
Computer Networks 217 (2022) 109302

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Application placement with shared monitoring points in multi-purpose IoT
wireless sensor networks
Mustafa Can Çavdar ∗, Ibrahim Korpeoglu, Özgür Ulusoy
Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey

A R T I C L E I N F O

Keywords:
Wireless sensor networks
Virtualization
Resource allocation
Optimization

A B S T R A C T

The main function of a wireless sensor network (WSN) is to gather data from a certain region and transfer
the data to a center or remote locations for further processing. The collected data can be of interest for
many applications. Therefore, a physical WSN owned by a single provider can be utilized by many customer
applications. Additionally, the data of a particular point or sub-region can satisfy the need of multiple
applications. Hence, sensing the data only once in such cases is beneficial to reduce the energy consumption,
network traffic and acceptance ratio of the applications. We call this as monitoring point based shared data
approach. In this paper, we focus on the placement of applications each of which requires several points to be
monitored in an area a WSN covers. We first propose such a monitoring point based shared data approach for
WSNs that will serve multiple dynamic applications. We also propose two methods for application placement
over a shared physical WSN: one greedy method and one genetic algorithm based method called GABAP. We
did extensive simulation experiments to evaluate our algorithms. The results show the effectiveness of our
methods in fast and close-to-optimum placement of applications over a single network.
1. Introduction

Improvements in sensing technologies and devices, and cost-
efficient evolution in wireless communications and mobile-computing
enabled WSNs to become one of the key components for Internet
of Things (IoT) and smart environments. Wireless Sensor Networks
(WSNs) are heterogeneous systems which consist of sensor nodes that
can collect various types of data from a set of monitoring points in
an area of interest. Collected data are processed in sensor nodes or
centralized units.

The range of applications has grown rapidly since the inception of
WSNs. Various types of applications can be provided by using WSNs.
For instance, a disaster prevention system can be built to monitor
dangerous workplaces, like mines, refineries, etc., and alert officials
accordingly in case of an emergency. Some other application examples
include environmental monitoring, air quality monitoring with NO2
sensors in cities [1], in-pipe monitoring of the quality of drinkable
water [2], and collecting seismic and infrasonic signals from volca-
noes [3]. A major domain of usage is the management of smart cities.
A smart city can make use of IoT to provide the services of the city
in a more efficient and interactive manner [4]. Noise monitoring in
the urban areas [5], and intelligent parking systems [6] are among the
smart city applications of WSNs. Applications of WSNs are so extensive

∗ Corresponding author.
E-mail addresses: mustafa.cavdar@bilkent.edu.tr (M.C. Çavdar), korpe@cs.bilkent.edu.tr (I. Korpeoglu), oulusoy@cs.bilkent.edu.tr (Ö. Ulusoy).

that there are studies that group the use cases. Kandris et al. [7] cat-
egorize the WSN application domain into six groups: military, health,
environmental, flora and fauna, industrial and urban. The broad range
of applications makes the optimization and efficient use of WSNs very
vital.

Traditionally, the realizations of WSNs were task-specific. A WSN
was bundled with a single application and was optimized and used only
for that application. Deploying another application to the already run-
ning WSN was impossible. This leads to redundant WSN deployments
and inefficient utilization of WSN resources. As with many systems, the
trend for WSNs is changing from being designed for a single application
to designing WSNs that can support various applications with het-
erogeneous types of needs within a single network infrastructure [8].
Consider, for example, a smart building system with environment
monitoring capabilities that are used to adjust general cooling system.
Into this network, another application that uses moist and carbon
dioxide sensors to estimate room occupancy can be deployed without
disturbing the already existing cooling application. Another example
may be a city-wide WSN infrastructure of sensor nodes with various
sensing capabilities. Various applications, such as traffic monitoring,
waste management, air quality monitoring, crime detection, etc., can
be deployed over this single WSN infrastructure to realize a smart city.
vailable online 19 August 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.109302
Received 7 August 2021; Received in revised form 13 June 2022; Accepted 12 Aug
ust 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:mustafa.cavdar@bilkent.edu.tr
mailto:korpe@cs.bilkent.edu.tr
mailto:oulusoy@cs.bilkent.edu.tr
https://doi.org/10.1016/j.comnet.2022.109302
https://doi.org/10.1016/j.comnet.2022.109302
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109302&domain=pdf

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
In this paper, we focus on application placement with sharing
possibilities over a sensor network operated by a single provider. We
assume the network is accessible by application providers or users to
request their applications to be placed. Each application requires some
set of points in the area to be monitored with certain data types, and
the data gathered from those points need to be processed in centralized
units. The goal is to place as many applications as possible, considering
also data sharing possibilities. Such an application placement is a
resource allocation problem and is NP-hard. Therefore, we propose
two methods to place applications over a shared physical WSN. One
is a simple greedy algorithm that is very fast and that also serves as
a simple benchmark. The other is a genetic algorithm based solution
that can perform close to optimum even for very large networks. We
call our genetic algorithm solution GABAP. GABAP tries to increase
the number of placed applications by choosing sensor nodes and base
stations for monitoring points as good as possible. We also formulate
the problem as a mathematical program to find out the optimal solution
for reasonably-sized networks.

We conducted extensive simulation experiments and evaluated our
algorithms. The experimental results show that our genetic algorithm,
GABAP, is very effective in placing high number of applications and
performing close to optimum. Our greedy algorithm, on the other hand,
is very fast and can be preferred for the cases where speed is very
important.

The rest of the paper is organized as follows: Section 2 describes the
example motivational use of our network model. Section 3 discusses the
related work in the literature and provides a brief comparison with our
work. Section 4 provides the problem formulation. Section 5 introduces
our greedy and genetic algorithms. Section 6 details our experimental
results. Finally, Section 7 gives our conclusions.

2. Motivation

For multi-application operations, it is essential that WSNs be de-
signed and utilized in an optimal way so that we can support as many
applications as possible simultaneously over a single physical WSN
infrastructure. This usually requires a centralized controller. Thanks
to Software-Defined Networking (SDN) technology, we now have this
opportunity. With SDN, decision-making process is moved from a dis-
tributed network of units to a logically implemented centralized con-
troller software [9]. SDN allows sharing physical resources among
multiple applications, and improves flexibility of the network [10].
Hence, Software-Defined Networking has a key role in the development
of next generation networks and Internet of Things [11].

In WSNs that support multi-application deployment, some applica-
tions may require the same data type (i.e., image, video, temperature)
to be sensed from the same monitoring point. For instance, consider
an application that measures the average speed of vehicles between
two points by capturing their image. There may be another application
that monitors traffic density at those two points at certain times of the
day. Both applications require image data from those two points but
their data requirement frequencies are different. Measuring the speed
of vehicles requires more frequent image data than monitoring traffic
density. For such cases, we propose monitoring point based shared data
approach, which enables sensing and transmission of data only once
for multiple applications registered to sense the same monitoring point.
In this example, data will be collected once to be shared among two
applications, instead of sensing and collecting separate data for each
application. This reduces the capacity and bandwidth usage of sensor
nodes and links. In this way, a sensor node will have more resources
available for applications yet to be deployed.

The differences between shareable and unshareable approaches are
summarized in Table 1.

To illustrate the benefits of the shareable approach, we consider the
following example scenario. Let us consider a sensor network consisting
of sensor nodes and base stations. Assume that there are multiple
2

applications requiring a specific monitoring point to be sensed and that
monitoring point is in the sensing range of a single specific sensor node.
Assume also that the sensor node can connect to just one particular
base station which has enough processing capacity. With the shareable
approach, we can place many applications whose sensing requirements
are at most the sensing capacity of the sensor node. However, with
the unshareable approach, each placed application consumes additional
sensing resources of the sensing node, therefore we cannot place many
applications. For instance, suppose that the sensor node has a sensing
rate capacity of 400 kbps, and there are four applications with the
sensing requirements of 300 kbps, 100 kbps, 150 kbps and 200 kbps.
With the shareable approach, all four applications can be placed to
the network, since the used sensing rate would be 300 kbps which
is less than the capacity of the sensor node. However, with the un-
shareable approach, at most two applications can be placed to the
network, considering the capacity of the senor node. Therefore, with
the shareable approach, a WSN can support much more applications
with the same amount of resources. Moreover, the average energy spent
per application would be less compared to the unshareable approach.

3. Related work

Optimization of WSNs is among the topics that are extensively
studied in computer networks field. Previous studies can be catego-
rized based on optimization objective, such as decreasing energy cost,
increasing efficiency of resource allocation and scheduling, increasing
coverage area of the WSN, and so on.

In [12], Raee et al. assign tasks to sensor nodes in a way that
energy consumption is minimized by using Integer Linear Program-
ming. They compare their solution with a traditional WSN which is
a non-virtualized network. Ojha et al. [13] describe a scheme for
dynamic IoT applications to preserve energy efficiency in a cloud
system. They model the interaction between cloud owners and sensor
owners as a Stackelberg game. Lemos et al. [14] propose an Ant Colony
Optimization method to handle virtual sensor provisioning in WSNs.
Their algorithm selects an optimal set of sensor nodes to respond to
user demands while withholding energy consumption in the whole
network. In [15], Rahmati et al. present a load balancing algorithm
for efficient routing in WSNs. They consider energy consumption and
resource allocation and show that a uniform distribution of WSN load
leads to the most efficient routing.

Delgado et al. [8] use mathematical programming to solve both
application admission and network slicing problems in WSNs. They
evaluate their method on realistic WSN infrastructures. The same au-
thors expand their work to handle dynamic application admission in
shared sensor networks in [16]. SenShare [17] is a platform that
addresses the technical difficulties of transforming a physical sensor
network into an infrastructure that supports multiple applications.
In [18], Bhattacharya et al. present UMADE which is an application
deployment system that allocates applications to sensor nodes by con-
sidering their Quality-of-Monitoring (QoM). Therefore, they aim to
increase overall QoM in the whole network within resource constraints.
The two QoM attributes they use are variance reduction and detection
probability. Ajmal et al. [19] propose an admission control algorithm
for WSNs to which applications are deployed for a certain time interval.
Their method tries to minimize the total execution time of applications.
Moreover, they also assess the feasibility of their scheduling based on
co-arrived applications. Cionca et al. [20] propose Judishare, a frame-
work that enables the reuse of sensing and communication resources in
shared sensor networks. In [21], Bousnina et al. focus on the resource
allocation problem in a virtual sensor network that has sensor nodes
with various amounts of resources. They propose a greedy approach to
solve the problem. This greedy method is faster than the methods which
optimally solve the same problem, however, under-performs compared
to them. Tynan et al. [22] propose a Multi-Agent System architecture
that deals with embedding virtual sensor networks on a WSN. They

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Table 1
Comparison of shareable and unshareable approaches.

Shareable approach Unshareable approach

Sensing Required resources for each monitoring point are less compared to Unshareable since
sensing requirement of each monitoring point is the maximum of individual requests
of applications.

Required resources for each monitoring point are more since
the sensing requirement of each monitoring point is the sum
of individual requests of applications.

Transmission Since less data are sensed by sensor nodes, amount of transmitted data is also less. Since more data are sensed, amount of transmitted data is
more compared to Shareable approach.

Benefit
Less resources are used for the same applications. More available resources for
applications yet to be deployed.

More resources are used for the same applications. Less
available resources for applications yet to be deployed.

Less energy spent for the deployed applications. More energy spent for the deployed applications.
use hibernation of idle resources to reduce power consumption. Xu
et al. [23] present a local search algorithm for application allocation in
shared sensor networks. They aim to maximize QoM by considering re-
source constraints such as memory and bandwidth. They compare their
method with simulated annealing by using both real-world datasets and
simulated networks that are randomly generated.

Uchiteleva et al. [24] propose a resource scheduling algorithm for
WSNs. The scheduler provides a resource management solution for
isolated profiles in a WSN and enables the virtualization of the network.
They compare their approach, which is a branch and bound technique,
with traditional Round Robin and Proportionally Fair algorithms. Wei
et al. [25] present ISVM-Q, a Q-learning algorithm for task scheduling,
to optimize application performance and energy consumption of WSNs.
Li et al. [26] propose a framework that considers the load condition
of every node in a wireless network and initiates a re-embedding
operation if necessary. In [27], Abreu et al. describe a QoS-based
application admission for WSNs for the biomedical domain. Instead
of applications, their proposed work decides when to admit a new
sensor node on the network. Edalat and Motani [28] consider a network
which contains sensor nodes with solar panels that harvest energy.
They tackle the problem of task scheduling and mapping of those tasks
to sensor nodes. They aim to increase fairness in mapping by con-
sidering task priority and energy harvesting constraints. The method
called EN-MASSE [29] deals with dynamic mission assignment in a
WSN including sensor nodes with harvesting capabilities. It proposes a
mixed-integer programming method to assign missions to sensor nodes
within a time horizon. It aims to reduce the total execution time of
the missions as its biggest constraint is the lifetime of the network.
De Frias et al. [30] describe an application scheduling algorithm for
shared sensor and actuator networks. They target to improve the energy
efficiency of the system and experiment by using both simulations and
real sensor nodes.

Our work described in this paper differs from the above mentioned
studies with the following features:

• A monitoring point based shared data approach: Data sensed from
a monitoring point can be shared by multiple applications and
our methods consider this whenever possible. Each application
indicates its required sensing rate for a monitoring point, and
our scheme multiplexes and satisfies these requests using a single
stream of data sensed from the monitoring point. In this way,
we reduce the sensing and communication resources used per
application, without violating sensing requirements.

• Network structure: We focus on sensor networks that have lim-
ited bandwidth and computational resources at the edge. Data
are sensed from monitoring points by sensor nodes and sent to
base stations (or cluster-heads) to be processed and/or conveyed
further towards one or more data centers. We assume the network
among base stations and sinks is a high speed network. Hence,
we are concerned with the efficient use of the limited bandwidth
available between sensor nodes and base stations.

• A novel algorithm: We propose a novel genetic algorithm, called
GABAP, that increases the number of placed applications by
selecting applications to be admitted and assigning monitoring
3

points to sensors and base stations in a close-to-optimal way.
GABAP can also migrate monitoring points from their assigned
sensor nodes and base stations to others.

• An LP solution for the problem: We provide a linear programming
(LP) solution to the problem for small networks as well. In this
way, we are able to compare our GABAP algorithm against the
optimal solution. We also provide a greedy algorithm to compare
our GABAP solution to a very fast algorithm.

4. Problem statement

We consider a wireless sensor network (WSN) that is owned by a
single sensor network infrastructure provider and shared by multiple
applications. Our WSN model consists of sensor nodes with equal
sensing rates and sensing ranges, base stations with equal processing
capacities, and connections between those sensors and base stations
with equal bandwidth capacity. A sensor can gather data from the
monitoring points within its sensing range and it is connected to the
base stations within its communication range.

An example network model is provided in Fig. 1. In the figure, large
circles represent sensor nodes in the network, small circles represent
monitoring points and radio towers represent base stations. A dotted
line between a sensor node and a base station means that the sensor
node connects to the base station. A dashed line between a sensor
node and a monitoring point means that the sensor node is actively
sensing the monitoring point. Base stations are connected to sinks with
a high speed connection. We try to deploy as many applications as
possible to this network. The applications require different types of
data to be sensed from some monitoring points. If all monitoring point
requirements of an application can be satisfied by our network, then
the application is placed. Otherwise, it is not placed. A monitoring point
requirement of an application is satisfiable if with the extra load caused
by the application’s needs, we can find a sensor node and a base station
with sufficient resources.

The parameters used for a formal description of our problem are
shown in Table 2.

We aim to maximize the number of applications that are successfully
deployed. We can formally express this problem as follows:
∑

𝑗∈𝐴
𝑧𝑗 (1)

is maximized subject to

𝑧𝑗 =
∏

𝑘∈𝑀𝑗

𝑥𝑗𝑘 ∀𝑗 ∈ 𝐴 (2)

𝑥𝑗𝑘 ≤ 𝑥𝑘 ∀𝑘 ∈ 𝑀 (3)

𝑥𝑘 =
∑

𝑖∈𝑆𝑘

𝑥𝑖𝑘 ≤ 1 ∀𝑘 ∈ 𝑀 (4)

𝑟𝑘 = 𝑚𝑎𝑥(𝑟𝑗𝑘 ∗ 𝑥𝑗𝑘) ∀𝑘 ∈ 𝑀 (5)

𝑢𝑘 =
∑

(𝑟𝑗𝑘 ∗ 𝑥𝑗𝑘) ∀𝑘 ∈ 𝑀 (6)

𝑗∈𝐴

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 1. Network model.
Table 2
Parameters used in problem statement.
𝑆 Set of sensor nodes
𝐵 Set of base stations
𝐶 Set of connections
𝐴 Set of applications
𝑀 Set of monitoring points
𝑆𝑘 Set of sensor nodes covering monitoring point k
𝑀𝑗 Set of monitoring points required by application j
𝑀𝑖𝑙 Set of monitoring points whose data is transferred from sensor node i to base station l
𝑧𝑗 Binary variable indicating whether application j is deployed
𝑥𝑘 Binary variable indicating whether monitoring point k is sensed
𝑥𝑖𝑘 Binary variable indicating whether sensor node i is actively sensing monitoring point k
𝑥𝑖𝑙𝑚 Constant indicating whether sensor node i is connected to base station l through connection m
𝑥𝑗𝑘 Binary variable indicating monitoring point requirement of application j for monitoring point k is satisfied
𝑟𝑗𝑘 Sensing rate requirement by application j at monitoring point k
𝑟𝑘 Sensing rate requirement of monitoring point k
𝑢𝑘 Sum of sensing rate requirements of applications for monitoring point k
𝑅𝑖 Sensing rate capacity of sensor node i
𝐸𝑠 Energy budget for each sensor node
𝑃𝑙 Processing capacity of base station l
𝐶𝑚 Bandwidth capacity of connection m
𝑅′

𝑖 Used sensing resource of sensor node i
𝑃 ′
𝑙 Used processing resource of base station l

𝐶 ′
𝑚 Used bandwidth of connection m

𝑇𝐶 Transmission coefficient
𝑃𝐶 Processing coefficient
∑

𝑘∈𝑀
𝑥𝑖𝑘𝑟𝑘 ≤ 𝑅𝑖 ∀𝑖 ∈ 𝑆 (7)

∑

𝑘∈𝑀
𝑥𝑖𝑘𝑢𝑘 ≤ 𝑅𝑖 ∀𝑖 ∈ 𝑆 (8)

∑

𝑟𝑘𝑇𝐶 ≤
∑

𝑥𝑖𝑙𝑚𝐶𝑚 ∀𝑖 ∈ 𝑆,∀𝑙 ∈ 𝐵 (9)
4

𝑘∈𝑀𝑖𝑙 𝑚∈𝐶
∑

𝑘∈𝑀𝑖𝑙

𝑢𝑘𝑇𝐶 ≤
∑

𝑚∈𝐶
𝑥𝑖𝑙𝑚𝐶𝑚 ∀𝑖 ∈ 𝑆,∀𝑙 ∈ 𝐵 (10)

∑

𝑖∈𝑆

∑

𝑘∈𝑀𝑖𝑙

𝑢𝑘𝑃𝐶 ≤ 𝑃𝑙 ∀𝑙 ∈ 𝐵 (11)

Eq. (2) shows that to deploy an application, all the monitoring point
requirements of the application must be satisfied. Requirements of a
monitoring point can be satisfied if the monitoring point is sensed by a

Computer Networks 217 (2022) 109302M.C. Çavdar et al.

s
T
n
m
t
f
c
i
p
c
a
i

i
a
t

4

s
i
a

𝐸

𝐸

𝐸

𝐸

m
c
s
e
i
E

𝑥
f
p

5

w
g

5

F
b
a
p
e
m
o
r

sensor node as shown in Eq. (3). A monitoring point is sensed by at most
one sensor node as shown in Eq. (4). With Eqs. (5) and (6), we indicate
the calculation of the required sensing rate by a monitoring point for
shared and unshared cases, respectively. Eqs. (7) and (8) are the sensing
constraints for shareable and unshareable approaches, respectively. For
shareable approach, our connection constraint is shown in Eq. (9).
Eq. (10) is the connection constraint of unshareable approach. We have
a Transmission Coefficient whose value is between zero and one because
we assume that the data collected at sensor nodes can be compressed
before they are sent to a base station to be processed. Eq. (11) is the
processing constraint. We use a Processing Coefficient is since some data
ent to base stations may be noise and they do not need to be processed.
he sensing constraint indicates that the sensing capacity of a sensor
ode must be at least large enough to meet the sensing requirements of
onitoring points it actively senses. The connection constraint specifies

hat a connection should have enough bandwidth to transfer the data
rom the sensor node to the base station it connects. With the processing
onstraint, we enforce that the total processing requirement of monitor-
ng point data sent to a base station must not exceed the base station’s
rocessing capacity. A monitoring point’s requirement is calculated by
onsidering only admitted applications. If our algorithm does not admit
n application to the network, the requirements of that application are
gnored in calculating the monitoring point requirement.

We assume that the applications arrive at the network dynamically,
n batches or one by one. Therefore, there exist both initially known
pplications that are already placed and new applications that are yet
o be deployed.

.1. Energy constraint

The following equations are to calculate the energy spent by the
ensor nodes and base stations in the network. The total energy spent
n the edge network is the sum of energy spent by each sensor node
nd base station.
𝑡
𝑖𝑙 = 𝑥𝑖𝑙𝑚𝐶

′
𝑚 ∗ (𝛽1 + 𝛽2 ∗ 𝑑4𝑖𝑙) ∀𝑖 ∈ 𝑆,∀𝑙 ∈ 𝐵 (12)

𝐸𝑠
𝑖 = 𝜌 ∗ 𝑅′

𝑖 ∀𝑖 ∈ 𝑆 (13)

𝑖 =
∑

𝑙∈𝐵
(𝐸𝑡

𝑖𝑙) + 𝐸𝑠
𝑖 + 𝐸𝑎𝑐𝑡 + 𝐸𝑚𝑖𝑔 ∗ 𝑁𝑖 ∀𝑖 ∈ 𝑆 (14)

𝑟
𝑖𝑙 = 𝛽1 ∗ 𝑥𝑖𝑙𝑚𝐶

′
𝑚 ∀𝑖 ∈ 𝑆,∀𝑙 ∈ 𝐵 (15)

𝐸𝑝
𝑙 = 𝛾 ∗ 𝑃 ′

𝑙 ∀𝑙 ∈ 𝐵 (16)

𝑙 =
∑

𝑖∈𝑆
(𝐸𝑟

𝑖𝑙) + 𝐸𝑝
𝑙 + 𝐸𝑎𝑐𝑡 ∀𝑙 ∈ 𝐵 (17)

Eq. (12) is the calculation of energy that is spent by data trans-
ission by a sensor node i to a base station l. Eq. (13) describes the

alculation of energy cost for sensing data. For each sensor node, the
um of transmission energy cost to all connected base stations, sensing
nergy cost, activation cost and the cost of migration to the sensor node
s equal to the total energy spent by the sensor node which is shown in
q. (14). 𝛽1 = 50 nJ/bit, 𝛽2 = 0.0013 pJ/bit m4, 𝜌 = 0.5 nJ/bit. These

values and the formulas are derived from [31]. 𝐸𝑎𝑐𝑡 is the activation
energy for sensor nodes and base stations. 𝐸𝑚𝑖𝑔 is the migration cost.
Both 𝐸𝑎𝑐𝑡 and 𝐸𝑚𝑖𝑔 are equal to 10 J [8].

Eq. (15) is to calculate the energy dissipation for the reception of the
transmitted data to the base stations. Eq. (16) is to calculate the energy
cost of processing received data at the base stations. Total energy spent
by a single base station is the sum of total energy spent for the reception
of the data, processing of the data, and the activation cost. It is shown
in Eq. (17). 𝛾 = 5 nJ/bit. The value of 𝛾 and the formulas are derived
from [31].

𝐸 ≤ 𝐸 ∀𝑖 ∈ 𝑆 (18)
5

𝑖 𝑠
Eq. (18) shows the only energy constraint in our model. It indicates
that energy spent by each sensor node cannot exceed its energy budget.
In our model, we do not have any energy constraints for base stations,
since we assume that base stations can be plugged into the grid, as
in [8].

4.2. Hardness of application placement problem

The application placement problem which is described above is a
resource allocation problem. Here, to prove that the aforementioned
problem is NP-hard, we reduce the 3-SAT problem which is a well-
known NP-hard problem [32], to the application placement problem.

4.2.1. 3-SAT
Boolean satisfiability problem (SAT) is the problem of determining

whether there is an interpretation that satisfies a given Boolean for-
mula. In, 3-satisfiability (3-SAT), the formula consists of clauses each
having exactly three literals. For instance, 𝜙 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑛 and
𝑐𝑖 = 𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐 where 𝑎, 𝑏, 𝑐 ∈ N is in 3-SAT form.

4.2.2. Reduction to application placement
For each monitoring point request, we need to find a sensor to

gather data from the monitoring point and a base station to process
gathered data. The Boolean formula 𝜙 we use for reduction consists of
three literals. Let 𝜙 = 𝐶1∧𝐶2∧𝐶3. If 𝐶1 and 𝐶2 have common attributes
with non-contradictory values, we say that monitoring point is in the
sensing range of the sensor with enough available sensing resources.
Similarly, if 𝐶2 and 𝐶3 have common attributes with non-contradictory
values, the sensor and the base station with enough processing power
have connection with enough bandwidth. Therefore, if we can find a
feasible solution for 𝜙, then we can sense that monitoring point. For
instance, let 𝜙 = (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥5). We
can reduce it as in Fig. 2. Common literals of 𝐶1 and 𝐶2 are 𝑥2 and
𝑥4 and the only common literal of 𝐶2 and 𝐶3 is 𝑥2. With 𝑥1 = 𝑓𝑎𝑙𝑠𝑒,
2 = 𝑓𝑎𝑙𝑠𝑒, 𝑥3 = 𝑡𝑟𝑢𝑒, 𝑥4 = 𝑡𝑟𝑢𝑒 and 𝑥5 = 𝑡𝑟𝑢𝑒, 𝜙 is feasible and we can
ind a suitable sensor and a suitable base station for the monitoring
oint.

. Proposed method

To solve the aforementioned resource allocation problem in WSNs,
e propose two different methods: a greedy approach, and GABAP, a
enetic algorithm based solution.

.1. Greedy algorithm

The greedy approach we propose is a modified version of the Worst
it algorithm. Therefore, we use the least utilized sensor node or
ase station to distribute the load more evenly to have more options
vailable for subsequent requests. At each time instant t, our algorithm
rocesses arriving applications one by one in an unordered way. For
ach application, we check whether all of its monitoring point require-
ents are satisfiable. If they are, then we place that application into

ur network and update resources accordingly. The satisfiability of a
equirement is checked as follows:

• If the required monitoring point is already sensed, then, we
check whether the resources that monitoring point uses can meet
the extra demands by the new application. Resources mentioned
here are the resources of the sensor that is already sensing that
monitoring point, the base station at which that point’s data is
processed, and the connection between them. If new demand
can be met, then this requirement is satisfiable. Here, we do not
provide any migration operation as it contradicts the approach
being greedy.

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 2. 3-SAT reduction to application placement.
• If the required monitoring point is not sensed, then we apply the
Worst Fit logic to find a sensor node and a base station to sense the
monitoring point and process the related data. We search through
sensor nodes which have that point in their sensing range and
select the sensor node with the largest available resource. Then,
among the base stations that the sensor node has a connection, we
select the one with the largest available processing resource. If the
connection between the selected sensor node and the base station
has enough bandwidth, then we assign that monitoring point
to the selected sensor node and base station. If the connection
cannot meet the demand, we skip that base station and consider
the next base station with the largest available resource. If none
of the base stations connected to the selected sensor node satisfies
the demand, then we skip this node and consider the next sensor
node with the largest available resource. If our algorithm cannot
find such a sensor node either, then we consider the requirement
as unsatisfiable.

If all requirements of an application are satisfied, then the appli-
cation is placed. Our algorithm outputs the number of placed applica-
tions.

5.2. Genetic Algorithm Based Application Placement (GABAP)

Genetic algorithms are proven to be useful for the optimization of
networks [33–35]. Therefore, we decided to use a genetic algorithm
based solution for the aforementioned problem. A genetic algorithm
runs for generations each having a number of candidate solutions called
individuals. Each individual has chromosomes representing the actual
solution it offers. The chromosome structure in the algorithm we pro-
pose consists of Application Genes, Sensor Genes and Base Station Genes,
which are all integer lists. The size of Application Genes is the number
of applications arriving at that time instant that needs to be placed and
the sizes of the other two are |𝑀|, i.e., the number of monitoring points.
The values in Application Genes are binary (0 or 1) and they represent
which applications need to be admitted. Sensor Genes represent the
6

proposed sensor nodes sensing each monitoring point requested by at
least one application, and Base Station Genes represent the proposed
base stations in which each monitoring point is processed. Example lists
are shown in Fig. 3.

5.2.1. Initial population creation
In genetic algorithms, each individual of a generation is created

by crossover operations whose parameters are individuals from the
previous generation. Since there is not any generation before the initial
population (the first generation), we need to create its individuals
randomly.

Since Application Genes of an individual determines whether the
application should be admitted, each application gene of an individual
from the initial population is determined with a 50% probability. It is
either 0 or 1.

Sensor Genes and Base Station Genes of the initial population are
determined together. For each monitoring point that is requested by
at least one application from the current batch, we first determine
a sensor gene. It is randomly determined among the sensor nodes
whose sensing range covers the monitoring point. Each possible sensor
node has an equal probability. After the sensor gene is determined, we
randomly select a base station among the ones the chosen sensor node
has a connection to. Again, each possible base station has an equal
chance to be selected. For monitoring points that are not requested
by any application, we do not determine a sensor gene or base station
gene to avoid unnecessary migrations in the current or future batch of
applications. Sensor and base station genes for monitoring points that
are not requested are set to −1.

5.2.2. Fitness calculation
Our fitness calculation is designed to measure how close an Individ-

ual (a candidate solution to the problem) is to the optimum solution.
The value obtained from the calculation is called the individual’s fitness
score. Eq. (19) shows the fitness calculation of our genetic algorithm.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑃𝐴𝐶 − 𝛼 ∗ 𝑀𝐶 − 𝛽 ∗ (𝑊𝐴𝑃𝑆 +𝑊𝑀𝑆) (19)

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 3. Example genes.
Placed Application Count (PAC) is the number of the applications
that can be placed into the network. For each application j with
ApplicationGene(j)=1, we check whether all of its requirements can be
met without violating network constraints. If we cannot place applica-
tion j, then we increase Wrong Application Placement Suggestion (WAPS)
by one.

Our algorithm can also migrate a monitoring point from one sensor
node and base station to another pair which is explained in Sec-
tion 5.2.6. If a monitoring point has an already assigned sensor node
and an already assigned base station, and the genes of the individual
suggest a different sensor node or a different base station, we say that
the individual suggests a migration. If a monitoring point whose migra-
tion is suggested is required by a successfully placed application, then
we increase Migration Count (MC) by one. However, if the migration
violates the network constraints, then we increase Wrong Migration
Suggestion (WMS) by one.

Values of 𝛼 and 𝛽 have a direct effect on the fitness score. A migra-
tion operation may be helpful to place a larger number of applications,
however, it is not a free operation. If an application can be placed
both with and without migration, we favor placing it without migration
because of the cost. Nevertheless, placing an application with migration
is preferable to not placing the application at all. Therefore, The value
of 𝛼 is in the interval of (0,1). The sum 𝑊𝐴𝑃𝑆 +𝑊𝑀𝑆 indicates the
number of times that the genes of the individual violate the constraints
of our network. Since violating the network constraints is undesired, 𝛽
has a value that is big enough to ensure that not attempting to place any
applications at all is a better outcome than having network constraint
violations. In our experiments, we observe that 𝛼 = 0.1 has the best
value for the application placement and migration trade-off. For 𝛽,
1000 is a value that is large enough to prevent violations. A feasible
solution for the network means a non-negative fitness score for the
individual.

5.2.3. Selection operation
We use the tournament selection method to find an individual for

each individual in the population to pair up for the crossover operation.
Tournament selection has its own population (i.e. the tournament
population) which includes a subset of individuals that are randomly
chosen from the general population. It outputs the individual with
the highest fitness score. There is a small possibility of there may be
multiple individuals with the highest fitness score in the tournament
population. In such cases, we randomly select one of them. We repeat
this process for every individual in the general population. We do
not use the same tournament population for each individual which
means that for each individual in the general population, we create
a new tournament population. Therefore, the individuals included in
the tournament population are not the same every time. The size of
the tournament population is 5% of the general population since this
amount is small enough to increase the variety and large enough to
have better individuals after the crossover operation.
7

Algorithm 1 Selection Operation
Require: The tournament population, 𝑃𝑜𝑝
Ensure: an individual chromosome
1: procedure Selection
2: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ← 0
3: 𝑏𝑒𝑠𝑡𝐼𝑛𝑑 ← 𝑁𝑢𝑙𝑙
4: for each Individual 𝑥 in 𝑃𝑜𝑝 do
5: calculate its fitness score, 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒
6: if 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ≤ 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 then
7: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ← 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒
8: 𝑏𝑒𝑠𝑡𝐼𝑛𝑑 ← 𝑥
9: end if

10: end for
return 𝑏𝑒𝑠𝑡𝐼𝑛𝑑

11: end procedure

5.2.4. Crossover operation
Crossover operation is performed to create individuals of the next

generation. Paired-up candidate solutions in the selection operation are
used at this stage. This operation decides which genes are inherited
from which parent. The value of uniformRate determines the probability
of selecting genes from either parent. In our experiments, we choose
uniformRate = 0.5 not to favor either parent to improve diversity.
Crossover of Application Genes is realized separately from the other two.
For each application, a randomly selected parent’s gene is inherited.
For each monitoring point that is requested by the applications from
the current batch, according to the generated random value, a par-
ent is chosen and both Sensor Gene and Base Station Gene are taken
from that parent. This operation guarantees that each sensor gene of
the offspring covers the corresponding monitoring point and the base
station gene of the corresponding monitoring point is connected to
the sensor node since the offspring inherits these from either parent
and initially we ensure that these constraints are satisfied as explained
in Section 5.2.1. However, the offspring may violate the constraints
related to sensing, communication, or processing capabilities and if
that is the case, the offspring is punished in terms of fitness score as
explained in Section 5.2.2.

The operation is presented in Algorithm 2.

5.2.5. Mutation operation
Mutation operation is realized after individuals of the new genera-

tion are created. For each individual, we apply the mutation operation
with the probability determined by the mutationRate. It generally has a
small value. In our experiments, the value of mutationRate is 0.05 which
means that there is a 5% chance for each individual to be mutated.

For a randomly selected application, our mutation operation flips
the value of the corresponding gene of that application. For each

Computer Networks 217 (2022) 109302M.C. Çavdar et al.

E

E

1

1

1
1
1
1
1

Algorithm 2 Crossover Operation
Require: Six chromosomes from two parents: 𝐴1, 𝑆1, 𝐵𝑆1, 𝐴2, 𝑆2, and

𝐵𝑆2
nsure: The chromosomes of Offspring : 𝐴𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤 and B𝑆𝑛𝑒𝑤
1: procedure Crossover
2: for 𝑥 = 1 𝑡𝑜 |A| do
3: randomly create a value between 0 and 1, 𝑟;
4: if 𝑟 ≤ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑅𝑎𝑡𝑒 then
5: set gene 𝑥 of 𝐴𝑛𝑒𝑤 as gene 𝑥 of 𝐴1
6: else
7: set gene 𝑥 of 𝐴𝑛𝑒𝑤 as gene 𝑥 of 𝐴2
8: end if
9: end for

10: for 𝑥 = 1 𝑡𝑜 |M | do
11: randomly create a value between 0 and 1, 𝑟;
12: if 𝑟 ≤ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑅𝑎𝑡𝑒 then
13: set gene 𝑥 of 𝑆𝑛𝑒𝑤 as gene 𝑥 of 𝑆1
14: set gene 𝑥 of 𝐵𝑆𝑛𝑒𝑤 as gene 𝑥 of 𝐵𝑆1
15: else
16: set gene 𝑥 of 𝑆𝑛𝑒𝑤 as gene 𝑥 of 𝑆2
17: set gene 𝑥 of 𝐵𝑆𝑛𝑒𝑤 as gene 𝑥 of 𝐵𝑆2
18: end if
19: end for

return Offspring
20: end procedure

monitoring point requested by the applications from the current batch,
our mutation operation selects a random sensor node and a random
base station and change the related genes accordingly. This operation
is aware of the network structure: The selected sensor node can cover
the monitoring point and there is an active connection between the
selected sensor node and the selected base station. Mutation on appli-
cation genes and the mutation on sensor and base station genes are
independent of each other.

The pseudocode of our mutation operation is presented in Algorithm
3.

Algorithm 3 Mutation Operation
Require: Three chromosomes of Individual Ind: 𝐴𝑜𝑙𝑑 , 𝑆𝑜𝑙𝑑 and 𝐵𝑆𝑜𝑙𝑑
nsure: Three mutated chromosomes of Individual Ind: 𝐴𝑛𝑒𝑤, 𝑆𝑛𝑒𝑤 and

𝐵𝑆𝑛𝑒𝑤
1: procedure Mutation
2: randomly create a value between 0 and 1, 𝑟1;
3: if 𝑟1 ≤ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 then
4: randomly create a value between 0 and |𝑀|, 𝑎;
5: set gene 𝑎 of 𝐴𝑛𝑒𝑤 as 1 - gene 𝑎
6: end if
7: for 𝑥 = 1 𝑡𝑜 |M | do
8: randomly create a value between 0 and 1, 𝑟2;
9: if 𝑟2 ≤ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 then
0: randomly select a sensor from possible sensors, i; where

1 ≤ 𝑖 ≤ |𝑆|
1: randomly select a base station from possible base

stations, l; where 1 ≤ 𝑙 ≤ |𝐵|
2: set gene 𝑥 of 𝑆𝑛𝑒𝑤 as gene 𝑖
3: set gene 𝑥 of 𝐵𝑆𝑛𝑒𝑤 as gene 𝑙
4: else
5: set gene 𝑥 of 𝑆𝑛𝑒𝑤 as gene 𝑥 of 𝑆𝑜𝑙𝑑
6: set gene 𝑥 of 𝐵𝑆𝑛𝑒𝑤 as gene 𝑥 of 𝐵𝑆𝑜𝑙𝑑

17: end if
18: end for
19: end procedure
8

5.2.6. The genetic algorithm
Our genetic algorithm is described in Algorithm 4. The termination

condition for the algorithm is that either a candidate solution places
all available applications, or no improvement is observed in the best
individual’s fitness score for 3 generations. The population size is 500.

For each discrete time instant t (which may correspond to a time
interval), we run our genetic algorithm. We feed the algorithm with
applications arriving at time t. After our algorithm finds a solution, we
apply this close-to-optimal solution to the network, and we continue
with time instant t+1. For the sensor and the base station of each
monitoring point we have three cases:

• At time instant t, if a monitoring point is not sensed yet, we
set the assigned sensor and base station of that monitoring point
according to the solution we have by running our algorithm at
time t and mark that monitoring point as sensed. We update the
remaining resources of the corresponding sensor, base station,
and the connection between them.

• At time instant t, if a monitoring point is already sensed and the
solution we have by running our algorithm at time t suggests
the same sensor and base station, we update the required sense
rates of the monitoring point, and remaining resources of the cor-
responding sensor, the base station and the connection between
them.

• At time instant t, if a monitoring point is already sensed and the
solution we have by running our algorithm at time t suggests a
sensor and/or base station different from the monitoring point
that is already assigned to, we migrate the monitoring point from
the old sensor and base station to the new sensor and base
station. The resources of two sensors, two base stations, and two
connections are updated accordingly.

Algorithm 4 The Genetic Algorithm
1: procedure The GABAP

generate a population of random individuals, 𝑃𝑂𝑃 ;
2: while THE TERMINATION CONDITION is not 𝑡𝑟𝑢𝑒 do
3: for each Individual 𝑥 in 𝑃𝑂𝑃 do
4: calculate its fitness value 𝑓 (𝑥)
5: end for
6: for each Individual 𝑥 in 𝑃𝑂𝑃 do
7: invoke the SELECTION Operation, that is using tourna-

ment selection technique (Alg. 1) to select another individual to
pair

8: end for
9: for each pair of parents do

10: use CROSSOVER Operation to produce an offspring
which is described in Alg. 2

11: end for
12: for each offspring do
13: apply MUTATION Operation which is described in Alg. 3
14: end for
15: find the best individual among offsprings, 𝑛𝑒𝑤𝐵𝑒𝑠𝑡
16: if 𝑛𝑒𝑤𝐵𝑒𝑠𝑡 is better than current best individual then
17: replace current best individual with 𝑛𝑒𝑤𝐵𝑒𝑠𝑡
18: end if
19: end while

return best individual
20: end procedure

6. Experimental results

We did extensive simulation experiments to evaluate our algo-
rithms. In our simulations, we consider a model of a sensor network

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Table 3
Sensing rate requirements.

Data type Sensing rate

Data type 0 5 kb/s–20 kb/s
Data type 1 15 kb/s–40 kb/s
Data type 2 25 kb/s–60 kb/s

Table 4
Network parameters.

Parameter Value

Monitoring points per application 1–3
Communication range of sensors 200 m
Sensing range of sensor nodes 50 m
Sensing rate capacity of sensor nodes 400 kb/s
Bandwidth capacity of connections 100 kb/s
Processing capacity of base stations 1000 kb/s
Energy budget of sensor nodes 20 000 J
Transmission coefficient 0.7
Processing coefficient 0.9

spanning a 2D plane which has 1000 m width and 1000 m height. Each
sensor node, base station, and monitoring point has its own coordinates
(x and y) on this plane. Coordinates of these elements are randomly
determined and they do not overlap but can be very close to each other.
The method used to create a network model for simulations guarantees
that each monitoring point is within the sensing range of at least one
sensor node and each sensor node can be connected to at least one base
station.

In our network, we assume that applications can require sensing
rates from monitoring points in 3 different major scales (rate types).
These 3 different sensing rate types, i.e., rate ranges, are listed in
Table 3. The data rate requirements of applications (the rate type
and exact rate in that range) are randomly selected. However, we
enforce that from one monitoring point only one data rate type can
be demanded.

The quality of the connections in a WSN has a vital role in reliable
transmission of sensed data from sensor nodes to base stations. To
simulate the effect of the link quality, we assign a Packet Delivery Ratio
(PDR) to each sensor node base station connection in the network.
PDR is one of the main metrics for modeling link quality [36]. For
a particular link, the PDR is calculated as the number of packets
delivered to the receiving node divided by the number of packets
sent by the transmitting node. In this way, we model the delivery
probability of a packet to be equal to the PDR of the connection over
which the packet is sent. An undelivered packet is retransmitted. That
means, of course, more energy cost per packet. We limit the number
of retransmissions for a packet to 10 [37]. We additionally assume
that a packet is definitely delivered after the 10th retransmission, if
not delivered earlier. In our simulations, the PDR of each connection is
randomly determined between 0.7 and 1. We assume that the packet
size is fixed and 512 bits.

Network parameters are shown in Table 4. Each sensor node can be
connected to base stations within its communication range. The com-
munication range of a sensor node is 200 m. We consider symmetric
communication range between sensor nodes and base stations. Each
application requires 1 to 3 points to be monitored. The sensing range
of each sensor node is 50 m. If the distance between a monitoring point
and a sensor node is less than the sensing range, the monitoring point
can be sensed by that sensor.

Applications arrive in ten different batches. We assign a batch
number to each application randomly. At each time instant t, one batch
of applications arrives. When a batch of applications is requested to
be placed, a selected subset of those applications is admitted, and the
resources used by these admitted applications become unavailable for
the next batches. Applications run in our network for a limited amount
9

of time. When an application completes, it releases all resources it has
used. The released resources become available for the applications in
later batches. The run time for each application is 12 h.

We compared our two proposed algorithms, GABAP and the Greedy
algorithm, with the algorithms proposed in [8,26] which we call DH
and RSVN, respectively. The four are algorithms run with both shared
and unshared approaches. In the plots, for each algorithm, results of
shared and unshared approaches are presented with suffix ‘‘S’’ and
‘‘U’’, respectively. We experiment with various numbers of applica-
tions, monitoring points, sensors, and base stations. Evaluation of the
methods is reported in terms of the number of placed applications and
the average energy spent per placed application. Our experiments are
realized in 7 cases:

• Case 1: The number of monitoring points is fixed at 300. The
application count is started at 500 and is incremented by 200 until
1500.

• Case 2: The number of applications is fixed at 1000. The moni-
toring point count is started at 50 and is incremented by 50 until
250.

• Case 3: The number of applications is fixed at 1000, and the
number of monitoring points is fixed at 300. For the number of
monitoring point requests per application, instead of randomly
determining between the values shown in Table 4, we start with
1 monitoring point per application and increment it by 1 until 6.

• Case 4: The number of applications is fixed at 1000, and the num-
ber of monitoring points is fixed at 300. For the communication
range of sensors, instead of randomly determining between the
values shown in Table 4, we start with 50 m as the communica-
tion range for each sensor node and increment it by 50 m until
250 m.

• Case 5: The number of applications is fixed at 1000, and the
number of monitoring points is fixed at 300. For the sensing range
of sensor nodes, instead of randomly determining between the
values shown in Table 4, we start with a 30 m sensing range for
each sensor node and increment it by 5 until 50 m.

• Case 6: The number of monitoring points is fixed at 300, and
the batch count is fixed at 10. We experiment with various batch
sizes: 50, 100, 200, 250, and 500. Application count is calculated
as the number of batches times the batch size.

• Case 7 : Same constraints as in Case 6 except that application
count is fixed at 1000. The batch count is calculated as the
number of applications divided by the batch size.

In all the settings of all cases, the number of sensor nodes is 250 and
the number of base stations is 30. We chose these values because they
are sufficient enough to cover the whole network area while enabling
us to analyze the impacts of other parameters on the performances of
the algorithms. For each setting, we run the algorithms 1000 times
with both shareable and unshareable approaches. The results of the
experiments are plotted in vertical bars that show the average result
of 1000 runs. Error bars show maximum and minimum results.

In Case 1, we investigate how the change in the number of arriving
applications affects the performance of the algorithms. Figs. 4 and 5
show the average count of placed applications and average energy cost
per placed application, respectively averaged over 1000 runs. Each
algorithm performs better with the shareable approach. Obviously, as
the number of applications arriving to the network gets larger, all
algorithms achieve to place larger number of applications. GABAP-S is
clearly superior to all other algorithms. RSVN-S and GABAP-u have the
next-best performance. DH and Greedy come the last, where DH has a
slightly better performance than Greedy.

In terms of energy spent, all algorithms perform better with the
shareable approach. In fact, the average energy spent with the share-
able approach is around half of the energy spent with the unshareable
approach. As expected, we see that with a larger number of available
applications, the shareable approach costs less energy per placed appli-

cation since the sensing and transmission overheads are far less (even

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 4. Comparison of algorithms in terms of placed application count in Case 1.
Fig. 5. Comparison of algorithms in terms of energy cost in Case 1.
zero in some cases) than they are in the unshareable approach. How-
ever, we also observe a small reduction in the results of the unshareable
approach with all algorithms. The reason for this result is that the
possibility of the arriving applications with less data sense requirements
increases with the larger number of available applications. Therefore,
the average energy spent decreases slightly. With the unshareable
approach, all four algorithms perform similarly when GABAP-U has
slightly better performance. With the shareable approach, GABAP-S has
the best performance followed by RSVN-S.

In Case 2, we evaluate the impact of the number of monitoring
points on the performance of the algorithms. Figs. 6 and 7 show the
results for this case. We expect that with less number of monitoring
points, placing applications becomes harder because there will be
more application requests for each monitoring point as the number
of applications is fixed. Moreover, fewer monitoring points affect the
performances of the algorithms with the unshareable approach more
since the sensing and transmission overheads increase drastically. Fig. 6
shows that the performance of the algorithms improves clearly with the
increasing number of monitoring points. With the shareable approach,
the improvement is not that visible since the sensing and transmission
overheads are much smaller. GABAP-S still has the best performance,
the gap between its performance and the others increases as the number
of monitoring points decreases.

We again observe that with the shareable approach, the energy
cost is much less than the unshareable one. With increasing number
of monitoring points, the energy cost is also increasing since there
10
are more data to sense, transmit, and process. With the unshareable
approach, all four algorithms show similar performance in terms of
the energy cost. With the shareable one, GABAP-S produces the lowest
energy cost.

In Case 3, we have a fixed number of applications and a fixed
number of monitoring points. We experimented with different numbers
of monitoring points each application requires to be sensed, instead
of randomly determined values according to Table 4. Figs. 8 and 9
show the results of Case 3. With the increasing number of monitoring
point requests per application, it is getting harder to place applications
since the demand of a single application increases while network
resources remain the same. We observe that the shareable approach
makes algorithms place more applications compared to the unshareable
one. Again, GABAP has the best performance, RSVN comes the second,
while Greedy and DH have the least number of applications placed. DH
performs slightly better than Greedy.

In terms of the energy cost, it is expected that the cost per placed
application increases when the applications require more monitoring
points to be sensed. Since the sensing and transmission overheads are
more with the unshareable approach, the energy cost is more compared
to the shareable approach. The performance gap between the shareable
and unshareable approaches is proportional to the number of requests
per application. GABAP-S has the best performance, and again, RSVN-S
is the second-best. Energy cost results of the algorithms do not differ
much with the unshareable approach, however with the shareable one,

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 6. Comparison of algorithms in terms of placed application count in Case 2.
Fig. 7. Comparison of algorithms in terms of energy cost in Case 2.
Fig. 8. Comparison of algorithms in terms of placed application count in Case 3.
especially with higher number of requests, the performance difference
between GABAP-S and others become more visible.

Case 4 is investigating how the communication range of sensor
nodes affect the performance of the algorithms. Instead of the 200 m
11
communication range as in Table 4, we experimented with the com-
munication ranges between 50 to 250 m. Figs. 10 and 11 present the
results. We observe that with a longer communication range for sensor
nodes, the number of placed applications increases slightly. Similar to

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 9. Comparison of algorithms in terms of energy cost in Case 3.
Fig. 10. Comparison of algorithms in terms of placed application count in Case 4.
Fig. 11. Comparison of algorithms in terms of energy cost in Case 4.
the previous cases, GABAP-S is superior among all compared. RSVN-S
and GABAP-U have the next-best performances.

The energy spent increases with the broader communication range
of sensor nodes. The reason for this result is that with a longer range,
sensor nodes can connect to base stations that are more distant and
12
sending data to more distant base stations costs more compared to
sending to closer base stations as shown in Eq. (12). The gap between
the shareable and unshareable approaches in terms of energy cost in-
creases with the longer communication ranges. This also applies to the
gap among the results of the algorithms. GABAP-S has the least energy

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 12. Comparison of algorithms in terms of placed application count in Case 5.
Fig. 13. Comparison of algorithms in terms of energy cost in Case 5.
cost per application which is followed by RSVN-S. DH-S is slightly
better than Greedy-S. With the unshareable approach, the energy cost
is similar among all compared algorithms.

The experiments corresponding to Case 5 are conducted to inves-
tigate the performance with various sensing ranges of sensor nodes.
Figs. 12 and 13 show the placed application count and the average en-
ergy cost, respectively, for Case 5. The sensing range of the sensor nodes
does not affect the results too much. Placed application count increases
slightly when sensing range increases. Energy cost does not change
much since the sensing range is not involved in energy calculations
in our model directly as the communication range. The performance
in terms of both the placed application counts and the energy cost is
similar to the previous four cases. GABAP-S is the best for both metrics,
GABAP-U and RSVN-S has the next-best performance. In terms of the
energy cost, the shareable approach consumes far less energy than the
unshareable one.

In Case 6, we investigate the impact of batch size on the perfor-
mance of the algorithms. Total application count is not limited, and
since we have 10 batches, in this case, it is equal to 10 × 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒.
Figs. 14 and 15 present the results of Case 6. Since we do not limit
the total application count, the results are similar to Case 1, where the
effect of the number of applications on the performance is measured.

Since we do not limit the number of applications in Case 6, the
application count may affect the results we gathered from the ex-
periments. Therefore, to observe the effect of the batch size on the
algorithms in a clearer way, in Case 7, the number of applications is
13
set to 1000. Thus, the total batch count changes for each batch size.
Figs. 16 and 17 present the results for Case 7. Because we investigated
the impact of the batch size in Case 7, only the performance of GABAP
is affected since the others admit applications one by one when GABAP
selects a subset of arriving applications at each batch. With larger batch
sizes, GABAP performs better.

Energy cost results are similar to the previous cases. The shareable
approach is better compared to the unshareable one. GABAP performs
the best and RSVN follows it with both shareable and unshareable
approaches.

We can infer the following conclusions from our experimental re-
sults explained above:

• In all cases, the shareable approach has much better performance
than the unshareable one both in terms of placed application and
the energy cost per application.

• GABAP is clearly superior to all compared algorithms. RSVN
has the second-best performance. DH is slightly better than the
Greedy algorithm.

• The performance difference between the shareable and unshare-
able approaches is greater when network resources are more
limited with a smaller number of applications. With an appli-
cation count that is large enough, the performance gap also
increases with plenty of network resources.

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 14. Comparison of algorithms in terms of placed application count in Case 6.
Fig. 15. Comparison of algorithms in terms of energy cost in Case 6.
Fig. 16. Comparison of algorithms in terms of placed application count in Case 7.
• The performance difference between the shareable and unshare-
able approaches is larger in GABAP’s results compared to other
algorithms.

• Since GABAP selects a subset of applications among applications
that arrive at the network at each batch while the other three try
14
to admit applications one by one, GABAP can place applications

much more optimally.
• DH and Greedy have very similar performance in all cases since

their logic to place applications is similar. In some cases DH

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
Fig. 17. Comparison of algorithms in terms of energy cost in Case 7.
Table 5
Comparison with optimal solution (Linear programming).

Application count Mon. point count Sensor count Base station count Online GABAP Offline GABAP Linear Prog.

Result Time (ms) Result Time (ms) Result Time (ms)

30 20 30 3 1.23 27 1.54 21 1.54 3320
30 20 30 4 1.57 36 1.72 19 1.72 3397
30 20 30 5 2.01 42 2.17 27 2.17 4245
50 20 30 4 2.60 51 2.92 38 2.92 3973
50 40 50 7 3.14 121 3.97 93 3.97 23 806
50 100 50 7 3.71 198 4.60 99 4.60 53 749
100 100 25 25 2.30 240 3.17 199 3.21 65 651
20 150 100 30 4.02 1007 4.02 291 4.14 914 380
30 150 100 30 4.74 1092 4.98 426 5.20 955 542
50 150 100 30 8.12 944 8.12 487 8.26 964 397
performs slightly better than Greedy, since it allows migrations
while Greedy does not.

6.1. Comparison with optimal results obtained from linear programming

To investigate how close our algorithm performs to the optimal
solution, we compare the results of our algorithm with optimal results
of a linear programming model. We use the Java API of IBM ILOG Cplex
optimizer to code our linear program.

We use the constraints described in Section 4 to build our linear
programming model. Some constraints there, however, are not linear.
Therefore, we linearized those constraints.

Linearization of maximum function is realized as follows. Let,

𝐶 = 𝑚𝑎𝑥(𝑎1,… , 𝑎𝑛) (20)

Then, we transform this maximum function into a linear form with
the following:

𝐶 ≥ 𝑎𝑖 ∀𝑖 ∈ 𝑁 (21)

𝐶 ≤ 𝑎𝑖 + (1 − 𝑏𝑖) ∗ 𝑀 ∀𝑖 ∈ 𝑁 (22)

∑

𝑖∈𝑁
𝑏𝑖 = 1 (23)

where 𝑏𝑖 is a binary variable that indicates the maximum value, 𝑥𝑖.
Therefore, if 𝑏𝑖 = 1, then 𝑥𝑖 is the maximum of all. 𝑀 is a very large
number.

Linearization of the product of a binary variable and a continuous
variable is done as follows. Let,

𝑧 = 𝐴 × 𝑥 (24)
15
where 𝐴 is a continuous variable and 𝑥 is a binary variable. Moreover,
let Ā be the upper bound of 𝐴. Then, transformation into linear form
is done as follows:

𝑧 ≤ �̄� × 𝑥 (25)

𝑧 ≤ 𝐴 (26)

𝑧 ≥ 𝐴 − (1 − 𝑥)�̄� (27)

𝑧 ≥ 0 (28)

In the equations above, if 𝑥 is equal to zero, then Eqs. (25) and
(28) ensure that 𝑧 is also equal to zero. If 𝑥 is equal to one, Eqs. (26)
and (27) state that 𝑧 is equal to 𝐴. This transformation is a variation
of the general product linearization where the lower bound of the
continuous variable is zero. In our problem statement, the continuous
variable is application demands which cannot be negative. Therefore,
this transformation is applicable to our work.

Because the run time required by a linear programming solver is
too long, we use small values for parameters of our network. We
experiment with the shareable approach only. Sensing rate require-
ments of various data-rate types and network constraints are shown
in Tables 3 and 4, respectively. The results are presented in Table 5.
Both the placed application count and running-time results given in
the table are the averages of 100 runs. At each run, we input the same
network to all algorithms. The results show that our GABAP algorithm
has a very good performance. For each parameter set, GABAP has a
very close performance to the optimal results obtained from the linear
programming. Besides, the running-time of our algorithm is much less
than the running-time of the linear programming. Time values are also
the average of 100 runs. The gap between running-times of GABAP and
linear programming solution becomes larger as the number of network
elements increases.

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
7. Conclusion and future work

In this paper we study the application placement problem in WSNs.
We first propose a shareable approach with which we provide the op-
tion of sharing the data gathered from a single monitoring point among
applications. Therefore, we reduce the sensing and communication
overhead for a single point. Then, we propose two algorithms, a greedy
algorithm and a genetic algorithm called GABAP, to solve the allocation
problem. The algorithms decide which applications should be admitted,
which monitoring point is sensed by which sensor and which base
station will process the related data. We provide extensive simulation
results, which show the effectiveness of the sharing data approach
and our algorithms. We compare the performance of our GABAP and
greedy algorithms with both shareable and unshareable approaches.
We demonstrate that GABAP is clearly superior to the greedy algorithm
for large networks. Lastly, we compare GABAP’s performance with
optimal results obtained from our linear programming formulation. The
results show that GABAP performs very close to optimum while taking
much less time compared to the linear programming solution.

Potential future work includes support for WSNs that have multi-
hop architecture, considering possible interference effect on the con-
nections, and considering other communication QoS metrics such as
reliability and delay.

CRediT authorship contribution statement

Mustafa Can Çavdar: Conceptualization, Methodology, Software,
Investigation, Validation, Writing – original draft, Writing – review &
editing, Visualization. Ibrahim Korpeoglu: Conceptualization, Writing
– review & editing, Supervision, Project administration. Özgür Ulusoy:
Conceptualization, Writing – review & editing, Supervision, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Q. Jiang, F. Kresin, A.K. Bregt, L. Kooistra, E. Pareschi, E. Van Putten, H. Volten,
J. Wesseling, Citizen sensing for improved urban environmental monitoring, J.
Sensors 2016 (2016).

[2] A. Nasir, B.-H. Soong, S. Ramachandran, Framework of WSN based human
centric cyber physical in-pipe water monitoring system, in: 2010 11th Inter-
national Conference on Control Automation Robotics & Vision, IEEE, 2010, pp.
1257–1261.

[3] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, M. Welsh,
Deploying a wireless sensor network on an active volcano, IEEE Internet Comput.
10 (2) (2006) 18–25.

[4] R. Mondal, T. Zulfi, Internet of things and wireless sensor network for smart
cities, Int. J. Comput. Sci. Issues (IJCSI) 14 (5) (2017) 50–55.

[5] N. Maisonneuve, M. Stevens, M.E. Niessen, P. Hanappe, L. Steels, Citizen
noise pollution monitoring, in: Proceedings of the 10th International Digital
Government Research Conference, Association for Computing Machinery, 2009,
pp. 96–103.

[6] S. Lee, D. Yoon, A. Ghosh, Intelligent parking lot application using wireless sen-
sor networks, in: 2008 International Symposium on Collaborative Technologies
and Systems, IEEE, 2008, pp. 48–57.

[7] D. Kandris, C. Nakas, D. Vomvas, G. Koulouras, Applications of wireless sensor
networks: an up-to-date survey, Appl. Syst. Innov. 3 (1) (2020) 14.

[8] C. Delgado, M. Canales, J. Ortín, J.R. Gállego, A. Redondi, S. Bousnina, M.
Cesana, Joint application admission control and network slicing in virtual sensor
16

networks, IEEE Internet Things J. 5 (1) (2017) 28–43.
[9] F.-Y. Wang, L. Yang, X. Cheng, S. Han, J. Yang, Network softwarization and
parallel networks: beyond software-defined networks, IEEE Netw. 30 (4) (2016)
60–65.

[10] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown, S. Shenker,
Rethinking enterprise network control, IEEE/ACM Trans. Netw. (ToN) 17 (4)
(2009) 1270–1283.

[11] S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N.
Viljoen, M. Miller, N. Rao, Are we ready for SDN? Implementation challenges
for software-defined networks, IEEE Commun. Mag. 51 (7) (2013) 36–43.

[12] V.M. Raee, D. Naboulsi, R. Glitho, Energy efficient task assignment in virtu-
alized wireless sensor networks, in: 2018 IEEE Symposium on Computers and
Communications (ISCC), IEEE, 2018, pp. 976–979.

[13] T. Ojha, S. Misra, N.S. Raghuwanshi, H. Poddar, DVSP: Dynamic virtual sensor
provisioning in sensor-cloud based internet of things, IEEE Internet Things J.
(2019).

[14] M. Lemos, R. Rabêlo, C. de Carvalho, D. Mendes, V. Costa, et al., An energy-
efficient approach to enhance virtual sensors provisioning in sensor clouds
environments, Sensors 18 (3) (2018) 689.

[15] V. Rahmati, Near optimum random routing of uniformly load balanced nodes in
wireless sensor networks using connectivity matrix, Wirel. Pers. Commun. 116
(4) (2021) 2963–2979.

[16] C. Delgado, S. Batista, M. Canales, J.R. Gállego, J. Ortín, M. Cesana, An
implementation for dynamic application allocation in shared sensor networks,
in: 2018 11th IFIP Wireless and Mobile Networking Conference (WMNC), IEEE,
2018, pp. 1–8.

[17] I. Leontiadis, C. Efstratiou, C. Mascolo, J. Crowcroft, SenShare: transforming
sensor networks into multi-application sensing infrastructures, in: European
Conference on Wireless Sensor Networks, Springer, 2012, pp. 65–81.

[18] S. Bhattacharya, A. Saifullah, C. Lu, G.-C. Roman, Multi-application deployment
in shared sensor networks based on quality of monitoring, in: 2010 16th IEEE
Real-Time and Embedded Technology and Applications Symposium, IEEE, 2010,
pp. 259–268.

[19] S.M. Ajmal, S. Paris, Z. Zhang, F.N. Abdesselam, An efficient admission control
algorithm for virtual sensor networks, in: 2014 IEEE Intl Conf on High Perfor-
mance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst
(HPCC, CSS, ICESS), IEEE, 2014, pp. 735–742.

[20] V. Cionca, R. Marfievici, R. Katona, D. Pesch, JudiShare: Judicious resource
allocation for qos-based services in shared wireless sensor networks, in: 2018
IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2018,
pp. 1–6.

[21] S. Bousnina, M. Cesana, J. Ortín, C. Delgado, J.R. Gállego, M. Canales, A greedy
approach for resource allocation in virtual sensor networks, in: 2017 Wireless
Days, IEEE, 2017, pp. 15–20.

[22] R. Tynan, G.M. O’Hare, M.J. O’Grady, C. Muldoon, Virtual sensor networks: An
embedded agent approach, in: 2008 IEEE International Symposium on Parallel
and Distributed Processing with Applications, IEEE, 2008, pp. 926–932.

[23] Y. Xu, A. Saifullah, Y. Chen, C. Lu, S. Bhattacharya, Near optimal multi-
application allocation in shared sensor networks, in: Proceedings of the Eleventh
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
ACM, 2010, pp. 181–190.

[24] E. Uchiteleva, A. Shami, A. Refaey, Virtualization of wireless sensor networks
through MAC layer resource scheduling, IEEE Sens. J. 17 (5) (2016) 1562–1576.

[25] Z. Wei, F. Liu, Y. Zhang, J. Xu, J. Ji, Z. Lyu, A Q-learning algorithm for task
scheduling based on improved SVM in wireless sensor networks, Comput. Netw.
161 (2019) 138–149.

[26] Y. Li, Z. Zhang, S. Xia, H.-H. Chen, A load-balanced re-embedding scheme
for wireless network virtualization, IEEE Trans. Veh. Technol. 70 (4) (2021)
3761–3772.

[27] C. Abreu, F. Miranda, P. Mendes, Smart context-aware QoS-based admission
control for biomedical wireless sensor networks, J. Netw. Comput. Appl. 88
(2017) 134–145.

[28] N. Edalat, M. Motani, Energy-aware task allocation for energy harvesting sensor
networks, EURASIP J. Wireless Commun. Networking 2016 (1) (2016) 28.

[29] T.L. Porta, C. Petrioli, C. Phillips, D. Spenza, Sensor mission assignment in
rechargeable wireless sensor networks, ACM Trans. Sensor Netw. 10 (4) (2014)
60.

[30] C.M. de Farias, L. Pirmez, F.C. Delicato, W. Li, A.Y. Zomaya, J.N. de Souza,
A scheduling algorithm for shared sensor and actuator networks, in: The
International Conference on Information Networking 2013 (ICOIN), IEEE, 2013,
pp. 648–653.

[31] L. Malathi, R. Gnanamurthy, K. Chandrasekaran, Energy efficient data collection
through hybrid unequal clustering for wireless sensor networks, Comput. Electr.
Eng. 48 (2015) 358–370.

[32] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of
Computer Computations, Springer, 1972, pp. 85–103.

[33] E. Yakıcı, M. Karatas, Solving a multi-objective heterogeneous sensor network
location problem with genetic algorithm, Comput. Netw. 192 (2021) 108041.

[34] S. Rani, S.H. Ahmed, R. Rastogi, Dynamic clustering approach based on wireless
sensor networks genetic algorithm for IoT applications, Wirel. Netw. 26 (4)
(2020) 2307–2316.

http://refhub.elsevier.com/S1389-1286(22)00353-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb4
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb4
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb4
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb7
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb7
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb7
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb17
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb17
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb17
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb17
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb17
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb33
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb33
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb33
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb34
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb34
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb34
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb34
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb34

Computer Networks 217 (2022) 109302M.C. Çavdar et al.
[35] A.M. Maia, Y. Ghamri-Doudane, D. Vieira, M.F. de Castro, An improved multi-
objective genetic algorithm with heuristic initialization for service placement and
load distribution in edge computing, Comput. Netw. 194 (2021) 108146.

[36] A. Vlavianos, L.K. Law, I. Broustis, S.V. Krishnamurthy, M. Faloutsos, Assessing
link quality in IEEE 802.11 wireless networks: Which is the right metric? in:
2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio
Communications, IEEE, 2008, pp. 1–6.

[37] B. Demirel, A. Aytekin, D.E. Quevedo, M. Johansson, To wait or to drop: On
the optimal number of retransmissions in wireless control, in: 2015 European
Control Conference (ECC), IEEE, 2015, pp. 962–968.

Mustafa Can Çavdar received his BS and MS degrees
in computer engineering from Bilkent University, Ankara,
Turkey, in 2014 and 2016, respectively. He is currently
working towards the Ph.D. degree in Computer Engineering
at Bilkent University. His research interests include cloud
computing, wireless networks, and computer networks.
17
Ibrahim Korpeoglu received his Ph.D. and M.S. in Com-
puter Science from University of Maryland at College Park
in 2000 and 1996, respectively. He received his B.S. degree
(summa cum laude) in Computer Engineering, from Bilkent
University in 1994. Currently he is a full professor in
Department of Computer Engineering at Bilkent University.
Before joining Bilkent, he worked in Ericsson, IBM T.J.
Watson Research Center, Bell Laboratories, and Bellcore, in
USA. He received Bilkent University Distinguished Teaching
Award in 2006. He speaks Turkish, English and German.
His research interests include computer networks, wireless
networks, cloud computing, and distributed systems. He is
a member of ACM and a senior member of IEEE.

Özgür Ulusoy is a professor at the Department of Computer
Engineering, Bilkent University, Ankara, Turkey. He has a
Ph.D. in Computer Science from the University of Illinois
at Urbana-Champaign, USA. His current research inter-
ests include web databases and web information retrieval,
multimedia database systems, social networks, and cloud
computing. He has published over 130 articles in archived
journals and conference proceedings. He is a member of
IEEE and ACM.

http://refhub.elsevier.com/S1389-1286(22)00353-X/sb35
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb35
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb35
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb35
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb35
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb36
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb36
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb36
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb36
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb36
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb36
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb36
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb37
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb37
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb37
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb37
http://refhub.elsevier.com/S1389-1286(22)00353-X/sb37

	Application placement with shared monitoring points in multi-purpose IoT wireless sensor networks
	Introduction
	Motivation
	Related work
	Problem statement
	Energy constraint
	Hardness of application placement problem
	3-SAT
	Reduction to application placement

	Proposed method
	Greedy algorithm
	Genetic Algorithm Based Application Placement (GABAP)
	Initial population creation
	Fitness calculation
	Selection operation
	Crossover operation
	Mutation operation
	The genetic algorithm

	Experimental results
	Comparison with optimal results obtained from linear programming

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

