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Abstract—In this digital age, there is an abundance of online
educational materials in public and proprietary platforms. To
allow effective retrieval of educational resources, it is a necessity
to build keyword-based search engines over these collections. In
modern Web search engines, high-quality rankings are obtained
by applying machine learning techniques, known as learning to
rank (LTR). In this article, our focus is on constructing machine-
learned ranking models to be employed in a search engine in the
education domain. Our contributions are threefold. First, we
identify and analyze a rich set of features (including click-based
and domain-specific ones) to be employed in educational search.
LTR models trained on these features outperform various
baselines based on ad-hoc retrieval functions and two neural
models. As our second contribution, we utilize domain knowledge
to build query-dependent ranking models specialized for certain
courses or education levels. Our experiments reveal that query-
dependent models outperform both the general ranking model
and other baselines. Finally, given well-known importance of
user clicks in LTR, our third contribution is for handling
singleton queries without any click information. To this end, we
propose a new strategy to “propagate” click information from
the other, similar, queries to the singleton queries. The proposed
click propagation approach yields a better ranking performance
than the general ranking model and another baseline from the
literature. Overall, these findings reveal that both the general
and query-dependent ranking models, trained using LTR
approaches, yield high effectiveness in educational search, which
may ultimately lead to a better learning experience.

Index Terms—Educational search, learning to rank (LTR),
query-dependent ranking, search engines.

I. INTRODUCTION

G IVEN the growing amount of digital educational materi-

als (such as lecture notes, animations, and videos cover-

ing a large variety of subjects) and emergence of portals

(public or proprietary) including such materials, there is a

clear need for building Web-style keyword-based search

engines over these collections. Such educational search

engines would be essentially used by learners (e.g., students)

and, hence, should be highly effective, as surfacing a large

number of highly relevant results is likely to help increasing

the learner’s knowledge on her search topic. Earlier studies

also show that optimizing search results for educational goals

may ultimately improve learning gains of the users [1]. Educa-

tors (e.g., teachers) would also benefit from the educational

search engines with high effectiveness, as they may reach

more relevant materials for their own courses while spending

less time and effort [2].

To obtain the most relevant results for a given query, mod-

ern Web search engines employ hundreds of features extracted

from the queries, documents, and user behaviors. As it is

impossible to combine all these features’ scores using manu-

ally designed ranking functions, supervised machine learning,

namely, learning to rank (LTR), techniques are employed to

automatically build ranking models [3], [4]. LTR approaches

allow capturing importance and interaction of a large number

of features and result in ranking models that are highly effec-

tive. Therefore, nowadays, most commercial Web search

engines apply a two-stage ranking strategy [5]. First, the docu-

ments in the collection are scored using simple matching met-

rics (such as BM25) over query–document pairs and

document quality metrics based on Web graph (such as Pag-

eRank), and a candidate set, typically including a few thou-

sands documents with the highest scores, is identified. In the

second stage, this candidate set is reranked using an LTR

model to obtain the final query result.

While earlier works address applying LTR for verticals in

various domains (such as images, news, and e-commerce [3]),

as far as we know, verticals specialized for education are usu-

ally overlooked. In most of the earlier works, search in the

educational platforms (e.g., over learning object (LO) reposi-

tories) is conducted using manually designed ranking func-

tions [2], [6]–[8]. Here, we argue that LTR approaches can be

applied for building general and specialized ranking models

based on the features available in the education domain, with

the goal of providing higher search effectiveness and, ulti-

mately, higher learning gains for the users.

In this article, we address the problem of constructing

machine-learned ranking models to be employed in a search

engine in the education domain. We base our analysis and

evaluations on the data obtained from a search engine that is

the part of a commercial online education platform, so-called

Vitamin, for K–12 students in Turkey. Thus, our main use

case is an educational search engine for K–12 students (specif-

ically, those from fourth to eighth grade, as will be discussed

later), while we mention other possible use cases in

Section VI-F. Given the large number of K–12 students in

Turkey, which is more than 16 million, and a very competitive
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test-based process for admission to the prestigious high-

schools and universities, Vitamin is a fairly popular platform

with more than 1.2 million registered users and 4.3 million

site visits per month. Vitamin includes a large number of edu-

cational materials in various formats (i.e., subject descriptions

and questions stored as text and multimedia documents) that

may be accessed via browsing over the collection or a simple

keyword-based search [9]. Therefore, our dataset obtained

from Vitamin is a fairly representative sample to conduct anal-

yses and experiments for ranking in the context of an educa-

tional search engine for K–12 students.

A. Research Goal and Novel Contributions

The main research goal of this article is automatically build-

ing effective ranking models for an educational search engine.

Our novel contributions toward this goal are threefold.

1) Feature Engineering for LTR in Educational Search:

Feature engineering is a critical component for the suc-

cess of LTR models [4], and hence, features employed

by large search engines are considered as trade secrets

and not disclosed. While it is possible to compute typical

retrieval features over public document collections and

analyze their importance for LTR (e.g., [10]), features

based on the implicit user feedback (most crucially, user

clicks to documents in the ranking) are hard to obtain,

since it requires accessing query logs, and hence, only a

few previous works analyze LTR performance in a setup

with such features and mostly for general-purpose Web

search engines (see, e.g., [11]). Therefore, an in-depth

analysis of contribution of specific features to the perfor-

mance of LTR algorithms based on real user data would

be invaluable for an educational vertical.

In this article, as our first contribution, we exploit a

unique dataset obtained from the Vitamin platform to

identify the features that would be most useful in the

educational search context. This dataset allows us to

extract click-based and domain-specific features, as well

as representatives from the other feature categories

employed in the literature, namely, query-specific, docu-

ment-specific, query–document similarity-based, and

session-based feature groups. To the best of our knowl-

edge, this article is the first one that employs and analyzes

such a wide range of features for applying LTR in an edu-

cational search engine. Our models trained on these fea-

tures outperform both the original ranking generated by

the Vitamin platform and those obtained by the ad-hoc

retrieval functions and two well-known neural mod-

els [12], [13] that are based on the textual content of the

queries and documents. We extensively evaluate the fea-

tures employed in our models and provide valuable

insights on the importance of different feature types in the

ranking performance in the context of educational search.

2) Query-Dependent Ranking Models for Educational

Search: As a second contribution, we leverage domain

knowledge to build query-dependent ranking mod-

els [14] rather than a single general model to answer all

queries. In particular, we exploit the knowledge of actual

query strings and users who submitted queries to learn

two types of specialized ranking models, namely, based

on the “course” of query and “grade” (i.e., education

level) of query issuer. Our findings reveal that building a

ranker for each grade category yields higher retrieval

accuracy than a single general model, as well as the base-

line query-dependent models based on automatically

created query clusters (i.e., as proposed in [15]).

3) Click Propagation Algorithm for Educational Search:

Finally, as a third contribution, we focus on query-depen-

dent models based on query frequency and build special-

ized models for singleton queries, that is, those appear

only once in the query log. Such queries, by definition,

lack previous click information and, hence, benefit the

least from the LTR approaches [16]. As a solution, we pro-

pose a new strategy to “propagate” click information from

the other, similar, queries with the click information to the

singletons. Our approach is novel in that we do not attempt

to make a prediction for the global click count of a docu-

ment (as in other works, such as [17]); instead, we create a

synthetic value for the document’s click count for a given

query. While doing so, we also do not rely on co-click

information likemost of the earlier works [17], [18], which

by definition does not exist, but combine other clues

(including domain-specific ones) such as overlap of

results, similarity of query strings, and similarity of grade

levels for the students who submitted the queries. Our

experiments show that the performance of ranking model

using enhanced click information outperforms the general

model as well as another baseline strategy proposed by

Gao et al. [17] to remedy the same problem for tail queries

inWeb search engines.

Overall, our findings reveal that the general and query-depen-

dent ranking models, trained using LTR approaches, yield high

effectiveness in educational search, which may ultimately lead

to a better learning experience.

The rest of this article is organized as follows. In the next

section, we review earlier works on educational search and

LTR algorithms. In Section III, we first provide an in-depth

discussion of features employed in the ranking models. Next,

we discuss query-dependent ranking models based on

“course,” “grade,” and “frequency” features of queries. Then,

in Section IV, we introduce the click propagation algorithm

for the singleton queries with no previous click information.

Section V presents the dataset used in our experiments and the

details of the relevance annotation process. In Section VI, we

compare our findings with state-of-the-art baselines and show

that the proposed models considerably improve the search

engine performance. Section VII provides the conclusion and

points to future research directions.

II. RELATED WORK

A. Educational Search

As children at primary or secondary schools are likely to be

among the users of an educational search engine (as in the
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K–12 use case employed in this article), we begin with

reviewing information retrieval research addressing the chil-

dren. There has been a recent interest in investigating search

characteristics of young users [9], [19]. Some of these works

are based on case studies with a group of young users [20]–

[22], while the others utilize search engine logs to analyze

search behavior of such users [9], [19], [23], [24]. One of the

critical findings is that young users have difficulty in formulat-

ing queries for both general search tasks [19] and school-

related (educational) tasks. Gyllstrom and Moens [25] present

a link-based ranking algorithm, the so-called AgeRank, that

favors Web pages that are appropriate for children. Eickhoff

et al. [26] classify Web pages that are suitable for children.

Torres et al. [27] propose a query recommendation method

customized for children. Yang et al. [28] utilize deep convolu-

tional neural networks to classify potential at-risk K–12 stu-

dents. None of these aforementioned works build ranking

models for educational search, as we do in this article.

Search as learning is an emerging paradigm that addresses

the design of search systems to enhance learning experi-

ence [29]. To this end, some earlier works aim to improve the

rankings of Web search engines. In [1], Syed and Collins-

Thompson propose a ranking strategy specialized for vocabu-

lary learning task, while Yilmaz et al. [30] rerank results based

on their predicted educational subject category. In contrary,

other works address search engines built on top of various

semiformal educational platforms. Such platforms may

include LOs, open educational resources (OER), or proprie-

tary educational materials (such as those in the Vitamin plat-

form employed in this article). In [2], Yen et al. employ a

manually designed ranking function that takes into account

popularity features and pairwise similarities of the LOs. The

work in [7] describes explicit and implicit features to represent

the quality of LOs and again uses manually designed functions

to combine their scores for ranking. Pimentel et al. [8] propose

a term clustering approach for query expansion and a manual

ranking function for searching in an OER repository. In a

closer work to ours, Ochoa and Duval [31] propose various

relevance features tailored for the ranking of LOs. Their data-

set involves top ten LOs retrieved for a set of ten (predefined)

queries (i.e., each corresponding to a lesson in computer sci-

ence). This article differs from [31] in several ways. First,

their work is based on a learning platform for university stu-

dents, while we build ranking models employing a query log

sample (with 900 distinct queries) from an educational search

engine used by K–12 students. This allows us to employ a rich

set of features that also capture users’ interaction with the

search results. Second, in addition to general models, we also

train query-dependent models. Third, we propose a solution to

handle queries without any previous click information. Fourth,

our experiments employ rank-aware effectiveness metrics,

which is the state of the art for evaluating search systems [4].

In a recent survey [6], the methods for searching LOs in repos-

itories are categorized as metadata-based, full-text, and

hybrid; however, none of the surveyed methods (except [31],

as discussed before) employ LTR approaches in the context of

educational search.

While we focus on search engines, the related topic of rec-

ommendation systems is also addressed in education domain.

Verbert et al. [32] survey context-aware recommender sys-

tems for learning. Peralta et al. [33] analyze impact of avail-

able metadata for educational sources on the performance of

recommender systems. Tang and Pardos [34] employ recurrent

neural networks for a recommendation system built on edX, a

MOOC platform. In line with the recent works exploiting

machine learning for recommendation systems, here, we apply

LTR approaches in the context of educational search engines.

B. LTR in Web and Vertical Search Engines

In one of the earliest works on the topic of LTR, Qin et al.

[35] introduce several features to be used in learning algo-

rithms and categorize them into four groups, which are low-

level content features (e.g., tf-idf), high-level content features

(e.g., BM25), hyperlink features (e.g., PageRank), and hybrid

features. Such features are widely used for LTR in Web search

engines [3]. In [10], Macdonald et al. investigate the impact of

query-specific features in LTR. In their seminal work, Agich-

tein et al. [11] introduce features based on the user behavior

and demonstrate their importance for LTR. More recently, a

deep learning model has been proposed to exploit implicit

feedback in LTR, again for the Web search scenario [36].

LTR approaches have been employed for various vertical

search engines [37]. One such work aims to construct a search

engine for news articles. The challenge in such a domain is to

use recency information of news, since the newer an article is,

the more likely users tend to click that particular article.

Therefore, using click through data, Wang et al. [38] propose

a framework for modeling both topical relevance and fresh-

ness of news articles.

Another domain where LTR is applicable is keyword-based

image search engines. For instance, in [39], Jain and Varma

argue that using only textual features that are extracted from

the Web pages including the images may not be adequate to

train ranking models. Therefore, they first train a model to pre-

dict click counts of the images using both textual and visual

features and then exploit the click data to rerank the initial

result list of images for a given query. As far as we know,

there is no previous work employing LTR approaches for an

educational search engine, as proposed in this article.

C. Query-Dependent Ranking Models

Queries issued to a search engine may significantly vary

according to various aspects, such as the popularity, length,

and underlying information need [40], and hence, it is unlikely

for a single ranking model to generate good rankings for all

possible types of queries. For instance, a model that performs

well for the popular queries by exploiting the prior click infor-

mation as a key feature may fail for the tail queries, for which

sparse or no click information is available. In [15], Geng et al.

identify the k-nearest neighbor of a given query to determine

the most relevant training instances to build a ranking model

and report that query-dependent ranking models outperform

the single general model using the state-of-the-art techniques.
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In [40], Bian et al. train a separate model for each “query top-

ic” (inferred from the training data) and then ensemble their

results to obtain the final ranking for a test query. In a similar

fashion, Giannopoulos et al. [41] aim to build a different

model for each query intent. To this end, they first learn a

ranking model for every training query and cluster these mod-

els and then train a model for all the queries that are clustered

together in the previous step. In all of these earlier works, the

queries are typically modeled together with the top-ranked

retrieved documents (i.e., to compute pairwise similarity of

two queries), while in this article, we essentially focus on

purely query-specific features, namely, the course and grade

of a query, available in an educational search scenario, as well

as the query frequency.

D. Specialized Ranking Models for Singleton or Tail Queries

The click-through data have been exploited for various pur-

poses in Web search and, especially, for LTR. However, bene-

fits are limited for the queries with sparse or no click

information in the query log. This problem generally occurs

for queries having low frequencies, called tail queries.

Recently, researchers have started to focus on this issue by try-

ing to generalize learned models to perform well enough for

tail queries, as well. In [18], Aktolga and Allan try to boost

rarely clicked queries in a system where limited click-through

data are available. They attempt to generate click-through fea-

tures using the set of similar queries to the given query, which

has no to little click data available. Their work categorize sim-

ilar queries into three groups: similar queries that share at least

one co-click, synonym queries that are lexically related to

each other, and subset queries where one is included in the

other as a subset. They claim that their models using three sets

of similar queries perform better than the baseline model.

Again for the purpose of handling queries with sparse or no

click data, Gao et al. [17] introduce click-through stream as

the set of queries having co-click for a particular document in

the query log given a certain document. Their calculation of

click-through features differs from the ones in the literature in

the sense that they also consider whether a click is the last

click in the search session to give more importance for the

documents that are clicked last. More recently, Jiang et al.

[42] propose to represent both query and documents as a vec-

tor in same semantic space. They also provide a propagation

algorithm to generate vector representations of unseen queries

and documents using association with the vectors already gen-

erated. Different from these previous works, we do not rely on

the co-click information, which by definition does not exist

for the queries with no clicks, but combine other clues such as

the overlap of results, similarity of the query strings, and simi-

larity of the grade levels for the submitting students.

III. LTR FOR EDUCATIONAL SEARCH: DATASET,

FEATURES, AND MODELS

In this section, we first describe our dataset and extracted

features that are utilized for training various ranking models

in the context of an educational search engine. Next, we

discuss how we construct the query-dependent models based

on certain features (i.e., course, grade, and frequency) of the

queries.

A. Dataset

In a typical LTR setup, the training data involve user

queries, retrieved documents for each query, and explicit or

implicit relevance labels for the documents of a query. The

actual queries and their retrieved documents are usually

extracted from a query log along with click data, and then,

each query–document pair is represented by a large number of

features based on the query, session, document, query–docu-

ment similarity, clicks, etc. [35], [43]. Finally, for each pair,

relevance judgment is obtained either explicitly via an edito-

rial annotation process or implicitly such as by exploiting sig-

nals like click and dwell time, or both. As discussed before,

earlier works either employ public datasets without real user

interaction (e.g., lacking the click information) or anonymized

datasets that do not allow us to evaluate and compare the

importance of certain features (especially those based on the

user interaction) in the ranking models neither for a general

Web search engine nor for a vertical. Therefore, this article is

first to define and assess various features for building ranking

models in a vertical for educational search.

We use the data provided by a commercial Web-based edu-

cational platform, called Vitamin, used by K–12 students in

Turkey. In particular, the dataset includes the following: 1) a

query log sample that includes 66 908 queries issued to Vita-

min (details are discussed later in Section V); and 2) metadata

of the documents that appear in the log. Note that, while we

generally refer to query results as documents, they are actually

educational materials in various types (lecture, summary,

exercise, animation, etc.), as provided in the associated meta-

data [9]. For the users in the log, all identification information

is anonymized (except a hashed user-id field), and only some

basic information, such as the grade of the user, is made avail-

able. In what follows, we describe the features extracted from

this dataset to construct the training and test instances for LTR

algorithms. We postpone discussing other details (such as the

number of instances and splitting them into training and test

sets) to Section V.

B. Features for Learning Models

Following the literature, we categorize our features into five

main categories, namely, query-specific, document-specific,

query–document similarity-based, session-based, and query–

document click-based features. As discussed next, in each cat-

egory, we extract widely used features employed in earlier

works (see, e.g., [35]), as well as those that are specific to our

application domain (such as course of a document, grade of a

user, and type of a document). Overall, a data instance in our

LTR setup, that is, a query–document pair, is represented by a

50-D feature vector (and a relevance label, which is discussed

in Section V). The features used in our LTR models are pre-

sented in Table I along with their corresponding feature group

they belong to.
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1) Query–Document Text Similarity Features: The docu-

ments in our dataset typically have a title and description,

while the latter can be a long discussion for a textual material

but a short summary for a visual material, like an animation.

Anyway, we compute the textual similarity of a query to each

of these parts using two common metrics, namely, tf-idf and

BM25, as the previous works in the literature. In order to cal-

culate query–document text similarity features effectively (tf-

idf and BM25), we apply the following preprocessing steps.

First, we remove common stop words in Turkish as well as the

punctuation and nonunicode characters. Then, we find stem of

each word by extracting the first five characters as the stem,

which is proven to be effective for agglutinative languages

such as Turkish [44]. For each query session, calculated tf-idf

and BM25 scores for each document are normalized into 0–1

range using the linear normalization method. The final list of

features for this group can be seen in Table I.

2) Query-Specific Features: As two well-known features,

for each query, we extract the query frequency (i.e., number

of times this query is seen in the query log) and user count

(number of different users who issued this query) [4]. Result

count is self-explanatory, that is, the number of documents

retrieved for the query, while top document count is the union

of documents that are retrieved in the first page result list. The

query length feature is expressed both in number of tokens

and characters, as usual in LTR setups [45].

The last two features in this category are novel features spe-

cific to the educational search domain. We observed that stu-

dents tend to write queries that include either a grade (like

“polynomials fifth grade” or the course of the subject that they

are looking for (e.g., “light physics”). Therefore, in the last

two rows of Query-Specific group in Table I, we present two

Boolean-valued features that represent whether a query string

includes a course name or a grade, respectively.

3) Document-Specific Features: As in the case of queries,

we form two features to represent the popularity of the docu-

ments, as follows: the document frequency is the total number

of clicks for a given document in the dataset, and user count is

the number of unique users who clicked this document. Both

feature values are normalized across all training data.

Additionally, we have three other features, namely, course,

grade, and type of documents, which are again specific to our

domain. Specifically, each feature and their domains can be

summarized as follows.

1) Document course: A document in our dataset may be

associated with one of the five courses available in the

system: Math, Turkish, Science, Social Sciences, and

Revolution History.

2) Document grade: Each document covers a subject taught

at a particular grade that ranges from fourth to eighth

grade.

3) Document type: There are 15 different types of documents

in our data. These types are based on the format and/or

purpose of the material, such as animation, text, summary,

quiz, video, exercise, etc.

As usual, while creating the actual feature vectors, these

three categorical features are all converted to binary features

for each possible value they can take, yielding a total of 25

binary features.

4) Session-Based Features: As discussed before, a key

source of information for training ranking models is previous

patterns of user behavior, which is typically captured in a

query log. In particular, using a query log, one can either

extract “long history” for a user, that is, reflecting all her pre-

vious searches, clicked or unclicked results, etc., or “short his-

tory” based on the current session where she submits the

query that is being processed [46].

In this section, we focus on capturing the short history of the

user. First, we describe a set of features that represent the

aggregated user activity in previous query issues involved in

the current search session, as in [47]. A search session

involves the queries issued by the same user within 30 min.

With these features, we try to capture user search behavior in

the current session. The first four rows of Session-Based group

in Table I present these features, namely, the number of results

presented and clicks (either total or unique) observed in the

current session, as well as the total dwell time over the clicked

results. All features in this group are normalized according to

the values in all unique sessions.

Second, we keep track of the users’ detailed activities in

previous query issues in the current session. Given that each

data instance in an LTR setup is a query–document pair, the

feature isClicked captures whether a document has been dis-

played to and clicked by the user previously in the current ses-

sion. Similarly, the feature isSkipped tracks whether the user

has chosen not to click on a particular document but clicked

TABLE I
FEATURES FOR EDUCATIONAL LTR
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another one at a lower rank. The feature isMissed is to record

for the documents that have been ranked at a lower rank than

the rank of the last clicked document. As introduced in [48],

these features represent what the user has done when she has

encountered a document, which is a candidate to be ranked for

her current query, in that session before submitting her current

query. As the last two features, we also obtain dwell time

and click count of the documents shown in the current result

list and clicked by the user for the previous queries in the

current session.

5) Query–Document Click-Based Features: The informa-

tion of whether a document has been previously displayed and

clicked (or, not) for a particular query is invaluable in predict-

ing the relevance of the document for that query. We employ

two such features, namely, impression count and click count,

that represent the number of times a document is retrieved in

the result list and clicked for the given query, respectively.

C. Query-Dependent Ranking Models

In this article, as will be presented in Section VI, we first

utilize the aforementioned features for building a general

ranking model, which is applied to rank results for all test

queries and assess impact of certain feature categories and/or

individual features on retrieval effectiveness. Additionally, we

build query-dependent models taking into account characteris-

tics of educational search domain.

1) Course-Specific Models: Unlike general Web search

queries reflecting very diverse information needs, the queries

submitted to our education vertical express more specific

needs that are likely to be associated with a target course (or,

rarely, more than one course). For instance, the query

“properties of light” is relevant to Science course, whereas

“greatest common divisor” is for Math. The user behavior/

preferences may be different for queries targeting different

courses (e.g., the users may prefer animation type results for

Science but interactive exercises for Math), and hence, each

course may require a different ranking function. Therefore, we

manually labeled our training queries for the target course,

which can be either one of the five courses available in the sys-

tem, or the so-called General, for those queries that may have

an intent exceeding the scope of a particular course. We then

separately trained course-specific models using their respec-

tive training instances.

2) Grade-Specific Models: Inspired by the finding reported

in [49] that grade level of children plays role in query type and

search task outcomes, we group queries using the grade of the

student who submit the query. Students in different levels of

education may have different requirements, for example,

fourth graders may prefer easy-to-grasp material including a

shorter text and larger number of visual components in com-

parison to eighth graders. Their clicking behavior may also

differ, that is, older students may be more inclined to read

result snippets and, therefore, click selectively, while younger

ones may not pay attention to such clues. Such possible differ-

ences can be handled by weighting corresponding features (be

it the type or click-through rate (CTR) for a document)

differently in the ranking models by building specialized

rankers for each grade. In this article, using the features

described before, we train five different models for the stu-

dents that are in fourth to eighth grade, respectively.

3) Frequency-Specific Models: While domain-specific

clues guide our decision for building course-specific and

grade-specific models, a more general dimension to group

queries is the query frequency. Earlier works (see, e.g., [4]

and [16]) report that the ranking functions for the popular

queries (i.e., those that are from the “head” of the heavy-tailed

distribution of query frequencies) usually perform well, due to

the abundance of the click information based on the previous

displays (i.e., impressions). In contrast, learning successful

models for the torso and tail queries is a challenging task due

to the lack of invaluable user interaction data. Inspired by

these observations, we build and evaluate specialized rankers

for the singleton queries (i.e., those appear only once in the

query log) and nonsingleton ones. While various approaches

have been proposed in the literature to improve the retrieval

effectiveness of tail queries (e.g., by calculating term-based

similarity function for rare queries [50], or by collaborative

ranking [51]), we are not aware of an approach that learns

models for singletons and nonsingletons, separately. As a fur-

ther step toward improving the model for singletons, we

explore a strategy to approximate the values for the click-

based features as discussed in the following section.

IV. CLICK PROPAGATION FOR SINGLETON QUERIES

As mentioned before, the major problem of ranking models

for tail queries is the lack of previous impressions and click

data. In this article, apart from learning a model only for the

singletons, we also attempt to generate synthetic values for the

impression and click count features described previously, to

improve the performance of the general and query-dependent

models. Note that most of the earlier works in the litera-

ture [17], [52]–[54] also consider the queries with a few clicks

in the scope of tail queries; hence, they are still able to use

(albeit sparse) co-clicks, while we only focus on the single-

tons, that is, previously unseen queries, with no clicks at all.

Our proposed strategy exploits the observation that since

the domain of a vertical is much more restricted than a general

search engine, it is more likely to successfully identify other

queries (with click information) similar to a singleton query

based on the query content. For instance, consider the popular

query “photosynthesis” versus a possible singleton like “the

role of pigments in photosynthesis process.” At the time of

writing, top ten results for these queries from Google yielded

only one overlapping result. While variety and depth of

answers for these two queries may highly vary when submit-

ted to a general-purpose search engine, in a vertical restricted

to a certain domain, one can expect a larger overlap among

the result lists, which can be exploited to improve the ranking

for the latter query. Once such similar queries are found, we

propagate their impression and click counts to the singleton

query. In what follows, we present the detailed methodology

for identifying similar queries and propagating feature values.
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We determine the similar queries for a given singleton

query in two steps. It is long known that the similarity of two

queries might be best determined by the overlap of the result

lists and, if available, overlap of the clicked documents (i.e.,

co-clicks [18]). In our case, the latter information does not

exist, so we only rely on the former to create a set of candidate

queries as our first step. Specifically, a query is in the candi-

date set if: 1) its result list includes at least one common docu-

ment with that of the singleton query; and 2) at least one of

these common documents is clicked for the former query (so

that we will have some values to propagate at the end).

In the second step, we compute a similarity score of each

candidate query qi to the singleton query qs exploiting the fol-

lowing three types of evidence.

1) Grade Similarity: The function Gðqi; qsÞ returns 1 if the

students who submit the queries qi and qs are at the

same grade, and returns 0, otherwise.

2) Query Text Similarity: We compute the cosine similar-

ity of the query strings as Cðqi; qsÞ.
3) Result List Similarity: The function Jðqi; qsÞ computes

the Jaccard coefficient between the result lists of qi
and qs.

Based on these components, the similarity score Sðqi; qsÞ is
calculated as follows:

Sðqi; qsÞ ¼ a�Gðqi; qsÞ þ b� Cðqi; qsÞ þ g � Jðqi; qsÞ

where a, b, and g are weight coefficients determined experi-

mentally. The highest scoring N candidate queries form the

final set of similar queries to qs. In the experiments, we restrict

the set size N to 10 for runtime efficiency and to avoid intro-

ducing noise by less similar queries.

In the propagation stage of our approach, for each document

d in the result list of the singleton query qs, we obtain a syn-

thetic value for the ClickCount feature based on the values of

the similar queries qi, as follows (of course, if the result list of
qi lacks d, its contribution is 0):

qic;i ¼

XN

s¼1

qsc;i � Sðqi; qsÞ

N
:

The ImpressionCount feature is computed in a similar

fashion.

V. EXPERIMENTAL SETUP

A. Training and Test Sets

As discussed before, we use the data provided by a commer-

cial Web-based educational platform, called Vitamin, used by

a large number of K–12 students in Turkey. In particular, the

query log sample includes 66 908 queries (18 638 of which

are unique) issued to the search engine of Vitamin in Decem-

ber 2013. These queries are submitted by 18K unique users,

and on the average, a user asks 3.61 queries in 1.92 sessions.

In an earlier study [9], we have analyzed the query log and

highlighted the similarities and differences of the searches

made by the users of this vertical to those made in a general-

purpose Web search engine.

For the purposes of this article, we sampled (uniformly at

random) 900 unique queries from the log, which are in total

submitted 3169 times. We chronologically sorted these sub-

missions (i.e., instances), and in all our experiments, we use

the first 80% according to timestamps as the training set and

the rest as the test set, similar to a previous study [55].

B. Relevance Annotation

The query log includes (at most) top 25 documents (i.e.,

internal doc-ids) retrieved for a query, together with additional

information for those that are clicked. For each submission of

a given unique query, we obtained the list of retrieved docu-

ments from the log. The union set of these result lists consti-

tutes the answers to be annotated for a query.

Then, we asked judges to annotate these documents given

query text, document title, and document description. Specifi-

cally, we split the set of 900 queries to nine equally sized

mutually exclusive groups and assigned each piece to a differ-

ent judge. The list of judges consists of graduate students and

professors, all of whose native language is Turkish.

For the annotation, we carried out two different labeling.

The first one is categorical annotation of query text in terms of

course, to which that query may belong. We had five different

courses initially, which is derived from the query log, and we

also added another course category named “General Course,”

which we can use for queries that cannot be categorized

among possible course candidates, such as the query “games”

that seem to seek for game-based resources for any course in

the system. In total, we have six different courses that could

be matched for a given query, which are Math, Turkish, Sci-

ence, Social Sciences, Revolution History, and General

Course.

The second part is the usual annotation scheme for LTR

datasets, that is, to give relevance score for each document

associated with a particular query. Each query–document pair

is annotated with one of the following relevance scores:

1) 0—irrelevant (i.e., the document is irrelevant to the

query);

2) 1—mostly relevant (i.e., course and subject of the docu-

ment matches with the query, yet document does not

satisfy the user needs according to the query text);

3) 2—exact match (i.e., precisely what the query asks for).

By annotating 900 unique queries, we obtained 3169 anno-

tated query instances to be used for LTR algorithms. There

are 16.4 documents annotated per query instance, yielding

52 260 query–document pairs in our dataset.

VI. EXPERIMENTS

A. Baseline Models

As our first goal is investigating retrieval effectiveness of

LTR in the context of an educational vertical, we employ two

traditional ad-hoc matching functions, namely, tf-idf and
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BM25, as traditional baselines. The final ranking in commercial

general-purpose Web search engines is not directly based on

such functions; however, they are employed both in the first

stage retrieval (i.e., to generate candidate documents) and for

generating various features for the second stage retrieval such

as LTR algorithms. Hence, these ad-hoc functions are strong

indicators of relevance. We apply each matching function to

compute the relevance of a query to either document title or

description, and we obtain four different baseline rankings.

Additionally, we also employ a linear-weighted combina-

tion of the scores computed for the document title and descrip-

tion fields using each of the matching functions. For the

weight parameter in linear combination, we used the parame-

ter tuning method. The best results are obtained when the

weight for the query–title matching score is set as 0.7.

We employ rank-aware effectiveness metrics, namely,

NDCG and/or ERR, which are state of the art for evaluating

search systems (see, for example, [4] for their definition).

Table II shows NDCG scores at cutoff values of 5 and 10

for each baseline method for the test set. The first row presents

search performance of original ranking system of Vitamin

platform’s search engine (SE). Our findings show that using

document titles yields higher effectiveness than using full

descriptions for both tf-idf and BM25 functions. Furthermore,

the rankings created by both of the matching functions using

titles outperform the original ranking provided by Vitamin

SE. The linear combination of scores (i.e., the last two rows in

Table II) for the title and the description fields also proves to

be useful, especially for BM25, which yields the highest per-

formance over the test set. In the following experiments, we

report BM25 Linear as the internal baseline (i.e., Baseline

BM25), as well as the scores of Vitamin SE as the external

baseline, that is, the platform’s native search system.

B. Performance of General Educational Ranking Model

For training our ranking models, we employ a well-known

LTR algorithm, namely, LambdaMART [56]. Table III shows

the gains we achieved using the LTR model over original

ranking of Vitamin and baseline BM25 (repeated from

Table II for easy comparison), in terms of the NDCG and

ERR metrics. We see that the general LTR model (i.e., the last

row in Table III) trained with our derived feature set outper-

forms Vitamin’s original ranking significantly, that is, by a

margin of more than 14% considering the NDCG@5 scores.

Additionally, the general LTR model is also superior to the

BM25 baseline and outperforms the latter by almost 11%,

again in terms of NDCG@5. Our results here confirm the suc-

cess of the LTR approach in the context of a vertical for edu-

cational search.

In addition to the aforementioned baselines, we also experi-

ment with two state-of-the-art Neural IR approaches using

Matchzoo [57] library, which are DSSM [12] and DRRM [13].

We chose these algorithms because they fall into two different

broad categories of Neural IR, namely, representation and

interaction-based approaches, respectively. We briefly review

these methods as follows.

1) DSSM: As a representation-based model, DSSM tries to

represent the query and documents retrieved in the

result list in the same semantic space. The algorithm

first feeds one-hot encoded word vector representation

into the deep network. Then, size of the representation

vector is reduced by word-hashing method, which is

n-gram letters of words with special start and end char-

acters. Next, through multiple deep layers, final repre-

sentations of both query and documents are obtained in

vectors of size 128. For each query–document pair,

Cosine Similarity of their associated representations is

calculated and fed into the last layer of the network,

softmax, where probabilities are provided as the output.

2) DRRM: This is an interaction-focused neural model that

aims to find patterns of matching on the basic represen-

tations of query and documents. The authors argue that

semantic matching, which is the objective followed

in the representation-based models, is not enough to

capture relevance matching. They claim that for rele-

vance matching, there are other important factors to be

considered by a Neural IR model, which are exact

matching signals, term importance, and diverse match-

ing requirements.

In the experiments, we used the training and test sets

described before. Further parameter optimization is done by

using a validation set. Although the performance of both mod-

els is promising, general LTR model still surpasses both mod-

els. In particular, the DSSM (DRRM) model yields NDCG@5

and NDCG@10 scores of 0.7493 (0.6912) and 0.7717

(0.7132), respectively. The inferior performance of these mod-

els can be due to the following reasons. First, both neural mod-

els are trained using the textual data (of queries and

TABLE II
RETRIEVAL EFFECTIVENESS OF BASELINE METHODS

TABLE III
RETRIEVAL EFFECTIVENESS OF GENERAL RANKING MODEL AND

MODELS PER FEATURE GROUP
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documents), as proposed in the papers introducing these meth-

ods, while our models exploit various types of features. Sec-

ond, our annotated dataset may not be as large as that required

for training such deep models. The latter claim is in line with

a recent work [58] arguing that neural ranking models may

not improve retrieval effectiveness, especially, in limited data

scenarios. Nevertheless, our experiments presented here jus-

tify the choice of the traditional LambdaMART algorithm to

train our LTR models in this setup. In the next section, we

present insights on the feature groups that enable the superior

performance of the general LTR model.

C. Feature Group Analysis

Given that our 50-D feature vector includes features from

five distinct groups, it is important to analyze which of these

groups provides the highest contribution to the performance of

the LTR model. To this end, we conduct a feature group abla-

tion study.

In Table III (second row), we present the performance

results of each feature group using LTR models that are

learned by only features belonging to that group. Our results

show that the best performing feature group is the query–doc-

ument click features, including the click and impression count

of documents for a given query. While we use the latter two

features separately, they are usually combined to form a single

feature (i.e., CTR) that is shown to be crucial for LTR in Web

search [17], justifying our finding.

From Table III, we see that textual similarity features based

on tf-idf and BM25 perform better when they are used

together with other features within an LTR model than being

used alone for ranking (cf. Table II). Query-specific and ses-

sion-based features alone can outperform neither BM25 base-

line nor Vitamin’s original ranking. Yet, the latter features

prove to be beneficial when they are used in combination with

the other feature groups, as reflected in the performance of the

general LTR model that employs all features and outperforms

all models using a single feature group. As a final observation,

we see that document-specific features, including a doc-

ument’s course and grade information, are more helpful in

ranking than query-specific and session-based features, and

indeed, their performance is even better than Vitamin and

BM25 baseline. In addition to the feature ablation study pro-

vided in Table III, we provide further insights regarding the

importance of individual features in the model learned by the

LTR algorithm, namely, LambdaMART. Table IV shows top

ten most frequent features used in LambdaMART trees, as an

indicator of feature importance. Results of both studies for

feature analysis are consistent with each other, that is, the

click count feature is found as the most important one among

all features. In addition to well-known textual similarity-based

features, it can also be seen in Table IV that our devised fea-

tures (i.e., the features depicting type of the document) con-

tribute to the performance of the LTR model in the

educational search setup.

These findings further justify our use of query-dependent

ranking models (discussed next), especially based on the

course and grade features, which seem to be valuable signals

to obtain higher effectiveness.

D. Query-Dependent Ranking Models

We aim to figure out whether we can improve retrieval per-

formance by having specialized ranking models for different

query groups. As discussed before, we categorized our queries

based on the values of one of the three features, namely, the

course of the query, the grade of the user issuing the query,

and the query frequency. In our setup, we employ the actual

values for each one of these features, obtained by either

explicit labeling (i.e., for the “course” of a query) or extracted

from the available metadata (i.e., for the “grade” information

of the person who issued the query and for the frequency

information of the query). Note that, even when there is no

such a priori information, it is possible to predict the values of

these features with certain confidence; for example, Yilmaz

et al. [30] discuss the prediction of course category for a given

query. For each of these three features, we trained a specific

ranking model for each of its categories (e.g., for the course

feature, we built a ranker for the queries that fall into each cat-

egory, such as Math, Science, etc.). The training and test

instance counts vary for each category, as shown in Table V.

We again used NDCG and ERR metrics at cutoff values of

5 and 10. Results show that having different models for each

query category improves the average performance besides

TABLE IV
TOP TEN MOST FREQUENT FEATURES IN LAMBDAMART TREES

TABLE V
TRAINING AND TEST INSTANCE COUNTS FOR EACH CATEGORY
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improving the performance for most of the categories sepa-

rately. Details are given in the following subsections.

1) Performance of Course-Specific Ranking Models: As

we can see from Table VI, in terms of NDCG scores, average

performance of course-specific ranking models is slightly bet-

ter than the general model’s performance, in which all query

instances are used, that is, without any categorization for train-

ing and testing. Apart from the overall improvement, there is

also improvement for queries for particular courses, namely,

for Math, Science, and General Course. Although the best per-

formance for Social Sciences course seems to be obtained

with Vitamin’s original ranking, we also improved the

NDCG@5 score for this course from 0.6075 to 0.6568 with

respect to the general model.

Another observation is that the general model outperforms

course-specific models for the course categories of Turkish

and Revolution History. This result is due to the fact that these

courses are text-oriented courses; therefore, documents related

to those courses have longer texts, which automatically

improves the textual features we have, which are tf-idf and

BM25. Therefore, since we have more instances with the gen-

eral model, it behaves better than the course-specific models.

However, we believe that if we had enough number of instan-

ces for each course type, then we might have expected this

behavior to change.

Similar to the trends obtained with the NDCG metric,

results for the ERR metric for Math and Science courses also

indicate that course-specific models outperform the general

model. Yet, in terms of ERR, average performance of course-

specific models is slightly worse than that of the general

model.

2) Performance of Grade-Specific Ranking Models: We

have five different values (categories) for grade feature indi-

cating grades of users who submit the query to the search

engine. Therefore, we trained five different models for

this experiment, and the results show that grade-specific

models enhance the retrieval performance. The results also

indicate that categorizing queries based on this feature yields

the best results in terms of the average retrieval performance

compared to the course-specific and the general ranking

models.

Looking at Table VII, we can clearly see that the grade-spe-

cific models enhance the NDCG scores by almost 1% in com-

parison to the general model. In particular, for each grade-

specific model (except the one for the fourth grade), there is

improvement with respect to the general model.

TABLE VII
RETRIEVAL EFFECTIVENESS OF GENERAL AND GRADE-SPECIFIC RANKING MODELS (VITAMIN SE IS THE BASELINE)

TABLE VI
RETRIEVAL EFFECTIVENESS OF GENERAL AND COURSE-SPECIFIC RANKING MODELS (VITAMIN SE IS THE BASELINE)

TABLE VIII
RETRIEVAL EFFECTIVENESS (AVERAGE) OF QUERY-DEPENDENT RANKING

MODELS (VERSUS AUTOMATIC CLUSTERING

BASELINES AND GENERAL LTR)

220 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 14, NO. 2, APRIL 2021

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 19,2021 at 13:10:00 UTC from IEEE Xplore.  Restrictions apply. 



Evaluation results with the ERR metric reveal similar trends

to those with the NDCG metric. Although we could not

improve the average search performance by using course-spe-

cific models in terms of the ERR metric in the previous sec-

tion, with the models learned for each grade category, we

achieve a relative improvement of 1% in ERR@5 scores with

respect to the general model performance.

Overall, we show that specialized models with respect to

the searcher’s grade outperform both general LTR models and

Vitamin’s baseline ranking. This is an important finding as it

also supports our hypotheses that students at different grades

may have different search characteristics, and hence, they

would benefit more from specialized ranking models.

3) Automatic Clustering Approaches for Query-Dependent

Learning: To further justify our decision of exploiting query

categories (i.e., course, grade, and frequency) while building

query-dependent ranking models, we utilize two different

automatic query clustering approaches, as in [15] and [40], as

further baselines.

1) Query-Specific Clustering: In this case, we employ only

query-specific features (see Table I), which are also uti-

lized in LTR algorithms. The values for each feature

are normalized (among the training query instances)

before the clustering. Then, we employ the well-known

k-means algorithm (from Python’s scikit-learn library)

to generate the query clusters. The optimum value for

the number of clusters (k) is found to be 3 using the

well-known elbow method (based on the plot of the dis-

tortion (i.e., squared sum of distances) versus the num-

ber of clusters).

2) Result-Based Clustering: As an alternative, we exploit

the retrieved result lists to cluster the queries. We com-

pute the pairwise distance of queries in terms of the Jac-

card similarity score between top 25 results of each

query pair. On top of the resulting similarity matrix, we

apply spectral clustering. In this case, the best perform-

ing value for number of clusters (k) is found to be 4.
In Table VIII, we present the performance of the query-

dependent ranking models utilizing these automatically cre-

ated query clusters and compare to our models based on the

query categories. We see that using result-based clustering

yields better performance than the query-specific clustering.

However, models based on the automatically generated query

clusters result in the ranking effectiveness scores (in terms of

NDCG and ERR) that are both inferior to the general model

and those based on our query categories (i.e., the performance

of the models based on the grade category is still the best for

most of the cases, as shown in Table VIII). These findings

justify our choice of exploiting domain knowledge and specifi-

cally, using query categories, for building query-dependent

ranking models in the educational search setup.

4) Performance of Frequency-Specific Ranking Models:

Confirming the earlier findings in Table III, our feature abla-

tion analysis with the general ranking models has revealed

that the most useful feature group for LTR is click-based fea-

tures, namely, document impression and click count per query.

These features provide an important signal about whether a

given document is related to the given query. However, a

well-known problem is that there are query instances with

very sparse click feedback, or none at all. A particular group

of such queries are singletons, queries that are issued only

once, for which there can be no previous record of document

impression and, hence, no click information.

In this section, we investigate performance of ranking

models for the singleton queries. Specifically, we categorize

our training and test query instances based on their total fre-

quency, so that those that appear only once in the entire set

of queries fall into the singleton category, and the others are

called as nonsingleton queries. In our setup, the number of

singleton queries is much less than that of the nonsingleton

queries. In this case, evaluation results with NDCG and ERR

metrics show slightly different trends, which can be seen

from Table IX. For singleton queries, in terms of the NDCG

metric, neither the general model nor the singleton-specific

model can outperform Vitamins’s original ranking with ad-

hoc retrieval functions. In terms of ERR, the singleton model

outperforms both the general model and Vitamins SE, but

only at the cutoff value of 5. These findings imply that sin-

gleton queries are less likely to benefit from LTR as click-

related features are not available, regardless of how the

model is created, that is, using all the available queries or

only singleton queries. In contrast, nonsingleton queries are

benefiting from the machine-learned ranking, and models

specifically trained for such queries can even outperform the

general model (as the inclusion of singletons in training such

models may cause noise and reduce the performance also for

nonsingletons). These findings also justify the click propaga-

tion model we propose for singleton queries, as evaluated in

the next section.

E. Performance of the Click Propagation for Singletons

As discussed before, we propose a new approach to gener-

ate synthetic values for the impression and click count features

of the singleton queries, which are otherwise not available for

such queries and may mislead the training process.

TABLE IX
RETRIEVAL EFFECTIVENESS OF GENERAL AND FREQUENCY-SPECIFIC RANKING MODELS (VITAMIN SE IS THE BASELINE)
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To serve as a further baseline for our approach, we also

employ a smoothing method proposed to remedy click spar-

sity. In [17], Gao et al. introduce the notion of the click-

through stream of a document, that is, the list of all the previ-

ous queries for which the document is clicked, and then, they

obtain the values of various CTR features (for a given query–

document pair) using this stream. We refer the latter set as

clickstream features to distinguish from the impression and

click count features described before. In their first smoothing

method, Gao et al.[17] address the queries that have only a

few clicks. In particular, they first construct a bipartite graph

of queries and documents and apply a random walk to expand

the click-through streams of documents, over which the click-

stream features are computed. Obviously, this approach does

not help the queries with no clicks, as we aim to improve in

this article. Their second approach, the so-called discount

method, addresses the latter case. Their method estimates the

values of the clickstream features for queries with no clicks

based on the values of the features computed when a click-

through stream includes only a single query. Intuitively, their

strategy assigns a value that is only slightly larger than 0 for

clickstream features of queries with no clicks. In our experi-

ments, we computed the values of the clickstream features,

and on top of them, we also applied the discount method to

handle the singleton queries with no clicks.

As in the previous section, we only train and test the model

using singleton queries, and while doing so, we first calculate

and append clickstream features for singleton queries and

apply the aforementioned methods to obtain approximate val-

ues, namely, our propagation algorithm to smooth click-based

features and discount method adopted from [17] to smooth

clickstream features. The evaluation results for this scenario,

given in Table X, show that our proposed algorithm outper-

forms all of its competitors, that is, not only Vitamin baseline

and the model trained for singletons using raw feature values

(as described in the previous section), but also the rankers

based on the features obtained with the smoothing techniques

of [17], for NDCG@5 and ERR@10 metrics. Regarding the

smoothing techniques introduced in [17], we observe that

while clickstream features slightly improve ranking effective-

ness of the model, the discount method used on top of it does

not seem to be helpful. The reason can be that the discount

method assigns the same approximate feature value for each

query instance, and since the number of instances of the sin-

gleton model is less compared to the general model, this might

introduce noise to the model. Overall, our proposed algorithm

improves the performance of the singleton query model by

approximately 2%. To sum up, we show that all three query-

dependent ranking models usually outperform the general

model, and the performance of the frequency-specific model

can be further improved by our click propagation algorithm.

The additional gains by query-dependent models, despite

being modest (i.e., up to 2%), are in line with the literature

(e.g., Geng et al. [15] also report similar gains for Web search)

and important to further improve effectiveness in an educa-

tional search engine.

F. Discussions

1) Evaluation in Terms of Learning Gains: All three con-

tributions in this article have a common goal, namely, to

improve retrieval effectiveness of educational search

engines. A question that arises naturally is to what extent

improvement in search effectiveness translates to learning

gains. Earlier works evaluate impact of search on learning by

conducting pre- and postassessments via tests, summaries,

and/or user studies [59], [60]. For instance, Collins-Thomp-

son et al. [59] assess learning outcomes in Web search using

a laboratory-based user study, where they collect pre- and

postsearch questionnaires and a postsearch survey from 42

participants. Obviously, such assessment techniques are not

applicable for us, as we employ 900 real queries (extracted

from a past search log) submitted by around 3K students,

who are not available for a postsearch interview. Having said

that, earlier studies also show that optimizing search results

for educational goals may ultimately improve learning gains

of the users. Specifically, the work in [1] presents a retrieval

strategy that generates search results tailored for a vocabu-

lary learning task and reports that improving learning gains

is attainable using such optimized rankings. Based on the lat-

ter finding, here, we also evaluate performance of machine-

learned ranking models using rank-aware effectiveness met-

rics, assuming that a search engine with high effectiveness

(i.e., ranking a large number of relevant documents at top

positions) would also lead learning gains and leave alterna-

tive evaluation scenarios as a future work.

2) Generalizability and Limitations of the Findings: We

envision that an educational search engine utilizing the afore-

mentioned machine-learned ranking models can be used by

both stakeholders, namely learners (i.e., students) and educa-

tors (i.e., teachers). Furthermore, the features employed for

training such models should be available in most platforms.

Precisely, query-specific, session-based, and click-based fea-

tures can be obtained from the query logs that are typically

stored in modern search engines. Query–document text simi-

larity and document-specific features can be easily computed

using textual content and/or metadata of documents. There-

fore, for any educational platform with a categorization of

users (e.g., based on the grade of students, expertise level of

users, etc.) and/or learning materials (e.g., based on the

course/subject of documents, metadata of LOs, etc.), general

and specialized ranking models as discussed here can be used.

Having said that, as our experimental dataset includes the

queries and interactions from K–12 students (specifically, only

TABLE X
RETRIEVAL EFFECTIVENESS OF RANKING MODELS FOR

ONLY SINGLETON QUERIES
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those from fourth to eighth grades) in the Vitamin platform,

certain findings should be interpreted in this context. For

instance, the grade-specific ranking models are found to be

more effective in our experiments, which coincides with the

earlier findings that search behavior of children is affected by

grade level of students [19], [49]. If we had search data also for

teachers, the situation could be different, for instance, the

course-specific model might have been found to be more useful

for such users, as they are experts in their subjects and can spec-

ify their information needs accurately. While such limitations

imply possible directions for future work, our main finding,

namely, the importance and applicability of general and spe-

cialized ranking models in educational search, still holds.

VII. CONCLUSION

This article shed light on various aspects of building

machine-learned models for ranking in the context of an edu-

cational search engine. First, using the query logs of a com-

mercial platform, namely, an educational search engine called

Vitamin SE for K–12 students, we identified the features that

are most likely to be useful in such a context. We employed

these features to train traditional LTR algorithms. We found

that it is possible to outperform the original ranking of Vita-

min SE by up to 14% and other retrieval baselines, namely,

representative ad-hoc and neural methods, by up to 11% and

2.5%, respectively. While such gains are expectable with

machine-learned models, our more interesting findings are

due to the detailed analysis of feature groups. Our analysis

revealed that while query–document click features are the

most useful for ranking (as in the case of general-purpose

Web search engines), there are domain-specific features, such

as documents’ course or grade information that also help

enhancing the ranking of the educational search engine.

As a second contribution, we built query-dependent ranking

models rather than a single general model to answer all the

submitted queries. In particular, inspired by the findings of our

feature analysis, we trained different models by grouping

queries with respect to three different features, namely, based

on the course of the query, the grade of the user issuing the

query, and the frequency of the query. Our evaluation results

showed that query-dependent ranking models are usually

superior to both the general model and baseline models built

on automatically created query clusters. In particular, by creat-

ing different ranking models for queries based on the grade

information of the user who issued the query, it is possible to

outperform the ranking performance of the general model

by up to 1%.

As our third contribution, to improve the ranking perfor-

mance for the singleton queries that have no associated click

information in the query logs, we proposed a click propagation

algorithm to propagate the click information from the other,

similar, queries with the click information to the singletons.

Despite its simplicity, being restricted to educational search

context, this algorithm that makes use of clues such as the

overlap of results, similarity of the query strings, and similar-

ity of the grade levels (for the submitting students) is found to

work very well. Experimental evaluations have shown that it

helps to improve the ranking performance for singleton

queries up to 2% (relative to the baseline without such click

propagation) and outperforms another baseline approach pro-

posed for similar purposes in the literature.

In our future work, we plan to focus on personalized ranking

models that take into account each student’s learning habits.
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