
Computer Communications 214 (2024) 136–148

A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

A Utilization Based Genetic Algorithm for virtual machine placement in
cloud systems
Mustafa Can Çavdar ∗, Ibrahim Korpeoglu, Özgür Ulusoy
Department of Computer Engineering, Bilkent University, Ankara, Turkey

A R T I C L E I N F O

Keywords:
Cloud computing
Virtualization
Genetic algorithm
Virtual machine placement

A B S T R A C T

Due to the increasing demand for cloud computing and related services, cloud providers need to come up
with methods and mechanisms that increase the performance, availability and reliability of data centers and
cloud systems. Server virtualization is a key component to achieve this, which enables sharing of resources of a
single physical machine among multiple virtual machines in a totally isolated manner. Optimizing virtualization
has a very significant effect on the overall performance of a cloud computing system. This requires efficient
and effective placement of virtual machines into physical machines. Since this is an optimization problem that
involves multiple constraints and objectives, we propose a method based on genetic algorithms to place virtual
machines into physical servers of a data center. By considering the utilization of machines and node distances,
our method, called Utilization Based Genetic Algorithm (UBGA), aims at reducing resource waste, network
load, and energy consumption at the same time. We compared our method against several other placement
methods in terms of utilization achieved, networking bandwidth consumed, and energy costs incurred, using
an open-source, publicly available CloudSim simulator. The results show that our method provides better
performance compared to other placement approaches.
1. Introduction

Cloud computing has become a pervasive technology for providing
computing, storage, and software services on the Internet. This is
reasoned by the fact that cloud systems can provide nearly any type
of service customers may need and relieve customers from building
their own physical infrastructures. It can also offer services with the
pay-as-you-go charging model where customers pay according to the
amount of the services they use, which makes it even more attractive.
Those services can be at different levels, such as Infrastructure-as-a-
Service (IaaS), Software-as-a-Service (SaaS), and Platform-as-a-Service
(PaaS). There are various commercial cloud computing platforms such
as Amazon Web Services, Google Cloud Platform, and Microsoft Azure.
There are also open-source cloud platforms such as Openstack, Open-
Shift, CloudStack, and Cloudify, which can be used to offer various
cloud services to users.

Due to the increasing demand for cloud services, optimization of
resource consumption becomes even more essential to increase the
performance, availability and reliability of cloud systems. Virtualiza-
tion technologies have been proven to be very useful to meet these
requirements. Virtualization enables users and applications to share
physical cloud resources in an efficient and effective manner. With
server virtualization, multiple virtual machines can run on a single

∗ Corresponding author.
E-mail address: mustafa.cavdar@bilkent.edu.tr (M.C. Çavdar).

physical machine in a totally isolated manner. In this way, cloud
providers can serve more customers in a flexible and efficient manner.

Different virtual machines requested by users may have differ-
ent processing, memory, I/O and networking requirements. Physical
servers can also have different capacities. This leads to an optimization
problem known as virtual machine placement. Solutions provided to this
problem aim to increase the utilization of physical machines to reduce
costs and energy consumption. Due to the increasing demand for cloud
computing services mentioned earlier, optimization of resource usage
becomes a very essential issue to save more energy, reduce costs, and
meet customer service level agreements (SLAs).

The virtual machine placement problem is a multi-objective con-
strained NP-hard problem as shown by [1]. If the number of virtual
machines is n and the number of physical machines is m, then the
number of possible mappings of virtual machines to physical ones is 𝑚𝑛.
Despite this complexity, choosing the optimal or near optimal physical
machine to host a virtual machine is highly critical [2]. Choosing the
appropriate physical host has many benefits for cloud owners such
as reducing power consumption, increasing resource utilization, and
providing better QoS.

The combinatorial nature of the virtual machine placement prob-
lem and the number of possible solutions can make this problem
vailable online 29 November 2023
140-3664/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2023.11.028
Received 31 August 2021; Received in revised form 21 July 2023; Accepted 27 No
vember 2023

https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
mailto:mustafa.cavdar@bilkent.edu.tr
https://doi.org/10.1016/j.comcom.2023.11.028
https://doi.org/10.1016/j.comcom.2023.11.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2023.11.028&domain=pdf

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
computationally infeasible to find an exact optimal solution within
a reasonable amount of time. Finding an exact optimal solution for
complex optimization problems typically requires exhaustive search
techniques, such as integer programming or constraint satisfaction
algorithms. These approaches can be computationally expensive and
time-consuming. Genetic algorithms, on the other hand, provide a
trade-off between time and solution quality. They can converge to
reasonably good solutions in a relatively short amount of time, making
them suitable for real-time or near-real-time decision-making scenarios.

In this paper, we propose a genetic algorithm based solution to the
virtual machine placement problem, which uses a novel fitness function
and chromosome structure, and considers resource utilization, network
bandwidth usage, and energy costs at the same time. Our method is
called Utilization Based Genetic Algorithm (UBGA) and aims to find a
close-to-optimum solution. We designed our chromosome structure as a
tree representing a data center network topology. The leaves of the tree
represent the physical machines, and each leaf node has a pointer to a
list of virtual machines. The fitness function of our genetic algorithm
is designed uniquely to combine multiple objectives together.

We integrated our algorithm into the publicly available CloudSim
[3] cloud computing simulator and conducted extensive simulation ex-
periments to evaluate it. We compared our algorithm against a number
of other approaches, including a random strategy, the default allocation
method of CloudSim simulator, the First Fit Decreasing (FFD) method,
and AFED-EF method from the literature [4]. Our experiments consider
homogeneous, heterogeneously deterministic and uniform random dis-
tribution of resource capacities and demands. The results show that
our method is completely superior to random and default CloudSim
allocation methods, achieves better performance compared to FFD, and
shows similar or better performances compared to AFED-EF for various
evaluation metrics.

The organization of this paper is as follows. In Section 2, we
provide a summary of the related work. Section 3 provides the problem
formulation. In Section 4, we present the details of our virtual machine
placement algorithm. In Section 5, we present the results of our exten-
sive simulation experiments and compare our algorithm against other
methods. Finally, in Section 6, we conclude the paper.

2. Related work

Evolutionary algorithms such as genetic algorithms can be used in
solving resource allocation and assignment problems in cloud comput-
ing as in [5], which proposes an algorithm for data replica placement
both within a data center and among a number of data centers. There
are evolutionary approaches to solve the virtual machine placement
problem as well. Various methods have been proposed to find an
optimal solution considering a number of metrics. [6] propose a family
genetic algorithm approach that is integrated into CloudSim. The algo-
rithm divides the process among different families running in parallel to
assign virtual machines to physical machines. They made the mutation
probability dynamic depending on some parameters and they compare
their algorithm with existing allocation policies of CloudSim. [1] de-
scribe a multi-purpose genetic algorithm, which is called Group GA,
that considers virtual machine placement as a bin-packing problem.
In [7], the authors propose a variant of the Binary Swarm Particle
Optimization algorithm for virtual machine placement to reduce en-
ergy consumption and increase resource utilization. They consider the
memory and CPU utilization of physical machines. [8] present an evolu-
tionary algorithm to deal with the virtual machine placement problem.
They experimented under both simulations and real environments and
show that their method reduces energy consumption and improves
overall profit. Zhang et al. [9] deal with VM migration problem in self-
driving domain. They model the problem as a bin packing problem and
solve that with a cluster-based genetic algorithm. Ghetas [10] proposes
MBO-VM, a Monarch Butterfly Optimization to solve the VM placement
problem in cloud data centers. The proposed method aims to maximize
137
packaging efficiency and decrease the number of active physical hosts.
Zhou et al. [11] describe Multi-objective Task Scheduling Strategy
(MTSS) which is a differential evolution algorithm based on clustering.
MTSS aims to reduce load balancing, task execution cost and task
completion time.

The work in [12] is a hybrid approach of two genetic algorithms
to minimize resource wastage for each server. [13] describe an evo-
lutionary based game theory approach for the dynamic virtual ma-
chine placement problem. They consider the initial mapping of virtual
machines to physical ones and create a list of live migrations of
virtual machines. [14] propose a two-phase scheme that considers
the optimization of power consumption, economical revenue, resource
utilization, and reconfiguration time. The scheme works under the
uncertainty of several relevant parameters. IADE [15] is a differential
evolution algorithm that reduces the energy cost of communication
and computations realized in networked data centers. In [16], authors
present an Ant Colony based method for online VM placement in cloud
systems that minimizes the total energy cost of physical machines. [17]
design a VM placement algorithm based on an improved genetic algo-
rithm. They aim to minimize the number of active physical machines to
reduce power consumption and improve the balance of used resources
of physical hosts. [18] propose a krill herd based algorithm to solve
VM placement problem by considering resource utilization and power
use and compare their work against First Fit Decreasing and an existing
Ant Colony based model.

Masoudi et al. [19] propose a Particle Swarm Optimization based
algorithm to reduce power consumption and maximize load balancing
in cloud data centers. Li et al. [20] model VM placement as a multi-
dimensional bin packing problem. They describe a Particle Swarm
Optimization algorithm that is based on sine and cosine perturba-
tion and reverse learning to reduce resource consumption. Kiani and
Khayyambashi [21] describe an abstraction model to estimate data cen-
ter power consumption and propose a Chemical Reaction Optimization
algorithm to reduce power consumption in clouds. Nabavi et al. [22]
present TRACTOR, an ant colony based algorithm that minimizes the
network traffic between communication virtual machines and power
dissipation at switches and hosts in the data center. Balaji et al. [23]
propose a Firefly Algorithm to minimize the number of physical hosts
in use. Therefore, they reduce the overall power consumption in the
cloud data center.

Xing et al. [24] propose ETA-ACO which is an Ant Colony Optimiza-
tion algorithm to minimize jointly power consumption at physical hosts
and switches and overall network bandwidth traffic. They improve the
performance of their algorithm with three schemes. Saxena et al. [25]
describe a secure VM placement framework and propose a Whale
Optimization Genetic Algorithm to reduce resource wastage and energy
consumption. Salami et al. [26] propose a cuckoo search algorithm
with newly developed cost and perturbation functions to minimize the
number of non-idle physical servers in a cloud data center.

There is also a considerable amount of work on resource alloca-
tion in cloud computing that do not involve evolutionary algorithms.
Deng et al. [27] deal with the VM placement in distributed clouds.
They propose an M/M/1 queuing model to minimize both total and
maximum latency. In [28], it is aimed to increase the revenue of the
cloud owners by considering virtual machine migrations among phys-
ical machines. [29] describes a virtual machine placement algorithm
that considers computational resources, Quality of Service metrics,
and I/O data by using a priority based queuing model to minimize
overall job completion time and maximize the throughput of cloud
links. [30] aim to minimize the number of active hosts by assigning
ranks to virtual machines and placing the machines based on their
ranks. They introduce a new metric, resource usage factor, and use
this metric to maximize resource utilization of physical machines. Their
model improves the utilization in a balanced manner and reduces
the number of migrating virtual machines. In [31], authors present

a method for both flow management and VM placement in hybrid

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.

s

w
i
d
t
t
l

𝑝

𝑣

a

𝑽

𝒑

𝒑

𝒑

𝑽

𝑼

𝑬

𝑵

clouds. They introduce a threshold-based flow placement algorithm,
then they suggest a set of VM placement algorithms to improve traffic
locality. Zhou et al. [32] propose MCEC that considers virtual machine
reconfiguration and energy consumption in virtualized networked data
centers.

The algorithms introduced in [33] for placement of virtual machines
in cloud data centers have the objective of maximizing a new metric
named satisfaction, which reflects the relative suitability of a physical
machine for any virtual machine to assign to it. [34] propose a network-
aware placement algorithm based on empirical estimation of required
bandwidth for communication among virtual machines. [35] present
an algorithm that uses a model predictive control to devise optimal
maps between physical and virtual machines. In [36], the authors
consider peak workload characteristics of virtual machines and model
them using a mathematical method. [37] aims to deal with the virtual
machine placement problem in environments that have psychical ma-
chines with multiple processor cores. Omer et al. [38] provide a traffic
and power aware approach to solve the VM placement problem in cloud
data centers. Their method aims to minimize power consumption and
resource wastage.

[39] describe a method for online VM placement problem. Their
algorithm requires the network topology as input and calculates the
migration cost of VMs and decides reserved resources of physical
machines to prevent SLA violations. As a result, they effectively reduce
time spent for VM migrations and energy consumption. [40] propose
an energy efficient VM placement method. They aim to minimize the
energy cost of physical machines by using four algorithms based on
best fit decreasing. The work by [41] considers load balancing in cloud
data centers in terms of both inter-PM and intra-PM. They describe
a live VM migration algorithm to reduce I/O complexity and they
realize experiments with both synthetic and real world data. [42]
design a method for VM placement by predicting required processing
and bandwidth resources and improving energy efficiency in a single
data center.

Azizi et al. [43] propose a randomized greedy algorithm to solve
virtual machine placement in large cloud data centers. Their algorithm
considers multi-dimensional heterogeneous resources. Feng et al. [44]
describe a VM placement strategy that considers heat recirculation in a
cloud data center to reduce the total energy consumption by reducing
the cooling cost. They propose a simulated annealing based method to
address the VM placement problem. Bheda et al. [45] describe a VM
placement algorithm that searches for the best possible physical ma-
chine to reduce the number of VM migrations. Kim et al. [46] consider
the disk bandwidth usage as the critical factor and propose MMEVMP
algorithm that aims to minimize SLAV rate and energy consumption.
Feng et al. [47] propose a two-step SAG algorithm to decrease the
energy consumption in data centers. Their energy consumption model
considers both the usages of IT resources such as network use and non-
IT resources such as cooling systems. Sadegh et al. [48] model VM
placement problem as finding the minimum weight K-vertex-connected
induced sub-graph. The algorithm they propose is a two-phase one.
In the first phase, they select the best possible rack to improve load
balance and in the second phase, they use a greedy algorithm to place
VMs to hosts.

Our proposed work differs from the related work explained above
by the following contributions:

• We propose a novel genetic algorithm, called UBGA, with a
unique chromosome structure and fitness function that can find
close-to-optimal solutions for the virtual machine placement prob-
lem.

• While placing virtual machines, we target not only high CPU uti-
lization of physical machines, but also high utilization of memory
and network connections of physical machines. In this way, we
achieve a well-balanced load on the components of a physical
138

machine. Considering the utilization of all these components at
the same time enables minimization of the number of physical
machines that need to be turned on, which can reduce energy
consumption in the data center.

• To reduce the overall communication cost in the data center
network, our approach tries to place virtual machines that are
communicating with each other as close as possible in the net-
work.

3. Problem description

In cloud systems, the computing and storage resources of service
providers are totally virtualized. Optimization of resource utilization
and virtual machine placement is essential for cloud owners for the sat-
isfaction of their customers since more optimized cloud environments
provide better performance, availability and reliability.

As mentioned in the related work section, the virtual machine
placement problem can be considered as a bin packing problem [1].
Virtual machines can be considered as objects and physical machines
as bins. However, the virtual machine placement problem has multi-
ple constraints rather than only one constraint as in the bin packing
problem.

The set of parameters presented in Table 1 is used for a formal
description of our problem.

Among a wide range of network topologies, the network archi-
tecture we consider in this work is a three-level hierarchical (tree)
topology. Leaf nodes represent the physical hosts and non-leaf nodes
represent the network switches of a cloud data-center. Our method is
aware of the network topology that consists of the connections among
switches and the connections between switches and physical hosts.
Our genetic algorithm creates 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠 with exactly the same tree
tructure, as we explain in the next section.

We aim to minimize the wasted resources (CPU, memory and band-
idth) of physical machines, minimize the energy consumed by phys-

cal machines, and minimize the forwarding load on network switches
ue to communication among virtual machines. Wasted resources are
he unused resources of non-idle physical machines which cannot be
urned off. We can formally state the virtual machine placement prob-
em as follows:
∑

𝑝𝑗∈𝑃
𝑬𝒋 (1)

∑

𝑗∈𝑃
(𝒘𝒄𝒑𝒖

𝒋 +𝒘𝒎𝒆𝒎
𝒋 +𝒘𝒃𝒘

𝒋) (2)

∑

𝑖∈𝑉

∑

𝑣𝑗∈𝑉
𝑵𝒊𝒋 , 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗 (3)

re minimized subject to

=
⋃

𝑝𝑗∈𝑃
𝑉𝑗 (4)

𝒃𝒘
𝒋 ≥

∑

𝑣𝑖∈𝑉𝑗

𝑣𝑏𝑤𝑖 (5)

𝒎𝒆𝒎
𝒋 ≥

∑

𝑣𝑖∈𝑉𝑗

𝑣𝑚𝑒𝑚𝑖 (6)

𝒄𝒑𝒖
𝒋 ≥

∑

𝑣𝑖∈𝑉𝑗

𝑣𝑐𝑝𝑢𝑖 (7)

𝒊 ∩ 𝑽𝒋 = ∅, 𝑖𝑓 𝑖 ≠ 𝑗 (8)

𝒋 = 1 −𝒘𝒄𝒑𝒖
𝒋 (9)

𝒋 = 𝑬𝒊𝒅𝒍𝒆
𝒋 + (𝑬𝒎𝒂𝒙

𝒋 − 𝑬𝒊𝒅𝒍𝒆
𝒋) ∗ 𝑼𝒋 (10)

= 𝑺 ∗ 𝑭 (11)
𝒊𝒋 𝒊𝒋 𝒊𝒋

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.

m
t

f
a
t
t
i
t
a
c
a
s
t
t

Table 1
Parameters for problem description
V A set of virtual machines
P A set of physical machines
𝑃𝑎𝑙𝑙 Set of allocated physical machines
𝑣𝑖 Virtual machine i
𝑣𝑐𝑝𝑢𝑖 CPU requirement of 𝑣𝑖
𝑣𝑚𝑒𝑚𝑖 Memory requirement of 𝑣𝑖
𝑣𝑏𝑤𝑖 Network bandwidth requirement of 𝑣𝑖
𝑝𝑗 Physical machine j
𝑝𝑐𝑝𝑢𝑗 CPU capacity of 𝑝𝑗
𝑝𝑚𝑒𝑚𝑗 Memory capacity of 𝑝𝑗
𝑝𝑏𝑤𝑗 Network bandwidth capacity of 𝑝𝑗
𝑉𝑗 List of virtual machines assigned to 𝑝𝑗
𝑤𝑐𝑝𝑢

𝑗 Wasted CPU percentage of 𝑝𝑗
𝑤𝑚𝑒𝑚

𝑗 Wasted memory percentage of 𝑝𝑗
𝑤𝑏𝑤

𝑗 Wasted bandwidth percentage of 𝑝𝑗
𝑆𝑖𝑗 Number of switches between 𝑣𝑖 and 𝑣𝑗
𝐹𝑖𝑗 Data flow demand between 𝑣𝑖 and 𝑣𝑗
𝑁𝑖𝑗 Communication cost of the connection between 𝑣𝑖 and 𝑣𝑗
𝐸𝑗 Total energy consumed by 𝑝𝑗
𝐸𝑖𝑑𝑙𝑒

𝑗 Energy consumed by 𝑝𝑗 in idle state
𝐸𝑚𝑎𝑥

𝑗 Energy consumed by 𝑝𝑗 when it is fully utilized (100% CPU utilization)
𝑈𝑗 Utilization of 𝑝𝑗
Eq. (4) states that every virtual machine is assigned to one physical
achine, i.e. no virtual machine stays unplaced while Eq. (8) specifies

hat each virtual machine is assigned to only one physical machine.
Eqs. (5), (6), and (7) state that the total demand by virtual machines

or each resource (CPU, memory and bandwidth) does not exceed the
mount of the corresponding resource of the physical machine to which
hose virtual machines are assigned. As stated in Eq. (9), we define
he utilization of a physical machine as percentage of CPU usage, as
n [49]. The energy consumption of a machine is calculated based on
he utilization of the machine, as shown in Eq. (10). An idle machine
lso consumes energy. Eq. (11) shows the calculation of communication
ost. A virtual machine may communicate with another virtual machine
nd the cost of this communication is defined to be the number of
witches between the physical machines hosting the virtual machines
imes the data flow demand among the virtual machines. We assume a
raffic demand matrix of size |𝑉 |x|𝑉 | that shows the desired data flow

demands between virtual machines is given. Both energy consumption
and communication cost calculations are inspired from [49].

4. Proposed method

4.1. Genetic algorithms

A genetic algorithm is a search and optimization technique inspired
by the process of natural selection and genetics [50]. It is a meta-
heuristic algorithm invented by John Henry Holland at the University
of Michigan in the early 1970s, that aims to find good solutions to
complex optimization problems [51].

An overview of how a genetic algorithm works is as follows:

• Initialization: The algorithm begins by initializing a population
of candidate solutions, often referred to as individuals. Each
individual represents a potential solution to the problem.

• Evaluation: Each individual in the population is evaluated and
assigned a fitness value, which measures its quality with respect
to the problem’s objectives. The fitness function guides the search
by providing a quantitative measure of how well an individual
solves the problem.

• Selection: Individuals are paired up with other individuals to cre-
ate the offspring for the next population. The process is generally
based on the principle of survival of the fittest where individuals
with higher fitness have a higher chance of being selected.
139
• Reproduction: The selected individuals undergo genetic opera-
tors, such as crossover and mutation, to create offspring. Crossover
involves exchanging genetic information between two parent
individuals to create new offspring, while mutation introduces
random changes to the genetic information of individuals to avoid
local maxima.

• Termination Condition: The algorithm continues iterating through
the steps of selection and reproduction until a termination con-
dition is met. Termination conditions can include reaching a
maximum number of iterations (generations) or achieving a sat-
isfactory solution.

By applying the steps of selection and reproduction iteratively,
genetic algorithms explore the search space and evolve towards better
solutions. The idea is that through the processes of crossover and muta-
tion, the algorithm can discover and combine beneficial characteristics
from different individuals, which leads to improved solutions over
generations.

Genetic algorithms are known for their ability to handle complex,
high-dimensional, and multi-objective optimization problems. They are
widely used in various fields, such as engineering, computer science,
and finance, to solve real-world problems where finding an exact
optimal solution is computationally infeasible.

It is important to note that the performance of a genetic algorithm
depends on several factors, including the way genetic operators are
designed, population size, fitness function choice, and the termination
condition. Careful tuning of these parameters is necessary to achieve
good results for a specific problem.

4.2. Utilization Based Genetic Algorithm (UBGA)

We propose a genetic algorithm based approach, called Utilization
Based Genetic Algorithm (UBGA), to optimize virtual machine place-
ment considering the utilization of physical machines. Our approach
aims to reduce the total wasted resources of physical machines in the
cloud. We define the unused amount of resources of a physical machine
as wasted if that physical machine has at least one virtual machine
placed on it so that it cannot be shut down. We do not consider the
resources of idle machines as wasted since they can be shut down. We
integrated our algorithm into CloudSim toolkit which is an open-source
cloud computing simulator allowing the creation and simulation of data
centers, physical and virtual machines in an easy way.

Since genetic algorithms mimic the natural selection process of
real life, where better individuals have more chances to survive in a

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
Fig. 1. The chromosome structure of our genetic algorithm.
population according to evolution theory, they can be used to find
close-to optimum solution for a lot of complex problems [50]. As
evolution in real life progresses, species have populations with better
individuals after some number of generations. Similarly, a genetic
algorithm starts with a population containing random individuals each
of which represents a solution to the given problem, and improves
these individuals at each generation to have better solutions. Therefore,
a genetic algorithm produces a better solution to the given problem
from one generation to another according to a given criterion. The
criterion we use in this paper is a novel fitness function that we define.
At the end, the algorithm reaches a solution that is good and that can
approximates the optimal solution to the problem.

The only setback of genetic algorithms can be their running time
complexity since a genetic algorithm may take too much time depend-
ing on the specified evolution termination condition and the number
of individuals in the population in each generation. However, since the
scenario that we focus on in this paper is not a highly dynamic one,
the run-time required for finding a good solution is not the most prior
concern, as long as the run-time is in an acceptable range, and therefore
does not prevent us from using a genetic algorithm.

We next describe the components of our genetic algorithm for
virtual machine placement.

4.3. Chromosome structure

A chromosome in our proposed genetic algorithm is a tree data
structure whose leaves represent the physical machines and non-leaf
nodes represent the network switches that connect these physical ma-
chines. Each leaf node has a pointer to a list, which keeps the virtual
machines that are assigned to the physical machine represented by the
leaf node. Hence, we have |𝑃 | number of lists. Obviously, some of
these lists may be empty when no virtual machine is assigned to the
corresponding physical machine. The proposed chromosome structure
has |𝑉 | genes each one representing a single virtual machine. An
example chromosome can be seen in Fig. 1.

With this tree structure, it is easier and faster to determine what
percentage of resources of a physical machine is wasted. We also make
use of this structure to calculate the communication cost between two
virtual machines.

A particular placement of virtual machines to physical machines
(feasible or unfeasible) is represented by such a tree and its lists. This
is called an individual.
140
4.4. Fitness function

We define the fitness value of an individual who has 𝑘 number of
over-demanded (over-loaded) physical machines as in Eq. (12). Here,
we have 0 ≤ 𝑘 ≤ 𝑛, where 𝑛 is the number of physical machines in the
data center.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = (𝑘 + 1) ∗ (1
𝑇𝑐𝑝𝑢

∗
∑

𝑝𝑗∈𝑃𝑎𝑙𝑙

(−𝒘𝒄𝒑𝒖
𝒋) ∗ 𝒑𝒄𝒑𝒖𝒋

+ 1
𝑇𝑚𝑒𝑚

∗
∑

𝑝𝑗∈𝑃𝑎𝑙𝑙

(−𝒘𝒎𝒆𝒎
𝒋 ∗ 𝒑𝒎𝒆𝒎

𝒋) +

1
𝑇𝑏𝑤

∗
∑

𝑝𝑗∈𝑃𝑎𝑙𝑙

(−𝒘𝒃𝒘
𝒋 ∗ 𝒑𝒃𝒘𝒋) −

∑

𝑣𝑖∈𝑉
∑

𝑣𝑗∈𝑉 𝑵𝒊𝒋

𝑵𝒎𝒂𝒙
) (12)

where;

𝑻𝒄𝒑𝒖 =
∑

𝑝𝑗∈𝑃𝑎𝑙𝑙

𝒑𝒄𝒑𝒖𝒋 (13)

𝑻𝒎𝒆𝒎 =
∑

𝑝𝑗∈𝑃𝑎𝑙𝑙

𝒑𝒎𝒆𝒎
𝒋 (14)

𝑻𝒃𝒘 =
∑

𝑝𝑗∈𝑃𝑎𝑙𝑙

𝒑𝒃𝒘𝑗 (15)

𝑵𝒎𝒂𝒙 = 𝐻 ∗
∑

𝑣𝑖∈𝑉

∑

𝑣𝑗∈𝑉
𝑭𝒊𝒋 , 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗 (16)

The fitness function, whose value is negative, indicates how well
a placement is. A bad placement will have a very low fitness value
(a very large negative value) and this is obtained by punishing such
bad placements as much as possible. The fitness function punishes
over-demand by virtual machines the most, since this is the most
undesired case where capacity constraints of physical machines are
violated. That is to say, for one of the resources, if the total demand by
virtual machines exceeds the capacity of the assigned physical machine,
we reduce that individual’s fitness score by multiplying the inside
sum (which calculates the sum of wasted resources’ percentage and
normalized communication cost) in Eq. (12) with the number of over-
demanded physical machines (𝑘). Since the inside sum is negative, we
severely penalize over-demand. With this big penalty, we try to prevent
the existence of over-demanded physical machines in the final solution.

On the other hand, wasted resources and communication cost are

more acceptable than over-demand. Therefore, they have less penalty,

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
which is the result of the inside sum. The inside sum is allowed to
increase at most to −4, which is the sum of the total wasted percentage
of CPU, memory and bandwidth of all used physical machines and
normalized communication cost of the virtual machines in the cloud.
Therefore, we aim directly to reduce the total wasted percentage of
resources and communication cost in the whole data center.

Communication cost is normalized in the fitness function by di-
viding it by the maximum possible communication cost. Therefore,
it has a value between 0 and 1. As a result, resource wastage and
communication cost have an equal impact on the fitness score of
individuals. Maximum possible communication cost is formulated in
Eq. (16). We multiply the flow demand between two virtual machines
with 𝐻 , where 𝐻 is the maximum number of network switches on the
path between two virtual machines in the data center.

Moreover, we do not penalize individuals for having totally idle
physical machines (machines with no VM assigned to them), since idle
machines can be shut down. We want to utilize physical machines as
much as possible, and to realize that we try to increase the number of
idle machines, that can be shut down, as much as possible. Hence, more
idle machines in a placement means less energy consumption, as can
be seen in Eq. (10), which we aimed in Eq. (1).

4.5. Crossover operation

The crossover operation is realized to create the individuals of
the next generation. It determines which genes are inherited from
which parents, as described in Algorithm 1. For each virtual machine,
we determine the physical host it is placed. The 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑅𝑎𝑡𝑒 in the
algorithm is to determine which parent is selected for inheritance. In
our experiments, we decided to set 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑅𝑎𝑡𝑒 to 0.5 to have an
unbiased gene selection from either parent to improve the variety of
newly created individuals. For each virtual machine, we generate a
random value and according to the value, a parent is selected, and
in the offspring’s chromosome the virtual machine is assigned to the
same physical machine to which it is assigned in the selected parent’s
chromosome. We do not favor the parent with the higher fitness score
to increase variety in the offspring.

Algorithm 1 Crossover Operation
Require: Two parent chromosomes: 𝐶1 and 𝐶2
Ensure: One offspring chromosome: 𝐶𝑛𝑒𝑤
1: procedure Crossover
2: for 𝑖 = 1 𝑡𝑜 |𝑉 | do
3: randomly create a value between 0 and 1, 𝑟;
4: if 𝑟 ≤ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑅𝑎𝑡𝑒 then
5: In 𝐶𝑛𝑒𝑤, assign VM 𝑖 to the physical host that it is assigned

to in 𝐶1
6: else
7: In 𝐶𝑛𝑒𝑤, assign VM 𝑖 to the physical host that it is assigned

to in 𝐶2
8: end if
9: end for

return New individual with chromosome 𝐶𝑛𝑒𝑤
10: end procedure

4.6. Selection operation

We use the Tournament Selection operation to pair up individuals
and then perform crossover operations for pairs. For each individual in
the general population, we invoke the selection operation to pair up
the individual with another for the crossover operation. Our selection
operation, which is described in Algorithm 2, creates a sub-population
called tournament population with randomly selected individuals from
the overall population. Then, it returns the individual with the best
141

fitness value in the tournament population. In the experiments, we set
the size of this sub-population to be 5% of the overall population. We
decided to use this value because it is large enough to have better pairs
and it is small enough not to always bring the best individual, which
is required for increasing variety among individuals, as we see in the
experiments.

Algorithm 2 Selection Operation
Require: The tournament population, 𝑃𝑜𝑝
Ensure: an individual chromosome
1: procedure Selection
2: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ← −∞
3: 𝑏𝑒𝑠𝑡𝐼𝑛𝑑 ← 𝑁𝑢𝑙𝑙
4: for each Individual 𝑥 in 𝑃𝑜𝑝 do
5: calculate its fitness score, 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒
6: if 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ≤ 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 then
7: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ← 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒
8: 𝑏𝑒𝑠𝑡𝐼𝑛𝑑 ← 𝑥
9: end if

10: end for
return 𝑏𝑒𝑠𝑡𝐼𝑛𝑑

11: end procedure

4.7. Mutation operation

The mutation operation randomly selects a virtual machine, and
removes that virtual machine from its current physical machine, and
places it to a newly selected physical machine. If this migration would
cause over-demand on the newly selected physical machine, then the
mutation operation is cancelled. Algorithm 3 describes in detail how
mutation works. Mutation operation is essential for the methods that
use genetic algorithms as it increases variety among the individuals
in the offspring population. Moreover, mutation operation is useful to
avoid being trapped at a local maximum.

Algorithm 3 Mutation Operation
Require: An individual chromosome: 𝐶𝑜𝑙𝑑
Ensure: A mutated individual chromosome: 𝐶𝑚𝑢𝑡
1: procedure Mutation
2: 𝐶𝑚𝑢𝑡 ← 𝐶𝑜𝑙𝑑
3: In 𝐶𝑚𝑢𝑡, randomly select a virtual machine 𝑣; where 1 ≤ 𝑣 ≤ |𝑉 |

4: In 𝐶𝑚𝑢𝑡, randomly select a physical machine 𝑝; where 1 ≤ 𝑝 ≤ |𝑃 |
5: In 𝐶𝑚𝑢𝑡, remove 𝑣 from its current physical machine
6: In 𝐶𝑚𝑢𝑡, add 𝑣 to 𝑝

return 𝐶𝑚𝑢𝑡
7: end procedure

4.8. The genetic algorithm

The proposed genetic algorithm works very similarly to the tradi-
tional genetic algorithm. The flowchart of the algorithm can be seen in
Fig. 2. We start with an initial population. Then, inside the generation
loop, we start with calculating the fitness value of each individual
followed by selecting another individual for each one to pair up to
produce a new offspring. After that, we apply mutation operation if the
randomly produced mutation value is less than the desired mutation
rate. Moreover, we find the best individual among the new population
and compare it with the current best one. If the new population’s best
individual is better than the current best individual, we set the new
one as the current best. For the next iteration of the generation loop,
we continue with the new generation and discard the old one, since the
new generation consists of better individuals than the old population.

The pseudo-code of our main algorithm is given in Algorithm 4.

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
Fig. 2. Flowchart of genetic algorithm.

5. Experimental results

To evaluate the performance of our proposed algorithm, we con-
ducted extensive simulation experiments by using CloudSim v.3.0.3,
which is an open-source cloud environment simulator framework im-
plemented in Java. CloudSim has its own default virtual machine
allocation policy. We extended this default policy to use the genetic
algorithm library we created. Our library implements our proposed
method.

We compared our method, Utilization Based Genetic Algorithm
(UBGA), with CloudSim’s default virtual machine placement policy
(which we call CloudSim in the figures and in the rest of the paper),
Random Allocation method (RA), First Fit Decreasing method (FFD),
and AFED-EF method proposed by [4]. We did comparisons by using
the following metrics:

1. Wasted CPU (percentage),
2. Wasted memory (percentage),
3. Wasted bandwidth (percentage),
4. Number of physical machines used,
5. Energy consumed by physical machines,
142
Algorithm 4 The Genetic Algorithm
1: procedure The GA

generate a population of 𝑃𝑂𝑃𝑆𝐼𝑍𝐸 number of random
individuals, 𝑃𝑂𝑃 ;

2: while THE TERMINATION CONDITION is not 𝑡𝑟𝑢𝑒 do
3: for each Individual 𝑖 in 𝑃𝑂𝑃 do
4: calculate its fitness value 𝑓 (𝑖)
5: end for
6: for each Individual 𝑖 in 𝑃𝑂𝑃 do
7: invoke the Selection Operation, that is using tournament

selection technique to select another individual 𝑗 to pair
8: end for
9: for each pair of parents do

10: use Uniform Crossover Operation to produce an offspring
11: end for
12: for each offspring do
13: apply Mutation Operation according to mutation rate
14: end for
15: find the best individual among offsprings, 𝑛𝑒𝑤𝐵𝑒𝑠𝑡
16: if 𝑛𝑒𝑤𝐵𝑒𝑠𝑡 is better than current best individual then
17: replace current best individual with 𝑛𝑒𝑤𝐵𝑒𝑠𝑡
18: end if
19: end while

return best individual
20: end procedure

Table 2
Resource demand values of each virtual machine.

Resource Values

CPU 250 Mips–1500 Mips
Memory 500 MB–5000 MB
Bandwidth 500 Mbps–1500 Mbps

Table 3
Resources provided by each physical machine.

Resource Values

CPU 1000 Mips–3000 Mips
Memory 1 GB–10 GB
Bandwidth 1 Gbps–5 Gbps

Table 4
Resources and demands for each VM and PM in homogeneous
distribution case.

Resource VM demand PM resource

CPU 250 Mips 2500 Mips
Memory 500 MB 5 GB
Bandwidth 100 Mbps 1 Gbps

6. Communication cost.

We created test cases to compare our UBGA algorithm with the
methods mentioned above. Information about the physical machine
resource capacity values and virtual machine demand values for those
test cases can be seen in Tables 1–3.

In all our test cases, the number of virtual machines to be allocated
is varied between 200 and 1000 with an increment of 200. The number
of physical machines is fixed at 200. All physical machines reside in a
single data center.

In our genetic algorithm, the number of generations is set to 20 and
the population size for each generation is constant and is set to 100.
We chose these values because we observed in our experiments that
any value greater than these does not significantly increase the fitness
score of the best individual. That means increasing generation count
and population size does not improve the solution quality much, and

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.

5

C
W
a
m
d

5

m
m
m

E
R
b
i
p
t
f
u
r

5

o
b
m
o
G
s
d
i
0
t
p

s
s
r
m

therefore we did not set the values of these parameters too large to
reduce the running time of our proposed method.

The parameter values we used for the components of our algorithm
are set as follows:

• In the crossover operation, we set 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑅𝑎𝑡𝑒 to be 0.5. This
means an offspring has an equal chance of inheriting from its
parents. As stated above, this value is selected for unbiased gene
selection from parents to improve variety.

• In the selection operation, we set tournament population size to
5, which is 5% of the population size.

• In the genetic algorithm, the termination condition is reaching
generation 20. We have seen in the experiments that this value
is large enough, since the use of a larger value for the number of
generations does not significantly change the fitness score of the
best individual.

• In the genetic algorithm, the mutation rate is set to be 0.02. In
our experiments, we observe that this is the optimal value for our
algorithm. Typical values used for mutation rate in the literature
are below 0.05, as can be seen, in [1,49].

.1. CloudSim integration

The integration of our method to CloudSim involves extending
loudSim’s own virtual machine allocation method with our algorithm.
e implemented our genetic algorithm in a library. Our algorithm uses
tree data structure to represent a chromosome that has one-to-one
apping with the network and server interconnection topology of a
ata center where virtual machines are placed.

.2. Homogeneous distribution

In homogeneous distribution case, we set the capacities of physical
achines and demands of virtual machines as in Table 4. Each physical
achine has the same initial amount of resources and each virtual
achine has the same amount of demand for each type of resource.

When compared in terms of wasted resource amount, UBGA, AFED-
F, and FFD algorithms provide similar results and are the best ones.
andom allocation and CloudSim’s default allocation policy are far
ehind. The reason for the superior performance of FFD is that this case
s the optimum scenario for that method. Both UBGA and FFD achieve
lacing virtual machines to the least number of physical machines. Of
he 𝑚 physical machines that might be used for the given set of VMs, the
irst 𝑚 − 1 machines are fully utilized and the last machine is partially
tilized and is the only one that contributes to the waste of a particular
esource type.

.3. Heterogeneous deterministic distribution

In heterogeneous deterministic distribution case, resources demands
f virtual machines are determined between the values shown in Ta-
le 2 and resource capacities provided by physical machines are deter-
ined between within the values shown in Table 3 as follows. The set

f virtual machines is divided into 10 groups. The virtual machines in
roup 0 have the minimum demands of CPU, memory, and bandwidth

hown in Table 2. The virtual machines in Group 𝑖 have (10× 𝑖)% more
emands than the ones in Group 0. For instance, the virtual machines
n Group 1 have 10% more resource demands than the ones in Group
, and the demands of virtual machines in Group 7 are 70% more than
he demands of virtual machines in Group 0. The same logic applies to
hysical machines in terms of resource capacities.

The results of the heterogeneous deterministic distribution case are
hown in Figs. 3 through 8. When we consider resource waste, we can
ay that UBGA and AFED-EF are clearly superior to CloudSim’s method,
andom allocation method, and FFD method, as they cause far more
143

emory, CPU, and bandwidth waste for five different virtual machine
Fig. 3. The result of CPU wastage with heterogeneous deterministic distribution.

Fig. 4. The result of memory wastage with heterogeneous deterministic distribution.

count cases, as shown in Figs. 3, 4, and 5, respectively. UBGA and
AFED-EF have similar results in terms of wasted resources. AFED-EF
is slightly better with the CPU waste while UBGA is clearly better with
memory waste.

AFED-EF uses fewer physical machines compared to other algo-
rithms. Our UBGA method closely follows it, as shown in Fig. 6. UBGA
tries to put virtual machines as close as possible in the network and
since we do not penalize individuals for idle machines in the penalty
calculation method, UBGA tends to use the least possible number of
physical machines as well. However, FFD, RA, and CloudSim do not
always try to produce solutions with fewer physical machines. They use
all physical hosts in the data center for 800 and 1000 virtual machine
cases.

For energy consumption of physical machines, we use the formula
given in Eq. (10), where both utilization and number of idle machines
are important. In this equation we use the values 𝐸𝑚𝑎𝑥

𝑗 = 100 and
𝐸𝑖𝑑𝑙𝑒
𝑗 = 10, as they are CloudSim’s default parameter values for en-

ergy calculation. Since AFED-EF directly targets energy consumption,
it has the best results among compared algorithms. Our UGBA has
the next-best performance. With fewer virtual machines, FFD has the
worst performance, while RA and CloudSim are slightly better. The
performance gap among the three algorithms closes with more virtual
machines being requested. Fig. 7 shows the energy consumption results
of the methods.

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.

b
t
l
b
w
o
a
i
h
t
F
m
r
p
o
(
c
t

5

o
s
m
T

p
w
i
b
s
C
t
b

c
s
T
t
I
A
c

Fig. 5. The result of bandwidth wastage with heterogeneous deterministic distribution.

Fig. 6. Number of PMs used with heterogeneous deterministic distribution.

Fig. 7. Energy consumption by PMs used with heterogeneous deterministic distribution.

The communication cost of a VM placement is considered as the
total load incurred on the switches of the data center network due
to communication happening among VMs. This total load is computed
as follows. For each pair of VMs that communicate, the flow demand
144
Fig. 8. Communication cost with heterogeneous deterministic distribution.

etween these VMs is multiplied by the number of switches between
he physical machines where these VMs are placed. In this way, the
oad incurred by that pair of VMs is found. Then we sum the loads
y all VM pairs and find out the total load incurred on the network,
hich we consider as the communication cost of the placement. In
ur experiments, we assigned a random data flow demand between 0
nd 4 traffic units to each virtual machine pair. We have

(

|𝑉 |

2

)

values
n total. In this scenario, the methods that allocate virtual machines
aving larger flow demand between them as closer as possible in
he cloud network topology produce better results. As can be seen in
ig. 8, UBGA, AFED-EF, and FFD are clearly superior to the other two
ethods. There is a very small difference between the performance

esults of these top three methods. For fewer virtual machines to be
laced, the three methods have very close results. For larger number
f virtual machines, UBGA performs slightly better than the others
Fig. 8). The reason why UBGA produces the best result in terms of
ommunication cost is that it also incorporates communication cost in
he fitness function, while other methods do not.

.4. Uniform random distribution

In the last case considered in our experiments, resource demands
f virtual machines are randomly determined within the value range
hown in Table 2, and the resource capacities provided by physical
achines are randomly determined within the value range shown in
able 3.

The results for the uniform random distribution of resource ca-
acities and demands are shown in Figs. 9 through 14. For resource
aste metrics, the random allocation has the worst performance as

n the previous case. CloudSim default policy and FFD are slightly
etter than the random one, but still, they do not provide the best
olution. AFED-EF and UBGA have the best performance. In terms of,
PU and bandwidth waste, they have very similar performance while
he performance gap in memory waste is clearer with UBGA being the
etter one (Figs. 9, 10, 11).

In terms of the number of physical machines used, the energy
onsumption of physical machines, and communication cost, we have
imilar results as in the heterogeneous deterministic distribution case.
he methods having optimization concern provide better performance
han the ones which do not have such a concern (Figs. 12, 13, and 14).
n terms of energy cost and the number of non-idle physical machines,
FED-EF performs better compared to UBGA while UBGA has the best
ommunication cost performance among all five compared methods.

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
Fig. 9. The result of CPU wastage with uniform random distribution.

Fig. 10. The result of memory wastage with uniform random distribution.

Fig. 11. The result of bandwidth wastage with uniform random distribution.

5.5. Statistical analysis of the results

A statistical significance test is conducted at a 5% significance
level to check whether the average results obtained by our UBGA
145
Fig. 12. Number of PMs used with uniform random distribution.

Fig. 13. Energy consumption by PMs used with uniform random distribution.

Fig. 14. Communication cost with uniform random distribution.

algorithm compared to other algorithms are statistically significant.
For all metrics, the p-values provided by the t-tests that compare the
average results produced by UBGA with Random Allocation, CloudSim
and FFD are less than 0.001. However, the t-tests that compare results
of UBGA and AFED-EF are not always less than 0.001, therefore the

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
Table 5
p-values of comparison with AFED-EF.

|VM| = 200 |VM| = 400 |VM| = 600 |VM| = 800 |VM| = 1000

CPU Waste <0.001 0.037 0.024 <0.001 <0.001
Memory Waste <0.001 <0.001 <0.001 <0.001 <0.001
BW Waste 0.007 0.002 0.015 0.029 0.041
Used PM Count <0.001 <0.001 <0.001 <0.001 <0.001
Energy Cost <0.001 <0.001 <0.001 <0.001 <0.001
Communication Cost <0.001 <0.001 <0.001 <0.001 <0.001
Table 6
Comparison of bandwidth waste results between CloudSim and CloudStack experiments.

VM/PM Uniform Random Dist. Heterogeneous Det. Dist.

CloudSim CloudStack CloudSim CloudStack

1 30% 32% 31% 34%
2 24% 25% 22% 21%
3 18% 17% 18% 16%
4 14% 14% 13% 15%
5 11% 12% 11% 13%
Table 7
Comparison of CPU waste results between CloudSim and CloudStack experiments.

VM/PM Uniform Random Dist. Heterogeneous Det. Dist.

CloudSim CloudStack CloudSim CloudStack

1 32% 35% 33% 31%
2 27% 26% 21% 19%
3 14% 14% 12% 13%
4 9% 11% 10% 11%
5 9% 10% 9% 10%
p-values are presented in Table 5. For wasted memory, the number
of non-idle physical machines, energy cost and communication cost,
all p-values are still less than 0.001. Some p-values obtained by the
t-tests that compare wasted CPU and bandwidth are larger than 0.001,
however, they are still less than 0.05 which is our significance level.
All experimental results are statistically significant with a significance
value of 0.05.

5.6. Validation of the algorithm and simulations

In order to validate the effectiveness of our algorithm, we modified
the placement algorithm of Apache CloudStack to embed our algo-
rithm into this open-source cloud platform, and realized simulations
on CloudStack as well. Moreover, for the experiments conducted with
CloudStack, we also increased the number of physical and virtual
machines to real cloud systems scale. The results obtained in these
experiments show that our method provides similar performance results
compared to the aforementioned experiments with smaller parameter
values.

We performed experiments with 50 000 physical machines and
50 000–250 000 virtual machines to have the same number of VM

number of PM ratios
as in our previous experiments. The demands of virtual machines and
the resources of physical machines are first distributed in a heteroge-
neous deterministic way as in Section 5.3, and then randomly using the
parameter values that are provided in Tables 2 and 3.

The comparative performance results of our algorithm obtained
with CloudSim and CloudStack are provided in Tables 6, 7, and 8. The
values given in the tables are averages of 100 runs. The number of
machines employed in the experiments conducted through CloudStack
is at real cloud-scale with a much higher number of machines compared
to the parameter values used in the CloudSim simulations. Validation
of simulation results is ensured with both random and uniform distri-
bution of resources and demands as shown in the corresponding tables.
Our proposed algorithm can scale to real cloud systems with the same
effectiveness while aiming to minimize wasted resources of physical
146

hosts.
6. Conclusion & future work

How to place virtual machines in a data center considering multiple
objectives and constraints is one of the most important and challenging
problems in virtualized cloud systems. In this paper, we proposed the
so-called Utilization Based Genetic Algorithm (UBGA) that makes use
of an innovative fitness function and chromosome structure with the
aim to increase server utilization, decrease resource waste, and reduce
network overhead, all at the same time.

Our unique fitness function and related chromosome structure en-
able combining multiple objectives together in a compact form. Our
method considers the utilization of multiple machine components in
making placement decisions: CPU, memory, and network links. It bal-
ances the load on these different types of resources in a server. Bal-
ancing the load is very important to get the maximum utility from a
server, i.e., place and run as many virtual machines and applications
as possible.

Our approach also considers network topology to make effective
placement decisions. By also considering the physical network topology
interconnecting the physical servers and the distances between them,
the cost of communication among virtual machines is reduced. This
prevents the network from being a bottleneck while making effective
placements.

We evaluated the performance of our algorithm via extensive sim-
ulation experiments and compared it with four others: Random alloca-
tion (RA), CloudSim’s default allocator (CloudSim), First Fit Decreasing
method (FFD), and AFED-EF [4] algorithm from the literature. Our
results show that Random and CloudSim allocators perform worse
than the other approaches. FFD provides an average performance for
heterogeneous deterministic and uniform random capacity and demand
distributions, and excellent performance for homogeneous distribution,
which is its optimum case. AFED-EF performs better than our UBGA
in terms of energy consumption and the number of physical machines
in use. In terms of wasted resources, the two algorithms have similar
performances. In terms of communication cost, the performance of
UBGA is the best.

There are a few directions to extend our work further. Since virtual
machine requests in cloud systems can be made dynamically, we want

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
Table 8
Comparison of memory waste results between CloudSim and CloudStack experiments.

VM/PM Uniform Random Dist. Heterogeneous Det. Dist.

CloudSim CloudStack CloudSim CloudStack

1 38% 36% 42% 45%
2 32% 30% 34% 34%
3 22% 23% 18% 20%
4 10% 12% 9% 9%
5 9% 12% 8% 8%
to extend our algorithm to handle online VM placement. In this case, we
also want to consider VM migrations to maximize utilization of physical
hosts and customer satisfaction at the same time. Moreover, since in
dynamic cases, VM requests can be considered for a finite amount of
time, we want to investigate the resource scheduling problem as well.

CRediT authorship contribution statement

Mustafa Can Çavdar: Conceptualization, Methodology, Software,
Investigation, Validation, Writing – original draft, Writing – review &
editing, Visualization. Ibrahim Korpeoglu: Conceptualization, Writing
– review & editing, Supervision, Project administration. Özgür Ulusoy:
Conceptualization, Writing – review & editing, Supervision, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] R. Sookhtsaraei, M. Madani, A. Kavian, A multi objective virtual machine
placement method for reduce operational costs in cloud computing by genetic,
Int. J. Comput. Networks Commun. Secur. 2 (8) (2014) 250–256.

[2] M. Masdari, S. Nabavi, V. Ahmadi, An overview of virtual machine placement
schemes in cloud computing, J. Netw. Comput. Appl. 66 (2016) http://dx.doi.
org/10.1016/j.jnca.2016.01.011.

[3] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, CloudSim:
A toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. - Pract. Exp. 41 (1) (2011)
23–50.

[4] Z. Zhou, M. Shojafar, M. Alazab, J. Abawajy, F. Li, AFED-EF: An energy-efficient
VM allocation algorithm for IoT applications in a Cloud Data Center, IEEE Trans.
Green Commun. Netw. 5 (2) (2021) 658–669.

[5] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, D. Yuan, A genetic algorithm based data
replica placement strategy for scientific applications in clouds, IEEE Trans. Serv.
Comput. 11 (4) (2018) 727–739.

[6] C.T. Joseph, K. Chandrasekaran, R. Cyriac, A novel family genetic approach for
virtual machine allocation, Procedia Comput. Sci. 46 (2015) 558–565.

[7] A. Tripathi, I. Pathak, D.P. Vidyarthi, Energy efficient VM placement for effective
resource utilization using modified binary PSO, Comput. J. 61 (6) (2018)
832–846.

[8] X. Zhang, T. Wu, M. Chen, T. Wei, J. Zhou, S. Hu, R. Buyya, Energy-aware
virtual machine allocation for cloud with resource reservation, J. Syst. Softw.
147 (2019) 147–161.

[9] B. Zhang, X. Wang, H. Wang, Virtual machine placement strategy using
cluster-based genetic algorithm, Neurocomputing 428 (2021) 310–316.

[10] M. Ghetas, A multi-objective Monarch Butterfly Algorithm for virtual ma-
chine placement in cloud computing, Neural Comput. Appl. 33 (17) (2021)
11011–11025.

[11] Z. Zhou, F. Li, S. Yang, A novel resource optimization algorithm based on clus-
tering and improved differential evolution strategy under a cloud environment,
Trans. Asian Low-Resourc. Lang. Inf. Process. 20 (5) (2021) 1–15.

[12] H. Hallawi, J. Mehnen, H. He, Multi-capacity combinatorial ordering GA in appli-
cation to cloud resources allocation and efficient virtual machines consolidation,
Future Gener. Comput. Syst. 69 (2017) 1–10.
147
[13] Z. Xiao, J. Jiang, Y. Zhu, Z. Ming, S. Zhong, S. Cai, A solution of dynamic VMs
placement problem for energy consumption optimization based on evolutionary
game theory, J. Syst. Softw. 101 (2015) 260–272.

[14] F. López-Pires, B. Barán, L. Benítez, S. Zalimben, A. Amarilla, Virtual machine
placement for elastic infrastructures in overbooked cloud computing datacenters
under uncertainty, Future Gener. Comput. Syst. 79 (2018) 830–848.

[15] Z. Zhou, M. Shojafar, J. Abawajy, A.K. Bashir, IADE: An improved differential
evolution algorithm to preserve sustainability in a 6G network, IEEE Trans. Green
Commun. Netw. 5 (4) (2021) 1747–1760.

[16] F. Alharbi, Y.-C. Tian, M. Tang, W.-Z. Zhang, C. Peng, M. Fei, An ant colony
system for energy-efficient dynamic virtual machine placement in data centers,
Expert Syst. Appl. 120 (2019) 228–238.

[17] A. Abohamama, E. Hamouda, A hybrid energy–Aware virtual machine placement
algorithm for cloud environments, Expert Syst. Appl. 150 (2020) 113306.

[18] K. Baalamurugan, S.V. Bhanu, A multi-objective krill herd algorithm for vir-
tual machine placement in cloud computing, J. Supercomput. 76 (6) (2020)
4525–4542.

[19] J. Masoudi, B. Barzegar, H. Motameni, Energy-Aware virtual machine allocation
in DVFS-enabled cloud data centers, IEEE Access 10 (2021) 3617–3630.

[20] S. Li, L. Li, D. Deng, H. Lin, J. Gao, Y.-s. Wang, A virtual machine place-
ment strategy with low resource consumption, in: 2021 the 13th International
Conference on Computer Modeling and Simulation, 2021, pp. 87–94.

[21] M. Kiani, M.R. Khayyambashi, A network-aware and power-efficient virtual
machine placement scheme in cloud datacenters based on chemical reaction
optimization, Comput. Netw. 196 (2021) 108270.

[22] S.S. Nabavi, S.S. Gill, M. Xu, M. Masdari, P. Garraghan, TRACTOR: Traffic-aware
and power-efficient virtual machine placement in edge-cloud data centers using
artificial bee colony optimization, Int. J. Commun. Syst. 35 (1) (2022) e4747.

[23] K. Balaji, P. Sai Kiran, M. Sunil Kumar, Power aware virtual machine placement
in iaas cloud using discrete firefly algorithm, Appl. Nanosci. (2022) 1–9.

[24] H. Xing, J. Zhu, R. Qu, P. Dai, S. Luo, M.A. Iqbal, An ACO for energy-efficient
and traffic-aware virtual machine placement in cloud computing, Swarm Evol.
Comput. 68 (2022) 101012.

[25] D. Saxena, I. Gupta, J. Kumar, A.K. Singh, X. Wen, A secure and multiobjective
virtual machine placement framework for cloud data center, IEEE Syst. J. (2021).

[26] H.O. Salami, A. Bala, S.M. Sait, I. Ismail, An energy-efficient cuckoo search
algorithm for virtual machine placement in cloud computing data centers, J.
Supercomput. 77 (11) (2021) 13330–13357.

[27] H. Deng, L. Huang, C. Yang, H. Xu, B. Leng, Optimizing virtual machine
placement in distributed clouds with M/M/1 servers, Comput. Commun. 102
(2017) 107–119.

[28] L. Zhao, L. Lu, Z. Jin, C. Yu, Online virtual machine placement for increasing
cloud provider’s revenue, IEEE Trans. Serv. Comput. 10 (2) (2017) 273–285.

[29] A. Ponraj, Optimistic virtual machine placement in cloud data centers using
queuing approach, Future Gener. Comput. Syst. 93 (2019) 338–344.

[30] M.K. Gupta, T. Amgoth, Resource-aware algorithm for virtual machine placement
in cloud environment, in: 2016 Ninth International Conference on Contemporary
Computing, IC3, IEEE, 2016, pp. 1–6.

[31] H. Roh, C. Jung, K. Kim, S. Pack, W. Lee, Joint flow and virtual machine
placement in hybrid cloud data centers, J. Netw. Comput. Appl. 85 (2017) 4–13.

[32] Z. Zhou, K. Li, J. Abawajy, M. Shojafar, C. Morshed, F. Li, K. Li, An adap-
tive energy-aware stochastic task execution algorithm in virtualized networked
datacenters, IEEE Trans. Sustain. Comput. (2021).

[33] A.R. Ilkhechi, I. Korpeoglu, Ö. Ulusoy, Network-aware virtual machine placement
in cloud data centers with multiple traffic-intensive components, Comput. Netw.
91 (2015) 508–527.

[34] R. Wang, J.A. Wickboldt, R.P. Esteves, L. Shi, B. Jennings, L.Z. Granville, Using
empirical estimates of effective bandwidth in network-aware placement of virtual
machines in datacenters, IEEE Trans. Netw. Serv. Manag. 13 (2) (2016) 267–280.

[35] M. Gaggero, L. Caviglione, Model predictive control for energy-efficient, quality-
aware, and secure virtual machine placement, IEEE Trans. Autom. Sci. Eng. 16
(1) (2018) 420–432.

[36] W. Lin, S. Xu, J. Li, L. Xu, Z. Peng, Design and theoretical analysis of virtual
machine placement algorithm based on peak workload characteristics, Soft
Comput. 21 (5) (2017) 1301–1314.

[37] Z.Á. Mann, Multicore-aware virtual machine placement in cloud data centers,
IEEE Trans. Comput. 65 (11) (2016) 3357–3369.

http://refhub.elsevier.com/S0140-3664(23)00426-7/sb1
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb1
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb1
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb1
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb1
http://dx.doi.org/10.1016/j.jnca.2016.01.011
http://dx.doi.org/10.1016/j.jnca.2016.01.011
http://dx.doi.org/10.1016/j.jnca.2016.01.011
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb3
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb3
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb3
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb3
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb3
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb3
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb3
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb4
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb4
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb4
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb4
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb4
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb5
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb5
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb5
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb5
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb5
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb6
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb6
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb6
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb7
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb7
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb7
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb7
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb7
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb8
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb8
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb8
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb8
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb8
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb9
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb9
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb9
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb10
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb10
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb10
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb10
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb10
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb11
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb11
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb11
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb11
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb11
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb12
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb12
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb12
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb12
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb12
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb13
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb13
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb13
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb13
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb13
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb14
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb14
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb14
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb14
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb14
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb15
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb15
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb15
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb15
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb15
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb16
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb16
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb16
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb16
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb16
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb17
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb17
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb17
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb18
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb18
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb18
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb18
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb18
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb19
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb19
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb19
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb20
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb20
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb20
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb20
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb20
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb21
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb21
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb21
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb21
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb21
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb22
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb22
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb22
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb22
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb22
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb23
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb23
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb23
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb24
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb24
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb24
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb24
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb24
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb25
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb25
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb25
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb26
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb26
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb26
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb26
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb26
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb27
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb27
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb27
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb27
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb27
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb28
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb28
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb28
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb29
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb29
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb29
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb30
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb30
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb30
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb30
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb30
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb31
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb31
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb31
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb32
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb32
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb32
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb32
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb32
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb33
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb33
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb33
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb33
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb33
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb34
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb34
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb34
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb34
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb34
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb35
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb35
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb35
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb35
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb35
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb36
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb36
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb36
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb36
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb36
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb37
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb37
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb37

Computer Communications 214 (2024) 136–148M.C. Çavdar et al.
[38] S. Omer, S. Azizi, M. Shojafar, R. Tafazolli, A priority, power and traffic-aware
virtual machine placement of IoT applications in cloud data centers, J. Syst.
Archit. 115 (2021) 101996.

[39] H.-P. Jiang, W.-M. Chen, Self-adaptive resource allocation for energy-aware
virtual machine placement in dynamic computing cloud, J. Netw. Comput. Appl.
120 (2018) 119–129.

[40] C. Wei, Z.-H. Hu, Y.-G. Wang, Exact algorithms for energy-efficient virtual
machine placement in data centers, Future Gener. Comput. Syst. 106 (2020)
77–91.

[41] R. Li, Q. Zheng, X. Li, Z. Yan, Multi-objective optimization for rebalancing virtual
machine placement, Future Gener. Comput. Syst. 105 (2020) 824–842.

[42] R. Shaw, E. Howley, E. Barrett, An energy efficient anti-correlated virtual
machine placement algorithm using resource usage predictions, Simul. Model.
Pract. Theory 93 (2019) 322–342.

[43] S. Azizi, M. Shojafar, J. Abawajy, R. Buyya, Grvmp: A greedy randomized
algorithm for virtual machine placement in cloud data centers, IEEE Syst. J.
15 (2) (2020) 2571–2582.

[44] H. Feng, Y. Deng, Y. Zhou, G. Min, Towards heat-recirculation-aware virtual
machine placement in data centers, IEEE Trans. Netw. Serv. Manag. (2021).
148
[45] H. Bheda, C. Thaker, S. Shah, An optimized VM placement approach to reduce
energy consumption in green cloud computing, in: Proceedings of the Interna-
tional Conference on Data Science, Machine Learning and Artificial Intelligence,
2021, pp. 130–135.

[46] M.-H. Kim, J.-Y. Lee, S.A.R. Shah, T.-H. Kim, S.-Y. Noh, Min-max exclusive virtual
machine placement in cloud computing for scientific data environment, J. Cloud
Comput. 10 (1) (2021) 1–17.

[47] H. Feng, Y. Deng, J. Li, A global-energy-aware virtual machine placement
strategy for cloud data centers, J. Syst. Archit. 116 (2021) 102048.

[48] S. Sadegh, K. Zamanifar, P. Kasprzak, R. Yahyapour, A two-phase virtual machine
placement policy for data-intensive applications in cloud, J. Netw. Comput. Appl.
180 (2021) 103025.

[49] G. Wu, M. Tang, Y.-C. Tian, W. Li, Energy-efficient virtual machine placement
in data centers by genetic algorithm, in: International Conference on Neural
Information Processing, Springer, 2012, pp. 315–323.

[50] K.-F. Man, K.-S. Tang, S. Kwong, Genetic Algorithms: Concepts and Designs,
Springer Science & Business Media, 2012.

[51] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.

http://refhub.elsevier.com/S0140-3664(23)00426-7/sb38
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb38
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb38
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb38
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb38
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb39
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb39
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb39
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb39
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb39
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb40
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb40
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb40
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb40
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb40
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb41
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb41
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb41
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb42
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb42
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb42
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb42
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb42
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb43
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb43
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb43
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb43
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb43
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb44
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb44
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb44
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb45
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb45
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb45
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb45
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb45
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb45
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb45
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb46
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb46
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb46
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb46
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb46
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb47
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb47
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb47
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb48
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb48
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb48
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb48
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb48
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb49
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb49
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb49
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb49
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb49
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb50
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb50
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb50
http://refhub.elsevier.com/S0140-3664(23)00426-7/sb51

	A Utilization Based Genetic Algorithm for virtual machine placement in cloud systems
	Introduction
	Related Work
	Problem Description
	Proposed Method
	Genetic Algorithms
	Utilization Based Genetic Algorithm (UBGA)
	Chromosome Structure
	Fitness Function
	Crossover Operation
	Selection Operation
	Mutation Operation
	The Genetic Algorithm

	Experimental Results
	CloudSim Integration
	Homogeneous Distribution
	Heterogeneous Deterministic Distribution
	Uniform Random Distribution
	Statistical Analysis of the Results
	Validation of the Algorithm and Simulations

	Conclusion & Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

