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Abstract
Translating Natural Language Queries into Structured Query Lan-
guage (Text-to-SQL or NLQ-to-SQL) is a critical task extensively
studied by both the natural language processing and database
communities, aimed at providing a natural language interface to
databases (NLIDB) and lowering the barrier for non-experts. Despite
recent advancements made through the use of Large LanguageMod-
els (LLMs), significant challenges remain. These include handling
complex database schemas, resolving ambiguity in user queries,
and generating SQL queries with intricate structures that accu-
rately reflect the user’s intent. In this work, we introduce E-SQL,
a novel pipeline specifically designed to address these challenges
through direct schema linking and candidate predicate augmenta-
tion. E-SQL enhances the natural language query by incorporating
relevant database items (i.e., tables, columns, and values) and condi-
tions directly into the question and SQL construction plan, bridging
the gap between the query and the database structure. The pipeline
leverages candidate predicate augmentation to mitigate erroneous
or incomplete predicates in generated SQLs. Comprehensive eval-
uations on the BIRD benchmark illustrate that E-SQL achieves
competitive performance, particularly excelling in complex queries
with a 66.29% execution accuracy on the test set. A further obser-
vation from our experiments reveals that incorporating schema
filtering into the translation pipeline does not have a positive im-
pact on performance when the most advanced proprietary LLMs
are used. Additionally, our experiments with small LLMs highlight
the importance and positive impact of enriched questions on their
performance. Without fine-tuning, single-prompt SQL generation
using enriched questions with DeepSeek Coder 7B Instruct 1.5v
achieves 56.45% execution accuracy on the BIRD development set.
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1 Introduction
The task of translating natural language queries into SQL (Text-
to-SQL) has garnered considerable attention due to its potential to
lower the technical barrier for non-experts and enhance the perfor-
mance of querying or recommendation systems. Situated at the in-
tersection of natural language processing (NLP) and database man-
agement, this task aims to enable users to interact with databases
through simple, natural language queries, without requiring ex-
tensive knowledge of SQL syntax or database schema structures.
Despite advancements in utilizing large language models (LLMs)
for Text-to-SQL, a significant performance gap of around 20% still

remains between the best-performing models and human-level ac-
curacy, underscoring that even the most sophisticated pipelines are
not yet suitable for real-world deployment as a natural language
interface to databases [28].

Prior to the emerge of LLMs [1–4, 7, 29, 33, 34, 41, 42], a wide
range of studies [6, 12, 16, 23, 30, 43, 44, 46, 54] focused on build-
ing encoder-decoder based neural network architectures utilizing
recurrent neural networks [5, 17] and various pre-trained language
models [8, 9, 38, 51]. These early approaches established a founda-
tion but were often limited in handling complex queries or schemas.

LLMs have shown substantial potential in the Text-to-SQL task,
yielding impressive results across various benchmarks. To further
enhance the reasoning capabilities of LLMs, a variety of in-context
learning (ICL) techniques have been introduced, including chain-
of-thought (CoT) prompting [48], question decomposition [20, 55],
self-consistency [47], and others [18, 32, 49, 53]. Although many
of these strategies have been successfully applied to Text-to-SQL
translation pipelines [13, 26, 35, 37, 40], improving LLM reasoning
specifically from the perspective of question refinement remains
relatively underexplored.

Beyond in-context learning, LLM performance can also be im-
proved through fine-tuning or training from scratch. However,
these techniques are resource-intensive, requiring significant com-
putational resources and large volumes of task-specific annotated
data. While proprietary models are less frequently fine-tuned for
Text-to-SQL [31], promising results have been achieved through the
fine-tuning of numerous open-source models [13, 26, 35, 36, 40, 45].

Figure 1 demonstrates the general pipeline and modules used
in prior works. A critical component of the Text-to-SQL task is
schema linking, which involves connecting the sense of natural
language query to the database schema. Although various meth-
ods have been proposed to enhance schema linking, it remains a
core challenge. Schema filtering, a technique commonly used to
eliminate irrelevant database items, has been widely adopted to
reduce noise for downstream tasks. While both neural network-
based [25, 26] and LLM-based [10, 22, 35, 37, 40] schema filtering
techniques have been explored, our findings align with those of
Maamari et al. [31], indicating that schema filtering can result in
performance degradation when the latest generation LLMs are em-
ployed. Additionally, several studies [13, 31, 35–37, 40, 45] reveal
that providing database-related information in response to a query
significantly enhances performance.

In this work, we introduce E-SQL: Direct Schema Linking via
Question Enrichment in Text-to-SQL1, a novel pipeline designed to

1The complete code required to reproduce the reported results is publicly available
on our GitHub repositoryhttps://anonymous.4open.science/r/E-SQL_Direct_Schema_
Linking
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directly address the schema linking challenge through question
enrichment and candidate predicate augmentation. We explore the
improvement of both LLM reasoning and schema linking from the
perspective of question enrichment. E-SQL enhances the natural
language query representation by incorporating relevant database
elements—such as tables, columns, and values—directly into the
query, along with an associated SQL construction plan. This ap-
proach is augmented by generating candidate predicates, which
reduce the likelihood of erroneous or incomplete SQL predicates.
This methodology differs from traditional schema filtering tech-
niques, which have been commonly used to simplify the schema
presented to the model. The E-SQL pipeline consists of four main
modules: Candidate SQL Generation (CSG), Candidate Predicate
Generation (CPG), Question Enrichment (QE), and SQL Refinement
(SR).

In the Candidate SQL Generation (CSG) module, an initial SQL
query is generated. This query is then parsed to extract values and
operations from its predicates. The Candidate Predicate Generation
(CPG) module uses these extracted elements to find similar values
from the database and constructs candidate predicates. Using the
candidate predicates, the Question Enrichment (QE) module in-
structs the LLM to incorporate relevant database items and possible
predicates into the natural language question, while concurrently
formulating SQL construction steps as its reasoning process. These
steps are then utilized to produce a fully enriched query. Simulta-
neously, the candidate SQL query is executed to identify potential
execution errors. Finally, in the SQL Refinement (SR) module, the
candidate SQL query is either refined or a new SQL query is gener-
ated, utilizing the enriched question, candidate predicates, and any
identified execution errors.

The impact of schema filtering, a widely adopted technique in
previous research, is also explored on our pipeline. We incorporate
an additional schema filtering module into our pipeline, where the
LLM is instructed to select only the database tables and columns
relevant to the query while eliminating others. Following this, the
Filtered Schema Correction technique is applied to resolve any in-
consistencies between the filtered schema and the original database
schema. Our experiments demonstrate that schema filtering can
negatively affect performance when applied in conjunction with
the most advanced proprietary LLMs. Instead, direct schema linking
through question enrichment and candidate predicate augmenta-
tion provides a more reliable strategy for accurate SQL generation,
particularly in complex cases.

Through an ablation study, we illustrate the effectiveness of each
module within the pipeline for the Text-to-SQL task. In particular,
our question enrichment module significantly improves perfor-
mance on challenging questions, yielding nearly a 5% increase in
accuracy.

We evaluate E-SQL on the Spider [52] and BIRD [28] bench-
marks, well-known standard datasets for the Text-to-SQL task, and
demonstrate its ability to handle complex queries while maintain-
ing competitive performance with state-of-the-art methods. Our
findings suggest that the integration of enriched questions, SQL
generation steps, and candidate predicates leads to more accurate
SQL generation, particularly for complex queries involving multiple
conditions and joins. Therefore, our approach establishes a new

paradigm for schema linking and prompt augmentation by leverag-
ing question enrichment and candidate predicate augmentation in
the context of Text-to-SQL translation.

The key contributions of our work can be summarized as follows:
• We propose a new paradigm for schema linking through

question enrichment, which leads to direct schema link-
ing by incorporating related database items and potential
conditions into the natural language question. Fully en-
riched queries further guide LLMs in SQL construction by
providing explicit logical steps.

• To the best of our knowledge, we are the first to enhance
both LLM reasoning capabilities and schema linking perfor-
mance through the use of a question enrichment module,
which composes database integrated questions, in Text-to-
SQL translation task.

• We propose a candidate predicate generation technique
leveraging the LIKE operator and demonstrate its positive
impact by augmenting prompts with candidate predicates.

• Our experiments also confirm the potential drawbacks of
traditional schema filtering techniques when integrated
into a Text-to-SQL translation pipeline like ours, which
leverages the most advanced proprietary LLMs.

• We demonstrate the importance and positive impact of
database-integrated questions, including logical SQL con-
struction steps, on the performance of small LLMs in the
task of Text-to-SQL translation, achieved without requiring
fine-tuning.

2 Related Work
Before the emergence of LLMs, supervised fine-tuning approaches
in Text-to-SQL translation focused on encoder - decoder architec-
tures that utilized recurrent neural networks (RNNs) [16, 43, 54],
pre-trained language models (PLMs) [12, 23, 30], convolutional neu-
ral networks (CNNs) [6] and graph neural networks (GNNs) [46].
These methods encoded natural language questions alongside data-
base schema to establish schema linking and generated SQL queries
through sequence generation [30, 54], grammar-based methods [6,
16, 46], or sketch-based slot-filling strategies. These approaches pro-
vided a foundational understanding for Text-to-SQL tasks, paving
the way for more advanced solutions.

The emergence of both proprietary and open-source LLMs [3,
4, 15, 19, 34, 41] has marked a significant shift in the field. Thanks
to their advanced reasoning and comprehension capabilities, the
research community has increasingly focused on harnessing the
power of these models for Text-to-SQL tasks.

2.1 LLM Reasoning
Advanced reasoning techniques are crucial for improving LLM per-
formance on complex tasks. While prompt design is important,
methods that enhance intrinsic reasoning, such as breaking down
problems or refining formulations, have led to significant advance-
ments in LLM capabilities.

The Chain-of-Thought (CoT) approach [48] significantly im-
proves the performance for multi-step reasoning tasks by guiding
LLMs to generate intermediate reasoning steps. Kojima et al. [21]
explored a simple yet effective prompting, "Let’s think step by
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Figure 1: Overview of the general pipeline for the Text-to-SQL translation task, highlighting the key modules: Schema Filtering,
Question Decomposition, Entity Retrieval, and Query Generation. The modular design allows for variation in the usage of
these components, depending on the preferred pipeline configuration.

Figure 2: Overview of the proposed E-SQL pipeline with candidate predicate generation, question enrichment, SQL refinement
modules, and without schema filtering module.

step", to uncover the reasoning ability of the language models in
zero-shot mode. Decomposing complex questions into simpler sub-
questions has been explored [11, 20, 55]. Techniques like Self Con-
sistency [47] apply majority voting to select consistent answers,
while Self-Improve [18] and Self-Refine [32] iteratively refine re-
sponses through self-generated data and feedback, respectively.
Moving beyond answer generation, Xi et al. [49] demonstrated sig-
nificant gains by refining problem contexts and questions through
the Self-Polish technique.

To the best of our knowledge, the refinement and generation of
high-quality user queries, particularly with embedded reasoning
that facilitates the construction of correct SQL queries, has not
been explored in the literature for the Text-to-SQL translation task.
Our work addresses this gap by proposing a methodology that
produces clear, schema-aware queries enriched with reasoning
elements, explicitly guiding the generation of accurate SQL queries
and overcoming schema linking challenges.

2.2 Schema Linking and Filtering
Translating a natural language query into SQL requires a clear
understanding of both the language used in the question and the

structure of the database. This process is facilitated by schema
linking, which bridges the gap between the query and the database
schema, ensuring that words or phrases in the query are accurately
matched to the relevant database elements, such as tables, columns,
or values.

Previous works have shown that removing irrelevant database
elements can improve schema linking and enhance model perfor-
mance in Text-to-SQL tasks by reducing the likelihood of schema-
based hallucinations. This process, known as schema filtering or
schema pruning, has been extensively studied. RESDSQL [25] and
CodeS [26] address this by classifying schema items based on their
relevance to the natural language query and then filtering them
according to their classification probabilities after ranking. While
DIN-SQL [35] uses a single step to select only the question rele-
vant database tables and columns, C3 [10], CHESS [40], and MCS-
SQL [22] first filter database tables (table linking) and then select
the most appropriate columns (column linking) from the previously
filtered tables, achieving better schema filtering. For schema link-
ing and filtering, the TASL module of TA-SQL [37] generates a list
of schema entities (tables and columns) from an LLM-generated
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dummy SQL query, which is then used to create symbolic rep-
resentations. Our approach also leverages the initially generated
candidate SQL query; however, rather than using it for schema
filtering, we extract possible database values from conditions to
generate potential predicates, which are then used in downstream
tasks as part of data augmentation, explained in Section 3.3. Gao
et al. [13] explored the impact of different schema representations
and demonstrated that representing the database schema as code,
instead of natural language representation, leads to a better un-
derstanding of the question-to-SQL mapping, thereby improving
schema linking. While previous works have demonstrated the pos-
itive impact of schema filtering on schema linking, Maamari et
al. [31] argue that explicit schema filtering remains useful for less
capable large language models (LLMs), but it becomes unneces-
sary with the latest, more advanced LLMs such as GPT-4o. Our
experiments with single-step schema filtering implemented in the
E-SQL pipeline corroborate this finding, indicating that explicit
schema filtering can be redundant and can result in performance
degradation when applied within pipelines leveraging advanced
LLMs such as GPT-4o and GPT-4o-mini [33].

2.3 Data Augmentation
One essential aspect of data augmentation involves providing rele-
vant content to the LLM through prompts. Augmenting prompts
with items pertinent to the query is crucial for improving Text-to-
SQL translation performance. Depending on the sub-task, prompts
are typically enriched with explanations of database items, data-
base values selected based on similarity, sub-task specific exam-
ples, and database schema—represented either as code or natural
language—that are filtered or unfiltered, along with decomposed
queries and candidate SQL queries [13, 31, 35–37, 40, 45]. In our
work, we incorporate database item explanations and database
values similar to the query in prompt. Additionally, we include
execution errors for candidate queries to provide valuable feedback
during query refinement. Unlike prior work, we propose a novel
approach to further reduce predicate errors and enhance LLM per-
formance by introducing candidate conditions with exact database
values, effectively bridging the gap between the natural language
query and the database.

2.4 SQL Query Generation and Correction
The final step in Text-to-SQL tasks is generating an SQL query that
accurately answers the user’s natural language question. While
some approaches, like C3 [10], employ zero-shot generation, few-
shot prompting techniques are more commonly used to enhance
performance. Methods such as self-consistency [47] and multi-
choice selection are employed bymodels like C3, DAIL-SQL, CHESS,
and MSC-SQL [10, 13, 22, 31, 40]. However, these techniques lead to
high computational costs due to large number of generation steps
for a single query. To addressmissing or redundant keywords in gen-
erated SQLs, Pourreza and Rafiei [35] introduced a self-correction
module. With MAC-SQL, Wang et al. [45] proposed a refiner agent
that evaluates the syntactic correctness and executability of the gen-
erated SQL, ensuring non-empty result generation. In our work, we
propose a SQL refinement module similar to MAC-SQL [45], where

we refine the SQL after enriching the question and augmenting the
prompt with candidate predicates.

3 Methodology
Our work focuses on bridging the gap between the database schema
and users’ natural language queries by enriching the questions with
database items through keyword mappings and expanding them
with SQL generation steps and reasoning. Our approach can be
characterized as direct schema linking via query enrichment with
relevant database elements. To further minimize errors such as
incorrect table, column, or missing value usage in predicates, we
augment the prompt with all possible predicates after extracting
them.

Our proposed method consists of four main modules, as illus-
trated in Figure 2: Candidate SQL Generation (CSG), Candidate
Predicate Generation (CPG), Question Enrichment (QE), and SQL
Refinement (SR). Additionally, recognizing the mixed outcomes
of database schema filtering observed in prior work, we include a
Schema Filtering and Filtered Schema Correction module (SF). How-
ever, our experiments on our pipeline reveal that schema filtering
can lead to performance degradation when integrated into Text-
to-SQL pipelines with the most advanced large language models
(LLMs), corroborating the findings of Maamari et al. [31]. Detailed
explanations of each module are provided in the following subsec-
tions.

3.1 Database Description and Value Selection
In real-world databases, description files serve as a valuable re-
source, offering detailed information about database items. Large-
scale databases often contain numerous description files with con-
tent that can be extensive. Another crucial piece of information
for LLMs is the actual data values within the database. However,
augmenting the prompt with all available descriptions and data-
base values is impractical due to the context window limitations
of LLMs and the associated computational costs. Another effective
perspective to prompt augmentation involves carefully selecting
relevant database-related information while filtering out content
unrelated to the query, thereby minimizing noise and enhancing
model performance.

Li et al. [27], Scholak et al. [39], and Li et al. [25] utilize the
Longest Common Substring (LCS) algorithm to identify database
values related to the query. However, the time complexity of the
LCS algorithm can significantly slow down the retrieval process. To
address this issue, Li et al. [26] propose a "coarse-to-fine" matching
framework, which initially extracts hundreds of potentially relevant
values from the entire database using BM25, followed by the ap-
plication of the LCS algorithm to retrieve the most query-relevant
values. Talaei et al. [40] employ a different approach by first extract-
ing keywords from the natural language query with the assistance
of an LLM, and then retrieving similar values from the database us-
ing a Locality Sensitive Hashing (LSH) based hierarchical retrieval
strategy. DIN-SQL [35] takes a more focused approach by extract-
ing possible cell values directly from the query with the help of
an LLM, similar to the keyword extraction phase of CHESS [40].
In our work, we employ the BM25 ranking algorithm not only to
retrieve the most relevant database values but also to identify the
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most pertinent database descriptions. We augment prompts with
the 10 most relevant database values for each column and the 20
most relevant database description sentences, as determined by the
BM25 ranking algorithm. Additionally, when providing database
values for each column, we ensure that any columns containing
"NULL" values also include "NULL" as part of the selected values.
This guarantees that the LLM is aware of potential null entries,
allowing it to incorporate conditions such as "IS NOT NULL" when
needed.

3.2 Candidate SQL Generation Module (CSG)
When provided with appropriate information, LLMs can effectively
establish strong connections between the database schema and the
natural language query, resulting in the generation of mostly ac-
curate SQL queries. Although these SQL queries may occasionally
contain errors, such as incorrect table or column usage or missing
values in predicates, they typically avoid incorporating completely
irrelevant database items. To leverage this capability, we extract
potentially useful information from the initially generated SQL
queries in subsequent steps to enhance data quality and, conse-
quently, improve model performance. Qu et al. [37] generate and
employ dummy SQL for extracting schema entities. Further details
on how dummy SQL is utilized in our approach are provided in
Section 3.3.

Our candidate SQL generation module incorporates three ran-
domly selected samples, each from a different database than the one
associated with the current query, across various difficulty levels
from the few-shot data. These samples are ordered to present sim-
pler question-SQL pairs first, followed by more challenging pairs.
After providing database schema code representation as suggested
in DAIL-SQL [13], the prompt is further augmented with selected
database descriptions and relevant database values for each column
as described in the previous subsection 3.1. To enhance the LLM’s
reasoning capabilities, we use the phrase "Let’s think step by step"
and instruct the LLM to generate reasoning steps, as proposed by
Kojima et al. [21] and Wei et al. [48].

3.3 Candidate Predicate Generation (CPG)
Determining the correct predicates to use in the SQL query is a
crucial step in Text-to-SQL translation. Successfully establishing
the relationship between database items and the query is essential.
However, even the most advanced LLMs sometimes struggle to
generate accurate predicates. For a predicate in an LLM-generated
SQL query, assuming the correct operation is used, there are six
possible cases:

(1) The predicate is correct syntactically, schematically, and
semantically. In other words, executing the "SELECT *
FROM <table> WHERE <table>.<column> <operation>
<value>" query would yield results without any execution
errors or an empty set.

(2) The table and column are correct, but the value used in the
predicate is incomplete or contains extraneous characters
or words. As shown in Figure 3, the generated predicate
uses "Fresno" instead of "Fresno County Office of
Education" as a value, leading to an incorrect SQL despite
the absence of execution errors.

(3) The table and value are correct, but the wrong column is
selected in the predicate. In other words, another column
in the selected table contains the value. Figure 4 shows the
wrong column usage while the selected table and value are
correct.

(4) The correct table is selected, but both the column and the
value are incorrect or contain missing or extraneous parts.
As shown in Figure 5, "T1.’County Name’ = ’Fresno’"
is generated as part of the predicate, whereas it should be
"T1.’District Name’ = ’Fresno County Office of
Education’".

(5) The value is generated correctly, but the wrong table and
column are selected, meaning the generated value should
be used but belongs to another table and one of its columns.

(6) The table, column, and value are wrong and totally irrele-
vant to the question.

To address the possible errors outlined in items (2) to (5), we pro-
pose the Candidate Predicate Generation (CPG) module, as seen in
the Figure 2, to enhance downstream tasks by augmenting prompts,
enabling the LLM to be aware of possible predicates and generate
correct ones. In the CPG module, we first parse the candidate SQL
query to extract the values and operations used in predicates. We
then utilize the LIKE operator to retrieve all potential values from
the database by executing the following query:

SELECT DISTINCT <COLUMN>
FROM <TABLE>
WHERE <COLUMN> LIKE '%<VALUE>%';

Here, <VALUE> represents a token extracted from the values in
candidate SQL query. This process results in a list of possible predi-
cates, formatted as "<table>.<column> <operation> <value>,"
which is used in downstream tasks.

Question:

Please list the zip code of all the charter schools in Fresno County

Office of Education.

Predicted SQL:

SELECT T2.Zip

FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode

WHERE T1.`District Name` = 'Fresno' AND T1.`Charter School (Y/N)` = 1

Gold SQL:

SELECT T2.Zip

FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode

WHERE T1.`District Name` = 'Fresno County Office of Education' AND T1

.`Charter School (Y/N)` = 1

Figure 3: Example for the generation of incomplete value in
the predicate explained in Section 3.3, case (2).

3.4 Schema Filtering and Filtered Schema
Correction Module (SF)

In prior works, schema filtering—eliminating database tables and
columns irrelevant to the query—has been shown to improve model
performance by reducing the likelihood of generating irrelevant
schema items in SQL queries. One approach involves instructing
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Question:

Please list the zip code of all the charter schools in Fresno County

Office of Education.

Predicted SQL:

SELECT T2.Zip

FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode

WHERE T1.`County Name` = 'Fresno County Office of Education' AND T1.`
Charter School (Y/N)` = 1

Gold SQL:

SELECT T2.Zip

FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode

WHERE T1.`District Name` = 'Fresno County Office of Education' AND T1

.`Charter School (Y/N)` = 1

Figure 4: Example for correct table and value but wrong col-
umn in the predicate explained the Section 3.3, case (3).

Question:

Please list the zip code of all the charter schools in Fresno County

Office of Education.

Predicted SQL:

SELECT T2.Zip

FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode

WHERE T1.`County Name` = 'Fresno' AND T1.`Charter School (Y/N)` = 1

Gold SQL:

SELECT T2.Zip

FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode

WHERE T1.`District Name` = 'Fresno County Office of Education' AND T1

.`Charter School (Y/N)` = 1

Figure 5: Example for correct table but wrong column and
value selection in the predicate explained in Section 3.3, case
(4).

the LLM to first select the relevant database tables and then choose
the most relevant columns from those tables [10, 22, 40]. Another
approach filters the database schema by considering both tables and
columns simultaneously in a single step [35]. Additionally, some
methods leverage dummy SQL queries to extract relevant database
entities for schema filtering [37]. Li et al. propose CODES [26]
and train a schema classifier to predict relevance scores following
RESDSQL [25]. In our work, we adopt a single-step schema filtering
approach, extracting only the relevant tables and their associated
columns.

However, we observed that the filtered schema may not always
be compatible with the original schema, where a selected column
might belong to a different table according to the original database
schema. When such issues arise, they can negatively impact the
SQL generation process and lead to a decline in performance. To ad-
dress this, we propose a filtered schema correction strategy, which
checks for mismatches between the filtered schema and the original
schema, subsequently correcting them accordingly. While previ-
ous research has demonstrated the benefits of schema filtering for
schema linking and overall Text-to-SQL translation performance,

our experiments show that incorporation of schema filtering into
our pipeline result in performance decrease when used with the
latest proprietary LLMs, a finding that aligns with the work of
Maamari et al. [31]. Detailed experimental results are provided in
Section 4.3. Consequently, we have chosen not to include a schema
filtering module in our E-SQL pipeline.

3.5 Question Enrichment Module (QE)
To enhance schema linking, various LLM reasoning improvement
techniques, such as chain-of-thought (CoT) [48], question decom-
position [11, 20, 55], and self-consistency [47] have been applied
to Text-to-SQL translation tasks. Almost all prior works leverag-
ing LLMs utilize chain-of-thought reasoning. Question decom-
position has been applied to Text-to-SQL tasks by Pourreza et
al. [35] and Wang et al. [45]. Self-consistency and multi-choice
selection techniques have been employed by models like C3[10],
DAIL-SQL [13], CHESS [40], and MSC-SQL [22]. Another key ap-
proach is schema filtering, which eliminates irrelevant database
items and augments the prompt with database values related to
the query, thereby narrowing the gap between the query and the
database schema [10, 22, 37, 40]. Previous paradigms have largely
overlooked enhancing the reasoning and schema linking capabil-
ities of LLMs through question reformulation. Focusing on this
aspect, we propose a novel question enrichment strategy that di-
rectly links natural language questions to the database schema by
expanding the question with relevant database items and incorpo-
rating logical steps to generate accurate SQL queries as shown in
Figure 6.

In the Question Enrichment module (QE), we instruct the LLM
to refine the original question by incorporating relevant database
items (tables, columns, and values) and conditions. This process
makes the question more understandable, coherent, well-aligned
with the database schema. Additionally, an SQL construction plan,
generated during the question-database integration as part of the
reasoning process, is appended to the enriched question. Together,
this plan and the enriched question form the fully enriched question
which explicitly incorporates the necessary SQL components and
logical steps, guiding the LLM to generate accurate SQL queries.
The creation process of a fully enriched question, which combines
the original question, the enriched question, and the enrichment rea-
soning, is illustrated in Figure 6b. A few-shot strategy is applied to
generate refined questions, using randomly sampled question-SQL
pairs from the development set that have been manually annotated
and made publicly available. We annotate 12 questions for each
difficulty level: simple, moderate, and challenging. Since the manu-
ally annotated questions are taken from the development set, we
ensure that the randomly selected 3 examples from each difficulty
level provided in the question enrichment prompt are related to a
database different from the one associated with the current query.
This approach prevents enriched question examples directly related
to the database of the considered query from being included in the
prompt. In the few-shot examples, we include both the enriched
question and the enrichment reasoning, manually prepared consid-
ering the chain-of-thought technique, to fully leverage reasoning
capabilities of the model and explicitly outline the SQL logical steps.
The question enrichment prompt also includes the database schema,
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relevant database descriptions and values, and candidate predicates
generated by the Candidate Predicate Generation (CPG) module.
The fully enriched question is generated in a single prompt, with-
out iterative refinement. Iterative enrichment is left as a potential
direction for future work.

(a) Question enrichment example

(b) Concatenation of original question, enrichment reasoning, and
enriched question.

Figure 6: (a) Question enrichment example and (b) Fully en-
riched question construction.

3.6 Predicate and Error-Aware SQL Refinement
Module (SR)

Since the generated SQL queries may contain minor mistakes, a
common approach to address these is to use a correction mod-
ule, as shown in Figure 1. Pourreza et al. [35] proposed a novel
self-correction module that relies heavily on LLMs to identify and
correct potential errors without executing the SQL queries. Another
approach employed by C3 [10], DAIL-SQL [13], CHESS [40], and
MCS-SQL [22] is to generate multiple SQL queries for a natural
language question and select the most consistent one as the final
predicted SQL, rather than relying solely on the greedily gener-
ated SQL. The refiner agent proposed by Wang et al. [45] verifies
the syntactic correctness and executability of the generated SQL,
triggering a correction operation if the SQL fails these checks. The
refiner agent performs these actions iteratively until the result is
correct or the maximum number of iterations is reached. Although
this design enhances performance, it also increases both the cost
and time required to produce the final SQL query. In our work, as
illustrated in Figure 2, we execute the candidate SQL query and de-
tect any execution errors. Using this error information, along with
candidate predicates, the enriched question, and database schema,
we instruct the LLM to either generate a new SQL query or refine
the existing candidate SQL query.

The prompt skeletons used for each module in our pipeline are
provided in our Github repository. Furthermore, a detailed example
illustrating the complete workflow of the pipeline for a sample user
query is also provided for reference.

4 Experiments and Results
4.1 Experiment Settings
4.1.1 Dataset. We conduct our experiments on the Spider [52]
dataset and the most challenging cross-domain BIRD dataset [28].
Spider benchmark includes 10,181 Text-to-SQL pairs from 200
databases spanning 138 domains, each containing multiple tables.
For our experiments, we used the test split of the Spider dataset,
which consists of 2,147 Text-to-SQL pairs. BIRD focuses on the
real-word complex and large databases, and it provides external
knowledge to enhance the capability of large language models to
understand both the question and the database structure and values
better. BIRD dataset spans 37 professional domains such as foot-
ball, formula 1, blockchain, healthcare, and education, etc., and it
contains 12,751 text-to-SQL pairs from 95 databases with a size of
33.4 GB. The training set consists of 9,428 Text-to-SQL pairs, while
the development and test sets consist of 1,534 and 1,789 instances,
respectively. The test set of the BIRD dataset is concealed.

4.1.2 Evaluation Metrics. In our experiments, we evaluate model
performance using the following metrics: Execution Accuracy (EX),
the Reward-based Valid Efficiency Score (R-VES) and Soft F1-score,
as defined by the BIRD benchmark [28]. Execution Accuracy (EX)
measures the correctness of the predicted SQL queries by comparing
their execution results to those of the ground-truth SQLs. This
metric accounts for the fact that SQL queries can take multiple
forms but still produce identical outcomes, thus emphasizing result
accuracy over syntactic similarity.

In addition to EX, in the latest version, the BIRD benchmark in-
troduces a Reward-based Valid Efficiency Score (R-VES) to capture
the execution efficiency of correctly predicted SQL queries. R-VES
is an adjusted version of the previously proposed Valid Efficiency
Score (VES). R-VES evaluates the model considering both the accu-
racy and the runtime performance of the SQL queries. Calculation
of R-VES is provided below [28].

R-VES =



1.25 if 𝑦 is correct and 𝜏 ≥ 2
1 if 𝑦 is correct and 1 ≤ 𝜏 < 2
0.75 if 𝑦 is correct and 0.5 ≤ 𝜏 < 1
0.5 if 𝑦 is correct and 0.25 ≤ 𝜏 < 0.5
0.25 if 𝑦 is correct and 𝜏 < 0.25
0 if 𝑦 is incorrect

Where:
• 𝑦 represents the predicted SQL.
• 𝜏 =

Ground truth SQL run time
Predicted SQL run time represents the time ratio. 𝜏 is

calculated by running the SQL 100 times, taking the average,
and dropping any outliers.

Moreover, the BIRD benchmark introduced the Soft F1-score
metric, designed to address the limitations of evaluation metrics
such as EX. The Soft F1-score allows for a more lenient assessment
by mitigating the impact of minor discrepancies, such as column
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reordering or missing values, in the table outputs. This makes it a
complementary metric to EX, providing a more flexible evaluation
of the model’s performance in real-world scenarios.

4.1.3 Models. In this work, we employed the latest proprietary
models, (GPT-4o-mini and GPT-4o) and small open-source LLMs
(Qwen2.5 Coder [19], DeepSeek Coder [15]) without fine-tuning
as the backbone for our experiments. Exploring other models or
fine-tuning open-source LLMs are left as future work. For pro-
prietary models, the majority of the experiments were conducted
using GPT-4o-mini, which is approximately 30% more cost-effective
than GPT-4o. Despite its lower cost, GPT-4o-mini demonstrated
robust capabilities, making it an excellent choice for balancing
performance and budget constraints.

4.1.4 Hyperparameters. We standardized the experimental settings
across all tests. The temperature was set to 0.0 to promote deter-
ministic outputs, while the top_p parameter, which refers to the
nucleus sampling technique, was set to 1.0. The number of chat
completion choices was fixed at 1; however, this could be increased
in future work by employing techniques like multiple-choice selec-
tion or self-consistency. The maximum token limit was set to 2048.
For each module of the E-SQL pipeline, 9-shot examples were pro-
vided, with 3 randomly selected examples for each difficulty level.
Regarding database column values, the 10 most relevant distinct
values to the question were selected and used. Additionally, the 20
most relevant database description sentences were identified and
incorporated.

4.2 Results
We evaluate the proposed E-SQL pipeline primarily on the Spi-
der test set and the BIRD development set, as the BIRD test set
is not publicly available. We conduct most of our experiments us-
ing GPT-4o-mini due to its cost-effectiveness. We also experiment
with small open-source models without fine-tuning to evaluate the
impact of the pipeline and highlight the importance of database-
aligned questions. Table 1 compares the performance of E-SQL and
several baseline models on the BIRD dataset, demonstrating com-
petitive results. Additionally, we evaluate the performance of our
method across various difficulty levels on BIRD dataset. Table 2 pro-
vides insights into the performance of E-SQL utilizing cost-effective
proprietary LLMs and small open-source LLMs on the Spider test
dataset.

E-SQL shows a notable improvement, particularly for challeng-
ing questions in BIRD dataset, largely due to the incorporation of
the Question Enrichment (QE) and SQL Refinement (SR) modules.
With GPT-4o, the pipeline achieved an Execution Accuracy (EX)
of 66.29 and a Soft F1-Score of 67.93 on the BIRD test set. When
using the more cost-effective model, GPT-4o-mini, E-SQL achieved
59.81 EX and 61.59 Soft F1-Score on the BIRD test set. Addition-
ally, using the small open-source LLM Qwen2.5 Coder 7B, E-SQL
achieved 53.59 EX on the BIRD development set. On the Spider test
set, E-SQL achieved 74.75 EX score using GPT-4o-mini and 58.64 EX
score using Qwen2.5 Coder 7B Instruct. The detailed breakdown of
performance across different datasets and query complexity levels
can be found in Table 3 and Table 6. Further insights into the im-
pact of question enrichment and candidate predicate augmentation

are provided in Sections 4.4 and 4.5. These results highlight the
efficacy of question enrichment, candidate predicate augmentation,
and schema refinement techniques, especially in handling complex
queries.

Table 1: Performance of E-SQL on BIRD development and
test set. E-SQL consists of CSG, CPG, QE, and SR modules as
illustrated in Figure 2.

Method Dev EX Test EX Test R-VES

Undisclosed

OpenSearch-SQL, v2 + GPT-4o 69.30 72.28 69.36
Distillery + GPT-4o 67.21 71.83 67.41
ExSL + granite-34b-code 67.47 70.37 68.79
Insights AI 72.16 70.26 66.39
PURPLE + RED + GPT-4o 68.12 70.21 65.62
ByteBrain 65.45 68.87 -
ExSL + granite-20b-code 65.38 67.86 66.25
Arcwise + GPT-4o 67.99 66.21 63.68
SCL-SQL 64.73 65.23 61.28
OpenSearch-SQL,v1 + GPT-4 61.34 64.95 -
PB-SQL, v1 60.50 64.84 60.36

Published

CHESS 65.00 66.69 62.77
MCS-SQL + GPT-4 [22] 63.36 65.45 61.23
SuperSQL [24] 58.50 62.66 -
SFT CodeS-15B [26] 58.47 60.37 61.37
DTS-SQL + DeepSeek 7B [36] 55.80 60.31 -
MAC-SQL + GPT-4 [45] 57.56 59.59 57.60
SFT CodeS-7B [26] 57.17 59.25 55.69
TA-SQL + GPT-4 [37] 56.19 59.14 -
DAIL-SQL + GPT-4 [13] 54.76 57.41 54.02
E-SQL + GPT-4o (Ours) 65.58 66.29 62.43
E-SQL + GPT-4o-mini (Ours) 61.60 59.81 55.64
E-SQL + Qwen2.5 Coder 7B Instruct (Ours) 53.59 - -

Table 2: Performance of E-SQL on Spider test set. E-SQL con-
sists of CSG, CPG, QE, and SR modules as illustrated in Fig-
ure 2. † symbol denotes methods utilizing fine-tuned LLMs.

Method Model Test EX

Proprietary Models

DAIL-SQL [13] GPT-4 86.6
DIN-SQL [35] GPT-4 85.3
TA-SQL [37] GPT-4 85.0
MAC-SQL [45] GPT-3.5-Turbo 75.5
- GPT4 74.0

E-SQL (ours) GPT-4o-mini 74.75

Small Open Source Models

DTS-SQL† [36] Mistral-7B 77.1
MSc-SQL† [14] Gemma-2-9B 69.30

E-SQL (ours) Qwen2.5 Coder 7B Instruct 58.64

4.3 Schema Filtering
Schema filtering is a technique aimed at minimizing the model’s
reliance on irrelevant database schema elements by removing such
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Table 3: Detailed Performance of E-SQL on BIRD Test Set Across Query Complexity Levels

Pipeline Overall Simple Moderate Challenging

EX Soft F1 R-VES EX Soft F1 R-VES EX Soft F1 R-VES EX Soft F1 R-VES

E-SQL (GPT-4o) 66.29 67.93 62.43 73.02 73.91 68.68 64.14 66.17 60.46 48.07 51.45 54.48
E-SQL (GPT-4o-mini) 59.81 61.59 55.64 67.44 68.80 62.53 56.94 58.77 53.11 40.00 43.04 37.60

Table 4: Performance of different pipelines on BIRD development set. SF represents the Schema Filtering module, QE represents
the Basic Question Enrichment module, and G represents the Basic SQL Generation module. The arrows indicate performance
improvement (↑) or decline (↓) compared to the G baseline. Experiments are conducted using GPT-4o-mini.

Pipeline Overall Dev EX Simple EX Moderate EX Challenging EX

SF-G 49.48 (↓ 8.21) 58.16 (↓ 6.38) 36.85 (↓ 12.28) 34.48 (↓ 8.96)
SF-QE-G 55.34 (↓ 2.35) 62.27 (↓ 2.27) 46.12 (↓ 3.01) 40.68 (↓ 2.76)
QE-G 58.80 (↑ 1.11) 64.43 (↓ 0.11) 51.07 (↑ 1.94) 47.58 (↑ 4.14)
G 57.69 64.54 49.13 43.44

Table 5: Ablation study using GPT-4o-mini with EX and Soft F1 metrics on the BIRD development set. The arrows indicate
performance improvement (↑) or decline (↓) compared to the base E-SQL.

Pipeline Overall Simple Moderate Challenging

EX Soft F1 EX Soft F1 EX Soft F1 EX Soft F1

E-SQL 61.60 65.61 68.00 71.54 53.23 58.34 47.59 51.02
w/o QE 59.71 (↓ 1.89) 63.84 (↓ 1.77) 66.05 (↓ 1.95) 69.86 (↓ 1.68) 52.37 (↓ 0.86) 57.27 (↓ 1.07) 42.75 (↓ 4.84) 46.52 (↓ 4.50)
w/o CPG 59.58 (↓ 2.02) 63.61 (↓ 2.00) 65.51 (↓ 2.49) 69.16 (↓ 2.38) 51.29 (↓ 1.94) 56.27 (↓ 2.07) 48.27 (↑ 0.68) 51.68 (↑ 0.66)
w/o QE & CPG 58.34 (↓ 3.26) 62.41 (↓ 3.20) 64.22 (↓ 3.78) 67.91 (↓ 3.63) 51.29 (↓ 1.94) 55.66 (↓ 2.68) 43.45 (↓ 4.14) 48.89 (↓ 2.13)
w/o SR (w/o QE & CPG & SR) 58.03 (↓ 3.57) 61.88 (↓ 3.73) 63.89 (↓ 4.11) 67.33 (↓ 4.21) 50.86 (↓ 2.37) 55.13 (↓ 3.21) 44.13 (↓ 3.46) 48.71 (↓ 2.31)
w/ SF 56.06 (↓ 5.54) 59.93 (↓ 5.68) 62.70 (↓ 5.3) 66.53 (↓ 5.01) 47.63 (↓ 5.60) 51.55 (↓ 6.79) 40.68 (↓ 6.91) 44.62 (↓ 6.40)

items, and has been applied in numerous previous works. To eval-
uate the impact of schema filtering on a basic pipeline utilizing
most advanced large language models, we conducted various ex-
periments both with and without a schema filtering module, which
includes a filtered schema correction step. The results of these ex-
periments are shown in Table 4. As demonstrated in the Table 4, the
effect of schema filtering varies depending on its placement within
the pipeline. Nevertheless, regardless of its position, incorporating
the schema filtering module in a basic pipeline consistently led to a
performance decline across all difficulty levels. Detailed results of
the question enrichment module are discussed in the next section.

The inclusion of schema filtering resulted in an overall drop of
up to 8.21% in Execution Accuracy (EX) on the development set.
Specifically, the performance decreased by 6.38%, 12.28%, and 8.96%
for simple, moderate, and challenging questions, respectively as
shown in Table 4. Although the E-SQL pipeline does not inherently
include a schema filtering module, we integrated it into the pipeline
for our ablation study, as presented in Table 5. This integration re-
sulted in a 5.54 drop in EX and a 5.68 decrease in Soft F1 score on the
development set. These findings align with previous research [31],
which suggests that advanced LLMs can manage schema linking ef-
fectively without requiring explicit filtering. Consequently, schema
filtering was excluded from the final E-SQL pipeline, as its negative
impact outweighed the potential benefits.

4.4 Ablation Study
We conducted an ablation study to analyze the contributions of the
Question Enrichment, Candidate Predicate Augmentation, and SQL
Refinement modules. The results of this study are summarized in
Table 5, showing the impact of individual modules from the E-SQL
pipeline.

Table 6: Effect of QE and CPG modules in E-SQL pipeline
with small open-source LLMs.

Pipeline Model Spider Test EX Bird Dev EX

E-SQL Qwen 2.5 Coder 7B 58.64 53.52
w/o QE Qwen 2.5 Coder 7B 55.84 (↓ 2.80) 50.78 (↓ 2.74)
w/o CPG Qwen 2.5 Coder 7B 57.10 (↓ 1.54) 50.72 (↓ 2.80)
w/o SR Qwen 2.5 Coder 7B 57.14 (↓ 1.50) 48.24 (↓ 5.28)

4.4.1 Question Enrichment. The Question Enrichment module,
which facilitates direct schema linking by injecting database items,
SQL components, conditions, and SQL generation steps into the
question, improved the performance as shown in Table 5 and Ta-
ble 6 on both advance proprietary and small open-source LLMs.
Its impact was particularly significant on challenging questions.
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The absence of the question enrichment technique, especially when
combined with the removal of the Candidate Predicate Augmenta-
tion module (CPG), led to a further decrease in overall performance.
These results demonstrate that direct schema linking, achieved
through question reformulation, effectively bridges the gap between
the natural language query and the database schema, resulting in
more accurate SQL generation.

4.4.2 Possible Predicate Augmentation. The Candidate Predicate
Augmentation (CPG) module enhances the pipeline by augment-
ing potential predicates extracted from the database with the help
of the LIKE operator and the candidate SQL query. As shown in
the Table 5 and Table 6, removing the CPG module resulted in a
nearly 2% drop in overall model performance. However, its removal
slightly improved the performance on challenging questions of
BIRD dev set, suggesting that the CPG module may introduce un-
necessary complexity in some cases. The slight negative effect of
the CPG module on challenging questions is negligible, as it sub-
stantially enhances overall performance, especially when compared
to the significant gains achieved through the Question Enrichment
module.

4.4.3 SQL Refinement. The SQL Refinement (SR) module plays a
crucial role in correcting minor errors in the generated SQL queries.
Without SR, we observed a 3.57 drop in EX and a 3.73 decrease
in Soft F1 across the BIRD development set. This demonstrates
that the SQL refinement step significantly boosts the final query
accuracy by detecting and correcting SQL execution errors.

To further evaluate the impact of the SR module within the E-
SQL pipeline, we conducted the following analyses, with results
presented in Table 7:

• The proportion of initially generated candidate SQL queries
that were altered by the SR module. A candidate SQL query
is counted as changed if the final predicted SQL query dif-
fers from the original candidate SQL.

• The proportion of initially non-executable candidate SQL
queries that were modified by the SR module to become
executable.

• The proportion of non-executable candidate SQL queries
that were corrected to executable and accurate SQL queries
by the SR module.

• The proportion of incorrect candidate SQL queries, includ-
ing non-executable ones, that were corrected to accurate
SQL queries by the SR module.

As shown in Table 7, our detailed analysis of the SQL Refine-
ment (SR) module demonstrates that 5.35% and 1.83% of the initially
incorrect SQL queries generated by GPT-4o-mini and GPT-4o, re-
spectively, were successfully corrected by the SR module. While
the SQL refinement technique positively impacts both models, the
effect is more noticeable on less capable models like GPT-4o-mini.
These results highlight the module’s ability to enhance query accu-
racy, especially for models with lower initial performance, making
SQL refinement a critical component for improving the overall
system robustness.

Table 7: Analysis of SQL Refinement (SR) Module on the
BIRD Development Set

Metric E-SQL SR

GPT-4o-mini GPT-4o

Changed Queries (%) 49.48 23.20
Non-Executable to Executable (%) 6.58 0.39
Non-Executable to Correct (%) 3.19 0.13
Wrong to Correct (%) 5.35 1.83

4.5 Impact of Enriched Questions on Small
Large Language Models

To evaluate the performance impact of database-integrated ques-
tions on small LLMs [15, 19, 50], we conducted an experiment
comparing their performance on default questions versus enriched
questions. In this experiment, SQL queries for a given question were
generated using a single-prompt approach. The prompt template
used in this step is similar to that of the Candidate SQL Generation
(CSG) module in the E-SQL pipeline, excluding data augmenta-
tion components such as database descriptions, value samples, and
few-shot examples. This approach allows us to isolate the effect of
enriched questions, as the single prompt relies solely on instruc-
tions and questions without additional context. Enriched questions
were extracted from the outputs of Question Enrichment Module
(QE) of the E-SQL pipeline utilized with GPT-4o to ensure that they
incorporated database items and SQL construction plans.

The results, presented in Table 8, indicate that even small LLMs
can achieve competitive performance without task-specific fine-
tuning when provided with high-quality, database-integrated natu-
ral language queries. These findings underscore the critical role of
database-integrated enriched questions, which include logical SQL
construction steps.

4.6 Computational Cost Analysis
Understanding computational expenses is critical for assessing the
practical scalability and applicability of the framework, especially
given the reliance on large language models (LLMs) and their re-
source demands. Table 9 highlights the impact of question enrich-
ment on token count2, while Table 10 provides details of average
token usage for both prompt and completion stages of key pipeline
components on the BIRD development set. The average number of
tokens in prompts is inherently high due to well-defined instruc-
tions, data augmentations, including few-shot examples, database
descriptions, and database values, as commonly employed in most
Text-to-SQL approaches. Consequently, the increase in the question
token count due to enrichment is relatively insignificant compared
to the total number of prompt tokens. Despite the computational
overhead introduced by question enrichment, which increases the
average token count of natural language questions and their rea-
soning, E-SQL demonstrates computational superiority over meth-
ods [10, 13, 22, 31, 40] that generatemultiple SQL queries for a single
user question. These methods incur significant computational costs
due to the repeated SQL generation, subsequent correction of these
SQL queries, and the selection process. Executing each E-SQL mod-
ule only once minimizes the computational costs associated with
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Table 8: Effect of Enriched Questions on the performance
of small open-source LLMs without fine-tuning on BIRD de-
velopment set. Enriched questions, generated using GPT-4o,
were utilized to evaluate the impact of high-quality question
enrichment on the performance of small open-source mod-
els. † symbol denotes methods utilizing fine-tuned LLMs.

Model Level Dev EX

Default Enriched

DeepSeek Coder 1.3B Instruct

Overall 20.92 50.84(↑ 29.92)
Simple 28.43 62.38(↑ 33.95)

Moderate 10.34 36.42(↑ 26.08)
Challenging 6.90 23.45(↑ 16.55)

Qwen2.5 Coder 1.5B Instruct

Overall 11.21 36.90 (↑ 25.69)
Simple 14.27 44.10(↑ 29.83)

Moderate 6.68 28.23(↑ 21.55)
Challenging 6.20 18.62(↑ 12.42)

DeepSeek Coder 7B Instruct 1.5v

Overall 37.02 56.45(↑ 19.43)
Simple 44.65 64.64(↑ 19.99)

Moderate 26.52 45.47(↑ 18.95)
Challenging 22.06 39.31(↑ 17.25)

Qwen2.5 Coder 7B Instruct

Overall 31.25 40.22(↑ 8.97)
Simple 40.43 50.70(↑ 10.27)

Moderate 17.88 26.07(↑ 8.19)
Challenging 15.17 18.62(↑ 3.45)

ExSL + granite-20b-code Overall 51.69 -
DTS-SQL + DeepSeek 7B †[36] Overall 55.8 -
SFT CodeS-7B † [26] Overall 57.17 -
SFT CodeS-15B † [26] Overall 58.47 -

repeated calls, ensuring greater efficiency. This balance between
cost and performance underscores the scalability and efficiency of
our pipeline for large-scale deployment.

Table 9: Comparison of Default and Enriched Natural Lan-
guage Questions in Bird Development Set

Text Avg. Tokens

Question 18.36
Enriched Question 81.51
Enrichment Reasoning 191.34
Fully Enriched Question 291.21

Table 10: Analysis of Computational Costs by Module on the
Bird Development Set

Module Avg. Prompt Avg. Completion
Token Count Token Count

CSG 12612 199
QE 16550 292
SR 7403 267

2Token counts were computed using the tiktoken Python package, developed by Ope-
nAI, which provides a programmatic interface for tokenizing text with OpenAI model-
specific tokenizers. The package is available at [https://github.com/openai/tiktoken].

In our pipeline, the initially generated candidate SQL query is
executed to identify execution errors and enhance the large lan-
guage model’s error awareness. While this step contributes to the
overall pipeline latency, with an average execution time of 49.936
milliseconds per query, it plays a crucial role in ensuring accurate
SQL refinement by providing valuable feedback on execution errors.
It is important to note that the overall pipeline response time varies
based on several factors, including the complexity of the natural
language question, the length of the prompt, and the API response
time of proprietary LLMs, which is influenced by server load and
volume. These factors collectively contribute to the latency of the
system.

5 Discussion and Limitations
The results from our experiments highlight the significant influence
of question enrichment and candidate predicate augmentation on
the performance of the E-SQL pipeline. The question enrichment
module, which bridges the gap between the natural language query
and the database schema, was pivotal in improving query accuracy,
particularly for challenging questions. By enriching the natural
language question with database items, conditions, and SQL gener-
ation steps, the module enhanced direct schema linking, ensuring
that the generated SQL queries were more aligned with the data-
base’s structure. This improvement is evidenced by an ablation
study, underscoring the efficacy of this approach.

One notable observation in our evaluation is the inconsistency in
performance between the development and test sets when using dif-
ferent models. Specifically, when employing GPT-4o, the pipeline’s
performance showed an improvement on the test set compared
to the development set. However, this trend reversed with GPT-
4o-mini, where performance decreased on the test set relative to
the development set. Due to the BIRD test set not being publicly
available, we were unable to analyze it directly to identify poten-
tial causes for this variation. Additionally, large language models
are known to exhibit variability in performance across multiple
runs, which might further contribute to this inconsistency. Thus,
while the exact reasons behind these performance fluctuations re-
main unclear, they underline the need for further exploration under
controlled conditions.

The prompt design plays a critical role in influencing model
performance. The prompt templates utilized for each module of
the E-SQL pipeline are publicly available in our GitHub repository.
This study primarily emphasizes schema linking through question
enrichment and data augmentation, deliberately leaving the explo-
ration of alternative prompt templates beyond its scope.

Despite the advancements, there are some limitations to our
approach. Due to hardware and cost constraints, almost all experi-
ments were conducted using GPT-4o-mini and small open-source
LLMs without fine-tuning. Among the small open-source LLMs, the
whole E-SQL pipeline was executed only with Qwen2.5 Coder 7B
Instruct since the context length of the other small LLMs is not suf-
ficient to run and observe the effect of E-SQL pipeline. Developing
more efficient schema linking techniques that operate effectively
with small LLMs and limited context lengths represents a promising
direction for future work.
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6 Conclusions
In this study, we introduced E-SQL, a novel pipeline designed to
address key challenges in Text-to-SQL translation by leveraging
direct schema linking via question enrichment and incorporating
candidate predicates. Our experiments demonstrated that the ques-
tion enrichment module, which integrates natural language queries
with relevant database elements and logical steps, significantly
enhances query accuracy, particularly for complex queries. Addi-
tionally, the proposed candidate predicate augmentation technique
further improves the performance of the pipeline. Moreover, our
additional experiments reveals the importance and positive impact
of enriched questions on the performance of small open-source
LLMs with limited context lengths.

While some prior works have highlighted the utility of schema
filtering, our findings reveal that incorporating schema filtering into
a text-to-SQL translation pipeline that leverages advanced LLMs
results in performance degradation. This supports the notion that
explicit schema filtering can be redundant in modern architectures
that utilizes the latest LLMs.

By focusing on question enrichment, data augmentation and
SQL refinement, E-SQL achieved competitive results on the BIRD
benchmark. Specifically, E-SQL combined with GPT-4o achieved
65.58% and 66.29% execution accuracy on the development and test
sets, respectively. These results underscore E-SQL’s effectiveness in
handling complex queries and present it as a promising approach
for future Text-to-SQL tasks.

Despite a minor computational overhead due to increased token
counts in question enrichment, its impact is negligible compared
to the overall token usage and is outweighed by the significant
performance gains. Additionally, E-SQL ensures cost-efficiency
by executing each module only once, avoiding the excessive re-
source demands of repeated query generation and correction. This
balance highlights E-SQL’s scalability and suitability for resource-
constrained deployments.

Further exploration of fine tuning, iterative or multiple question
refinements and schema linking techniques optimized for small
LLMs with limited context lengths is left for future work.
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A Prompt Templates
In this section, exact prompt templates used for each module in the E-SQL pipeline are provided.

A.1 Full Prompt Template for Candidate SQL Generation (CSG)

### You are an excellent data scientist. You can capture the link between the question and corresponding database and perfectly

generate valid SQLite SQL query to answer the question. Your objective is to generate SQLite SQL query by analyzing and understanding

the essence of the given question, database schema, database column descriptions, samples and evidence. This SQL generation step is

essential for extracting the correct information from the database and finding the answer for the question.

### Follow the instructions below:

# Step 1 - Read the Question and Evidence Carefully: Understand the primary focus and specific details of the question. The evidence

provides specific information and directs attention toward certain elements relevant to the question.

# Step 2 - Analyze the Database Schema: Database Column descriptions and Database Sample Values: Examine the database schema, database

column descriptions and sample values. Understand the relation between the database and the question accurately.

# Step 3 - Generate SQL query: Write SQLite SQL query corresponding to the given question by combining the sense of question, evidence

and database items.

{FEWSHOT_EXAMPLES}

### Task: Given the following question, database schema and evidence, generate SQLite SQL query in order to answer the question.

### Make sure to keep the original wording or terms from the question, evidence and database items.

### Make sure each table name and column name in the generated SQL is enclosed with backtick separately.

### Ensure the generated SQL is compatible with the database schema.

### When constructing SQL queries that require determining a maximum or minimum value, always use the `ORDER BY` clause in combination

with `LIMIT 1` instead of using `MAX` or `MIN` functions in the `WHERE` clause.Especially if there are more than one table in FROM

clause apply the `ORDER BY` clause in combination with `LIMIT 1` on column of joined table.

### Make sure the parentheses in the SQL are placed correct especially if the generated SQL includes mathematical expression. Also,

proper usage of CAST function is important to convert data type to REAL in mathematical expressions, be careful especially if there is

division in the mathematical expressions.

### Ensure proper handling of null values by including the `IS NOT NULL` condition in SQL queries, but only in cases where null values

could affect the results or cause errors, such as during division operations or when null values would lead to incorrect filtering of

results. Be specific and deliberate when adding the `IS NOT NULL` condition, ensuring it is used only when necessary for accuracy and

correctness. This is crucial to avoid errors and ensure accurate results. This is crucial to avoid errors and ensure accurate results.

You can leverage the database sample values to check if there could be potential null value.

{SCHEMA}

{DB_DESCRIPTIONS}

{DB_SAMPLES}

{QUESTION}

{EVIDENCE}

### Please respond with a JSON object structured as follows:

{"chain_of_thought_reasoning": "Explanation of the logical analysis and steps that result in the final SQLite SQL query.", "SQL": "

Generated SQL query as a single string"}

Let's think step by step and generate SQLite SQL query.
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A.2 Full Prompt Template for Quesiton Enrichment (QE)

### You are excellent data scientist and can link the information between a question and corresponding database perfectly. Your

objective is to analyze the given question, corresponding database schema, database column descriptions, evidence and the possible SQL

query to create a clear link between the given question and database items which includes tables, columns and values. With the help of

link, rewrite new versions of the original question to be more related with database items, understandable, clear, absent of irrelevant

information and easier to translate into SQL queries. This question enrichment is essential for comprehending the question's intent

and identifying the related database items. The process involves pinpointing the relevant database components and expanding the

question to incorporate these items.

### Follow the instructions below:

# Step 1 - Read the Question Carefully: Understand the primary focus and specific details of the question. Identify named entities (

such as organizations, locations, etc.), technical terms, and other key phrases that encapsulate important aspects of the inquiry to

establish a clear link between the question and the database schema.

# Step 2 - Analyze the Database Schema: With the Database samples, examine the database schema to identify relevant tables, columns,

and values that are pertinent to the question. Understand the structure and relationships within the database to map the question

accurately.

# Step 3 - Review the Database Column Descriptions: The database column descriptions give the detailed information about some of the

columns of the tables in the database. With the help of the database column descriptions determine the database items relevant to the

question. Use these column descriptions to understand the question better and to create a link between the question and the database

schema.

# Step 4 - Analyze and Observe The Database Sample Values: Examine the sample values from the database to analyze the distinct elements

within each column of the tables. This process involves identifying the database components (such as tables, columns, and values) that

are most relevant to the question at hand. Similarities between the phrases in the question and the values found in the database may

provide insights into which tables and columns are pertinent to the query.

# Step 5 - Review the Evidence: The evidence provides specific information and directs attention toward certain elements relevant to

the question and its answer. Use the evidence to create a link between the question, the evidence, and the database schema, providing

further clarity or direction in rewriting the question.

# Step 6 - Analyze the Possible SQL Conditinos: Analize the given possible SQL conditions that are relavant to the question and

identify relation between the question components, phrases and keywords.

# Step 7 - Identify Relevant Database Components: Pinpoint the tables, columns, and values in the database that are directly related to

the question.

# Step 8 - Rewrite the Question: Expand and refine the original question in detail to incorporate the identified database items (tables,

columns and values) and conditions. Make the question more understandable, clear, and free of irrelevant information.

{FEWSHOT_EXAMPLES}

### Task: Given the following question, database schema, database column descriptions, database samples and evidence, expand the

original question in detail to incorporate the identified database components and SQL steps like examples given above. Make the

question more understandable, clear, and free of irrelevant information.

### Ensure that question is expanded with original database items. Be careful about the capitalization of the database tables, columns

and values. Use tables and columns in database schema.

{SCHEMA}

{DB_DESCRIPTIONS}

{DB_SAMPLES}

{POSSIBLE_CONDITIONS}

{QUESTION}

{EVIDENCE}

### Please respond with a JSON object structured as follows:

```json{{"chain_of_thought_reasoning": "Detail explanation of the logical analysis that led to the refined question, considering

detailed possible sql generation steps", "enriched_question": "Expanded and refined question which is more understandable, clear and

free of irrelevant information."}}```

Let's think step by step and refine the given question capturing the essence of both the question, database schema, database

descriptions, evidence and possible SQL conditions through the links between them. If you do the task correctly, I will give you 1

million dollars. Only output a json as your response.
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A.3 Full Prompt Template for SQL Refinement (SR)

### You are an excellent data scientist. You can capture the link between the question and corresponding database and perfectly

generate valid SQLite SQL query to answer the question. Your objective is to generate SQLite SQL query by analyzing and understanding

the essence of the given question, database schema, database column descriptions, evidence, possible SQL and possible conditions. This

SQL generation step is essential for extracting the correct information from the database and finding the answer for the question.

### Follow the instructions below:

# Step 1 - Read the Question and Evidence: Understand the primary focus and specific details of the question. The evidence provides

specific information and directs attention toward certain elements relevant to the question.

# Step 2 - Analyze the Database Schema, Database Column descriptions: Examine the database schema, database column descriptions which

provides information about the database columns. Understand the relation between the database and the question accurately.

# Step 3 - Analyze the Possible SQL Query: Analize the possible SQLite SQL query and identify possible mistakes leads incorrect result

such as missing or wrong conditions, wrong functions, misuse of aggregate functions, wrong sql syntax, unrecognized tokens or ambiguous

columns.

# Step 4 - Investigate Possible Conditions and Execution Errors: Carefully consider the list of possible conditions which are

completely compatible with the database schema and given in the form of <table_name>.<column_name><operation><value>. List of possible

conditions helps you to find and generate correct SQL conditions that are relevant to the question. If the given possible SQL query

gives execution error, it will be given. Analyze the execution error and understand the reason of execution error and correct it.

# Step 5 - Finalize the SQL query: Construct correct SQLite SQL query or improve possible SQLite SQL query corresponding to the given

question by combining the sense of question, evidence, and possible conditions.

# Step 6 - Validation and Syntax Check: Before finalizing, verify that generated SQL query is coherent with the database schema, all

referenced columns exist in the referenced table, all joins are correctly formulated, aggregation logic is accurate, and the SQL syntax

is correct.

### Task: Given the following question, database schema and descriptions, evidence, possible SQL query and possible conditions;

finalize SQLite SQL query in order to answer the question.

### Ensure that the SQL query accurately reflects the relationships between tables, using appropriate join conditions to combine data

where necessary.

### When using aggregate functions (e.g., COUNT, SUM, AVG), ensure the logic accurately reflects the question's intent and correctly

handles grouping where required.

### Double-check that all WHERE clauses accurately represent the conditions needed to filter the data as per the question's

requirements.

### Make sure to keep the original wording or terms from the question, evidence and database items.

### Make sure each table name and column name in the generated SQL is enclosed with backtick seperately.

### Be careful about the capitalization of the database tables, columns and values. Use tables and columns in database schema. If a

specific condition in given possible conditions is used then make sure that you use the exactly the same condition (table, column and

value).

### When constructing SQL queries that require determining a maximum or minimum value, always use the `ORDER BY` clause in combination

with `LIMIT 1` instead of using `MAX` or `MIN` functions in the `WHERE` clause. Especially if there are more than one table in FROM

clause apply the `ORDER BY` clause in combination with `LIMIT 1` on column of joined table.

### Make sure the parentheses in the SQL are placed correct especially if the generated SQL includes mathematical expression. Also,

proper usage of CAST function is important to convert data type to REAL in mathematical expressions, be careful especially if there is

division in the mathematical expressions.

### Ensure proper handling of null values by including the `IS NOT NULL` condition in SQL queries, but only in cases where null values

could affect the results or cause errors, such as during division operations or when null values would lead to incorrect filtering of

results. Be specific and deliberate when adding the `IS NOT NULL` condition, ensuring it is used only when necessary for accuracy and

correctness. . This is crucial to avoid errors and ensure accurate results.

{SCHEMA}

{DB_DESCRIPTIONS}

{QUESTION}

{EVIDENCE}

{POSSIBLE_CONDITIONS}

{POSSIBLE_SQL_Query}

{EXECUTION_ERROR}

### Please respond with a JSON object structured as follows:

```json{{"chain_of_thought_reasoning": "Explanation of the logical analysis and steps that result in the final SQLite SQL query.", "

SQL": "Finalized SQL query as a single string"}}```

Let's think step by step and generate SQLite SQL query.
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A.4 Full Prompt Template for Schema Filtering (SF)

### You are an excellent data scientist. You can capture the link between a question and corresponding database and determine the

useful database items (tables and columns) perfectly. Your objective is to analyze and understand the essence of the given question,

corresponding database schema, database column descriptions, samples and evidence and then select the useful database items such as

tables and columns. This database item filtering is essential for eliminating unnecessary information in the database so that

corresponding structured query language (SQL) of the question can be generated correctly in later steps.

### Follow the instructions below step by step:

# Step 1 - Read the Question Carefully: Understand the primary focus and specific details of the question. Identify named entities (

such as organizations, locations, etc.), technical terms, and other key phrases that encapsulate important aspects of the inquiry to

establish a clear link between the question and the database schema.

# Step 2 - Analyze the Database Schema: With the database samples, examine the database schema to identify relevant tables, columns,

and values that are pertinent to the question. Understand the structure and relationships within the database to map the question

accurately.

# Step 3 - Review the Database Column Descriptions: The database column descriptions give the detailed information about some of the

columns of the tables in the database. With the help of the database column descriptions determine the database items relevant to the

question. Use these column descriptions to understand the question better and to create a link between the question and the database

schema.

# Step 4 - Analyze and Observe The Database Sample Values: Examine the sample values from the database to analyze the distinct elements

within each column of the tables. This process involves identifying the database components (such as tables, columns, and values) that

are most relevant to the question at hand. Similarities between the phrases in the question and the values found in the database may

provide insights into which tables and columns are pertinent to the query.

# Step 5 - Review the Evidence: The evidence provides specific information and directs attention toward certain elements relevant to

the question and its answer. Use the evidence to create a link between the question, the evidence, and the database schema, providing

further clarity or direction in rewriting the question.

# Step 6 - Identify Relevant Database Components: Pinpoint the tables, columns, and values in the database that are directly related to

the question. Ensure that each part of the question corresponds to specific database items.

# Step 7 - Select Useful Database Tables and Columns: Select only the useful database tables and columns of selected tables by fusing

the detailed information, key points of the question, database schema and evidence.

{FEWSHOT_EXAMPLES}

### Task: Given the following question, database schema, database column descriptions and evidence, select only the necessary and

useful database tables, and necessary and useful columns of selected tables to filter the database items.

### Make sure to keep the original terms from database items.

### Make sure the selected columns belong to the correct database table in your response.

{SCHEMA}

{DB_DESCRIPTIONS}

{DB_SAMPLES}

{QUESTION}

{EVIDENCE}

### Please respond with a JSON object structured as follows:

```json{{"chain_of_thought_reasoning": "Explanation of the logical analysis that led to the selected useful database items.", "

tables_and_columns": {{"table_name1": ["column1", "column2", ...], "table_name2": ["column1", ...], ...}} }}```

Let's think step by step and select only the necessary and useful database tables, and select only the necessary and useful columns of

selected tables to filter the database items. If you do the task correctly, I will give you 1 million dollars. Only output a json as

your response.
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B Manually Enriched Questions and Enrichment Reasoning
This section provides examples of manually enriched questions along with the rationale for their enrichment. Each manually enriched
question and its corresponding reasoning are open-sourced and available at Github repository.

Question:

Among the schools with the average score in Math over 560 in the SAT test, how many schools are directly charter-funded?

Enriched Question:

Please find the number of schools (COUNT(frpm.`School Code`)) whose charter funding type is directly funded (frpm.`Charter Funding Type` = 'Directly funded'),

and whose AvgScrMath larger than 560 in the SAT test (satscores.AvgScrMath > 560). To find the schools with the charter funding type information and average

math score in SAT, frpm and satscores tables should be joined. Apply the charter funding type condition (frpm.`Charter Funding Type` = 'Directly funded') and

average math score condition(satscores.AvgScrMath > 560). Calculate the number of schools using COUNT aggregate function in the Select statement.

Enrichment Reasoning:

The information of wheter a school is directly or locally funded or not can be found from the 'Charter Funding Type' column of the frpm table in the database.

The information of average score in Math in SAT test of schools can be found from the AvgScrMath column of the satscores table in the database. It is asked

to find the number of schools whose average score in Math over 560 in the SAT test and that are directly charter-funded. To find the schools that holds asked

conditions can be find by joining the frpm and satscores tables in SQL statement. After applying the average math score conditioin (satscores.AvgScrMath >

560) and funding type condition (frpm.`Charter Funding Type` = 'Directly funded'), School Codes should be counted with COUNT aggregate function.

Question:

Please list the phone numbers of the direct charter-funded schools that are opened after 2000/1/1.

Enriched Question:

Please find the phone numbers (schools.Phone) of the schools which are charter schools (frpm.`Charter School (Y/N)` = 1) and whose charter funding type is

directly funded (frpm.`Charter Funding Type` = 'Directly funded') and OpenDate is later than 2000-01-01 (schools.OpenDate > '2000-01-01'). \n Join the frpm

and schools tables. Since CDSCode column of frpm table references to CDSCode column of schools table, joining operation should be performed on CDSCode column

of both table. \n Apply the condition of being charter school (frpm.`Charter School (Y/N)` = 1), charter funding type condition (frpm.`Charter Funding Type`
= 'Directly funded') and opening data condition (schools.OpenDate > '2000-01-01'). \n Select the Phone column of the schools table.

Enrichment Reasoning:

In the question phone numbers of the direct charter-funded schools that are opened after 2000/1/1 which is a date. The phone number information of schools can

be found from the Phone table of the schools table in the database. \n The opening date information of the schools can be found from the OpenDate column of

the schools table in the database. \n The information whether a school is direct charter-funded or not can be found from the `Charter Funding Type` table of

the frpm table in the database. \n t is asked to list the phone numbers of the direct charter-funded schools that are opened after 2000-01-01. \n To combine

and match the information in frpm table and schools table, join the frpm and schools tables. Since CDSCode column of frpm table referencing to the CDSCode

column of schools table, joining operation should be performed on CDSCode column of both table. \n After appying being charter school condition (frpm.`Charter
School (Y/N)` = 1), charter funding type condition (frpm.`Charter Funding Type` = 'Directly funded') and opening data condition (schools.OpenDate >

'2000-01-01'), select the Phone column of the schools table.

Question:

Are there more male patients with creatinine not within the normal range than female? True or False?

Enriched Question:

Please find whether the number of male patients (SUM(CASE WHEN T1.SEX = 'M' THEN 1 ELSE 0 END)) whose creatinine level is not within the normal range (

Laboratory.CRE > = 1.5) than the number of female patients (Patient.SEX = 'F') whose creatinine level is not within the normal range (SUM(CASE WHEN T1.SEX = '

F' THEN 1 ELSE 0 END)) by returning only True or False.\n Join the Patient and Laboratory on ID column of both tables. Apply the creatinine level condition (

Laboratory.CRE > = 1.5). Since comparison of two different value for a single attribute which is sex of patients is asked, it is useful to use CASE WHEN

expression.\n With using SUM aggregate funtion and CASE WHEN expression, calculate the number of male (SUM(CASE WHEN T1.SEX = 'M' THEN 1 ELSE 0 END)) and

female (SUM(CASE WHEN T1.SEX = 'F' THEN 1 ELSE 0 END)) patients whose creatinine level is not within the normal range (Laboratory.CRE > = 1.5).

Enrichment Reasoning:

The sex information of a patient can be found from the SEX column of the Patient table in the database. The 'M' value in SEX column indicates male while 'F'

value indicates female.\n The creatinine information of a patient can be found from the CRE column of the Laboratory table in the database. \n If a patient

creatinine value (Laboratory.CRE) is equal to or above 1.5 (Laboratory.CRE > = 1.5), then it is not within the normal range.\n It is asked to find whether the

number of male patients (Patient.SEX = 'M') whose creatinine level is not within the normal range (Laboratory.CRE > = 1.5) than the number of female patients

(Patient.SEX = 'F') whose creatinine level is not within the normal range (Laboratory.CRE > = 1.5) by returning only True or False.\n To match and combine

the laboratory results of a patient with detailed information about the patient, it is required to join Patient and Laboratory tables on ID column of the both

table.\n The creatinine level condition indicating not within the normal range (Laboratory.CRE > = 1.5) should be applied.\n Since comparison of two

different value for a single attribute which is sex of patients is asked, it is useful to use CASE WHEN expression.\n With using SUM aggregate funtion and

CASE WHEN expression, the number of male patients (SUM(CASE WHEN T1.SEX = 'M' THEN 1 ELSE 0 END)) whose creatinine level is not within the normal range can be

found . Similarly, with using SUM aggregate funtion and CASE WHEN expression, the number of female patients (SUM(CASE WHEN T1.SEX = 'F' THEN 1 ELSE 0 END))

whose creatinine level is not within the normal range can be found\n Again using CASE WHEN expression by comparing the number of male and female patients, the

correct result can be returned in the form of 'True' or 'False'.
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C E-SQL Execution Flow

Figure 7: E-SQL execution flow for the question with question ID 1448 in the development set


	Abstract
	1 Introduction
	2 Related Work
	2.1 LLM Reasoning
	2.2 Schema Linking and Filtering
	2.3 Data Augmentation
	2.4 SQL Query Generation and Correction

	3 Methodology
	3.1 Database Description and Value Selection
	3.2 Candidate SQL Generation Module (CSG)
	3.3 Candidate Predicate Generation (CPG)
	3.4 Schema Filtering and Filtered Schema Correction Module (SF)
	3.5 Question Enrichment Module (QE)
	3.6 Predicate and Error-Aware SQL Refinement Module (SR)

	4 Experiments and Results
	4.1 Experiment Settings
	4.2 Results
	4.3 Schema Filtering
	4.4 Ablation Study
	4.5 Impact of Enriched Questions on Small Large Language Models
	4.6 Computational Cost Analysis

	5 Discussion and Limitations
	6 Conclusions
	Acknowledgments
	References
	A Prompt Templates
	A.1 Full Prompt Template for Candidate SQL Generation (CSG)
	A.2 Full Prompt Template for Quesiton Enrichment (QE)
	A.3 Full Prompt Template for SQL Refinement (SR)
	A.4 Full Prompt Template for Schema Filtering (SF)

	B Manually Enriched Questions and Enrichment Reasoning
	C E-SQL Execution Flow

