two classes) is calculated
by aggregating the frequencies of the selected EPs in class C . The aggregation of the
frequencies of the individual EPs is performed by the compact summation method.
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Definition 4.1. The compact summation of the frequencies in DC of a collection of EPs
is defined as the percentage of instances in DC that contain one or more of the EPs; this
percentage is called the compact score of T for class C , that is,

compactScore(C) = countDC (SEP)

|DC |
where SEP is the collection of EPs and countDC (SEP) is the number of instances in DC that
contain one or more EPs in SEP.

The purpose of this aggregation is to avoid counting duplicate contribution of training
instances. Suppose the selected EPs are {e1, . . . , e4} and DC = {X1, X2, . . . , Xn}, and
assume X1 contains e1, e2, and e3. Then, the instance X1 is counted three times if the
frequency values of e1, e2, and e3 are linearly added together. However, X1 is only counted
once by the method of compact summation.

DeEPs makes its final decision only after the compact scores, formed by compact sum-
mation, for all classes are calculated. DeEPs simply assigns to T the class where T obtains
the largest score. A majority rule is used to break ties.

4.2. Handling data containing more than two classes

We briefly describe how DeEPs can be extended to handle more classes. Suppose a database
containing 3 classes of training instances D1, D2, and D3. Similar to the discussion above,
DeEPs discovers the borders of the EPs with respect to D′

1 and (D′
2 ∪D′

3), those with respect
to D′

2 and (D′
1 ∪D′

3), and those with respect to D′
3 and (D′

1 ∪D′
2). Here D′

1, D′
2, and D′

3 are
respectively the reduced D1, D2, and D3 after their intersection with T . The compact scores
for the three classes are then calculated based on three groups of the left boundary EPs. The
classifier chooses the class where the largest compact score is obtained as T ’s class label.

5. An illustrating example

So far, we have described how DeEPs uses data reduction, border representation, and the
EP selection idea to efficiently conduct a knowledge discovery and classification task.
We continue with the weather conditions data set described in Example 2.2 to show the
whole process that DeEPs takes. The borders involved in this example can be derived by
the algorithms discussed in the next section. We emphasize that the work flow below is
significantly different from the one discussed in Example 2.2 where DeEPs had taken a
naive approach.

1. Border representations of the EPs.

EPs in DN : bordern = 〈{{s, high}}, {{s, m, high}, {s, high, t}}〉;
EPs in DP : borderp = 〈{{s, m, t}}, {{s, m, t}}〉.

Observe that the two borders correspond to the first two subset groups in Example 2.2.
Here, s, m, t are short for sunny, mild, and true respectively.
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2. Selection of the boundary EPs. DeEPs selects the left bound of bordern , i.e., {{s, high}},
and the left bound of borderp, i.e., {{s, m, t}} for class N and class P respectively in
classification.

3. Calculation of scores by compaction summation and classification.

compactScore(ClassN ) = 3

5
= 0.6

compactScore(ClassP) = 1

9
= 0.11

Finally, DeEPs assigns class N as T ’s label because the score based on the collection of
the selected EPs of DN is larger than that of DP . This is the same prediction as made by
the naive DeEPs in Section 2.

6. Border-based algorithms for DeEPs

Recall that the first step of the discovery phase of DeEPs is the intersection of Dp with
T and the intersection of Dn . Following that, two reduced training data sets are obtained.
We denote them as D′

p and D′
n . Subsequently, DeEPs finds the maximal elements from D′

p
and from D′

n . Then the border difference operation, conducted by our backbone algorithm
JEPPRODUCER (Li, Dong, & Ramamohanarao, 2001; Li, Ramamohanarao, & Dong, 2000;
Li, 2001), is used to derive the two borders 〈epLp, epRp〉 and 〈epLn, epRn〉.

Next, we describe how JEPPRODUCER is used to conduct the border difference, for exam-
ple, [{∅}, max Rp]− [{∅}, max Rn]. Denote max Rp = {A1, A2, . . . , Ak1} and max Rn =
{B1, B2, . . . , Bk2}. A pseudo code of the algorithm is:

JEPPRODUCER(〈{∅}, {A1, . . . , Ak1}〉, 〈{∅}, {B1, . . . , Bk2}〉)
;; return 〈L,R〉 such that [L,R] = [{∅}, {A1, . . . , Ak1}] − [{∅}, {B1, . . . , Bk2}]
1) L ← {}; R ← {};
2) for j from 1 to k1 do
3) if some Bki is a superset of A j then continue;
4) border = BORDER-DIFF(〈{∅}, {A j }〉, 〈{∅}, {B1, . . . , Bk2}〉);
5) R = R ∪ the right bound of border;
6) L = L ∪ the left bound of border;
7) return 〈L,R〉;

The subroutine BORDER-DIFF (Dong & Li, 1999; Li, 2001) is called multiple times in the
algorithm. A pseudo code of BORDER-DIFF is given as follows:

BORDER-DIFF(〈{∅}, {U }〉, 〈{∅}, {S1, S2, . . . , Sk}〉)
;; return border of [{∅}, {U }] − [{∅}, {S1, S2, . . . , Sk}]
1) initialize L to {{x} | x ∈ U − S1};
2) for i = 2 to k do
3) L ← {X ∪ {x} | X ∈ L, x ∈ U − Si };
4) remove all Y in L that are not minimal;
5) return 〈L, {U }〉;
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As both BORDER-DIFF and JEPPRODUCER operate on the boundary elements of borders,
the algorithms are very efficient according to our extensive experimental results. For the
proof of the algorithms and more detailed description of the experimental results, the readers
are referred to Dong and Li (1999), Li, Ramamohanarao, and Dong (2000), and Li (2001).

7. Ranking the discovered patterns

Our DeEPs system has two aspects of roles: One is to provide EPs represented by borders,
the other is to predict a class label for previously unseen instances. Those boundary EPs
in epLp and epLn have been shown to be very important in DeEPs. Note that the size
of epLp or epLn can be large. Especially when mining a large database, the number of
patterns contained in epLp and epLn can easily exceed the capabilities of a human user to
go through the bounds and identify the most important patterns. Simply listing the patterns is
not sufficient to examine the importance of the individual patterns, and manually examining
a large number of patterns may miss important ones.

This section presents two ranking methods to order the patterns contained in epLp or
epLn .

1. Frequency-based ranking. Frequency reflects the occurrence of a pattern in a data set.
Usually, the larger the frequency of an EP is, the more important the EP is. We rank the
patterns in epLp (and epLn) in a descending order with respect to their frequency. By
examining the top-ranked ones in this order, human users would know which subsets of
a considered instance have a sharply changing frequency from one class of training data
to the other training data.

2. Length-based ranking. The length of a pattern shows the similarity between the pattern
and the raw training instances. With more items matched, the pattern becomes more
similar to a training instance. Prior to presenting the patterns to human users, the patterns
can be sorted into a descending order with respect to the patterns’ length. Therefore, the
users can easily get the longest pattern whose frequency maximally differs in the two
classes of training data.

Another interesting problem is to rank EPs with finite frequency-change rate. Recall
that all patterns in epLp and epLn have the same frequency-change rate of the infinity.
However, the frequency-change rate of the proper subsets of boundary EPs is finite and
various. A descending order ranked according to frequency-change rate can provide users
those patterns whose frequency changes with the largest finite degree.

Sometimes, patterns with finite changing degree are more interesting than those with the
infinite degree. Suppose a pattern X have freqp(X ) = 5% and freqn(X ) = 0%, another
pattern Y have freqp(Y ) = 50% and freqn(Y ) = 0.1%. So, the pattern X has a frequency-
change rate of the infinity while the pattern Y has a rate of 500. Obviously, the pattern Y is
more interesting than X as the former has a much larger coverage in the positive data than
the latter, and both of them have no or almost no occurrence in the negative data.

Ranking discovered patterns is an intensively studied topic in data mining, the readers
are referred to Klemettinen et al. (1994), Silberschatz and Tuzhilin (1996), Dong and Li
(1998), Padmanabhan and Tuzhilin (1998), Bayardo and Agrawal (1999), Sahar (1999), and
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Hilderman and Hamilton (2001) for other subjective and objective measurements originated
in information theory, statistics, ecology, and economics.

8. Performance evaluation: Accuracy, speed, and scalability

We report in this section the performance of our method in comparison to the performance
of k-NN and C5.0. We used 40 data sets, taken from the UCI Machine Learning Repository
(Blake & Murphy, 1998), for experimental evaluation. For each dataset-algorithm combi-
nation, the test accuracies were measured by a ten-fold stratified cross validation (CV-10).
Each of the exclusive ten-fold test instances were randomly selected from the original data
sets. The same splits of the data were used for all the three classification algorithms. These
experiments were carried out on a 500 MHz PentiumIII PC, with 512 M bytes of RAM.

8.1. Accuracy

DeEPs is first compared with k-nearest neighbor. In this work, k is set as 3. Empirically,
other values for k were not reported to produce better accuracy results. Then, DeEPs is
compared with C5.0 [Release 1.12], a commercial version of C4.5 (Quinlan, 1993). The
experimental results are summarized in Table 5.

The data sets are listed in Column 1 of Table 5, and their properties in Column 2.
Columns 3 and 4 show the CV-10 average accuracy of DeEPs, when the neighborhood
factor α is fixed as 0.12 for all data sets, and respectively when different α is selected for the
data sets. (This will be explained in Section 8.2). Note that for data sets such as chess, flare,
splice, mushroom, voting, soybean-l, t-t-t, and zoo which do not contain any continuous
attributes, DeEPs does not require an α. The accuracies of k-nearest neighbor and C5.0 are
listed respectively in Columns 5 and 6. Columns 7 and 8 respectively show the average time
used by DeEPs and k-nearest neighbor to test one instance.

We next discuss the case when the neighborhood factor is fixed as 0.12 for all the data
sets. For the mushroom data set, DeEPs, k-NN, and C5.0 all can achieve 100% testing
accuracy. For the remaining data sets, we highlight some interesting points.

1. DeEPs versus k-NN.

• Both DeEPs and k-NN perform equally accurately on soybean-small (100%) and on
iris (96%).

• DeEPs wins on 26 data sets; k-NN wins on 11. that of k-NN.
• The speed of DeEPs is about 1.5 times slower than that of k-NN. The main reason is

that DeEPs needs to conduct the border operations.

2. DeEPs versus C5.0.

• DeEPs wins on 25 data sets; C5.0 wins on 14.
• DeEPs is slower than C5.0. However, DeEPs takes an instance-based learning strategy.

3. DeEPs, k-NN, and C5.0.

• DeEPs wins on 20 data sets; k-NN wins on 7; C5.0 wins on 14. (DeEPs and k-NN
reach a draw on soybean-s and iris.)
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Table 5. Accuracy of DeEPs in comparison to those of k-nearest neighbor and C5.0.

DeEPs

Data sets
inst, attri
classes α = 0.12 Dynamical α

k-NN
k = 3 C5.0

Time (s.)
DeEPs

Time (s.)
k-NN

Australia 690, 14, 2 84.78 88.41∗ (.05) 66.69 85.94 0.054 0.036

Breast-w 699, 10, 2 96.42 96.42 (.12) 96.85 95.43 0.055 0.036

Census 30162, 16, 2 85.93 85.93∗ (.12) 75.12 85.80 2.081 1.441

Chess 3196, 36, 2 97.81 97.81 96.75 99.45 0.472 0.145

Cleve 303, 13, 2 81.17 84.21∗ (.15) 62.64 77.16 0.032 0.019

Diabete 768, 8, 2 76.82 76.82∗ (.12) 69.14 73.03 0.051 0.039

Flare 1066, 10, 2 83.50 83.50 81.62 82.74 0.028 0.016

German 1000, 20, 2 74.40 74.40 (.12) 63.1 71.3 0.207 0.061

Heart 270, 13, 2 81.11 82.22 (.15) 64.07 77.06 0.025 0.013

Hepatitis 155, 19, 2 81.18 82.52 (.11) 70.29 74.70 0.018 0.011

Letter-r 20000, 16, 26 93.60 93.60∗ (.12) 95.58 88.06 3.267 1.730

Lymph 148, 18, 4 75.42 75.42 (.10) 74.79 74.86 0.019 0.010

Pima 768, 8, 2 76.82 77.08∗ (.14) 69.14 73.03 0.051 0.038

Satimage 6435, 36, 6 88.47 88.47∗ (.12) 91.11 86.74 2.821 1.259

Segment 2310, 19, 7 94.98 95.97∗ (.05) 95.58 97.28 0.382 0.365

Shuttle-s 5800, 9, 7 97.02 99.62∗ (.01) 99.54 99.65 0.438 0.295

Splice 3175, 60, 3 69.71 69.71 70.03 94.20 0.893 0.248

Vehicle 846, 18, 4 70.95 74.56∗ (.15) 65.25 73.68 0.134 0.089

Voting 433, 16, 2 95.17 95.17 92.42 97.00 0.025 0.012

Waveform 5000, 21, 3 84.36 84.36∗ (.12) 80.86 76.5 2.522 0.654

Yeast 1484, 8, 10 59.78 60.24∗ (.10) 54.39 56.14 0.096 0.075

Anneal 998, 38, 6 94.41 95.01 (.06) 89.70 93.59 0.122 0.084

Auto 205, 25, 7 67.65 72.68 (.035) 40.86 83.18 0.045 0.032

crx 690, 15, 2 84.18 88.11∗ (.035) 66.64 83.91 0.055 0.038

Glass 214, 9, 7 58.49 67.39 (.10) 67.70 70.01 0.021 0.017

Horse 368, 28, 2 84.21 85.31∗ (.035) 66.31 84.81 0.052 0.024

Hypo 3163, 25, 2 97.19 98.26 (.05) 98.26 99.32 0.275 0.186

Ionosph 351, 34, 2 86.23 91.24 (.05) 83.96 91.92 0.147 0.100

Iris 150, 4, 3 96.00 96.67∗ (.10) 96.00 94.00 0.007 0.006

Labor 57, 16, 2 87.67 87.67∗ (.10) 93.00 83.99 0.009 0.008

Mushroom 8124, 22, 2 100.0 100.0 100.0 100.0 0.436 0.257

Nursery 12960, 8, 5 99.04 99.04 98.37 97.06 0.290 0.212

Pendigits 10992, 16, 10 98.21 98.44 (.18) 99.35 96.67 1.912 0.981

Sick 4744, 29, 2 94.03 96.63 (.05) 93.00 98.78 0.284 0.189

Sonar 208, 60, 2 84.16 86.97∗ (.11) 82.69 70.20 0.193 0.114

Soybean-s 47, 34, 4 100.0 100.0∗ (.10) 100.0 98.00 0.022 0.017

Soybean-l 683, 35, 19 90.08 90.08 91.52 92.96 0.072 0.051

t-t-t 958, 9, 2 99.06 99.06 98.65 86.01 0.032 0.013

Wine 178, 13, 3 95.58 96.08∗ (.11) 72.94 93.35 0.028 0.019

Zoo 101, 16, 7 97.19 97.19 93.93 91.26 0.007 0.005
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An important conclusion we can reach here is that DeEPs is an accurate instance-based
lazy classifier. Its accuracy is generally comparable to, and is often better than, C5.0 and
k-nearest neighbor. However, the speed of DeEPs needs improvement in order to match
other classifiers.

The boundary EPs and the central idea of compactly summarizing those EPs are perhaps
the most important factors contributing to the high accuracy of DeEPs. Usually, C5.0 pro-
duces a set of divide-and-conquer rules as small as possible. Thus, the tree may miss some
small sub-contexts7 of the training data. So, if a test instance happens to match those small
sub-contexts. C5.0 would undertake a hard decision. However, DeEPs can efficiently dis-
cover rules for regulating those small sub-contexts though the frequency of the rule patterns
is not outstanding. This is a reason why DeEPs can be better than C5.0 in some applications.

8.2. Higher accuracy by DeEPs with different α

The neighborhood factor can be fixed for all data sets. However, we observed that different
neighborhood factors α can cause accuracy variance, although slight, on testing data. When
α is too large, it may happen that originally different instances from different classes can
be transformed into the same binary instance; consequently, the inherent discriminating
features among these instances disappear. When α is too small, nearly identical attribute
values may be considered different, thus useful discrimination information in the training
data may be overlooked.

The effect of the neighborhood factor on testing accuracies is studied in Li, Ramamo-
hanarao, and Dong (2001). Experiments have been conducted when α varied from 0.02,
0.05, 0.08, 0.10, 0.15, to 0.20. The corresponding accuracies on the australian and ger-
man data sets are plotted in figure 1. Note that the two curves in this figure are shaped
in a different manner. The accuracy in the left curve peaks when α = 0.05, and then goes
down with increasing α values. However, the right curve starts with a decline till α = 0.1,
and then climbs to its summit at α = 0.2. These facts strongly indicate that data sets have
different properties. They motivated the idea of selecting an “optimal” neighborhood for
a given data sets by using a guidance role played by a partial training data. This idea (Li,
Ramamohanarao, & Dong, 2001) is developed in Section 9.

The accuracy results by DeEPs with different α are shown in the column 4 of Table 5.
How to determine a proper value of α for different data sets or even different continuous

attributes within the same data set is still an interesting problem. We will study this problem
in the future work.

8.3. Comparison with other classifiers

DeEPs is also compared with another four classifiers: CBA (Liu, Hsu, & Ma, 1998), LB
(Meretakis & Wuthrich, 1999), the Naive Bayesian classifier (NB) (Duda & Hart, 1973;
Langley, Iba, & Thompson, 1992), and TAN (Friedman, Geiger, & Goldszmidt, 1997). We
did not implement their algorithms. We cite the accuracy results of these classifiers from
the literature work. So, their data set partitioning methods may be different. As a result, this
comparison is not as strict as the above discussion when DeEPs is compared with k-NN and
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Figure 1. Different neighborhoods of a test instance can produce different accuracies by DeEPs. Partial training
data can be used to select proper neighborhoods of test instances to improve performance of the classifier. (a)
Accuracy varies in the range of [84.20%, 88.50%] on the australian data set. (b) Accuracy varies in the range of
[73.70%, 75.00%] on the german data set.

C5.0. However, the comparison is also meaningful as all the data were randomly shuffled
and all the instances were tested once.

Table 6 lists the results. Columns 4, 5, 6, and 7 show the accuracy results of CBA, LB,
NB, and TAN respectively; these results, for the first 21 data sets, were copied exactly from
Table 1 of Meretakis and Wuthrich (1999). For the remaining data sets, we selected, for
CBA and C4.5, the best result from Table 1 of Liu, Hsu, and Ma (1998). A dash indicates
that we were not able to find a previously reported result and “N/A” means the classifier is
not applicable to the data sets.

We draw some interesting points as follows:
• Among the first 21 data sets where results of the other four classifiers are available,

DeEPs achieves the best accuracy on 11 data sets. CBA, LB, NB, and TAN achieve the
best accuracy on 1, 5, 4 and 3 data sets respectively. It can be seen that DeEPs in general
outperforms the other classifiers.

• For the 37 data sets where the results for CBA are available, DeEPs achieves the best
accuracy on 22 data sets. CBA achieves the best accuracy on 15 data sets. In addition,
DeEPs can reach the 100% accuracy on mushroom, 99.04% on nursery, and 98.21% on
pendigits. (The accuracies of CBA for these three data sets were not available.)

• DeEPs can reach very high accuracy on large data sets such as letter (93.60%), pendigits
(98.21%), satimage (88.47%), waveform (84.36%), mushroom (100%), nursery (99.04%),
sonar (84.16%), shuttle-small (97.02%), and hypo (97.19%).

8.4. Speed and scalability

The primary metric for evaluating classifier performance is classification accuracy. We
have already shown DeEPs is an accurate classifier and it is generally superior to the other
classifiers. In this section, we discuss the decision speed by DeEPs and then demonstrate
the noticeable scalability of DeEPs over the number of training instances.
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Table 6. Accuracy of DeEPs in comparison to CBA, LB, NB, and TAN.

DeEPs

Data sets α = .12 Dynamical α CBA LB NB TAN

Australian 84.78 88.41∗ (.05) 85.51 85.65 85.65 85.22

Breast-w 96.42 96.42 (.12) 95.28 96.86 97.00 N/A

Census-inc 85.93 85.93∗ (.12) 85.67 85.11 84.12 N/A

Chess 97.81 97.81 98.12 90.24 87.15 92.12

Cleve 81.17 84.21∗ (.15) 77.24 82.19 82.78 N/A

Diabete 76.82 76.82∗ (.12) 72.9 76.69 75.13 76.56

Flare 83.50 83.50 83.11 81.52 79.46 82.64

German 74.40 74.40 (.12) 73.2 74.8 74.1 72.7

Heart 81.11 82.22 (.15) 81.87 82.22 82.22 83.33

Hepatitis 81.18 82.52 (.11) 80.20 84.5 83.92 N/A

Letter 93.60 93.60∗ (.12) 51.76 76.4 74.94 85.7

Lymph 75.42 75.42 (.10) 77.33 84.57 81.86 83.76

Pima 76.82 77.08∗ (.14) 73.1 75.77 75.9 75.77

Satimage 88.47 88.47∗ (.12) 84.85 83.9 81.8 87.2

Segment 94.98 95.97∗ (.05) 93.51 94.16 91.82 93.51

Shuttle-s 97.02 99.62∗ (.01) 99.48 99.38 98.7 99.64

Splice 69.71 69.71 70.03 94.64 94.64 94.63

Vehicle 70.95 74.56∗ (.15) 68.78 68.8 61.12 70.92

Voting 95.17 95.17 93.54 94.72 90.34 93.32

Waveform 84.36 84.36∗ (.12) 75.34 79.43 78.51 79.13

Yeast 59.78 60.24∗ (.10) 55.1 58.16 58.05 57.21

Anneal 94.41 95.01 (.06) 98.1 – – –

Automobile 67.65 72.68 (.035) 79.00 – – –

crx 84.18 88.11∗ (.035) 85.9 – – –

Glass 58.49 67.39 (.10) 72.6 – – –

Horse 84.21 85.31∗ (.035) 82.1 – – –

Hypo 97.19 98.26 (.05) 98.4 – – –

Ionosphere 86.23 91.24 (.05) 92.1 – – –

Iris 96.00 96.67∗ (.10) 92.9 – – –

Labor 87.67 87.67∗ (.10) 83.00 – – –

Mushroom 100.0 100.0 – – – –

Nursery 99.04 99.04 – – – –

Pendigits 98.21 98.44 (.18) – – – –

Sick 94.03 96.63 (.05) 97.3 – – –

Sonar 84.16 86.97∗ (.11) 78.3 – – –

Soybean-small 100.0 100.0∗ (.10) 98.00 – – –

Soybean-large 90.08 90.08 92.23 – – –

tic-tac-toe 99.06 99.06 100.0 – – –

Wine 95.58 96.08∗ (.11) 91.6 – – –

Zoo 97.19 97.19 94.6 – – –
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Overall, DeEPs is a relatively slow classifier, especially compared with C5.0. However,
decision time per instance by DeEPs is typically a small fraction of a second. For only 5
of the 40 data sets (census-inc, letter, satimage, pendigits, and waveform) decision time
per instance exceeds 1 second. All these five data sets have a very large volume of training
instances, high dimensions, or both. Clearly, this speed is adequate for most applications
such as credit-worthiness check, disease diagnosis, etc.

As mentioned earlier, a primary advantage of DeEPs is that it can handle new training
instances without the need to re-train the classifier. For eager learning classifiers, the re-
training after modifications to the previous training instances can take a considerable amount
of time.

To examine the scalability of DeEPs on the number of training instances, we randomly
selected 90% of the original data set as the training data set and 10% as the testing data set.
Then, we selected 20%, 40%, 60%, and 80% of the training data set to form 4 new training
data sets, all with the same number of attributes. All the new data sets (including the testing
data sets) have a class distribution similar to the original one. Figure 2(a) shows the linear
scalability of the average decision time per instance of DeEPs when the number of training
instances increases in tic-tac-toe, mushroom, sonar, and census-inc. This scalability is a
consequence of the instance intersection operation and the maximum itemset selection in
the learning phase of DeEPs as discussed in Section 3.

Suppose T is a test instance and Pnew is a new training data. Then T ∩ Pnew is mostly
likely contained in some previously produced maximum itemset T ∩ Pi . Therefore, the
number of maximum itemsets would change slightly (may become smaller). To a large
extent, when the number of data instances increases, the additional cost experienced by
DeEPs is proportional to the computation for the intersection operation needed with new
training data.

The next experiment studies the performance of DeEPs as the number of attributes
increases. We randomly selected 90% of the original data sets as the training data and

Figure 2. (a) Scalability on numbers of training instances. (b) Scalability on numbers of attributes.



118 J. LI ET AL.

10% as the testing data, both of which have the same class distribution as the original
data set. We fixed the number of instances in the training and testing data sets but varied
the number of attributes of both training and testing data from 60%, 70%, 80%, 90%, to
100%. Figure 2(b) shows the scalability of DeEPs when the number of attributes increases.
These experiments indicate that DeEPs’ decision time scales approximately linearly over
the number of attributes.

Theoretically, the worst computational complexity of DeEPs is exponential with regard
to the number of attributes describing the relation. Fortunately, this does not always occur in
real applications as shown in our reported experiments. However, in our recent experiments
on gene expression profiles, the running time by DeEPs did not appear to be as expected.
This may be caused by complex interactions among genes.

9. Combining the strength of pattern frequency and distance

Both instance-based classifiers, DeEPs and the k-NN classifier (Cover & Hart, 1967), are
closely related. Next, we investigate how to combine the strength of pattern frequency and
distance to solve classification problems. We refer to this classification method as DeEPsNN
(Li, Ramamohanarao, & Dong, 2001).

Suppose an instance T is to be classified. The basic idea of DeEPsNN is (see figure 3):

(a) If a chosen neighborhood of T covers some training instances, 3-NN is applied to
classify T . (On special situations where only two or one instance is covered, 1-NN is
applied.)

(b) Otherwise, when the neighborhood does not contain any training instances, DeEPs is
applied.

9.1. Selecting a proper neighborhood

DeEPsNN will need to choose a neighborhood parameter. We first define the notion of a
neighborhood.

Figure 3. The algorithm deals with two cases when a test instance T is required to classify. The signs “∗” and
“+” represent instances from two different classes.
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Definition 9.1. An α-neighborhood of T = {a1, a2, . . . , an} consists of the following set
of neighbors:

{X = {x1, x2, . . . , xn} | for all i(1 ≤ i ≤ n), |xi − ai | ≤ α if ai is continuous, and xi = ai

if ai is categorical}.

To select a proper neighborhood, three initial values for α: 0.05, 0.10, and 0.20 are set. For
each such α, a random 10% of the training data are chosen and they are viewed as testing”
instances; an accuracy, by using steps (a) and (b) above to classify this special collection
of testing” instances, is then obtained. Then, the value of α, by which the highest accuracy
is obtained, is applied to the real test instances. Observe that this heuristic uses part of the
training data to tune the parameters of DeEPsNN.

9.2. Performance of DeEPsNN

Table 7 provides the experimental results on 30 data sets (not including those pure categorical
attributes data sets as they are independent of the neighborhood). In this table, columns 4, 5,
and 6 show the test accuracies achieved by k-NN, C5.0, and DeEPsNN respectively. Along
the vertical direction, Table 7 is organized into three groups according to the performance
differences between DeEPsNN and C5.0: significant differences (≥2.00%) are in the top
and bottom groups, while small differences (<2.00%) in the middle.

It can be seen that the accuracy of DeEPsNN is much higher than 3-NN and also signif-
icantly superior to (on average over 30 data sets, 2.18% higher than) C5.0. We found that
partial training data guidance can play a key role in selecting a suitable neighborhood for
a test instance, and hence can determine when the system should use k-NN or DeEPs for
prediction.

10. Discussion

Since the introduction of the notion of emerging patterns in 1998 (Dong & Li, 1999), two
eager-learning EP-based classifiers, CAEP (Dong et al., 1999) and JEP-C (Li, Dong, &
Ramamohanarao, 2001) have been proposed. In the learning phase, both systems discover
all emerging patterns for some pre-defined frequency threshold or frequency-change rate
threshold. In the classifying phase, they both aggregate the frequencies of the discovered
patterns to construct classification bias.

By adopting eager learning approaches, CAEP and JEP-C produced large numbers of
EPs which may never be used for classification. The cost of mining such large number of
surplus EPs was often so expensive that they were not able to complete the training phase
for large and high- dimensional data sets such as letter and satimage.

Meanwhile, CAEP and JEP-C missed those EPs whose frequency is lower than the
threshold of the pre-mined EPs. So, a test instance may not contain any of the pre-mined
EPs. The current DeEPs system has considerable advantages in accuracy, overall speed,
and dimensional scalability over CAEP and JEP-C, due to its efficient new ways of se-
lecting sharp and relevant EPs, its new ways of aggregating the discriminating power
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Table 7. Accuracy comparison among DeEPsNN, C5.0, and k-NN.

Numbers of attributes Accuracy (%)

Data sets cont. categ. 3-NN C5.0 DeEPsNN
Difference

DeEPsNN vs. C5.0

Australian 6 8 66.69 85.94 88.41 +2.47

Cleve 5 8 62.64 77.16 83.18 +6.02

crx 6 9 66.64 83.91 86.37 +2.46

German 7 13 63.1 71.3 74.40 +3.10

Heart 6 7 64.07 77.06 81.11 +4.05

Hepatitis 6 13 70.29 74.70 82.56 +7.86

Iris 4 0 96.00 94.00 96.00 +2.00

Letter-recog. 16 0 95.58 88.06 95.51 +7.45

Labor-neg 8 8 93.00 83.99 91.67 +7.68

Lym 3 15 74.79 74.86 84.10 +9.24

Pendigits 16 0 99.35 96.67 98.81 +2.14

Satimage 36 0 91.11 86.74 90.82 +4.08

Sonar 60 0 82.69 70.20 85.13 +14.93

Soybean-s 35 0 100.0 98.00 100.0 +2.00

Waveform 21 0 80.86 76.5 83.78 +7.28

Wine 13 0 72.94 93.35 95.55 +2.20

Anneal 6 32 89.70 93.59 95.11 +1.52

Breast-w 10 0 96.85 95.43 96.28 +0.85

Diabetes 8 0 69.14 73.03 73.17 +0.14

Horse-colic 7 15 66.31 84.81 85.05 +0.24

Hypothyroid 7 18 98.26 99.32 98.17 −1.15

Ionosphere 34 0 83.96 91.92 91.08 −0.84

Pima 8 0 69.14 73.03 73.17 +0.14

Segment 19 0 95.58 97.28 96.62 −0.66

Shuttle-s 9 0 99.54 99.65 99.74 +0.09

Yeast 8 0 54.39 56.14 54.62 −1.52

Auto 15 10 40.86 83.18 74.04 −9.14

Glass 9 0 67.70 70.01 67.98 −2.03

Sick 7 22 93.00 98.78 96.55 −2.23

Vehicle 18 0 65.25 73.68 68.71 −4.97

Average 78.98 84.07 86.25 +2.18

of individual EPs, and most importantly its use of an instance-based approach which
creates a remarkable reduction in both the volume and the dimension of the training
data. All of these factors contribute to the high accuracy of DeEPs: Among 13 data sets
where we conducted tests on both DeEPs and CAEP, DeEPs outperformed CAEP in 8;
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among 27 data sets where we conducted tests on both DeEPs and JEP-C, DeEPs outper-
formed JEP-C in 14. The newly proposed neighborhood-based intersection of continuous
attributes and the method of compact summation also contribute to the high accuracy of
DeEPs.

As a future work, we are interested in efficiently mining other type of EPs contained in
a test instance T . One possibility is to discover those subsets of T which occur in both Dp

and Dn , denoted commonT = [{∅}, max Rp] ∩ [{∅}, max Rn]. Then select some of those
subsets whose frequency changes significantly from Dp to Dn or from Dn to Dp.

Our discussion in Section 7 shows that some EPs with finite frequency-change rate may
be more useful than those with infinite rate. Therefore, by adding those EPs with large
frequency growth rate into DeEPs, its accuracy could be further improved.

For discretizing continuous attributes, we have introduced a new method called
neighborhood-based intersection. It allows DeEPs to flexibly determine which continu-
ous attribute values are relevant to a considered instance, without the need to pre-discretize
data.

For eager learning based classifiers such as CBA (Liu, Hsu, & Ma, 1998), LB (Meretakis
& Wuthrich, 1999), CAEP (Dong et al., 1999), and JEP-C (Li, Dong, & Ramamohanarao,
2001), they must discretize continuous attributes before any algorithms are applied to induce
useful patterns or rules. Currently there exist several widely-used methods to discretize con-
tinuous attributes (Holte, 1993; Fayyad & Irani, 1993; Kohavi et al., 1994; Quinlan, 1996).
The problem of discretizing continuous attributes is still being extensively investigated in
machine learning and data mining. We need to emphasize that pre-discretization algorithms
can apparently be used in DeEPs.

11. Conclusion

Instead of looking for raw” training instances by k-NN, we have introduced in this paper
a new knowledge discovery and classification system which targets regular patterns with
large frequency-change rates among training data. The proposed DeEPs system also takes
an instance-based learning strategy, efficiently discovering the most discriminating knowl-
edge patterns contained in every considered instance. The discovered patterns are explicit,
representative, expressive, and easily comprehensible. They, especially those top-ranked
patterns, can be used to help users understand and analyse an instance. They have been
demonstrated to be useful in classification: their aggregated frequencies play a crucial role
in the high accuracy of the DeEPs system.

We have described two border-based algorithms, JEPPRODUCER and BORDER-DIFF, for
discovering the boundary EPs. Together with other data reduction methods, JEPPRODUCER

and BORDER-DIFF help the DeEPs system run efficiently as they avoid the naive enumeration
of large collections of itemsets.

We have proposed a neighborhood-based intersection method to cope with continuous
attributes. We have proposed compact summation to effectively aggregate the frequency of
the EPs. Our experimental results on 40 data sets have shown that the accuracy achieved
by DeEPs is comparable to and often better than k-nearest neighbor and C5.0. We also
compared DeEPs with other classifiers such as CBA, LB, NB and TAN. The results have
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confirmed the effectiveness of our novel ideas regarding the pattern selection criteria and
the compact summation.

Our experimental results have also shown that DeEPs is scalable over the number of
training instances and nearly scalable over the number of attributes in large data sets.
However, the DeEPs classifier is still slow especially compared with k-NN and C5.0. Our
future research will be focused on issues relating to its speed improvement.
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Notes

1. DeEPs is short for Decision-making by Emerging Patterns (Li, Dong, & Ramamohanarao, 2000).
2. The original definition (Dong & Li, 1999) includes patterns with finite growth rates.
3. The attribute names of an instance are always omitted if no confusion is caused.
4. Note that the set X is maximal in collection S if there are no proper supersets of X in S.
5. A collection of itemsets is called an anti-chain if any two elements X and Y of this collection satisfy X �⊆ Y

and Y �⊆ X .
6. All the data sets used in the following text are obtained from Blake and Murphy (1998), we do not cite it again.
7. A sub-context can be described as a small cluster of a class which is contained and overwhelmed by the main

cluster of another class. In a decision tree, a leaf node which contains mixed instances can be referred to as a
main cluster containing a different sub-context.
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