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Application Scheduling with Multiplexed Sensing
of Monitoring Points in Multi-purpose IoT Wireless

Sensor Networks
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Abstract—Wireless sensor networks (WSNs) play a crucial
role in Internet-of-Things (IoT) systems serving a variety of
applications. They gather data from specific sensor nodes and
transmit it to remote units for processing. When multiple appli-
cations share a WSN infrastructure, efficient scheduling becomes
vital. In our research, we address the problem of application
scheduling in WSNs. Specifically, we focus on scenarios where
applications request data from monitoring points within the
coverage area of a WSN. We propose a shared-data approach
that reduces the network’s sensing and communication load by
allowing multiple applications to use the same sensing data. To
tackle the scheduling challenge, we introduce a genetic algorithm
named GABAS and three greedy algorithms: LMPF, LMSF,
and LTSF. These algorithms determine the order in which
applications are admitted to the WSN infrastructure, considering
various criteria. To assess the performance of our algorithms,
we conducted extensive simulation experiments and compared
them with standard scheduling methods. We also evaluated
the performance of GABAS as compared to another genetic
scheduling algorithm that has recently appeared in the literature.
The overall experimental results show that the methods we
propose outperform the compared approaches across various
metrics, namely makespan, turnaround time, waiting time, and
successful execution rate. In particular, our genetic algorithm
proves to be highly effective in scheduling applications and
optimizing the mentioned metrics.

Index Terms—wireless sensor networks, Internet of Things,
application scheduling, algorithms.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have become the
key components of Internet-of-Things and smart envi-

ronments due to improvements in sensing technologies, wire-
less communications, and mobile computing. Wireless sen-
sor networks are heterogeneous systems consisting of sensor
nodes that can collect different types of data from the points
within their sensing range. The collected data can be processed
at sensor nodes or higher-level distributed or centralized units,
like base stations or cloud data centers.

The application types of WSNs are very broad. Some
domains include smart cities, smart houses, and some other
intelligent systems that are used in daily life. Smart city man-
agement is one of the major areas for which WSN applications
are very useful. Intelligent parking systems [1] and noise
monitoring in metropolitan areas [2] are two examples of the
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applications that a smart city can make use of. Other examples
of WSN applications include disaster prevention systems, agri-
culture management, habitat monitoring, intelligent lighting
control, and supply-chain monitoring [3].

Previously, WSNs were task-specific. A WSN was designed,
developed, and optimized to support a single application.
Another application deployment was impossible; therefore,
most WSN resources were underutilized. However, recently,
WSNs are started to be designed in a way that they can support
multiple applications, similar to other systems. For instance,
to a single city-wide WSN infrastructure, various types of
applications such as air quality monitoring, noise monitoring,
and crime detection can be deployed. Another example would
be a single building-wide WSN, which can be used for both
structural health monitoring [4] and fire disaster detection [5]
at the same time. Various other applications can be run over
such a WSN infrastructure, such as occupancy estimation and
automatic air-conditioning control, without disturbing other
applications.

In this paper, we focus on the management of a WSN
operated by a single infrastructure provider. The network is
available to application providers who want their applica-
tions to be admitted to the network for a certain amount
of time. Admitted applications need some points monitored
with specific data types, and the collected data from those
points need to be processed in base stations and centralized
units. While we focused on the application placement problem
in our previous work [6] in a similar network structure, in
this work, we deal with the application scheduling problem.
Since the applications will use the network’s resources for a
particular time, it is crucial to schedule the applications (i.e.,
arrange the order of the admission of the applications into
the network) efficiently and effectively. One of the critical
parameters to minimize is the total execution time (makespan)
of the applications, but there are other metrics that can be
important, like average waiting time, turnaround time, and rate
of completing the applications before deadlines, if any.

We propose several algorithms for application scheduling in
wireless sensor networks. We first propose a genetic algorithm
called GABAS that effectively schedules applications onto
a sensor network. GABAS reduces the total execution time
of the applications by both assigning monitoring points to
sensor nodes and base stations and determining the admission
order in the best possible way. We also propose three greedy
algorithms, considering different criteria, which can be used
when fast decisions are needed.
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We present a comprehensive evaluation of our innovative
algorithms designed for application scheduling in Wireless
Sensor Networks (WSNs). Through a rigorous series of
simulation experiments, we have meticulously compared our
algorithms with well-established standard scheduling methods.
Our results unequivocally showcase the remarkable effective-
ness of our algorithm, GABAS, in substantially reducing the
overall execution time while consistently achieving excep-
tional performance across critical metrics such as average
turnaround time, average waiting time, and the successful
completion ratio. Furthermore, our suite of proposed greedy
algorithms, including LMPF, LMSF, and LTSF, demonstrate
striking advantages in terms of both speed and efficiency
when juxtaposed with conventional scheduling algorithms like
FCFS and SJF. Among these, LMPF emerges as the premier
performer in terms of makespan optimization, while LMSF
and LTSF outshine their counterparts, both in the greedy
and standard algorithm categories, concerning waiting time,
turnaround time, and successful execution rates. Additionally,
our comparison with another genetic scheduling algorithm,
HGECS [7], consistently positions GABAS as the superior
choice across all metrics, underscoring its unmatched per-
formance. In summary, our evaluation results unequivocally
endorse GABAS as the most effective algorithm in reducing
total execution time, average turnaround time, average waiting
time, and enhancing the successful completion ratio.

The rest of the paper is organized as follows: Section II
provides a contextual discussion for the motivation that drives
the research presented in this paper. Section III gives and
discusses the related work in literature. Section IV presents our
network model and problem formulation. Section V describes
our approach and algorithms in detail, and Section VI provides
the results of our simulation experiments. Finally, Section VII
concludes the paper.

II. CONTEXTUALIZATION AND DISCUSSION

In the context of a WSN capable of handling multiple
applications, it becomes crucial to design and operate the
network in a manner that ensures good quality of service
for applications and satisfaction for application owners. This
requirement often necessitates the implementation of a cen-
tralized mechanism and related policies. Software-Defined
Networking (SDN) offers a powerful solution by enabling the
management of a WSN through a centralized controller [8].
SDN also facilitates virtualization, allowing sharing of physi-
cal resources among multiple services, tasks, or applications.
Consequently, SDN has emerged as an essential component of
next-generation networks and the Internet of Things [9]. An
integral component of our proposed solution, GABAS, seam-
lessly aligns with the principles of SDN. GABAS operates as a
centralized algorithm that meticulously manages the network’s
intricate scheduling dynamics, akin to the fundamental ethos
of SDN.

In WSNs that support multiple applications running on
the same physical network, it is possible for different ap-
plications to require the same type of data from specific
monitoring points in the monitored area. For instance, consider

the scenario where one application monitors traffic density
at a particular point while another application measures the
average speed of vehicles between two points. Although these
applications may have different data collection frequency
requirements, they both rely on the same type of data. To
address this challenge, we propose a shared-data approach
with multiplexed sensing for running multiple applications on
a WSN. Our approach aims to enable applications to efficiently
share data from common monitoring points, thereby reducing
the overall sensing and communication load on the WSN.
By leveraging the shared-data approach, the network virtually
offers more sensing and communication resources, resulting
in improved efficiency and performance.

While the processing requirements of applications remain
constant, the adoption of a shared-data approach introduces a
significant enhancement in the efficient utilization of sensing
and communication resources within the Wireless Sensor
Network (WSN). This transformative shift allows the WSN to
accommodate and schedule a greater number of applications
concurrently, resulting in a notable reduction in the total
execution time for a suite of applications. Moreover, the wait-
ing time for newly arriving applications can be dramatically
minimized, courtesy of the availability of surplus resources.
A compelling real-world example of this is the application
of WSNs in traffic management systems. These systems play
a pivotal role in monitoring and analyzing traffic patterns,
congestion levels, and incident detection, especially in densely
populated urban environments grappling with heavy traffic. In
such scenarios, the imperative for swift data collection and
analysis cannot be overstated, as it enables timely interventions
and improvements in traffic management strategies.

III. RELATED WORK

Scheduling problem exhibits itself in all types of computer
systems and networks, where resources are limited and there
are tasks, applications, or services that need to time-share those
resources. The resources can be the processors of a computer,
the sensing and communication units of a wireless sensor
network, the physical servers and switches of a cloud data
center, or the edge computing nodes of a fog network.

There are many scheduling algorithms proposed in the
literature for processor and cloud scheduling [10]–[22]. They
use different meta-heuristics and evolutionary algorithms, such
as particle swarm optimization, genetic algorithms, and ant
colony optimization. Some of them also use greedy approaches
or classical approaches for scheduling, such as first come first
served, and shortest job first algorithms. The metrics they
usually use include makespan, average response time, energy
efficiency, utilization, execution cost, and average running
time. They schedule tasks, jobs, or virtual machines on local
or cloud computing components, like physical servers.

There are also studies on scheduling in WSNs, IoT, fog,
and edge computing. Fog and edge computing are usually
integrated with WSNs in IoT systems. Porta et al. [23] propose
EN-MASSE, a framework that deals with dynamic mission
assignment for WSNs whose sensor nodes have energy har-
vesting capabilities. It is an integer programming method that
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assigns missions to sensor nodes and aims to minimize the
total run-time of the missions. Uchiteleva et al. [24] describe
a resource scheduling algorithm for WSNs. The proposed
scheduling algorithm is a resource management solution for
isolated profiles in WSNs, and the authors compare their al-
gorithm with Round Robin and Proportionally Fair scheduling
algorithms. Wei et al. [25] present a Q-learning algorithm
called ISVM-Q for task scheduling in WSNs. It optimizes
application performance and total energy consumption. De
Frias et al. [26] propose an application scheduling algorithm
for shared actuator and sensor networks. Their algorithm aims
to reduce energy consumption in the network. Edalat and
Motani [27] propose a method for task scheduling and task
mapping in a WSN consisting of sensor nodes with energy
harvesting capabilities. They consider task priority and energy
harvesting to increase fairness.

Liu et al. [28] introduce Horae, a task scheduler tailored
for mobile edge computing (MEC). Horae is designed with
the dual objectives of optimizing resource utilization within
MEC environments and meticulously selecting edge servers
that align with the specific placement constraints of each task.
Javanmardi et al. [29] present FUPE, a security-aware task
scheduler for IoT fog networks. FUPE harnesses the power
of a fuzzy-based multi-objective Particle Swarm Optimization
algorithm. Their comprehensive study demonstrates that FUPE
outperforms its peers in terms of both average response time
and network utilization. Li and Han [30] offer ABC, an
Artificial Bee Colony algorithm meticulously designed for
task scheduling in cloud computing systems. Their work
places ABC in a comparative spotlight against various ex-
isting approaches, with a focus on evaluation metrics such
as makespan, maximum device workload, and total device
workload. D’Amico and Gonzalez [31] introduce EAMC,
a multi-cluster scheduling policy engineered to predict job
energy consumption. EAMC aspires to reduce critical metrics
including makespan, response time, and total energy consump-
tion, ushering in efficiency and sustainability. Singhal and
Sharma [32] describe the Rock Hyrax Optimization algorithm,
specifically tailored to the intricate task of job scheduling in
heterogeneous cloud systems. Their research scrutinizes per-
formance using evaluation metrics like makespan and energy
consumption for the optimization of cloud-based workloads.

Choudhari et al. [33] contribute a priority-based task
scheduling algorithm for the fog computing systems. Their
algorithm stands out by initially assigning incoming requests
to the nearest fog server, followed by the placement of
tasks into a priority queue within that server, optimizing
task execution. Xu et al. [34] employ the power of online
convex optimization techniques to tackle the task of scheduling
jobs with multi-dimensional requirements in heterogeneous
computing clusters. Their approach adds a layer of efficiency
and adaptability to the scheduling process, ensuring optimal
resource allocation. Psychasand and Ghaderi [35] present
strategies grounded in Best Fit and Universal Partitioning
techniques for job scheduling tasks. These algorithms offer
effective solutions to the challenge of scheduling jobs with
diverse resource demands, catering to the dynamic needs of
modern computing environments. Fang et al. [36] target the

vital objective of reducing total job completion time within
the context of edge computing systems. They introduce an
approximation algorithm capable of handling both offline
and online scheduling scenarios, thereby contributing to the
optimization of task execution in edge environments. Arri and
Singh [37] present a distinctive approach with their artifi-
cial bee colony algorithm, augmented by an artificial neural
network, designed specifically for job scheduling within fog
servers. This combination of nature-inspired algorithms and
neural network technology aims to enhance energy efficiency
and overall scheduling performance.

In our research, as presented in this paper, we introduce a
distinctive and innovative approach that sets it apart from prior
studies in several compelling ways:

• Our pioneering contribution revolves around the intro-
duction of GABAS, a groundbreaking genetic algorithm
meticulously designed to schedule applications within
Wireless Sensor Networks (WSNs) proficiently. GABAS
not only handles application admission and scheduling
but also excels in making intelligent decisions regarding
the optimal utilization of sensor nodes and base stations
for data acquisition from specified monitoring points,
thus enhancing resource efficiency. Across a spectrum of
critical metrics, including makespan, average turnaround
time, average waiting time, and successful completion
ratio, our genetic algorithm delivers remarkable perfor-
mance.

• Complementing GABAS, we also put forth a trio of
innovative greedy algorithms, each tailored to distinct cri-
teria for prioritizing the admission of applications. These
algorithms prove particularly valuable in scenarios where
swift decision-making is imperative, offering versatility
and efficiency.

• Our research delves into a sophisticated network archi-
tecture that showcases an innovative approach to resource
optimization. Within this network structure, specific mon-
itoring points are served by sensor nodes in a multiplexed
fashion, enabling data to be concurrently shared and har-
nessed by multiple applications. This ingenious strategy
facilitates the seamless coexistence of numerous appli-
cations, enhancing overall efficiency. This optimization
paves the way for the concurrent scheduling of a higher
number of applications. Our research primarily focuses on
urban-area networks, benefitting from seamless intercon-
nections of base stations via high-speed wired or wireless
networks.

IV. PROBLEM STATEMENT

The sensor network type we consider in this paper is a
wireless sensor network (WSN) that is owned by a single
provider and covers an urban region (like a city or town).
Application owners require some points in the region to be
sensed and sensed data to be collected and processed in
cluster-heads. We assume the sensor network has a clustered
two-tier architecture, consisting of sensor nodes and cluster-
head nodes. We will call the cluster-head nodes also as base
stations throughout the paper since they will act like base
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stations in a wireless network. They will be mains-powered
and connected to the wired or wireless backbone network of
a city. They will also be able to do local processing for the
incoming sensor data. In an urban environment, cluster-head
nodes can easily be mounted on top of the elements of the
city-wide infrastructure (like lamp poles); therefore, they can
easily be connected to the backbone network. In this way,
the use of cluster-heads in our architecture is different from
the classical WSN architectures, where cluster-heads are just
intermediate nodes on multi-hop paths from sensor nodes to
sink nodes. In an urban environment, we assume that each
sensor node can directly connect to one of the base stations
in its range. Each base station and the connected sensor nodes
form a star topology.

We assume sensor nodes have equal sensing rates but
various sensing ranges. Base stations have equal processing
capacity. Additionally, we assume that any link between a
sensor node and a base station has the same bandwidth
capacity. A sensor node can collect data from the monitoring
points which fall into its sensing range. The collected data
is processed, partially or totally, in the base stations. It is
possible that a base station can send the processed data further
to a centralized location for additional processing or analysis.
However, this part of the problem is not within the scope of
this paper. We assume the bandwidth of the links connecting
base stations to the rest of the network is abundant; hence
is not a constraint in our formulation. We only consider the
bandwidth capacity of connections between sensor nodes and
base stations as a constraint. Similarly, we assume that the
centralized servers have the abundant capacity to process the
incoming data if needed. Therefore, we only consider the
processing capacity of the base stations as a constraint in our
model.

Figure 1 shows an example of our network model. In the
figure, radio towers represent base stations (cluster-heads),
large circles represent sensor nodes and small circles represent
monitoring points. A dashed line between a sensor node and a
monitoring point indicates that the sensor node actively senses
the monitoring point. If a sensor node is connected to a base
station, there is a dotted line between the sensor node and the
base station. Base stations are connected to each other through
a high-speed wired or wireless network.

Applications that arrive at the network require some points
to be sensed and related data to be processed for a certain
amount of time. One important goal is to finish all applications
using the network as early as possible. If the requirements of
an application are satisfiable and the application is scheduled
to use the network, the application is deployed to the network
and uses the required resources for the desired amount of time.
After this period of time has expired, the application releases
the resources and leaves the network.

The parameters used for a formal description of our
problem are shown in Table I.

Our primary goal is to minimize the total run-time of ap-
plications requiring WSN service. This optimization problem
can be formalized as follows:

Sensor Node

Monitoring Point

Base Station

Fig. 1. Network model.

TABLE I
PARAMETERS USED IN THE PROBLEM STATEMENT.

S Set of sensor nodes
B Set of base stations
C Set of connections
A Set of applications
M Set of monitoring points
T Set of time instants
tj Time period that application j wants to use the network
t0j Time at which application j is admitted
tfj Time at which application j finishes
tfmax Time the last application finishes

xjt
Binary variable indicating whether application j

is deployed at time t

Mj
Set of monitoring points to be sensed

for application j

rjk
Sensing rate requirement of application j

for monitoring point k
rkt Sensing rate requirement of monitoring point k at time t
Sk Set of sensor nodes covering monitoring point k

Mil
Set of monitoring points whose data is transferred

from sensor node i to base station l

xik
Binary variable indicating whether sensor node i

is actively sensing monitoring point k

xilm
Binary variable indicating whether sensor node i is
connected to base station l through connection m

rk Sensing rate requirement of monitoring point k
Ri Sensing rate capacity of sensor node i
Pl Processing capacity of base station l
Cm Bandwidth capacity of connection m
α Transmission coefficient
β Processing coefficient
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tfmax (1)

is minimized subject to

tfmax = max(tfj) ∀j ∈ A (2)

tfj = t0j + tj ∀j ∈ A (3)

xjt =

{
1, t0j < t ≤ tfj

0, otherwise
∀j ∈ A (4)

rkt = max(rjk × xjt) ∀j ∈ A,∀t ∈ T, ∀k ∈M (5)

ukt =
∑
j∈A

(rjk × xjt) ∀k ∈M, ∀t ∈ T (6)

∑
k∈M

xikrkt ≤ Ri ∀i ∈ S, ∀t ∈ T (7)

∑
k∈Mil

αrkt ≤
∑
m∈C

xilmCm ∀i ∈ S,∀l ∈ B, ∀t ∈ T (8)

∑
i∈S

∑
k∈Mil

βukt ≤ Pl ∀l ∈ B, ∀t ∈ T (9)

Eq. 2 shows how total run-time (makespan) is calculated. It
is the finish time of the last application that used the network.
We are assuming the first application is admitted at time 0.
Eq.3 describes how the finish time of each application is
determined. Eq. 4 is used to determine the time interval an
application is deployed to the network. Eqs. 5 and 6 show
the calculation of sensing requirements (i.e., required sensing
rates) of monitoring points in shared and unshared cases,
respectively. Eqs. 7, 8, and 9 are sensing, transmission and pro-
cessing constraints for each time instant. At each time instant,
the total sensing rate requirement of monitoring points sensed
by one sensor node must not exceed that sensor node’s sensing
capacity. The data amount transmitted per second cannot be
more than the bandwidth of that connection. Also, the total
processed data per second at one base station should be less
than the base station’s processing capacity. α (transmission
coefficient) is a constant that maps a sensing rate value to
a communication rate requirement. Similarly, β (processing
coefficient) is a constant used to map a sensing rate value
to a processing capacity requirement. For example, if data is
sensed at a rate of 3 Kbps, the required communication rate
may be 4 Kbps, including communication protocol overheads.

The application scheduling problem explained above is a
variation of the well-known task scheduling problem. The task
scheduling problem is proven to be an NP-hard problem [38].
To prove that application scheduling is also an NP-hard
problem, we reduce the multiway number partitioning problem
to it. Reduction is shown in Appendix A.

V. PROPOSED METHODS

A. Genetic Algorithm Based Application Scheduling (GABAS)
To effectively schedule applications to a wireless sensor

network, we propose a novel genetic algorithm called GABAS.
A genetic algorithm is a meta-heuristic solution that mimics
natural selection. It runs for generations until a termination
condition is met. Each generation consists of individuals,
which are candidate solutions for the problem. The actual
solution that an individual provides is called its chromosome.
The chromosome structure of an individual consists of one
or more genes, each of which is a list or array, usually. In
GABAS, the chromosome structure of individuals contains
three lists of integers identifying applications, sensor nodes,
and base stations. The first list is Application Genes which
represents the scheduling order of applications. Its size is
equal to the number of applications. The other two lists are
Sensor Genes and Base Station Genes, which represent the
proposed sensor nodes and base stations for the monitoring
points, respectively. The size of the lists is equal to the number
of monitoring points in the whole network area. Examples of
these lists are shown in Figure 2. In the figure, according to the
given sequence of Application Genes, the first application to be
admitted is Application 7, which is followed by Application 0,
and so on. Moreover, according to the Sensor Genes and Base
Station Genes, Monitoring Point 0 is assigned to Sensor 37
and Base Station 0, Monitoring Point 1 is assigned to Sensor
0 and Base Station 1, and so on.

7 0 2 1 5 6 9 3 8 4

37 0 12 4 23 4 10 8 0 7 1 79 213 82

0 1 17 11 4 12 0 3 2 4 0 15 29 6

Application Genes:

Sensor Genes:

Base Station Genes:

Fig. 2. Example genes.

1) Initial Population Creation: In genetic algorithms, in-
dividuals are created by crossover operation. Therefore, their
genes are determined by two individuals from the previous
generation. However, since there is no previous generation for
the first generation, we need to create the individuals of the
first generation randomly.

Since Application Genes of an individual determines the
admission order of the applications, we assign value i to the
ith application gene and shuffle the list. Therefore, initially,
the admission order is randomly determined.

For the individuals of the initial population, Sensor Genes
and Base Station Genes are determined together. For each
monitoring point, first, we randomly determine a sensor gene
among the sensor nodes that cover the monitoring point. After
that, we randomly select a base station gene among the base
stations to which the selected sensor node has a connection.

2) Fitness Calculation: Fitness calculation in a genetic
algorithm is designed and used to measure how close an
individual is to the optimum solution. The result of fitness
calculation is called fitness value. Equation 10 shows the
fitness calculation of our algorithm.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3317758

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on September 22,2023 at 06:15:48 UTC from IEEE Xplore.  Restrictions apply. 



6

fitness = −1×makespan (10)

Basically, GABAS aims to reduce the makespan, which
is the time instant when the last application finishes and
leaves the network. Since a higher fitness value means a better
individual (solution), we multiply the makespan with −1, since
a lower makespan value is a more desirable one.

Applications are admitted one by one according to their
order in Application Genes. If an application cannot be admit-
ted due to a shortage of resources, we wait for some already
admitted applications to finish and release the resources they
use. Then there will be sufficient resources available for the
waiting application.

3) Selection Operation: The selection operation is per-
formed to choose an individual to pair up for each individual
in the population of the current generation to create the next
generation. We use tournament selection for this process.
Basically, for each individual i, we create a sub-population
consisting of 5% of the whole population and select the
individual with the highest fitness score in this subpopulation.
We also experimented with the population sizes, 3%, 7%,
10%, and 15% of the whole population. We observed that the
population size of 5% yielded the best results among all the
tested options. Based on this finding, we decided to select the
5% population size. We pair the individual i with the selected
individual. Our selection operation is presented in Algorithm
1.

Algorithm 1 Selection Operation.
Require: The tournament population, tPop
Ensure: an individual chromosome

1: procedure SELECTION
2: bestScore← 0
3: bestInd← Null
4: for each Individual x in tPop do
5: newScore← fitness(x)
6: if bestScore ≤ newScore then
7: bestScore← newScore
8: bestInd← x

return bestInd

4) Crossover Operation: The crossover operation is exe-
cuted to create the population of the next generation. Individ-
uals that are paired up with the selection operation are used
in the crossover operation. The operation determines which
genes of the offspring come from which parent (a pair of
individuals). This operation is presented in Algorithm 2. We
assume the chance of either parent to pass its genes to the
offspring is 50%; therefore, we have uniformRate value in the
algorithm as 0.5. We also investigated the impact of different
selection rates, specifically focusing on rates of 0.6 and 0.7,
where the fitter parent was favored. The choice of a uniform
rate of 0.5 was determined based on the objective of increasing
diversity within the population, thereby avoiding convergence
to local optima. The Crossover operation of Sensor Genes and
Base Station Genes is realized together to avoid producing a
candidate solution that conflicts with the network structure.

Crossover of the Application Genes may result in some
applications appearing twice in the Application Genes of the
offspring. Therefore, we need a gene repairing algorithm to
fix this problem. For that, we first determine the applications
that appear twice and those that do not appear at all in the
offspring’s genes. Then, we put applications that are missing
into the places of second appearances of the applications that
are present twice in the genes.

Algorithm 2 Crossover Operation.
Require: Six chromosomes from two parents: A1, S1, BS1,

A2, S2, and BS2

Ensure: Three offspring chromosomes: Anew, Snew and
BSnew

1: procedure CROSSOVER
2: for x = 1 to |A| do
3: randomly create a value between 0 and 1, r;
4: if r ≤ uniformRate then
5: set gene x of Anew as gene x of A1

6: else
7: set gene x of Anew as gene x of A2

8: for x = 1 to |M| do
9: randomly create a value between 0 and 1, r;

10: if r ≤ uniformRate then
11: set gene x of Snew as gene x of S1

12: set gene x of BSnew as gene x of BS1

13: else
14: set gene x of Snew as gene x of S2

15: set gene x of BSnew as gene x of BS2
return A new individual with chromosomes: Anew,

Snew and BSnew

5) Mutation Operation: The mutation operation is applied
to all individuals. The operation is presented in Algorithm 3.
As in the crossover operation, mutation operation in Sensor
Genes and Base Station Genes is realized together to guarantee
a solution that abides the network structure. This operation is
executed for each gene with a chance of 5%.

For mutation in Application Genes, we swap the admission
order of the two randomly selected applications with a 5%
mutation rate. The selection of this specific mutation rate is
based on recommendations and findings from numerous works
in the literature, such as [39].

6) The Genetic Algorithm: Our overall genetic algorithm
is presented in Algorithm 4. The termination condition of
the algorithm is that no improvement is observed in the
fitness score of the best individual for seven generations.
The population size is 200. The fitness calculation for each
individual is −1 times the completion time of the last finished
application. All individuals have negative fitness scores since a
better solution means a shorter finish time. Elitism is enabled
in the algorithm, which means that the fittest individual of one
generation is carried over to the next generation.

Next, we describe our greedy algorithms for WSN applica-
tion scheduling.
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Algorithm 3 Mutation Operation.
Require: Three chromosomes: Aold, Sold and BSold

Ensure: Three mutated chromosomes: Anew, Snew and
BSnew

1: procedure MUTATION
2: Anew ← Aold;
3: randomly create a value between 0 and 1, r1;
4: if r1 ≤ mutationRate then
5: randomly create a value between 0 and |M |, x;
6: randomly create a value between 0 and |M |, y;
7: swap gene x and gene y of Anew

8: for x = 1 to |M| do
9: randomly create a value between 0 and 1, r2;

10: if r2 ≤ mutationRate then
11: randomly select a sensor node i from possible

sensor nodes, where 1 ≤ i ≤ |S|
12: randomly select a base station l from possible

base stations, where 1 ≤ l ≤ |B|
13: set gene x of Snew as gene i
14: set gene x of BSnew as gene l
15: else
16: set gene x of Snew as gene x of Sold

17: set gene x of BSnew as gene x of BSold
return Mutated individual with chromosomes: Anew,

Snew and BSnew

Algorithm 4 The Genetic Algorithm.
1: procedure THE GA

generate a population of POPSIZE number of
random individuals, POP ;

2: while THE TERMINATION CONDITION is not true
do

3: for each Individual x in POP do
4: calculate its fitness value f(x)

5: for each Individual x in POP do
6: Create a tournament population, tPop
7: y = SelectionOperation(tPop)
8: for each pair of parents, x and y do
9: z = CrossoverOperation(x, y)

10: for each offspring do
11: z = MutationOperation(z)
12: find the best individual among offsprings,

newBest
13: if newBest is better than the current best individ-

ual then
14: replace current best individual with newBest

return best individual

B. Greedy Algorithms

For scenarios where fast decisions are needed, we also
propose three simple greedy algorithms for scheduling appli-
cations onto a sensor network. All these greedy algorithms
use the Worst Fit approach in assigning monitoring points to
sensor nodes and base stations. The Worst Fit approach uses
the less utilized resources among the available ones to provide
load balancing. The difference between the three algorithms
is the criteria they use for ordering the applications to admit
to the network.

Our greedy algorithms consider only the waiting applica-
tions to determine their order. The applications that are already
admitted to the network are allowed to run until they are
complete. We do not preempt a running application.

Next, we give more information about each of our greedy
algorithms.

1) Least Monitoring Point First (LMPF): In LMPF algo-
rithm, we order the applications according to the number of
monitoring points they require to be sensed. Among waiting
applications, the ones with a smaller number of monitoring
points to be sensed are admitted earlier.

2) Least Maximum Sense Requirement First (LMSF): In
LMSF, the order of applications is determined according to
their sensing rate requirements. Applications are admitted in
an order in which they are sorted according to their maximum
sensing rate requirement from a monitoring point (among all
monitoring points requested to be sensed by an application).
The order is a non-decreasing one; therefore, a waiting ap-
plication with the least maximum requirement is placed first
onto the network.

3) Least Total Sense Requirement First (LTSF): In LTSF,
the application admission order is again determined according
to the sensing rate requirements. However, for an application,
instead of considering the maximum sensing rate requirement
from a monitoring point, we consider the sum of sensing rate
requirements for all its monitoring points.

VI. EXPERIMENTAL RESULTS

The network model in our simulations spans a 2D plane
of size 1000 m × 1000 m. Monitoring points, sensor nodes,
and base stations have their coordinates (x and y), which are
randomly determined and do not overlap. Therefore, at each
coordinate, there is at most one network element.

We assume that applications arriving at the network may
only require sensing rates on three major scales. Sense rate
requirements of applications for each scale are randomly
determined between the values shown in Table II. We ensure
that only one data type can be requested from a single
monitoring point. Our network constraints are shown in Table
III. Each application can request 1, 2, or 3 monitoring points
to be sensed. The communication range of a sensor node
is randomly selected between 200 m and 250 m, and the
range determines to which base stations the sensor node can
get connected. Similarly, the sensing range for each sensor
node is between 30 m and 50 m, and it is used to determine
which monitoring points can be sensed by the sensor node.
Additionally, the number of sensor nodes and base stations
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is 250 and 30, respectively. We observe that these values
are large enough to cover the whole network area and small
enough to let us understand the performance differences of the
compared algorithms. The number of applications is 1000, and
the number of monitoring points is 300. Applications arrive
at the network in 25 batches, and the batch number for each
application is randomly determined.

TABLE II
SENSING RATE REQUIREMENTS.

Data Type sensing rate
Data Type 0 5 - 20
Data Type 1 15 - 40
Data Type 2 25 - 60

TABLE III
NETWORK CONSTRAINTS.

Constraint Value
Monitoring Points per Application 1 - 3
Communication Range of Sensors 200 - 250
Sensing Range of Sensors 30 - 50

Our simulation experiments are realized to investigate how
certain parameters of the network affect the performance of
algorithms that are compared. Unless otherwise stated below,
the parameter values are set as explained above. For each
scenario, we provide makespan, waiting time, turnaround time,
and successful execution rate values averaged over 100 runs.
We divide our experiments into six scenarios as follows:

• Scenario 1 (Application Count): The number of applica-
tions starts at 500 and is incremented by 100 until 1500.

• Scenario 2 (Monitoring Point Count): We start with 50
monitoring points in the area and increment the total
number of monitoring points by 25 until 250.

• Scenario 3 (Monitoring Point Count per Application):
The number of monitoring points requested per appli-
cation is initially 1. It is incremented by 1 until 7.

• Scenario 4 (Communication Range): In the beginning,
each sensor node has a 50 m communication range. We
increase the communication range by 50 m until 250 m.

• Scenario 5 (Sensing Range): Similar to Scenario 4, each
sensor node starts with a 30 m sensing range, and the
sensing range is incremented by 5 m until 50 m.

• Scenario 6 (Batch Count): We experiment with the fol-
lowing values for the number of batches (batch count): 1,
2, 5, 10, 20 and 25. Applications are equally distributed
into batches. The number of applications in each batch
(batch size) is the number of applications divided by the
batch count.

We use four different metrics to provide a comparative
evaluation of our proposed algorithms.

• Average Makespan: Average of the total execution time
of applications in 100 runs.

• Average Waiting Time: The waiting time of an application
is the time between its arrival to the network and its
admission. We report the average of the waiting times
of all applications admitted.
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Fig. 3. Comparison of algorithms in terms of average makespan in Scenario
1.

• Average Turnaround Time: The turnaround time of an
application is the time between its arrival time to the
network and its finish time. We report the turnaround
time averaged over all applications admitted.

• Average Successful Execution Rate: This metric is the
number of applications that could finish before their
deadlines. For each application, a deadline value is de-
termined. The deadline value for an application is set to
be the sum of its arrival time, its required running time
(application duration), and a random value between 100
and 200.

We compare our proposed algorithms with well-known
standard task scheduling algorithms First Come First Served
(FCFS) and Shortest Job First (SJF). For FCFS and SJF
algorithms, we also used the Worst Fit approach to determine
which sensor node and the base station are assigned to
each monitoring point. In the figures provided below, both
shared (GABAS-S) and unshared (GABAS-U) approaches
for GABAS are reported. For other algorithms, only shared
approach results are provided to improve the readability since
their performance with the shared approach is always better
than the unshared approach.

In Scenario 1, we investigate how the number of applica-
tions affects the performance of the algorithms. Figure 3 shows
the average makespan. GABAS-S has the best performance
compared to others. GABAS-U is the worst for the small
number of applications. However, with the increasing number
of applications, its performance becomes better than the greedy
ones. Our LMPF algorithm comes third, while LMSF and
LTSF have similar performance as FCFS and SJF.

Figures 4, 5, and 6 present the average waiting time, average
turnaround time, and average successful execution rate in the
first scenario, respectively. FCFS and SJF have the worst
performance for all three metrics. GABAS-S is superior to all
other algorithms. LTSF comes second, and LMSF comes third
with a close performance to LTSF. In terms of average waiting
and turnaround times, GABAS-U and LMPF have similar
performance, but in terms of average successful execution rate,
GABAS-U beats LMPF.
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Fig. 4. Comparison of algorithms in terms of average waiting time in Scenario
1.
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Fig. 5. Comparison of algorithms in terms of average turnaround time in
Scenario 1.
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Fig. 6. Comparison of algorithms in terms of successful execution rate in
Scenario 1.
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Fig. 7. Comparison of algorithms in terms of average makespan in Scenario
2.
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Fig. 8. Comparison of algorithms in terms of average waiting time in Scenario
2.

In Scenario 2, the simulations are done to observe the effect
of the number of monitoring points on the performance of
the algorithms. Figure 7 presents the average makespan for
Scenario 2. GABAS-S is clearly superior to other algorithms,
while GABAS-U comes second. LMPF again has the best
performance among greedy algorithms. SJF generally has
the worst performance of all. The performance gap between
GABAS and others diminishes as the number of monitoring
points in the region increases because it becomes easier to
admit applications.

Average waiting time, average turnaround time, and average
successful execution rate results of Scenario 2 are shown
in Figures 8, 9, and 10, respectively. As in the previous
scenario, FCFS and SJF have the worst performance among
all algorithms, while GABAS-S has the best. The results
for GABAS-U, LMSF, and LTSF are very close, but LMPF
performs slightly worse among these algorithms.

In Scenario 3, we aim to see the impact of the number of
monitoring point requests per application on the algorithms’
performance. Figure 11 presents the results of this scenario
in terms of makespan. GABAS-S still has the best results.
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Fig. 9. Comparison of algorithms in terms of average turnaround time in
Scenario 2.
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Fig. 10. Comparison of algorithms in terms of successful execution rate in
Scenario 2.

After five requests per application GABAS-U has the next best
performance. Greedy approaches have very similar results. SJF
is the slightly worst of all. In this scenario, LMPF behaves like
FCFS since all applications have an equal number of requests.
GABAS-S performs better with a higher number of requests
per application compared to the greedy algorithms.

Figures 12, 13 and 14 display the results of average waiting
time, turnaround time and successful execution rate, respec-
tively. GABAS-S is the superior one among all. LMPF and
FCFS have the worst performance for these criteria, while SJF
is slightly better than them. GABAS-U has the second-best
performance, while LMSF and LTSF produce the best results
of all greedy algorithms.

In Scenario 4, we evaluate the effect of change in the com-
munication range of the sensor nodes on the results. Figure 15
presents the algorithms’ makespan results. GABAS-S has the
lowest makespan value, which makes it the best method among
all compared algorithms. In terms of makespan, GABAS-U has
the second-best performance. Greedy algorithms have similar
results between 150-m and 250-m communication ranges. Be-
tween the 50-m and 150-m ranges, the performance of LMPF
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Fig. 11. Comparison of algorithms in terms of average makespan in Scenario
3.

1 2 3 4 5 6 7

Monitoring point per application

0

500

1000

1500

2000

2500

3000

3500

4000

A
v
e
ra

g
e
 w

a
it
in

g
 t
im

e

GABAS-S

GABAS-U

FCFS

LMPF

LMSF

LTSF

SJF

Fig. 12. Comparison of algorithms in terms of average waiting time in
Scenario 3.
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Fig. 13. Comparison of algorithms in terms of average turnaround time in
Scenario 3.
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Fig. 14. Comparison of algorithms in terms of successful execution rate in
Scenario 3.
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Fig. 15. Comparison of algorithms in terms of average makespan in Scenario
4.

is distinguishable from the other four algorithms. SJF has
the worst performance, especially with larger communication
ranges.

Average waiting and turnaround time for applications, and
average successful execution rate are displayed in Figures 16,
17 and 18, respectively. GABAS-S again has the superior
performance. FCFS has the worst turnaround and waiting
times as well as the least successful execution rate. GABAS-U,
LTSF, and LMSF perform close to each other.

In Scenario 5, we investigate the impact of the sensing
range of sensor nodes on the results. Makespan results for
this scenario are shown in Figure 19. We can see that the
sensing range does not affect the results drastically. With
GABAS-S, the total execution time of applications is much
smaller compared to other algorithms. GABAS-U produces
the next best results, while the performance results of the
greedy algorithms are close to each other. Again, LMPF has
the best performance among all greedy algorithms in terms of
makespan.

Average waiting time, turnaround time and successful ex-
ecution rate results for this scenario are presented in Figures
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Fig. 16. Comparison of algorithms in terms of average waiting time in
Scenario 4.
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Fig. 17. Comparison of algorithms in terms of average turnaround time in
Scenario 4.
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Fig. 18. Comparison of algorithms in terms of successful execution rate in
Scenario 4.
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Fig. 19. Comparison of algorithms in terms of average makespan in Scenario
5.
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Fig. 20. Comparison of algorithms in terms of average waiting time in
Scenario 5.

20, 21 and 22, respectively. Similarly, GABAS-S has the best
performance, and FCFS has the worst. SJF is slightly better
than FCFS but still behind the proposed greedy methods.
LTSF comes second. GABAS-U, LMPF, and LMSF have close
results in terms of waiting time; however, GABAS-U and
LMPF perform slightly worse in terms of turnaround time and
successful execution rate, respectively.

In Scenario 6, we observe how the number of batches
affects the performance of the algorithms. Figure 23 shows
the average makespan respectively in this scenario. In general,
different batch counts do not affect much the performance of
the algorithms. GABAS-S, again, has the best performance,
which is followed by GABAS-U. Greedy methods have very
similar performance, whereas LMPF is slightly better than the
others.

Regarding average waiting time, turnaround time, and suc-
cessful execution rate, batch count again does not affect the
results. Similar to the other scenarios, GABAS-S has the
best performance. GABAS-U is slightly better than greedy
methods. Among the greedy methods, LTSF performs the
best which is followed by LMSF and LTSF. SJF and FCFS
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Fig. 21. Comparison of algorithms in terms of average turnaround time in
Scenario 5.
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Fig. 22. Comparison of algorithms in terms of successful execution rate in
Scenario 5.

have the worst results. The waiting time, turnaround time, and
successful execution rate results of this scenario are shown in
Figures 24, 25, and 26, respectively.

In order to assess the reliability and precision of the ob-
tained experimental results, we calculated confidence intervals
for each metric in each scenario. These confidence intervals
provide a range of values within which we can be reasonably
confident that the true population parameter lies. We found
that the largest confidence interval, with 95% confidence level,
across all metrics and scenarios, was less than 5% of the
reported result for each respective metric. This implies that the
uncertainty associated with the estimated performance results
is relatively small, suggesting a high level of confidence in the
reported outcomes. To provide further clarity and transparency,
we have included the confidence intervals of the results for the
average makespan specifically for Scenario 1 in Table IV.

We also compared our algorithm GABAS with another
genetic scheduling algorithm called HGECS that has recently
appeared in the literature [7]. We used Scenario 3 for this
comparison, as the number of monitoring point requests per
application is the parameter that has the most impact on
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TABLE IV
CONFIDENCE INTERVALS OF MAKESPAN RESULTS IN SCENARIO 1.

GABAS-S GABAS-U LMPF LMSF LTSF SJF FCFS
App: 500 726.12 ± 18.38 954.71 ± 18.96 916.34 ± 13.56 892.81 ± 13.48 876.70 ± 13.54 894.85 ± 15.76 984.30 ± 14.51
App: 600 776.72 ± 19.23 1093.46 ± 18.15 1137.91 ± 10.14 1204.38 ± 14.75 1135.52 ± 12.02 1149.13 ± 16.36 1198.35 ± 13.61
App: 700 831.79 ± 24.71 1269.98 ± 27.75 1383.53 ± 11.80 1321.85 ± 9.28 1286.72 ± 10.11 1379.63 ± 12.57 1391.36 ± 14.45
App: 800 1057.56 ± 26.25 1284.40 ± 27.58 1450.29 ± 15.06 1484.72 ± 14.56 1481.26 ± 15.99 1525.17 ± 16.31 1467.62 ± 15.06
App: 900 1249.70 ± 37.89 1530.52 ± 35.67 1707.92 ± 21.00 1787.09 ± 12.34 1715.33 ± 15.09 1765.30 ± 17.60 1787.24 ± 20.30
App: 1000 1254.53 ± 31.14 1677.42 ± 38.07 1887.55 ± 20.56 1880.91 ± 12.82 1901.28 ± 25.54 1930.83 ± 28.49 2003.51 ± 17.04
App: 1100 1430.48 ± 26.83 1834.62 ± 42.02 1972.91 ± 24.53 2070.88 ± 24.53 2027.03 ± 13.87 2052.95 ± 22.60 2063.37 ± 18.12
App: 1200 1624.97 ± 15.94 1946.49 ± 12.30 2230.94 ± 15.78 2279.41 ± 21.45 2239.92 ± 13.17 2358.06 ± 16.23 2267.20 ± 16.65
App: 1300 1667.90 ± 13.08 2085.96 ± 37.78 2379.61 ± 17.99 2393.49 ± 14.41 2507.24 ± 17.19 2523.72 ± 29.83 2489.13 ± 12.69
App: 1400 1908.12 ± 19.16 2193.51 ± 29.29 2553.48 ± 15.09 2683.60 ± 14.82 2647.14 ± 16.43 2637.51 ± 20.72 2610.17 ± 17.03
App: 1500 2011.04 ± 26.01 2364.72 ± 39.31 2739.50 ± 31.10 2761.27 ± 34.97 2728.42 ± 33.11 2810.03 ± 39.34 2906.92 ± 33.72
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Fig. 23. Comparison of algorithms in terms of average makespan in Scenario
6.
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Fig. 24. Comparison of algorithms in terms of average waiting time in
Scenario 6.

the performance of the algorithms among all our scenarios.
The comparison metrics used are makespan, average waiting
time (AWT), average turnaround time (ATT), and successful
execution rate (SER). Only the shared-data approach was
employed in these experiments, as this approach was shown
to perform better in general than the unshared-data approach.
The performance results obtained are shown in Figures 27,
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Fig. 25. Comparison of algorithms in terms of average turnaround time in
Scenario 6.
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Fig. 26. Comparison of algorithms in terms of successful execution rate in
Scenario 6.

28, 29, and 30. The results presented are the average of
100 independent runs of the experiments. A clear trend
emerges after examining the obtained results, indicating that
the GABAS algorithm outperforms the HGECS algorithm
across all four comparison metrics. This finding suggests that
GABAS exhibits superior performance regarding these specific
evaluation criteria.
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Fig. 27. Comparison of GABAS and HGECS in terms of average makespan
in Scenario 3.
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Fig. 28. Comparison of GABAS and HGECS in terms of average waiting
time in Scenario 3.

Confidence intervals at a 95% confidence level were ob-
tained for the performance results of the GABAS and HGECS
algorithms. To visually represent these confidence intervals,
we incorporated error bars in the corresponding figures. By
incorporating confidence intervals and error bars, we aim
to provide a more comprehensive understanding of the per-
formance results obtained from the GABAS and HGECS
algorithms. This allows for a more accurate assessment of their
effectiveness and provides insights into the level of confidence
we can have in these results.

We also measured the running times of the algorithms. A
selected set of results are provided in Table V. Our GABAS-S
and GABAS-U algorithms are the slowest due to the nature
of the genetic algorithms. GABAS-S is faster than GABAS-U
since, with the shared-data approach, it is easier to place more
applications at the same time; therefore, the total computation
time is less compared to the unshared-data approach. Our
greedy algorithms are much faster, as expected, compared
to GABAS. Hence they are useful when fast decisions are
required. FCFS is the fastest among all algorithms because it
does not reorder the applications in the arrival queue.
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Fig. 29. Comparison of GABAS and HGECS in terms of average turnaround
time in Scenario 3.
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Fig. 30. Comparison of GABAS and HGECS in terms of successful execution
rate in Scenario 3.

In summary, from all our experimental results, we can draw
the following conclusions:

• GABAS-S is clearly superior to all the algorithms used
for comparison, including the standard scheduling meth-
ods (FCGS, SJF), greedy algorithms (LMPF, LMSF,
LTSF) and a genetic scheduling algorithm (HGECS). It
outperforms GABAS-U as well, and therefore we can
conclude that the shared-data approach with multiplexed
sensing is very effective in increasing the performance of
the scheduling algorithms for various metrics.

• GABAS-U generally performs better than the greedy
methods, even if it uses the unshared-data approach,
while all the greedy methods use the shared-data ap-
proach. Even in the experiments measuring waiting time,
turnaround time, and successful execution rate, GABAS-
U has a better performance compared to greedy algo-
rithms, especially when network resources are scarcer,
even though it does not target these metrics directly. This
result shows that using meta-heuristic algorithms is very
effective in the application scheduling problem for WSNs.
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TABLE V
RUNNING TIMES OF THE ALGORITHMS IN MILLISECONDS.

Scenario GABAS-S GABAS-U LMPF LMSF LTSF FCFS SJF
Scenario1 #A: 500 204 286 38 24 25 3 46
Scenario1 #A: 1000 352 524 105 63 70 2 90
Scenario1 #A: 1500 2588 3094 378 253 282 6 378
Scenario2 #MP: 50 377 899 93 67 71 3 103
Scenario2 #MP: 100 326 574 102 69 75 2 98
Scenario2 #MP: 250 229 289 73 51 64 1 92
Scenario3 #MP/A: 1 335 562 56 32 31 3 67
Scenario3 #MP/A: 3 1051 1508 362 256 245 3 413
Scenario3 #MP/A: 5 2254 5023 886 740 752 7 974

TABLE VI
SUMMARY OF RESULTS.

GABAS-S Performs better than other algorithms in terms
of all four metrics

GABAS-U Performs better than other algorithms (except
GABAS-S) in terms of all four metrics

LMPF Performs better than LMSF, LTSF in terms of
makespan

LMSF, LTSF
Performs better than LMPF in terms of
waiting time, turnaround time, successful
execution rate

FCFS, SJF Performs worse than other algorithms in
terms of all four metrics

• In terms of makespan, LMPF is the best greedy algorithm
among the compared algorithms.

• In terms of waiting time, turnaround time, and successful
execution rate, LMSF and LTSF have the best perfor-
mance among greedy and standard algorithms.

• All proposed algorithms perform better than the standard
FCFS and SJF algorithms.

A summary of experimental results is provided in Table VI.

VII. CONCLUSION

In this paper, we studied the application scheduling problem
in wireless sensor networks. First, we proposed a shared-data
approach that provides an opportunity to perform multiplexed
sensing of monitoring points for multiple applications that can
share data, and in this way to reduce sensing and communi-
cation resource usage. Then, we proposed a genetic algorithm
called GABAS, for scheduling applications effectively. We
also proposed three greedy algorithms, LMPF, LMSF, and
LTSF, that can be used for scenarios where fast decisions
are needed. All our proposed algorithms decide both on the
assignments of sensor nodes and base stations to monitoring
points and the admission order of the waiting applications.
We compared our proposed algorithms with each other and
the well-known task scheduling algorithms, First Come First
Served and Shortest Job First, in terms of makespan, waiting
time, turnaround time, and successful execution rate by per-
forming extensive simulation experiments. We observed that
GABAS outperforms all other algorithms in all comparison
metrics. Among other algorithms, LMPF provides the best
results in terms of makespan, and LMSF and LTSF provide the
best performance in terms of waiting time, turnaround time,
and successful execution rate. In addition to the evaluation
of the proposed GABAS algorithm, we conducted a compar-
ative analysis of it against another genetic algorithm-based

scheduling method called HGECS [7]. Upon comparing the
performance of GABAS and HGECS using the designated
metrics, the results consistently demonstrated that GABAS
outperforms HGECS in all four metrics.

APPENDIX A
REDUCTION OF APPLICATION SCHEDULING TO MULTIWAY

NUMBER PARTITIONING

A. Multiway Number Partitioning

Multiway number partitioning (MNP) is the problem of
partitioning a multi-set of numbers into k different subsets in
a way that sums of numbers in each subset are as similar as
possible. It is a generalized version of the partitioning problem
where k = 2. Partitioning is proven to be NP-hard [38].

B. Reduction to Application Scheduling

We assume that there are n applications waiting to be
deployed. Each application requires a single monitoring point
to be sensed with a unit sensing rate. Applications need to be
deployed to the network for a certain amount of time which
is denoted by tj for application j. There are k sensor nodes
and each sensor node is connected to a single base station.
Each sensor node and the base station have unit sensing and
processing capacity, respectively. Any sensor node to base
station connection has unit bandwidth. Both transmission and
processing coefficients are equal to 1. Each monitoring point
is required to be sensed by a single application.

In MNP, we have a set S of n numbers a1, a2, .., an. The
set is to be partitioned into k subsets such that the maximum
subset-sum is minimized. Transformation is done as follows:

Each number in the MNP set is the running time require-
ment of an application. In other words, aj = tj , where tj is
the running time requirement of application j. Each partition
corresponds to a sensor node and base station pair that will
take part in sensing and processing the data of the applications
assigned to them. If aj is in partition i, then the sensing and
processing requirement of the application j for a monitoring
point is handled by the sensor node and base station pair i. The
sum of numbers assigned to a partition represents the amount
of time during which the corresponding sensor node and base
station pair will be active, i.e., sensing and processing for the
applications assigned to them. The maximum sum among the
sums for all partitions is equal to the maximum active time
of a sensor node and base station pair, which is equal to the
finish time of the last application. Therefore, minimizing the
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maximum sum is equal to minimizing tfmax in application
scheduling.

APPENDIX B
COMPLEXITY ANALYSIS OF GABAS

In this subsection, we provide a complexity analysis for the
GABAS algorithm. In this analysis, we denote the number
of applications as a and the number of monitoring points as
m. In creating the initial population, for each individual, the
creation of application genes involves creating and shuffling
the list, both of which take O(a) time. Creating the individual’s
sensor and base station genes takes 0(m) time each. Therefore,
the complexity of the total time for initial population creation
is O(n ∗ (2m+ a)), where n is the size of the population.

In fitness calculation, we simulate the placement of the
applications to the network. Theoretically, each application
can have up to m monitoring point requests. Therefore, the
time complexity for fitness calculation is O(ma).

For the selection operation of each individual, if we assume
that the tournament population has the size of t, creating
the tournament population and selecting the best one in the
population takes O(t) time.

A single crossover operation of GABAS is basically the
creation of three lists: One with the size a and two with the size
m. The time complexity of creating these genes is O(2m+a).
In the crossover of application genes, at most half of the genes
may repeat and require gene repairing, which takes O(a) time.
As a result, a crossover operation takes O(2m+ a)+O(a) =
O(m+ a) time.

A single mutation operation includes at most one swap
operation in application genes and up to m reassignment of
monitoring points to sensor nodes and base stations. Swapping
takes O(1) time. Selecting a random sensor node and base
station pair for each monitoring point also takes O(1) time.
In total, a mutation operation has O(1)+O(m) = O(m) time
complexity.

As a result of all these analyses, for each individual, we have
the time complexity of O(ma)+O(t)+O(m+a)+O(m) =
O(ma) since the dominant factor is O(ma). For the whole
algorithm, if the number of generations is g, then the time
complexity is O(gnma).
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