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Abstract

Motivation: The rapid progress in genome sequencing has led to high availability of genomic data. Studying these
data can greatly help answer the key questions about disease associations and our evolution. However, due to
growing privacy concerns about the sensitive information of participants, accessing key results and data of genomic
studies (such as genome-wide association studies) is restricted to only trusted individuals. On the other hand, pav-
ing the way to biomedical breakthroughs and discoveries requires granting open access to genomic datasets.
Privacy-preserving mechanisms can be a solution for granting wider access to such data while protecting their own-
ers. In particular, there has been growing interest in applying the concept of differential privacy (DP) while sharing
summary statistics about genomic data. DP provides a mathematically rigorous approach to prevent the risk of
membership inference while sharing statistical information about a dataset. However, DP does not consider the de-
pendence between tuples in the dataset, which may degrade the privacy guarantees offered by the DP.

Results: In this work, focusing on genomic datasets, we show this drawback of the DP and we propose techniques to
mitigate it. First, using a real-world genomic dataset, we demonstrate the feasibility of an inference attack on differ-
entially private query results by utilizing the correlations between the entries in the dataset. The results show the
scale of vulnerability when we have dependent tuples in the dataset. We show that the adversary can infer sensitive
genomic data about a user from the differentially private results of a query by exploiting the correlations between
the genomes of family members. Second, we propose a mechanism for privacy-preserving sharing of statistics from
genomic datasets to attain privacy guarantees while taking into consideration the dependence between tuples.
By evaluating our mechanism on different genomic datasets, we empirically demonstrate that our proposed mech-
anism can achieve up to 50% better privacy than traditional DP-based solutions.

Availability and implementation: https://github.com/nourmadhoun/Differential-privacy-genomic-inference-attack.

Contact: exa208@case.edu or oulusoy@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Today’s high-throughput sequencing platforms are capable of gener-
ating a tremendous amount of sequencing data (Alser et al., 2017).
These technologies allow sequencing the full human genome for as
little as few hundred dollars (Hert et al., 2008). As a result, produc-
tion of genomic information for research, clinical care and recre-
ational purposes at a rapid pace is no longer impossible from a
technical point of view (Alser et al., 2019). One of the most promin-
ent uses of genomic data is for research purposes and to make such
research initiatives successful, researchers need individuals donate
their genomic data. Several studies report the attitudes of public in
different countries (including USA, Sweden, Japan and Singapore)
toward genomic research and their willingness to donate genomic

samples (Carey et al., 2016; Ishiyama et al., 2008; Kobayashi and
Satoh, 2009; Kraft et al., 2018; Nanibaa et al., 2016; Pulley et al.,
2008; Rahm et al., 2013; Storr et al., 2014). Although the majority
of respondents show positive attitude toward genomic research and
participating in such studies, the overwhelming majority of them
have ranked privacy of sensitive information as one of their top con-
cerns. Therefore, proper and privacy-preserving management of the
personal information is necessary in order to attain public support
for genomic studies. In addition, transparency of the research aim
and proper management of genomic data utilization should be also
maintained in order to not utilize the data beyond the donor’s inten-
tion (Alser et al., 2015).

The availability of human genomic banks provides an
adequate basis for several important applications and studies
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(Commission et al., 2003). Genome-wide association study (GWAS)
is considered as one of the most widely conducted genomic studies.
These studies help scientists uncover associations between differen-
ces in the human genomes called single nucleotide polymorphisms
(SNPs) and disorders that are passed from one generation to the
next. We provide a brief background on genomics in Supplementary
Section S1.1. Since the first GWAS in 2005 (DeWan et al., 2006),
researchers have assumed that it is safe to publish aggregate statistics
about the SNPs that they found relevant to particular diseases and
its associated phenotypes. A typical GWAS compares the genomes
of individuals that carry a disease (cases) with genomes of healthy
individuals (controls). Because the reported aggregate statistics were
pooled from thousands of individuals, researchers believed that their
release would not compromise the participants’ privacy. However,
such belief was challenged when Homer et al. (2008) demonstrated
that, under certain conditions, given an individual’s genotype, one
only needs the minor allele frequencies of the SNPs used in the study
and other publicly available information in order to determine
whether the individual is in the case group of a GWAS. After this at-
tack, the NIH restricted the access to key results and data of GWAS
to only trusted individuals.

The purpose of this access policy is mainly due to the growing
privacy concern about the participants in any genomic studies and
their sensitive information, such as their health status. However,
accelerating the pace of biomedical breakthroughs and discoveries
necessitates not only collecting millions of genomic samples, but
also granting an open access to the genomic banks and datasets
(Galperin et al., 2015).

There has been a growing interest in applying different privacy-
preserving techniques to the GWAS results in order to grant access
to genomic datasets. Many works in the literature propose utilizing
the differential privacy (DP) notion (Dwork, 2008) to provide for-
mal privacy guarantees for the participants of genomic studies. In a
nutshell, DP guarantees that the distribution of query results change
only slightly with the addition or removal of a single individual’s
data in the dataset. Although DP mechanism provides formal guar-
antees to preserve privacy (Dwork, 2008), it does not consider the
dependency of the data tuples in the dataset. In reality, data from
different users in the datasets may be dependent according to social,
behavioral and genomic interactions between them (Liu et al., 2016;
Lv and Zhu, 2019; Zhao et al., 2017). For example, in social net-
work datasets, ‘friendship’ relation may imply similar interests
(Chaabane et al., 2012). Moreover, one can infer the locations of an
individual from the friends’ locations since they are likely to visit the
same places (Liu et al., 2016; Olteanu et al., 2017). Similarly, in
medical studies, an adversary may infer the susceptibility of an indi-
vidual to a contagious disease by using the correlation between
genomes of family members (Humbert et al., 2013; Kifer and
Machanavajjhala, 2011). These facts about the effect of correlation
between tuples and data privacy was first observed by Kifer and
Machanavajjhala (2011). Later, other researchers (Liu et al., 2016;
Song et al., 2017; Zhao et al., 2017) show that one can take advan-
tage from dependencies between users to predict the users’ sensitive
information from the differentially private query results.

In this work, we formalize the DP concept to handle probabilis-
tic dependence relationships between tuples in genomic datasets. We
develop an effective perturbation mechanism to achieve the privacy
guarantees in DP for datasets with dependent tuples. Our mechan-
ism uses a carefully computed dependence coefficient that quantifies
the probabilistic dependence between tuples in a fine-grained man-
ner. The contributions of our paper are as follows:

• We demonstrate the feasibility of an inference attack on differen-

tially private query results by exploiting the dependence between

tuples in a real-world genomic dataset. We assume that the goal

of the adversary is to infer the genomic data of a target individual

using query results from a statistical genomic dataset. We also as-

sume that the dataset includes correlated individuals (i.e. family

members of the target individual). We show that the adversary

can infer significantly more genomic data about the target from

the results of queries by only exploiting the correlations between

the genomes of family members. Moreover, we show that a

stronger adversary with partial prior information about the gen-

omic data of family members can infer even more sensitive data.
• We formalize the notion of �-DP for genomic datasets with de-

pendent tuples to avoid inference of sensitive information by any

adversary with prior knowledge about the dependency between

tuples. Our proposed mechanism computes the ‘adjusted’ � value

that provides privacy guarantees in the existence of dependent

tuples in the dataset. That is, according to the number of depend-

ent tuples in the dataset and their relationships, our mechanism

allows accurate computation of the � values for dependent data

to preserve the privacy of the dataset participants while main-

taining the utility of the data.
• We evaluate our mechanism over two different real-world gen-

omic datasets. We demonstrate that it can be applied to any gen-

omic statistics dataset with dependent tuples. Applying the

proposed mechanism can provide better privacy and utility guar-

antees compared to other state-of-the-art DP-based mechanisms.

2 Related work

In this section, we will summarize the existing work on DP and gen-
omic privacy in general. We will also highlight the differences of this
paper from the existing work.

2.1 Privacy of genomic data
Privacy of genomic data has recently been a trending research topic
(Erlich and Narayanan, 2014). There has been also a growing inter-
est in applying the concept of DP to different genomic studies
(Johnson and Shmatikov, 2013; Uhlerop et al., 2013; Yu et al.,
2014). Existing work mainly consider DP as a protective measure
against the inference attack discovered by Homer et al. (2008).
Uhlerop et al. (2013) and Yu et al. (2014) developed many differen-
tially private algorithms that can be applied to release the statistical
results genomic studies, such as GWAS. For instance, according to
Uhlerop et al. (2013) and Yu et al. (2014), Laplace noise with scale
2/� can be applied in order to get differentially private cell counts
from genomic datasets. In general, these works develop algorithms
try to achieve DP when releasing statistics about genomic datasets
or studies. However, they do not consider the correlation between
the dataset tuples, and hence their privacy guarantees weaken when
such correlations exists within the dataset.

2.2 Differential privacy
Many techniques are proposed to achieve DP for many data types
(Dwork, 2008).

Inference attacks against DP. The auxiliary information the ad-
versary may learn from other channels is a big challenge. For in-
stance, Fredrikson et al. (2014) use differentially private query
results to infer a patient’s genomic marker by utilizing additional in-
formation about the patient demographic information.

The strong dependence between the tuples in the real-world
datasets introduces many privacy inference attacks. Kifer and
Machanavajjhala (2011) were the first to criticize the independent
tuples assumption of DP. Liu et al. (2016) consider predicting the
user location from the differentially private clustering query results
by utilizing pairwise dependencies between users using Gowalla
dataset (Liu et al., 2016).

Handling dependent tuples for DP. Handling dependent tuples is
a significant challenge to guarantee privacy. Kifer and
Machanavajjhala (2012) propose the Pufferfish framework (Kifer
and Machanavajjhala, 2012) as a generalization of DP to provide
rigorous privacy guarantees against adversaries with access to any
auxiliary background information and have a belief about the rela-
tionships between data tuples.
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However, no perturbation algorithm is proposed to handle the
tuple dependencies. Blowfish (He et al., 2014) is a subclass of
Pufferfish, considering the data correlations and adversarial prior
knowledge specified by the users in the form of deterministic con-
straints. He et al. (2014) provide perturbation mechanisms to handle
these constraints. Chen et al. (2014) handle the correlation in network
data using DP by multiplying the original sensitivity of the query with
the number of correlated records. This approach results in deteriorating
the utility performance of the shared query results since an excessive
amount of noise is added to the dataset. Bayesian DP (Yang et al.,
2015) uses a modification of Pufferfish. Yang et al. (2015) propose a
perturbation mechanism which considers the adversary’s prior infor-
mation and the correlations between data tuples. They only focus on
the data correlations which can be modeled by Gaussian Markov
Random Fields. To quantify the privacy loss when applying the trad-
itional DP for continuous aggregate data release, Cao et al. (2017) con-
sider the temporal correlation which can be also modeled by a Markov
Chain. Liu et al. (2016) define the dependent differential privacy
(DDP) to protect the privacy of an individual’s location information in
a correlated dataset. They propose a Laplace mechanism to tackle the
pairwise correlations in the dataset by computing the distance between
any two tuples. Recently, Song et al. (2017) concretized the Pufferfish
privacy. They propose the Wasserstein mechanism. The definition of
the �-DP for correlated data in Song et al. (2017) is the same as in Liu
et al. (2016). To satisfy that definition, the Wasserstein mechanism
offers a weaker privacy budget. Zhao et al. (2017) improve the prior
work of Liu et al. (2016) by presenting a new definition of DDP. The
privacy guarantees of DDP address any adversary with arbitrary correl-
ation knowledge. They propose using the Laplace mechanism to handle
the numeric queries and exponential mechanism to handle the non-
numeric ones. However, these studies (Liu et al., 2016; Song et al.,
2017; Zhao et al., 2017) provide less privacy and utility than our mech-
anism as we show in Section 6.3.

2.3 Contribution of this work
In this work, we demonstrate an inference attack using real-life gen-
omic data on sensitive differentially private queries considering not
only pairwise correlation as in Liu et al. (2016), but also inter-
dependent data tuples in the dataset. We propose an effective
Laplace mechanism to achieve DP for any genomic dataset with cor-
related tuples. Our mechanism is computationally efficient and it
outperforms existing work in Chen et al. (2014); Liu et al. (2016);
Song et al. (2017) and Zhao et al. (2017) both in terms of privacy
and data utility (as shown in Section 6.3).

3 Threat model

Based on the noise added to the query results, the DP mechanism
probabilistically guarantees that users’ sensitive data are protected
regardless of adversary’s prior knowledge about the dataset.
However, the privacy guarantees provided by the existing DP mech-
anisms do not account for the dependence between the data tuples.
They assume that the dataset tuples are independent. In fact, this as-
sumption can degrade the privacy of the data from different users as
they can be dependent due to various interactions.

An adversary can use auxiliary information channels to learn
about such dependencies in the dataset and exploit the vulnerabil-
ities in DP mechanisms as illustrated by Liu et al. (2016). Two major
threats against statistical datasets are membership inference and at-
tribute inference. In this work, we do not consider membership in-
ference attacks, and we focus on the attribute inference attacks. The
goal of the adversary in our model is to infer genomic data of a tar-
get individual.

We follow the same attack model in Liu et al. (2016). We assume
that the adversary has access to the membership of all participants
in the dataset of n individuals. This may be possible by using the
metadata that is released along with the dataset (e.g. in 1000genome
phases, metadata includes the populations of the dataset members).
However, the adversary in our threat model is more powerful tzhan
the DP adversary since he/she can also access auxiliary channels to
estimate the relationship (or dependency) between tuples. To attain
his goal, the adversary in our model will exploit the presence of tar-
get’s family members in the same dataset and apply Mendelian in-
heritance rules to estimate the SNP values of the target. For all
Mendelian inheritance probabilities see Supplementary Figure S1 in
Supplementary Section S1.1. With this adversary model, we first
perform an inference attack on the Laplace perturbation mechanism
(LPM)-based differentially private data release to demonstrate that a
powerful adversary can extract more information than that guaran-
teed by DP.

In our attack scenario (Fig. 1), the adversary is confident that the
target j is a member of the dataset and some of his family members
are also in the dataset. Also, the adversary may have some prior
knowledge about the genomic data of target’s family members.
We represent the amount of such information as (i.e. K represents
the fraction of prior information of the adversary about the genomic
data of target’s family members). The adversary combines the
released noisy query results (that are compliant with DP) with
knowledge of the existing dependence relations to infer the genomic
data of the target (which is not available to the adversary before the
attack).

4 Dataset description

For the evaluation, we use the genomic data of the family members
from two datasets. Then, to get the unrelated members’ genomic
data, we use another dataset. Finally, we combined the family gen-
omic data with the others genomic data. Hence, our final two data-
sets contain the partial DNA sequences from three sources:

• 1000Genome phase 3 data
• CEPH/Utah Pedigree 1463
• Manuel Corpas (MC) Family Pedigree

4.1 1000Genome phase 3 data
We use data from 1000Genome phase 3 with 2504 individuals from
26 populations. We extract the genotypes from chromosome 1 and
chromosome 22 using the Beagle genetic analysis package (Browning
et al., 2018) to convert the values of genotypes to 0, 1 or 2 according
to the minor alleles on each SNP. We use this data to include more par-
ticipants to our dataset from the same or different population of the
target and his family members. The main objective here is to test if the
adversary can infer more sensitive information about the target even if
the query results contain more unrelated participants.

Fig. 1. The threat model. The adversary does not have any prior knowledge about

the genomic data of target j, but it may have partial prior knowledge K for other

members’ genomic data. First, the adversary sends a query to the data provider. The

data provider sends back the results with added noise using LPM. Second, the adver-

sary identifies the individuals that are used to generate the query result using the

metadata that is released along with the dataset (e.g. population). That is, the adver-

sary identifies how many of the target’s family members and unrelated individuals

are used to generate the query result. Next, the adversary uses other auxiliary chan-

nels to learn the familial relationship of target j with his family members that are (i)

in the dataset and (ii) used to generate the query result. Finally, using the noisy

query results along with the auxiliary information and the probabilistic dependence

between tuples, the adversary infers the genomic record of target j
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4.2 CEPH/Utah Pedigree 1463
We use CEPH/Utah Pedigree 1463 with the partial DNA sequences
of 10 family members (Drmanac et al., 2010). In our inference at-
tack, we consider the parent to be our target (Par 1 in
Supplementary Fig. S2 in Supplementary Section S2.1). We only
focus on first-degree relatives, and hence we use the genomic records
of one parent, two grandparents and seven children (the original
CEPH/Utah Pedigree 1463 includes data for 11 children, we ran-
domly select 7 of them for our evaluation). We obtain the SNPs data
for 10 individuals from the variant call format file. We select 100
common SNPs between 1000Genome members and UTAH family
members to apply our inference algorithm. More details about the
family structures are discussed in Supplementary Section S2.1.

4.3 MC family Pedigree
A scientist named MC (Corpas, 2013) decided to release his family
DNA dataset for research purposes. The dataset contains the DNA
sequences in variant call format for the father, mother, son (MC),
daughter and aunt. We choose the son to be our target and we used
the genomic records of his first-degree family members (father,
mother and sister). Similar to the Utah family dataset, we extract the
common 100 SNPs in all MC family members’ 1000Genome mem-
bers for the evaluation of our inference algorithm. More details about
the family structure are discussed in Supplementary Section S2.2.

5 DP under dependent tuples

As we discussed in Section 3, DP mechanism does not account for
the dependency of the data tuples in the dataset. On the other hand,
family members’ genotypes are inherently correlated and this correl-
ation is stronger between close family members. Thus, existence of
individuals from a target individual’s family may provide an import-
ant source for an adversary to infer the target’s genomic data even
though their genomic data are not known by the adversary. This
privacy breach has been proven by Humbert et al. (2013). In our
scenario, the adversary sent his query asking about the total number
of a specific SNP i for participants sharing the same demographic
data, such as location or age.

The adversary gets the noisy result of his query, ~Ti
pj ¼

ðTi
p þ Ti

j Þ þ d; for ðpÞ participants included in the query results and
individual j. d represents the added Laplace noise with parameter 2/�,
Ti

j represents the SNP value for individual j, and Ti
p is the sum of the

SNP values for other ðpÞ participants. According to the query state-
ment, the query results may include only the target j’s related family
members or also other unrelated individuals. Hence, the probabilis-
tic dependence can be considered as:

Ti
p ¼ Ti

j þDy; (1)

where D ¼ p if p � 2 and D ¼ 2p if p > 2 (p is the number of all
individuals included in the query result except the target j). Also, y is
a kinship coefficient that satisfies the Mendel’s law. y is in ½�1;1�
for p � 1, and y is in ½0;1� for p > 1.

5.1 Inference evaluation algorithm
We assume that the adversary can query the dataset based on the
demographics of the dataset participants. As a result of his query,
the adversary obtains the differentially private sum of genotype val-
ues ~Ti

pj ¼ ðTi
p þ Ti

j Þ for different cases, e.g.:

• Total value of a SNP for people from same location area, or

address.
• Total value of a SNP for people with the same age.

The adversary has access to auxiliary information about the mem-
bership of each participant including the target j, and also to the famil-
ial relationship between the target and other individuals in the dataset.
Hence, the adversary can infer the value of Ti

j for target j using the
number of dependent people related to that member in the dataset. We
use two metrics to quantify the success of the attacks: correctness and

leaked information. Correctness quantifies the distance Dist between
the true value of the SNP and the inferred value by the adversary. The
leaked information quantifies the change in the adversary’s prior infor-
mation after the inference attack. To measure the correctness we use
the expected estimation error as follows:

E ¼
Xm
i¼1

PðxijjTi
j ÞjDistðxij; x

0
ijÞj: (2)

To measure the leaked information we use the following
equation:

L ¼
Xm
i¼1

1� jsgnðDistðxij;x
0
ijÞÞj; (3)

where m is the number of targeted SNPs, and sgn denotes the sign func-
tion, which extracts the sign of any real number. sgn gives the value of 1
for all positive real numbers, 0 for number 0 and�1 for all negative real
numbers. Hence in Equation (3), if there is any difference between xij

which is the true value of SNP i for the target individual i and x0ij which
is the estimated value of SNP i for the target individual i, it means the
adversary could not infer the correct value of the SNP and the SNP in-
formation is not leaked. We use Algorithm 1 in Supplementary Section
S4 for evaluating the correctness and leaked information.

5.2 Evaluation
As discussed in Section 4, we use two datasets to evaluate the
proposed attack model. We define both datasets as T that include
n individuals (n¼ 2514 for the first dataset and n¼ 2508 for the se-
cond one). S is the set of SNP IDs on chromosome 1 and chromo-
some 22, and m is the number of SNPs for each individual (m ¼ 100
for each dataset). To infer the values of these m SNPs, 100 queries
are performed for each dataset. Ti

j represents the value of a SNP i
(i 2 S) for individual j (j 2 T).

In the proposed inference attacks we assume the differentially
private query results that are computed including individuals for dif-
ferent cases as follows:

Case 1: individual j with a direct family member.

Case 2: individual j with multiple family members.

Case 3: individual j with multiple family members, and other un-

related individuals.

We evaluate the performance of the attack for these cases consid-
ering two different types of attacks: (i) the adversary assumes that
there is no correlation between individuals, and (ii) the adversary
utilizes the genomic association between individuals to do genome
reconstruction and infer genomic data. We use the algorithm
described in Section 5.1 to quantify the success of the attacks by
evaluating the two metrics: correctness and leaked information.

5.2.1 Experimental results

The adversary aims to construct individual j’s genomic record, while the
adversary only knows the membership of the individual and his family
members in the dataset. We compare the dependent and independent
assumptions to show the vulnerability of independent assumption and
to come up with countermeasures for dependent cases. In Figure 2, we
examine the effect of the number of relatives and non-relatives included
in the result of a query to the target dataset on adversary’s success in
terms of his correctness in inferring SNPs of individual j.

We make three key observations: (i) in Figure 2a, the adversary is
able to infer the targeted SNPs (m¼ 100) more accurately as the number
of family members included in the query computation increases. We start
with one first-degree relative who can be the father or the mother. Then,
we gradually include the sons of individual j together with his father and
mother. We observe that if the query results include data for more than
four first-degree relatives of the same family, then the correctness of the
adversary converges for � � 2. (ii) In Figure 2a, based on the correctness
metric, we observe that if the adversary has the knowledge that the data
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of relatives (i.e. dependent tuples) exist in the target dataset, then the
adversary’s observation of the targeted SNPs is up to two times (depend-
ing on the value of �) more accurate compared to not having this know-
ledge. As expected, we also observe that the difference between the
correctness of the inferred SNPs with and without the knowledge of the
data dependency increases as the value of the privacy budget, �,
increases. (iii) In Figure 2b, we observe that including the nine first-de-
gree relatives and increasing the number of non-relatives included in
results of the queries from 5 to 100 decreases significantly the ability of
the adversary to infer the actual value of the targeted SNPs by about 20–
50%, even if the adversary has the knowledge of the data dependency.
Increasing the number of non-relatives beyond 100 members leads to the
mitigation (with a probability of 0.99) of the leakage of SNP information
of the participants. These heuristic results show the estimated scale of
vulnerability that occurs when we have dependent tuples in a dataset
that responds to queries based on DP.

Next, we evaluate the effect of different values of the privacy
budget, �, on the adversary’s correctness in inferring the targeted SNPs.
We show the results in Supplementary Section S5. The observations we
make from these results are in accordance with our previous observa-
tions in Figure 2. After that, we evaluate the leaked information with
different numbers of relatives and non-relatives included in the query
results. We do not show the experimental results for leaked informa-
tion metric due to space constraints. The results we obtain are compat-
ible with the results of the correctness. That is, the adversary with the
knowledge that the target dataset has dependent tuples can infer more
SNPs as the number of family members included in the query results
increases from 1 member to 9 members. Moreover, increasing the
number of non-relatives in the query results decreases the number of
leaked SNPs. The full details are provided in Supplementary Section S6
(Supplementary Figs S5 and S6).

Finally, we consider a stronger adversary who has access to
partial information, e.g. K ¼ 50% of other d family members’
genomes included in the query results (as discussed in Section 3).
The results are provided in Supplementary Sections S7 and S8. The
results show that the adversary who considers the familial relation-
ship between tuples in any genomic dataset can infer more informa-
tion than the DP adversary. If the query results include
many uncorrelated individuals with the target’s relatives, it is more
difficult for the adversary to infer the genomic record of the target.
Moreover, for any adversary with prior partial information
K ¼ 50%, the correctness of the targeted SNPs is considerably less
(about 50%) for any adversary without any prior information
K ¼ 0%. We further discuss the experimental results in
Supplementary Section S9.

6 Countermeasures

As shown in Section 5, a genomic dataset with dependent tuples
requires a stronger privacy notion than the existing DP mecha-
nisms to get the same level of privacy guarantees. According to the
evaluation results, using the adversary model described in Section
3, in this section, we formalize the notion of �-DP for genomic
datasets with dependent tuples to avoid inferring more sensitive in-
formation by an adversary with prior knowledge about the depend-
ency between tuples. For any dataset T, we denote the number of
dependent tuples in T as d (there may be different sets of dependent
tuples in the dataset, we just focus on the largest set of dependent
tuples with size d). We run the attack on a victim among these d
dependent tuples. We define the dependence relationship between
two tuples j and h as Rj;h, where R represents the familial relation-
ships in real-world genomic datasets. In Section 5, we show an in-
stance of R, where the dependence R can be known through the
online information about the participants of the genomic studies
and it can be formulated using the probabilistic dependence
Ti

p ¼ Ti
j þDy. Like DP, �-DP for genomic datasets with dependent

tuples uses the notion of neighboring datasets, which can be
defined as follows:

Definition 6.1. The datasets T and T 0 with d dependent tuples, which

is the largest number of dependent tuples having probabilistic

genomic relationship R, are neighboring dependent datasets if the

change of one tuple value in T causes change of at most d-1 tuple values

in T 0.

Accordingly, we define the �-DP for genomic datasets with de-
pendent tuples as follows:

Definition 6.2. A randomized algorithm A satisfies �-DP if for any pair

of neighboring datasets T and T 0 with d dependent tuples, and for any

O � RangeðAÞ,

Pr½AðTÞ 2 O� � e�Pr½AðT 0Þ 2 O�:
Note that when R represents no dependency between tuples (R¼ 0), our

privacy model is equivalent to DP mechanism. In order to restrict an ad-

versary from inferring more sensitive information of an individual, we

compute the value of the privacy budget (�) for datasets that include de-

pendent tuples so that the privacy guarantee will be the same as the data-

sets with independent tuples.

Analyzing LPM: recall the results we got for the threat
model discussed in Section 3. We have a tuple Ti

j that has a probabil-
istic dependence relationship R with Ti

p as Ti
p ¼ Ti

j þDy, consider-
ing the result of a sum query where QðTÞ ¼ ðTi

p þ Ti
j Þ. To achieve

DP, we add Laplace noise with parameter 2/� for the sum query. We
analyze the LPM-based DP mechanism while considering two
assumptions:

• Independent tuples
• Dependent tuples

Fig. 2. The effect of (a) including only first-degree relatives and (b) including nine

first-degree relatives with different numbers of non-relatives in the query results, on

the probability of the adversary’s correctness in inferring the targeted SNPs
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From the results, we have the following observations:

1. For any dataset with independent tuples, the noisy query output

guarantees achieving DP with the same budget of � value.

2. We need a smaller � value to achieve DP for any dataset with de-

pendent tuples. In other words, reducing the � value used to

achieve DP causes the Laplace noise to be augmented.

3. There may be different sets of dependent tuples in the dataset,

according to the size of the largest dependent tuples, the added

noise will be determined.

From our observations, we analyze the results of different queries
for different number of dependent tuples. We compare the leaked in-
formation in a dataset assuming dependent and independent tuples in
order to compute the DP sensitivity for different dependency size in a
genomic dataset. The sensitivity can be defined as follows:

Definition 6.3. The dependent sensitivity for publishing the results of

any query Q over a genomic dataset with correlated tuples is

1 ¼ rDQ; (4)

where r is the variable used to obtain the new value of �. We de-
scribe computation of r later. Also, DQ is the query Q’s global sen-
sitivity, which is the maximum difference in the query’s result on
any two neighboring datasets. Therefore, to achieve privacy guaran-
tees in a genomic dataset, we formalize the mechanism to get �-DP
for genomic datasets with dependent tuples as follows:

Theorem 6.1. Let A be a randomized algorithm. Then, for a dataset T

with d genomic dependent tuples, AðTÞ provides �-DP for a query Q

with global sensitivity 1, if AðTÞ ¼ QðTÞ þ LAPð1=�Þ, where 1 is com-

puted as in Equation (4).

Proof. We provide the proof in Supplementary Section S12.

Consider the leaked information an adversary can get without

dependency assumption to be L0, the leaked information any adversary

can get with dependency assumption to be L1 and the set of different �

values used in the query results over the dataset T to be v. The following

equation gives the value of r:

r ¼ v=
Xjvj
�2v

L0=L1

0
@

1
A: (5)

From our results, we calculate r which allows accurate computation of

the sensitivity for dependent data using 12 different � values ðjvj ¼ 12Þ.

6.1 Methodology for countermeasures
The data provider gets the query and identifies the largest set of
dependent tuples in the query results. There may be more than one
dependent tuples set (i.e. different sets of families) that are included
in the calculation of the query results. We provide two practical
strategies for computing the sensitivity. Based on the size of the
dependent tuples the data provider can compute the value of r. The
data provider can select a proper model according to the query of
the querier.

1. Using the query results over only the dependent tuples in the

dataset: the data provider receives a query and observes the size

of the largest dependent tuples set on it. He/she assumes that the

querier has a complete knowledge about the correlation between

tuples and the query results will only contain information from

these dependent tuples.

For example, in our evaluation scenario in which the maximum

number of first-degree relatives that can be included in the same

dataset together is nine. Hence, the data provider can compute

the value of r directly from the size of correlated tuples d as:

r ¼ 0:219lnðdÞ þ 1:4056: (6)

We show how Equation (6) is derived in Supplementary Figure

S11a in Supplementary Section S10.

2. Using the query results over the dependent tuples and unrelated

tuples in the dataset: The data provider assumes that the querier

has a complete knowledge about the correlation between tuples,

but the query results will contain information from these de-

pendent tuples and other unrelated tuples. Here, we compute the

r value for six different values of unrelated members included in

the results of query over the dataset T. The number of unrelated

other members starts from 5 and gradually increases to 500. The

data provider can compute the value of r directly from the size

of unrelated tuples u as:

r ¼ �0:038lnðuÞ þ 0:3337: (7)

3. We show how Equation (7) is derived for this scenario in

Supplementary Figure S11b in Supplementary Section S10.

6.2 Evaluation of countermeasures
In this section, we evaluate the performance of the proposed coun-
termeasures to release the query results of dependent data over two
real genomic datasets. We apply our algorithms over two datasets
containing genomic data from (i) 1000Genome phase 3 data and
CEPH/Utah Pedigree 1463 and (ii) 1000Genome phase 3 and MC
Family Pedigree. We use 100 SNPs from chromosome 1 and
chromosome 22 to analyze the resistance of our privacy mechanism
to the threat model presented in Section 3.

Consider the first scenario of our privacy model in which the
data provider publishes the perturbed genomic data of Ti

p þ Ti
j

where the query results only contain information from these depend-
ent tuples. We use the empirically determined values in Equation (6)
to compute r for different number of dependent tuples d. Then,
according to Equation (4), we compute the dependent sensitivity 1.
Figure 3 analyzes the amount of leaked information for individual j,
an adversary can reconstruct from the perturbed query results
assuming two cases for the dependent tuple size d. As before, we as-
sume the adversary target to be the son of MC family. The first
query results include the data of the target and his father. We can
see under the same privacy budget, �, our privacy model has much
lower leaked information than the DP approach except for � ¼ 3

Fig. 3. The effect of applying our proposed countermeasure for different values of

the privacy budget, �. ‘DP’ lines stand for applying DP mechanism (over three differ-

ent sets of family members in the dataset) and the other three lines show the leaked

SNPs when our proposed mechanism is applied
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where we get almost the same number of leaked SNPs. The second
query results include the data of the target and his mother.
Similarly, our privacy model achieves better privacy for various priv-
acy budgets. In the third query results, the dependent tuples size in the
dataset increased to three; we have the target, his father and mother
included in the query results. As illustrated in Figure 3, we can con-
firm that our privacy model provides better privacy performance in
terms of leaked information metric. In all different values of �, using
leaked information and correctness metrics our privacy model pro-
vides better privacy and it can reach up to 63% less leaked informa-
tion in the case of d ¼ 3 and � ¼ 1. Therefore, our privacy model
achieves better privacy guarantees than the existing approaches of DP
for genomic studies, and this advantage increases for smaller � values.

Next, we apply our mechanism to the second dataset, in which we
target the par 1 in CEPH/Utah dataset and try to protect him against
any inference attack aiming to detect his genomic data exploiting that
his family members are included in the same genomic dataset. We as-
sume eight cases for different numbers of correlated tuples d starting
from two dependent tuples (the target j and one first-degree family
member) and gradually increase until eight dependent tuples d (the tar-
get j and seven first-degree family members) in the dataset. Our model
decreases the leaked information better than DP in all the eight cases.
Hence, we increase the correctness of the adversary and decrease the
leaked information about the genomic data of the target j. The results
are shown in Supplementary Figure S12 in Supplementary Section S11.

6.3 Comparison with existing work
In the following, we compare our mechanism with the most similar
existing work (Liu et al., 2016; Zhao et al., 2017) using a sum query
over a dataset with n ¼ 1000 tuples. Since Zhao et al. (2017) and
Liu et al. (2016) consider Markov chain-based correlations, in their
models, all 1000 tuples are correlated. Thus, for this comparison,
we also report the results of our scheme for 1000 dependent tuples.

Figure 4 compares our mechanism with Zhao et al. (2017) and
Liu et al. (2016) in terms of privacy (Fig. 4a) and utility (Fig. 4b).

Figure 4a shows the amount of noise added to achieve �-DP by con-
sidering the dependence between tuples. Here, we can see that for all
� values, our proposed scheme adds significantly smaller amount of
noise, and hence provides better utility. For example, when � ¼ 0:1,
the amount of noise added in our scheme is 0.58% of the noise
added by Liu et al. (2016) and 17.32% of the noise added by Zhao
et al. (2017). Figure 4b shows the ða;bÞ� usefulness defined by
Blum et al. (2013) which is commonly used for evaluating the
utility guarantees for privacy mechanisms. It means the noisy
output of the query should deviate by at most a from the real value
(in terms of L1-norm) with probability ð1� bÞ. Figure 4b
shows the smallest privacy parameter (�) for different a values.
For instance, to have a ¼ 10 and b ¼ 0:1 (i.e. deviate by at most 10
from the original query result with a probability of 0.9), our
proposed scheme requires a privacy budget of � ¼ 1.34. To achieve
the same ða; bÞ� usefulness, � ¼ 230 shall be used for required
of Liu et al. (2016) and � ¼ 3.8 shall be used for required of Zhao
et al. (2017). Thus, compared to existing work, for all a values,
our mechanism requires a significantly smaller �, and hence better
privacy guarantees.

To sum up, our results demonstrate the following observations:

• Our model better minimizes the leaked information for genomic

datasets compared to the state-of-the-art approaches (Chen

et al., 2014; Dwork, 2008; He et al., 2014; Kifer and

Machanavajjhala, 2012; Liben-Nowell and Kleinberg, 2007; Liu

et al., 2016; Zhu et al., 2015). Thus, we can select an appropriate

privacy budget to achieve the optimal desired privacy while

maintaining utility of the data for different genomic applications.
• Our model can achieve up to 50% on average better privacy

guarantees based on the estimated error and the leaked informa-

tion metrics than DP approaches, based on the leaked informa-

tion metric, for publishing the average number of SNP values for

a group of members participating on any genomic studies.
• Our model is resistant to state-of-the-art inference attacks (Fredrikson

et al., 2014; Liu et al., 2016). It reduces the leaked information even

with a larger number of dependent tuples for various values of �.

7 Conclusion

DP is considered as a concept that provides rigorous privacy guaran-
tees. However, it suffers from weak privacy performance due to
some limitations, such as ignoring the dependence between the
tuples in the dataset. In this paper, we have utilized an inference at-
tack to assess the vulnerability of the state-of-the-art DP-based
approaches and we have shown the effect of data dependence on the
genomic privacy. We have shown that an adversary, knowing the fa-
milial relationship between some individuals in a genomic dataset,
may infer more information than what is guaranteed by traditional
DP. To mitigate such privacy risks, we have introduced �-DP for
genomic datasets with dependent tuples that takes into consider-
ation the probabilistic dependence relationship between data tuples
and provides rigorous privacy guarantees. Furthermore, we have
evaluated our perturbation mechanism over different genomic data-
sets. Our results show that our privacy model performs significantly
better than the existing DP-based mechanisms.
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