
R E S E A R CH AR T I C L E

Explicit diversification of search results across multiple
dimensions for educational search

Sevgi Yigit-Sert1 | Ismail Sengor Altingovde1 | Craig Macdonald2 |

Iadh Ounis2 | Özgür Ulusoy3

1Computer Engineering Department,
Middle East Technical University,
Ankara, Turkey
2School of Computing Science, University
of Glasgow, Glasgow, UK
3Computer Engineering Department,
Bilkent University, Ankara, Turkey

Correspondence
Ismail Sengor Altingovde, Computer
Engineering Department, Middle East
Technical University, 06800, Ankara,
Turkey.
Email: altingovde@ceng.metu.edu.tr

Funding information
Royal Society, Grant/Award Number:
NI140231; The Scientific and
Technological Research Council of Turkey
(TÜB_ITAK), Grant/Award Number:
117E861; Türkiye Bilimler Akademisi,
Grant/Award Number: Distinguished
Young Scientist Award 2016; Türkiye
Bilimsel ve Teknolojik Araştirma Kurumu,
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Abstract

Making use of search systems to foster learning is an emerging research trend

known as search as learning. Earlier works identified result diversification as a

useful technique to support learning-oriented search, since diversification

ensures a comprehensive coverage of various aspects of the queried topic in

the result list. Inspired by this finding, first we define a new research problem,

multidimensional result diversification, in the context of educational search.

We argue that in a search engine for the education domain, it is necessary to

diversify results across multiple dimensions, that is, not only for the topical

aspects covered by the retrieved documents, but also for other dimensions,

such as the type of the document (e.g., text, video, etc.) or its intellectual level

(say, for beginners/experts). Second, we propose a framework that extends the

probabilistic and supervised diversification methods to take into account the

coverage of such multiple dimensions. We demonstrate its effectiveness upon

a newly developed test collection based on a real-life educational search

engine. Thorough experiments based on gathered relevance annotations reveal

that the proposed framework outperforms the baseline by up to 2.4%. An alter-

native evaluation utilizing user clicks also yields improvements of up to 2%

w.r.t. various metrics.

1 | INTRODUCTION

Exploiting search as a process for learning is an emerging
and exciting research direction (a.k.a. search as learning),
which has already attracted interest from various fields,
such as computer, psychology and learning sciences
(Collins-Thompson, Hansen, & Hauff, 2017; Hoppe et al.,
2018). A particular direction in recent studies, especially
from the perspective of information retrieval research,
addressed how general-purpose search engines can be
exploited and enriched to satisfy the users' possible learn-
ing goals. To this end, earlier works attempted to re-rank
the results of a search engine by applying various tech-
niques, most notably, personalization or diversification.

For instance, some works (e.g., Collins-Thompson, Ben-
nett, White, de la Chica, & Sontag, 2011) personalized
the displayed ranking by incorporating the reading diffi-
culty of documents. In contrast, Raman, Bennett, and
Collins-Thompson (2014) proposed a method to diversify
the retrieved document result set in terms of the different
topical aspects for the so-called exploratory queries.

While the aforementioned previous works paved the
way for improving educational search, they essentially
focused on leveraging a single-dimension, for example,
either the topical aspect or the reading difficulty, during
the re-ranking of query results. Instead, in this article, we
argue that a search activity for learning can indeed bene-
fit from diversifying the result list—as also suggested in
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an earlier study (Syed & Collins-Thompson, 2017)—yet
we also argue that the diversification of search results
should in contrast be provided for multiple dimensions.
That is, the result list should not only be diversified for
the topical aspects covered by the retrieved documents,
but also for other dimensions, such as the type of the doc-
ument (e.g., text, video, animation, or even a test to assess
what has been learnt) or its intellectual level (say, for
beginners or experts). Our stand-point is to address a
need that has also been recognized by others. For
instance, Hoppe et al. (2018) identified the “lack of con-
sideration for multimodal resources” as a major chal-
lenge in the search as learning paradigm. Hence, we
propose diversification applied to multiple dimensions to
obtain a re-ranking of results that can complement learn-
ing via search in multiple ways (e.g., presentation of
information in alternative forms and levels), beyond the
sole coverage of the topical variety.

Let us assume an illustrative example query,
“triangle,” which may have several underlying intents
(i.e., topical aspects) such as: “types of triangle,” “triangle
inequalities,” “triangle trigonometry.” Furthermore, for
the type dimension, each document may be related to
several possible aspects (such as lecture, exercise, video,
etc.), and may target one or more K-12 levels (as aspects)
in the educational level dimension. Thus, to compose a
result set for this “triangle” query, which would satisfy
many users' learning needs, we need to diversify the
result set with respect to each possible dimension
(e.g., topicality, type of documents, education level, etc.).

We envision that, for general-purpose search
engines, it may not be necessarily optimal to consider
diversification over all the aforementioned dimensions
for every query1 since (a) it will interfere with many
other signals for ranking and might cause a quality
reduction for the noneducational queries, and (b) the
knowledge of all the dimensions and their semantics
may not be readily available. Therefore, different from
most existing works, rather than a general-purpose sea-
rch system, our work focuses on an educational search
engine, where both the collection (i.e., educational
materials) and the users of the system have a richer set
of features that could be naturally exploited for search
towards learning. Consequently, we examine the multi-
dimensional diversification of search results in this con-
text. We employ the data from a real-life educational
search engine embedded into a commercial web-based
educational framework for K-12 level students in Tur-
key with around 1.2 M registered users. Note that while
the education level dimension typically covers the K-12
aspects range from 1 to 12, our used query log sample
covers only the range from 4 to 8. Hence, our results
and discussions in the remainder of the manuscript

refer only to education levels of 4 to 8. The contribu-
tions of this work are four-fold:

1. We define a new result diversification problem that
addresses the typical requirements of a search as
learning scenario, that is, where there are a wide
range of dimensions the search engine needs to con-
sider when returning results that meet the learning
goals (i.e., providing comprehensive information on
the topic in many forms (e.g., various types of docu-
ments) and at many education levels (e.g., from level
4 to 8)).

2. We provide a new framework for diversification,
which extends the state-of-the-art diversification
methods (namely, xQuAD [Santos, Macdonald, &
Ounis, 2010]; a variant of PM2 [Aktolga, 2014] as well
as a supervised approach, R-LTR [Zhu, Lan, Guo,
Cheng, & Niu, 2014]), to handle multiple dimensions,
and provide tailored instantiations for the framework.
Specifically, we enrich each diversification method so
that while an aspect's coverage in the final ranking is
computed, the importance of the dimension which
this aspect belongs to is also taken into account. To
illustrate our motivation for computing dimension
importance values, let an example query be “triangle,”
and assume that the candidate set has documents
from all the types available in the system but they all
pertain to the education level 4. In this case, the diver-
sification algorithm should focus on diversifying docu-
ments w.r.t. The type dimension, since there are
several aspects to cover there, but should not attempt
to diversify for the education level dimension. Hence,
while setting the importance values for certain dimen-
sions adaptively (i.e., per query), we consider the vari-
ety of the aspect values observed in the candidate set.

3. We describe a new rich dataset2 tailored for the evalu-
ation of diversification algorithms with multiple
dimensions, built from user interactions with an exis-
ting real-life educational search engine.

4. We carry out an extensive evaluation of our work
using a realistic experimental set-up, which is based
on query instances and clicks in addition to TREC-
style relevance annotations. Our experiments demon-
strate the effectiveness of our proposed approach in
comparison to strong baselines, showing improve-
ments of 2.6%, 1.4%, and 2.2% for the diversification
metrics ERR-IA, α-nDCG and P-IA, respectively; and
an improvement of 1.4% for the traditional P@2 met-
ric. Considering the positive impact of diversified
result presentation on the learning outcomes
(e.g., knowledge gains of users) as shown in Collins-
Thompson, Rieh, Haynes, and Syed (2016) and Syed
and Collins-Thompson (2017), these improvements in
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diversification performance are likely to translate into
learning gains in the educational search context,
which is the ultimate goal of our present
investigation.

The rest of the article is organized as follows. First,
we review the related literature. Next, the Diversification
across Dimensions section describes our models for diver-
sification across multiple dimensions as adaptations of
the xQuAD, PM2 and R-LTR methods, and provides par-
ticular instantiations of these models in the context of an
educational search engine. The following two sections,
Dataset and Experimental Evaluations, present the sea-
rch evaluation dataset developed for this work and the
evaluation results, respectively. The last section provides
concluding remarks.

2 | RELATED WORK

We first review related work in the search as learning
field. Then, we position our work in the search result
diversification literature.

2.1 | Search as learning

Enhanced ranking in general-purpose and educational
search engines for learning goals. A particular existing
direction to enhance the learning experience via search
involves the re-ranking of results from general-purpose
search engines. Collins-Thompson et al. (2011) proposed
to personalize Web search results by re-ranking them
with respect to the reading difficulty. More recently,
Yilmaz, Ozcan, Altingovde, and Ulusoy (2019) proposed
an approach in which they trained classifiers using vari-
ous educational resources to predict the course category
of question-like queries, and then employed these predic-
tions as a signal for re-ranking the initial query results.
Both works customized the final result list w.r.t. a single
feature of a given user (i.e., reading level) or query
(i.e., course category) in a general-purpose search engine.
Instead, our work in this manuscript leverages diversifi-
cation in multiple dimensions as the key methodology to
obtain a re-ranking of the results for learning purposes.

Two particular studies employed diversification in a
learning-related context. Raman et al. (2014) addressed
exploratory Web search queries and the so-called intrinsi-
cally diverse sessions, where users aim to learn about a
topic by seeking information about its multiple aspects.
To address such queries, they introduced a greedy diver-
sification algorithm that re-ranks the initially retrieved
results. Syed and Collins-Thompson (2017) applied the

latter diversification algorithm to enhance the educa-
tional benefits in the vocabulary learning task. Contrary
to these studies, we employ a more specific educational
search setup that enables applying diversification across
multiple dimensions, and not only for a single dimension
(i.e., topical aspects).

The aforementioned works aimed to improve general-
purpose search engines to support search for learning.
However, an alternative and complementary research
direction is to focus on specialized educational/learning
settings that also involve search (referred to as educa-
tional search engines here). For instance, Hoppe et al.
(2018) mentioned the TIB's web portal,3 which is dedi-
cated to scientific videos search. Usta, Altingövde, Vid-
inli, Ozcan, and Ulusoy (2014) presented an analysis of
an educational search engine that works on a proprietary
education platform for K-12 students. In this work, we
also focus on an educational search engine setup, as it is
a natural testbed for our proposed diversification
approach across multiple dimensions.

Evaluating the impact of search on learning. One par-
ticular strategy to evaluate the impact of a search session
on gains in the users' knowledge about a given topic is to
conduct pre- and post-assessments via tests, summaries,
or user studies (e.g., Collins-Thompson et al., 2016; Max-
well, Azzopardi, & Moshfeghi, 2019; Moraes, Putra, &
Hauff, 2018; Vanopstal, Stichele, Laureys, & Buysschaert,
2012). In our work, since we exploit real search logs from
an educational search engine while not having the possi-
bility to interact with the actual users, we rely on tradi-
tional metrics computed over the re-ranked results using
the proposed multidimensional diversification frame-
work. A similar evaluation approach has been adopted in
the aforementioned works of (Collins-Thompson et al.,
2011; Raman et al., 2014). Furthermore, Collins-
Thompson et al. (2016) have already shown that an
intrinsically diverse presentation of search results yields
the highest percentage of users with knowledge gains;
and hence, our improvements in terms of the traditional
and click-based diversification metrics have a high likeli-
hood of improving users' learning in an educational sea-
rch context.

2.2 | Diversification of search results

In the literature, diversification approaches are essen-
tially applied to ambiguous queries (such as the query
“jaguar,” which could be seeking information for either
the aspect “animal” or “car”) where the user's search
intent cannot be clearly determined.

Diversification methods are characterized as either
implicit or explicit, which differ in how the diversification

YIGIT-SERT ET AL. 317



is conducted. In particular, implicit approaches
(e.g., Carpineto, Mizzaro, Romano, & Snidero, 2009; He,
Meij, & de Rijke, 2011; Liang, Ren, & de Rijke, 2014; Xia
et al., 2017; Zhu et al., 2014) only inspect the attributes of
each document itself, usually their contents. In contrast,
explicit approaches (such as xQuAD [Santos et al., 2010],
PM2 [Dang & Croft, 2012] and aggregation-based
methods [Ozdemiray & Altingovde, 2015], DSSA [Jiang
et al., 2018]) use an external representation
(e.g., common query reformulations) to infer the (topical)
aspects of queries. In this work, we extend such explicit
approaches (namely, xQuAD and PM2) (as well as a more
recent supervised implicit approach [R-LTR]) to take into
account the multiple dimensions that naturally arise in
an educational search setting.

There are three approaches in the literature, which are
closest to ours in terms of their diversification methodol-
ogy. First, Hu, Dou, Wang, Sakai, and Wen (2015) intro-
duced the notion of hierarchical intents of topicality. Our
work goes further by considering multiple orthogonal
dimensions of diversification rather than a strict hierarchy,
and goes beyond topicality, to encompass other dimensions
that can be estimated (e.g., readability) or derived from doc-
ument metadata attributes (e.g., document type). Second,
Aktolga (2014)[Ch.5] investigated adaptations to PM2 that
could achieve a mixed diversification of both topical and
nontopical (implicit) dimensions, namely, the sentiments
and dates expressed in the documents. Finally, Dou, Hu,
Chen, Song, and Wen (2011) proposed a multidimensional
topic richness model in a similar fashion to xQuAD for web
search diversification. They considered each dimension as
a data source (such as anchor texts, query logs, web sites,
etc.) from which different aspects can be mined. Hu, Dou,
Wang, and Wen (2015) extended the latter approach with
the aspects derived from an additional data source, namely,
the lists appearing in the candidate documents. In contrast
to the latter approaches, our experiments focus on dimen-
sions of diversification that are appropriate to an educa-
tional search engine. Furthermore, we also extend R-LTR,
an implicit diversification method, to exploit explicit
aspects for multiple dimensions. To the best of our knowl-
edge, R-LTR has been used with explicit aspects only in
(Y. Wang, Luo, & Yu, 2016), but again, not for handling
dimensions in the context of educational search. Last but
not the least, none of these approaches employ a click-
based evaluation setup as we do in this manuscript.

Finally, diversification has been recently studied in
recommendation systems. For instance, Noia, Rosati,
Tomeo, and Sciascio (2017) applied diversification by tak-
ing multiple attributes (i.e., genre, year, actor etc.) of
items into account. Instead, our work aims to improve
search experience in an educational setup.

3 | DIVERSIFICATION ACROSS
DIMENSIONS

We now describe the xQuAD (Santos et al., 2010), PM2
(Dang & Croft, 2012) and R-LTR (Zhu et al., 2014) diver-
sification approaches, and show how to adapt them to
consider multiple dimensions. Our work builds on
xQuAD because: (a) it has been found as the best-
performing diversification approach in all TREC cam-
paigns between 2009–2012, and (b) it has only one
parameter (namely, λ), which requires tuning. We also
choose PM2 for similar reasons, as it has been shown to
be as competitive as xQuAD and again has a single
parameter, λ. Finally, we employ R-LTR as a representa-
tive for the supervised diversification methods.

3.1 | xQuAD

xQuAD iteratively selects documents from an initial
ranking of candidate documents for query Q, denoted by
R(Q), into the final ranking S that maximizes the follow-
ing objective:

1−λð ÞPr djQð Þ+ λ
X
a∈Q

Pr ajqð ÞPr djað Þ
Y
dj∈S

1−Pr djja
� �� �

2
4

3
5,

ð1Þ

where Q is the user's query, a is an aspect of Q, and S
is the set of already selected documents. Pr(dj Q) and
Pr(dj a) are identically defined, as being the normalized
score of a document with respect to the original query,
or an aspect, and can be calculated using any effective
document ranking approach, such as BM25 (Santos
et al., 2010) or more advanced learned ranking models.
The probability Pr(aj q) represents the importance of
that aspect for the query, and, by default, is uniform
across all aspects (Santos et al., 2010).4

We note that the novelty
Q
() component of xQuAD

may yield small values as more documents are selected
into S and the corresponding (1 − Pr(djj a)) values are
multiplied (Ozdemiray & Altingovde, 2015). As a remedy,
the product can be replaced by the arithmetic and geo-
metric mean of the probabilities (Ozdemiray &
Altingovde, 2015). We refer to these variants as art_-
xQuAD and geo_xQuAD hereafter.

xQuAD diversifies across any intent space Q, but, typ-
ically, common query reformulations are used to identify
topics the user may be looking for. However, xQuAD
omits other independent factors (i.e., dimensions) affect-
ing the suitability of a document to users.
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3.2 | Multidimensional xQuAD

We assume that there are multiple dimensions of diversi-
fication dim ∈ D, possibly conditioned on the query Q
(denoted by D(Q)), which should be covered in a ranking.
Each dimension dim has a corresponding set of aspects:
a1, …, an. For the topic dimension, which is generally
applied in web search, the aspects are the underlying
intents often inferred by mining the query reformulations
or knowledge-bases. Although our model is more gen-
eral, in this article we consider two further dimensions,
namely the (educational) level that the document targets
and the type of document, which are specific to our target
application of search in the education domain. The
aspects for such dimensions may also be identified in
similar ways to the topic dimension, for example, for a
given query, we use related suggestions and their
retrieved (and even clicked) results to detect the relevant
educational levels or the document types.

Our proposed model is simple in that it adapts
xQuAD by marginalizing over all dimensions:

In Equation (2): Pr(dimj Q) defines the dimension
importance, which represents the importance of a dimen-
sion for the query; Pr(aj dim, Q) defines the aspect impor-
tance; and Pr(dj a, dim) is the document aspect coverage.
Note that we differentiate between dimensions for which
the probability Pr(dj a, dim) is estimated (such as the rele-
vance of a document to a topical aspect of a query) and
dimensions for which this probability can be accurately
known based on the available metadata for documents
(e.g., given a query related to the animation aspect for
the type dimension, the diversification algorithm assigns
Pr(dj aanimation, dimtype) to either 0 or 1 based on the
metadata associated with the document d). Table 1 high-
lights the dimensions and aspects that we consider in this
work. Note that, as mentioned in the introduction, while
the aspects for the education level dimension typically
cover the range of 1 to 12, for K-12, our query log sample
covers only the range of 4 to 8.

To instantiate the proposed multidimensional xQuAD
approach, we discuss how to instantiate the dimension
and aspect importance probabilities. In particular, the

importance of diversification upon each dimension may
vary between queries—for example, observing docu-
ments with a variety of education levels in the candidate
set of documents R(Q) for a particular query Q may sug-
gest that portraying these different levels of content
(c.f. Table 1) in the top-ranked documents is likely to
benefit a wide range of users. Thus, for the (education)

level dimension, we set the dimension importance as
follows:

Pr dimleveljQð Þ= O Qð Þ−minlevel

maxlevel−minlevel
, ð3Þ

where O(Q) denotes the level aspects observed in R(Q),
and maxlevel (minlevel) denotes the maximum (minimum)
number of possible aspects in the level dimension,
respectively. For instance, if the documents in R(Q) cover
the level aspects {5, 6, 7} and all possible level aspects are
{4, 5, 6, 7, 8}, we set Pr(dimlevelj Q) = (3 − 1)/(5 − 1) =
0.5. Note that, if all possible aspects are observed in R(Q),
the importance score is 1, while if only one aspect is
observed, it is 0; i.e., no need to diversify for this dimen-
sion. The importance of the type dimension is set in the
same manner. However, for the topic dimension, we can-
not know how many aspects are observed in R(Q), as we
can only estimate topical relevance. Hence, we intuitively
set Pr(dimtopicalityj Q) = 1, as we expect relevance to be
the first driver of diversification, with diversification

TABLE 1 Dimensions and aspects used in this work

Dimension Aspects
Pr(dj a, dim)
value

Topicality Via log mining Estimated

Education
level

{4,5,6,7,8} Known

Type {animation, interactive
exercise, video, text, game,
lecture, conversational
exercise, application,
summary}

Known

1−λð ÞPr djQð Þ+ λ
X

dim∈D Qð Þ

X
a∈dim

Pr dimjQð Þ�Prðajdim,QÞ�Prðdja,dimÞ�
Y
dj∈S
ð1−Prðdjja,dimÞÞ

2
4

3
5: ð2Þ
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encapsulating other dimensions having relatively lesser
importance.

3.3 | PM2

PM2 (Dang & Croft, 2012) adapts the allocation problem
of seats to party representatives in some election systems
to finding a diversified result list. The diversified result
set is constructed with respect to the set of aspects related
to the query in proportion to the popularity of these
aspects. PM2 starts with a ranked list, R(Q), that repre-
sents the candidate documents, with k empty seats,
which is the size of the diversified list, S. In each itera-
tion, the winner aspect is determined by the popularity of
the aspect (referred as the quotient score). The quotient
score is computed for each aspect i via:

quotient i½ �= vi
2si +1ð Þ ð4Þ

where vi and si indicate the number of votes the party i
receives and the number of seats that have been assigned
to the party i. A seat (the position in S) is allocated for
the winner aspect, that is, i*, and the document d* that is
relevant to the winner aspect is selected by the following
score function:

d* argmax
dj∈R qð Þ

λ× qt i*
� �

×Pr djjqi*
� �

+ 1−λð Þ
X
i6¼i*

qt i½ �×Pr djqið Þ

ð5Þ

where qt[i] is the quotient score and λ is the trade-off
parameter between the relevance to the winner aspect
and other aspects. Since the selected document is rele-
vant to the other aspects in addition to the winner
aspect, PM2 updates the portion of seats in the selected
set, S.

3.4 | Multidimensional PM2

We adapt the original PM2 for diversification with multi-
ple dimensions following a similar approach to that of
Aktolga (2014)[Ch.5]. Unlike the original PM2 formula-
tion, we have one si, which indicates the portion of
selected documents in S for aspect i, and vi, which
denotes the number of documents the aspect i should
have, for each aspect a of each dimension dim ∈ D. The
quotient score is calculated for each aspect a under each
dimension dim. Multidimensional PM2 selects the win-
ner aspect i* for each dimension, and then computes the

relevance of the next document in S to the winner aspect
versus its relevance to all the other query aspects within
that dimension.

Note that our approach is similar to the adaptation of
PM2 to multiple dimensions proposed by Aktolga (2014)
[Ch.5], in the choice of a winning aspect i* for each
dimension. However, it differs in terms of computing the
dimension importance and the λ parameter. We use
Equation (3) for the dimension importance instead of
using the interpolated weights and we set λ without any
smoothing. Furthermore, this previous work employed
dimensions (e.g., the document sentiment) that are not
applicable to our context.

The scoring equation of multidimensional PM2 is as
follows:

d* argmax
dj∈R qð Þ

X
dim∈D Qð Þ

Pr dimjQð Þ× λ× qt i*,dim
� �

×Pr djjqi*,dim
� �

+ 1−λð Þ
X
i6¼i*

qt i,dim½ �× Pr djqi,dimð Þ
ð6Þ

We use the same setting to instantiate the dimension
and aspect probabilities for multidimensional PM2 as in
multidimensional xQuAD.

3.5 | R-LTR

R-LTR (Zhu et al., 2014) is a supervised implicit diversifi-
cation method that learns the weights of its scoring func-
tion using Stochastic Gradient Descent (SGD). Given a
candidate document set R(Q) for a query Q, R-LTR con-
structs the final ranking S in a greedy manner. In each
iteration, R-LTR computes the following scoring function
for each document di that is not in the ranking S, and the
one with the highest score is added to S:

R-LTRimp di,Vi,Sð Þ=ωr*xi +ωd*hS Við Þ ð7Þ

The first part of Equation (7) represents the relevance
of the scored document, and the second part represents
its diversity from the documents already selected in the
ranking S. xi denotes a relevance feature vector that com-
prises scores expressing query-document matching
(e.g., tf-idf, BM25, etc.), while Vi is a matrix capturing the
diversity scores of di to all other documents in R(Q), in
terms of various diversity functions. Hence, V is a 3-way
tensor that stores the diversity between each pair of docu-
ments in R(Q), each computed using various diversity
functions. Finally, ωr and ωd are the weight vectors (for
the relevance and diversity components, respectively)
that are learnt during the training stage.
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Since the original R-LTR is an implicit method, it
does not employ the knowledge of aspects. Thus, in our
setting, for a given pair of documents, the diversity scores
are computed as follows. First, based on the content of
the documents, we compute two different diversity scores
using typical similarity measures from the literature:
(a) the tf-idf weighted Cosine similarity, and (b) the
Jaccard Coefficient of the document vectors. Second,
since the candidate documents' education level and type
information are also available (as metadata) during the
diversification, we compute their distance using Binary
Similarity Coefficient and Jaccard Coefficient, respec-
tively. Thus, for each pair of documents, the tensor V
stores a vector of 4 different diversity scores. Note that, in
Equation (7), while computing the diversity of di to the
documents already selected in S, the aggregation function
hS() is invoked, which is the minimum function in our
setting (as in Zhu et al. [2014]). We denote this baseline
by R-LTRimp.

3.6 | Multidimensional R-LTR

We propose a variant of R-LTR that uses the explicit
aspects associated with multiple dimensions, as described
in the previous sections. In Equation (8), Vtopic, Vlevel and
Vtype store the pairwise diversity scores (utilizing the asso-
ciated aspects) across topic, education level and type
dimensions, respectively.

In this case, for each dimension, documents are repre-
sented w.r.t. their relationship with the related aspects.
Specifically, for the topicality dimension, we represent
each document as a vector of Pr(dj ai) scores, which is the
score of the document d with respect to each aspect ai
(calculated using an effective ranking approach such as
BM25). Then, the tensor Vtopic stores the Euclidean dis-
tance between these document vectors, as a particular
type of diversity score. Furthermore, we calculate the
pairwise difference of the Pr(dj a) scores between two doc-
ument vectors and obtain their maximum and minimum
as additional diversity scores. For the level and type
dimensions, as before, we assign binary values for each
aspect according to the metadata associated with the

document d. We compute the Euclidean distance between
the document vectors to be used as diversity scores in the
Vlevel and Vtype tensors. Finally, for each dimension, the
aggregated score is multiplied with Pr(dimij Q), which is
instantiated as before. We call this method R-LTRexp.

Finally, in Goynuk and Altingovde (2020), R-LTR was
implemented using a neural network framework, which
allows a nonlinear formulation and the training of more
complex models (i.e., via multiple hidden layers). Simi-
larly, we apply this approach for training a model based
on the same input as Equation (8) (denoted by R-
LTRexpNN).

4 | DATASET

Since there is no suitable TREC collection or existing pub-
lic benchmark, we describe a new benchmark dataset that
we have constructed in the context of an educational sea-
rch engine for the multidimensional diversification prob-
lem. Expanding upon the topic development practices of
the TREC Web track diversity tasks (Clarke, Craswell, &
Soboroff, 2009), the dataset is created as follows.

4.1 | Identifying the main queries

As our starting point, we use a query log from an educa-
tional search engine embedded into a commercial web-

based educational framework (called Vitamin5) for K-12
level students6 in Turkey with around 1.2 M registered
users. The Vitamin platform hosts a rich set of educa-
tional materials (documents, videos, etc.) for various K-
12 courses, as well as a search engine to access them. The
query log contains a sample of 20 K queries (6,503 of
which are unique) from April 2015. To identify the main
queries that would benefit from diversification, we follow
Dou, Song, Yuan, and Wen (2008) and use click entropy,
which indicates the variation of the clicked documents
for each query. The selected queries have a total click
count of 20 or more, and an entropy greater than 1.5. We
also manually eliminated the near-duplicate queries that
are extremely short or that are textual variations of each

R-LTRexp di,Vtopic,Vlevel,Vtype,S,Q
� �

=ωr*xi +Pr dimtopicjQ
� �

*ωtopic*hS Vtopic
i

� �
+
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other (i.e., “triangle” vs. “triangles”), keeping the variant
with a higher entropy. For the remaining queries, we
obtained their related queries (i.e., a related query to q is
a query q' either following q in a search session, as in
[Clarke et al., 2009], or entirely including the query string
q). We then discarded the queries with no or trivial
related queries or with completely nonrelevant ones
(i.e., no relevance to the original query). This procedure
yielded us 40 queries, such as “light,” “angles,” “electric-
ity” that have a variety of aspects.

With respect to the total click count and occurrence fre-
quency, these 40 queries come from the “torso” of the power
law distribution of the query log (as shown in Figure 1), and
hence, they are representative of the query volume (as in
[Clarke et al., 2009]). Head queries, such as “mathematics,”
“game,” or “science,” are too generic and it is unreasonable
to determine a set of possible aspects underlying those
queries. For tail queries (e.g., “converting poetry to prose”),
there is nothing to diversify since they are very specific in
nature. Note that the majority of our main queries exhibit
similarity to the intrinsic queries of (Raman et al., 2014), that
is, they seek information for the various aspects of the same
main topic (e.g., for the query “triangle”; the aspects are “tri-
angle inequalities” and “triangle trigonometry”), while just a
few of them exhibit extrinsic diversity and involve ambiguity
(e.g., the query “voice” [in Turkish] has aspects related to
both physics and language).

4.2 | Identifying ground-truth aspects
for the topic dimension

First, we clustered the reformulations of a query (using a
hierarchical clustering algorithm, as in [Clarke et al.,

2009]) to determine the candidate aspects. Next, we
applied a manual post-processing process for the noisy
clusters, that is, we merged the clusters that are clearly
related to the same underlying aspect, and removed those
clusters that are redundant, that is, including queries
related to aspects already represented by other clusters.
Finally, five human annotators (Computer Scientists with
teaching experience) labeled these clusters as aspects.
The annotators are native Turkish speakers and we veri-
fied that they are familiar with the subjects of the
assigned queries. During the annotation of the aspects,
the annotators took into account the retrieved documents
as listed in the query log, as well as the domain knowl-
edge obtained from other educational resources. Thus,
even if there has been no cluster representing “trigonom-
etry” for the “triangle” query, the annotator could add it
as an aspect. Note that these aspects serve as the “offi-
cial” aspects for the topic dimension (in the next section,
we discuss the aspects for the type and level dimensions).

4.3 | Document-level annotation

For each main query in our set, we obtained all of its
occurrences in the query log, and constructed a union of
the results (namely, the top-25 documents) for each
occurrence. We used the same five judges to annotate the
(binary) relevance of each document to the main query
and its topical aspects. In general, the documents for each
query were annotated by one judge, yielding a total of
12,735 annotations. For a random subset of 4,842 annota-
tions, we also employed a second judge. The obtained
Cohen's κ coefficient of inter-rater agreement on these
4,842 annotations is 0.77, which indicates a substantial

FIGURE 1 Distribution of query click count (left) and frequency (right); our main queries are sampled from the marked regions in

each plot
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agreement (Cohen, 1968). The observed level of agree-
ment suggests that the relevance annotation task is fairly
easy for the used query set, and hence, our choice of
assigning a single judge per query is adequate.

Finally, for the type and level dimensions, we
obtained the official aspects of a query by accessing the
metadata of the topically relevant documents in the
ground-truth for that query. On average, this yielded 3.55
and 4.53 aspects per query for the type and level dimen-
sions, respectively.

5 | EXPERIMENTAL EVALUATION

We consider two different frameworks for the evaluation:
(a) The Annotation-based Evaluation is based on the rele-
vance judgments, that is, annotations obtained via TREC-
style topic development procedure, as described in the
previous section; (b) The Click-based Evaluation is based
on the clicked results for each query instance, separately,
and allows setting the aspect importance probabilities
more realistically (i.e., by learning from a training set).

5.1 | Annotation-based evaluation

Setup. Candidate set. For each query, we re-rank its
result documents (obtained from the query log, as
described above) using BM25 and identify the top-25 doc-
uments as the candidate set to be diversified.

Diversification methods and parameters. As base-
lines, we use xQuAD and the two variants with the nov-
elty components employing the arithmetic (art_xQuAD)
and geometric mean (geo_xQuAD) of the probabilities.
We evaluate our multidimensional approach with all
three variants. In some experiments, PM2 and R-LTR are
also employed.

We have three different dimensions to consider in
diversification: education level, type, and topic as speci-
fied in Table 1. For the topic dimension, we compute
the relevance of the candidate documents (actually,
their titles and short descriptions) to the main query
and its aspects in the topic dimension, that is, Pr(dj Q)
and Pr(dj a), based on the BM25 scores as in earlier
works. As the topical aspects, we experiment with the
“official” ones (as an ideal scenario). For the (educa-
tion) level and (document) type dimensions, we assume
that the official aspects appropriate for each query are
not available at the time of diversification, which may
be the case in practice. Hence, we obtain the education
level and type of the documents that are in the candi-
date set of the query, and diversify only based on this
knowledge.

For each dimension, we assign the aspect probability
Pr(aj dim, Q) assuming a uniform distribution across the
aspects7 in this dimension, as is typical in the literature
(e.g., Santos et al., 2010). For all methods, we report the
results for the best-performing value of the trade-off
parameter λ, which is 1. Note that earlier works (such as
Ozdemiray & Altingovde, 2015) also report a similar
value of λ and attribute this to the use of the official
query aspects.

Finally, R-LTR, being a supervised method, requires
training. For all R-LTR variants, we set the learning rate
(for stochastic gradient descent) to 0.005 based on the train-
ing data. To implement R-LTRexpNN, we train a fully con-
nected two-layer neural network with back-propagation
(using the PyTorch framework). The hidden layer has
10 nodes with a sigmoid activation function, and the num-
ber of epochs is set to 50. The ground truth ranking is
obtained by greedily selecting the document that maximizes
the α-nDCGmetric as in (Zhu et al., 2014). We apply a five-
fold cross-validation to evaluate the performance.

Evaluation metrics. The ground truth includes the
relevance labels of documents for the union of the
aspects (of all dimensions), given a query. Based on this
ground truth, we compute typical and well-known diver-
sification metrics in the literature (ERR-IA, α-nDCG, P-
IA, Subtopic(ST)-Recall, and D#-nDCG), all at rank cut-
off 10. For computing the metric scores, we employ two
approaches. The Flat evaluation is the traditional setup
that does not take the dimensions into account, while the
DimAware evaluation computes a metric score for each
of the three dimensions and then obtains their average as
the overall performance (i.e., as the layer-aware metrics
in X. Wang, Dou, Sakai, and Wen [2016]).

We use the Student's paired t test (at 95% confidence
level) for analyzing statistical significance.

Results. Our experiments answer the following
research questions:

• Does using three dimensions altogether yield a better
diversification performance than using each of these
dimensions on its own?

• Do the multidimensional xQuAD, PM2 and R-LTR
variants yield better diversification than their so-called
flat counterparts, that is, the original algorithms that
use all the aspects belonging to all dimensions as a flat
set of aspects?

To answer the first question, Table 2 compares the
diversification effectiveness of three cases: (a) the non-
diversified BM25 baseline, (b) the original xQuAD algo-
rithm that uses the aspects of each dimension, namely,
topic, education level and type, separately; and (c) the
original xQuAD algorithm using the union of aspects
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from all three dimensions as a flat input. Our findings
reveal that diversification using aspects from even one
dimension is superior to a nondiversified baseline for the
majority of metrics, while among the three dimensions,
diversification via the topic dimension yields the best per-
formance for all metrics. Furthermore, using aspects
from all three dimensions (as a flat diversification) yields
considerably better results than using a single dimension
for most of the metrics. In other words, diversification
considering just one dimension (say, topic) is not likely
to yield results that are also sufficiently diverse for the
other dimensions. Although there may be some correla-
tions between the aspects of different dimensions
(e.g., topic and education level), the algorithms should

better use all the dimensions explicitly for the best perfor-
mance, as we aim to do in this article.

Table 3 addresses our second research question, that is,
can the multidimensional algorithms that explicitly model
the query dimensions along with their aspects outperform
their flat versions? To begin with, Table 3 (using the Flat
Evaluation) diversification methods (based on xQuAD and
PM2) usually provide a notable improvement over the
nondiversified BM25 baseline for all metrics. For instance,
while BM25 yields an α-nDCG score of 0.766, the best per-
forming flat and multidimensional method, namely, art_-
xQuAD, yields 0.865 and 0.877, respectively.

Next, we compare the performance of the multi-
dimensional diversification approaches under two

TABLE 2 Diversification performances of Single Dimension and Flat xQuAD (using the Flat and DimAware evaluation)

Div Method

Flat evaluation DimAware evaluation

ERR-
IA α-nDCG P-IA

ST-
Recall

D#-
nDCG

ERR-
IA α-nDCG P-IA

ST-
Recall

D#-
nDCG

None BM25 0.425 0.766 0.304 0.796 0.817 0.447 0.766 0.321 0.811 0.848

Single
Dim

xQuAD
topic

0.468 0.831 0.309 0.857 0.864 0.482 0.813 0.325 0.858 0.883

xQuAD level 0.437 0.792 0.299 0.852 0.839 0.457 0.791 0.316 0.867 0.869

xQuAD type 0.433 0.783 0.300 0.827 0.828 0.455 0.786 0.317 0.841 0.858

Flat xQuAD 0.468*,‡ 0.845*,‡ 0.299† 0.923†,*,‡ 0.880*,‡ 0.483*,‡ 0.833*,‡ 0.315† 0.929†,*,‡ 0.901*,‡

Note: The best values for each case are shown in bold.
†Statistically significant difference from xQuAD topic at 0.05 level.
*Statistically significant difference from xQuAD level at 0.05 level.
‡Statistically significant difference from xQuAD type at 0.05 level.

TABLE 3 Diversification performances of the flat and multidimensional methods (with the Uniform and Adaptive Instantiations of the

dimensions' importance) using the Flat evaluation

Div. Method

Flat evaluation

ERR-IA α-nDCG P-IA ST-Recall D#-nDCG

None BM25 0.425 0.766 0.304 0.796 0.817

Flat xQuAD 0.468 0.845 0.299 0.923 0.880

art_xQuAD 0.477 0.865 0.313 0.910 0.894

geo_xQuAD 0.472 0.849 0.300 0.925 0.883

PM2 0.475 0.862 0.315 0.914 0.896

M-Dim xQuAD 0.467 (−0.3%) 0.843 (−0.2%) 0.299 0.923 0.880 (−0.1%)

(Uniform) art_xQuAD 0.476 (−0.1%) 0.865 0.313 0.916 0.893 (−0.1%)

geo_xQuAD 0.469 (−0.6%) 0.846 (−0.4%) 0.299 (−0.3%) 0.923 (−0.2%) 0.880 (−0.3%)

PM2 0.479 (0.9%) 0.861 (−0.1%) 0.316 (0.4%) 0.912 (−0.2%) 0.897 (0.1%)

M-Dim xQuAD 0.481 (2.7%) 0.859 (1.7%) 0.302 (1%) 0.931 (0.8%) 0.890 (1.1%)

(Adaptive) art_xQuAD 0.489 (2.6%) 0.877 (1.4%) 0.320* (2.2%) 0.913 (−0.4%) 0.903* (1%)

geo_xQuAD 0.482 (2.1%) 0.860 (1.2%) 0.301 (0.5%) 0.929 (0.4%) 0.889 (0.6%)

PM2 0.477 (0.5%) 0.865 (0.4%) 0.317 (0.7%) 0.936* (2.4%) 0.908* (0.5%)

Notes: In parentheses, we report the percentage change w.r.t. the corresponding flat method. The best values for each case are shown in bold.
*Statistically significant difference using the Student's paired t test (at 95% confidence level) w.r.t. the corresponding flat method.
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instantiations: setting the importance of each dimension,
Pr(dimjQ), as proposed in the section entitled Multi-
dimensional xQuAD (referred to as Adaptive) versus

under a uniform distribution assumption (i.e., to 1/3 in
this case). We find that the multidimensional approaches
with the Uniform instantiation does not yield any better

TABLE 4 Diversification performances of the flat and multidimensional methods (with the Uniform and Adaptive Instantiations of the

dimensions' importance) using the DimAware evaluation

Div. Method

DimAware evaluation

ERR-IA α-nDCG P-IA ST-Recall D#-nDCG

None BM25 0.447 0.766 0.321 0.811 0.848

Flat xQuAD 0.483 0.833 0.315 0.929 0.901

art_xQuAD 0.493 0.854 0.329 0.927 0.915

geo_xQuAD 0.487 0.838 0.316 0.931 0.904

PM2 0.493 0.855 0.331 0.925 0.919

M-Dim xQuAD 0.483 0.832 (−0.1%) 0.315 0.929 0.900 (−0.1%)

(Uniform) art_xQuAD 0.494 (0.3%) 0.856 (0.2%) 0.329 (0.1%) 0.928 (0.2%) 0.916

geo_xQuAD 0.485 (−0.4%) 0.834 (−0.4%) 0.315 (−0.3%) 0.929 (−0.2%) 0.901 (−0.3%)

PM2 0.497 (0.9%) 0.853 (−0.2%) 0.333 (0.5%) 0.923 (−0.1%) 0.921 (0.1%)

M-Dim xQuAD 0.497 (2.9%) 0.848 (1.8%) 0.318 (1%) 0.936 (0.7%) 0.911* (1%)

(Adaptive) art_xQuAD 0.507 (2.8%) 0.866 (1.4%) 0.337* (2.2%) 0.923 (−0.4%) 0.925* (1.1%)

geo_xQuAD 0.498 (2.1%) 0.848 (1.3%) 0.317 (0.4%) 0.934 (0.3%) 0.909 (1.3%)

PM2 0.495 (0.4%) 0.856 (0.1%) 0.333 (0.6%) 0.943* (2%) 0.930* (1.1%)

Notes: In parentheses, we report the percentage change w.r.t. the corresponding flat method. The best values for each case are shown in bold.
*Statistically significant difference using the Student's paired t test (at 95% confidence level) w.r.t. the corresponding flat method.

TABLE 5 Diversification performances of R-LTR using the Flat evaluation

Div. Method

Flat evaluation

ERR-IA α-nDCG P-IA ST-Recall D#-nDCG

Imp. R-LTRimp 0.430 0.785 0.282 0.883 0.836

M-Dim Exp. R-LTRexp 0.435 (1.2%) 0.806 (2.7%) 0.291 (3.2%) 0.933* (5.7%) 0.863* (3.2%)

M-Dim Exp. R-LTRexpNN 0.461* (7.2%) 0.849* (8.2%) 0.305* (8.2%) 0.958* (8.5%) 0.897* (7.3%)

M-Dim Exp. art_xQuAD 0.489 0.877 0.320 0.913 0.903

Notes: In parentheses, we report the percentage change w.r.t. R-LTRimp. The best values for each case are shown in bold.
*Statistically significant difference using the Student's paired t test (at 95% confidence level) w.r.t. R-LTRimp.

TABLE 6 Diversification performances of R-LTR using the DimAware evaluation

Div. Method

DimAware evaluation

ERR-IA α-nDCG P-IA ST-Recall D#-nDCG

Imp. R-LTRimp 0.450 0.783 0.299 0.891 0.864

M-Dim Exp. R-LTRexp 0.454 (0.9%) 0.798 (1.9%) 0.307 (2.7%) 0.935* (4.9%) 0.882* (2.1%)

M-Dim Exp. R-LTRexpNN 0.481* (6.9%) 0.842* (7.5%) 0.321* (7.4%) 0.960* (7.7%) 0.918* (6.3%)

M-Dim Exp. art_xQuAD 0.507 0.866 0.337 0.923 0.925

Notes: In parentheses, we report the percentage change w.r.t. R-LTRimp. The best values for each case are shown in bold.
*Statistically significant difference using the Student's paired t test (at 95% confidence level) w.r.t. R-LTRimp.
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performance than their flat versions (except in a few
cases). In contrast, the multidimensional approaches
with the dimensions' importance set using the Adaptive
method achieve the best performance and consistently
outperform their flat counterparts on all metrics. For
most of the metrics, the best performing multi-
dimensional diversification method is art_xQuAD, which
yields the scores of 0.489, 0.877, and 0.320 for ERR-IA,
α-nDCG and P-IA, while its flat counterpart can only
achieve 0.477, 0.865, and 0.313, suggesting a relative
improvement of 2.6%, 1.4%, and 2.2%, respectively. Note
that similar trends are also observed for the DimAware
Evaluation, reported in Table 4.

Tables 5 and 6 provide the findings for the
approaches based on the supervised R-LTR method
(to facilitate comparisons, the results for the art_xQuAD
is repeated). Our results reveal that (a) our multi-
dimensional R-LTRexp approach (using Adaptive instan-
tiation) with explicit aspects outperforms the baseline
R-LTRimp (which is an implicit diversification method),
(b) our implementation of the multidimensional R-LTR
approach using a two-layer neural network (as in
Goynuk and Altingovde [2020]) further improves the
performance (since R-LTRexpNN outperforms R-LTRexp),
and (c) multidimensional R-LTRexpNN yields the best
performance only for the ST-Recall metric, while multi-
dimensional art_xQuAD performs better for the
remaining metrics.

Overall, our experiments confirm a positive answer to
our second research question: multidimensional
approaches with our instantiations are superior to the
original diversification algorithms, i.e., the flat versions
of xQuAD and PM2, and the baseline R-LTRimp.

5.2 | Click-based evaluation

In this section, we provide an alternative evaluation
based on user clicks. We focus on the second research
question of the previous section, that is, whether multi-
dimensional diversification approaches can outperform
their flat counterparts in educational search, which lies
at the very core of this article.

Setup. Query instances and candidate results. We use
the same query set as before. However, instead of con-
structing a candidate ranking per query and then diversi-
fying it (as in the section entitled Annotation-based
Evaluation), here for each query instance (i.e., an occur-
rence in the query log), we obtain the result list that has
been actually presented to the user, again from the query
log, and then diversify the latter, which serves as the can-
didate ranking in this setup. Note that for a given query,
say, “triangle,” the result lists generated by the

underlying retrieval system for different instances are
usually quite similar, but there might be occasional varia-
tions due to updates in the document collection and
other system-dependent factors. However, the clicked
results in each instance may vary widely, as different
users may differ in their learning interests for one or
more aspects of a given query. The latter type of informa-
tion, clicks observed for each instance (together with our
relevance judgments) are exploited for evaluation in this
section. Our goal is to re-rank the candidate result list
(via diversification) of a given query instance so that the
clicked results appear as early as possible in the list (more
details are provided later).

Different from the previous section where we had a
candidate result set of 25 documents, here we restrict our
candidate set to the top-10 documents per query instance,
since our evaluation is based on the users' clicks and due
to the well-known rank (or position) bias, it is less likely
to observe clicks for the documents ranked too low, that
is, after a cutoff value of 10. Overall, for our 40 main
queries, we extracted 926 instances together with their
top-10 results, which form our dataset for the experi-
ments in this section.

Diversification methods and parameters. In this
section, we employ only the flat and multidimensional
versions of xQuAD since the results from the previous
section show them to be representative. As before, we
compute the relevance of the candidate documents to the
main query and its aspects in the topic dimension, (i.e.,
Pr(dj q) and Pr(dj a)), using BM25. For the (educational)
level and (document) type dimensions, we use binary
values, as defined in the Multidimensional xQuAD sec-
tion. We estimate the dimension importance probability
through Equation (3) for the level and type dimensions
while we set the importance of topic dimension to 1. For
all diversification experiments, we report the results for
the best-performing value of the trade-off parameter λ,
which is found to be 0.9.

A crucial issue is determining the aspect importance,
Pr(aj dim, Q), for each dimension and its aspects, which
was previously assigned a uniform distribution. Since our
evaluation in this section is based on user clicks, the
diversification algorithm should accurately model the
preferences of the user population towards different
aspects of a query, as they may markedly vary. For
instance, Figure 2 displays the user clicks' distribution
over the aspects of each dimension for the query “light.”
For the education level dimension, the aspect level 7 is
the most popular aspect with a considerably large click-
rate, that is, 85.3% of clicks observed over all instances of
this query are for the documents covering this aspect.
The documents with education levels 4 and 5 are very
rarely clicked, while the other levels (6 and 8) are not
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clicked at all. Similarly, for the topic dimension, docu-
ments covering four of the aspects that are identified in
the ground truth (namely, ST1, ST4, ST5, ST7 in Figure
2) are often clicked, while the others are neglected.

To illustrate why it is crucial to accurately model the
aspect probabilities during diversification, consider the

following toy scenario. Assume a query q with three dif-
ferent aspects A, B, and C (say, in the topic dimension)
and three candidate documents d1, d2, and d3 covering
these aspects, respectively. If all aspects are equally likely
in the query log, then the top-2 rankings (obtained after
diversification) as (d1, d2) or (d2, d3) would be equally
good, as each ranking covers two different aspects. How-
ever, if we further assume that the users' click rates on
the documents covering these aspects A, B, and C are
90%, 5%, and 5%, respectively, then it is obvious that a
click-based evaluation will favor the ranking (d1, d2) over
the ranking (d2, d3), since in the majority of its instances,
documents covering aspect A will be clicked, yielding a
higher evaluation score. This suggests that the top-ranked
results should not only cover the diverse aspects, but
those diverse aspects that are popular, so that we can
improve the click-based metrics.

We learn the aspect probabilities for each query and
dimension by splitting our dataset into training and test
sets. In particular, for each query, we use the first 75% of
its instances (in timestamp order) as the training set
(adding up to 699 instances) and the rest as the test set
(including 227 instances in total). The aspect priors are
then obtained from the training set using Equation (9):

P ajdim,Qð Þ= relevant clicks for aspectaP
a∈ dim,Qð Þrelevant clicks

ð9Þ

As mentioned before, most users click the top-ranked
result(s) regardless of its relevance, a phenomena known
as the rank bias. For instance, in our dataset, for about
25% of the instances, only the top-1 or top-2 results are
clicked. Naturally, for such rankings, it is almost impossi-
ble to improve the click-based metrics via re-ranking
(i.e., after the diversification). This is a common issue
that arises in the case of conducting a click-based evalua-
tion by re-ranking previously obtained results, usually
from a query log. The ideal solution—of conducting an
A/B test with the previous and treated rankings—is
rarely attainable as the researchers are usually not in
control of the underlying retrieval system, which also
holds for our case. Hence, following the practice in some
previous works (e.g., Bai, Cambazoglu, Gullo, Man-
trach, & Silvestri, 2017), we combine the initial ranking
with the diversified one (using the well-known Borda
Voting method (e.g., see Aslam & Montague, 2001) so
that the final ranking is not extremely different from the
initial ranking. Furthermore, we always preserve the first
document in the initial ranking and apply diversification
for the rest of the documents in the list.

Ground truth and evaluation. In this setup, the gro-
und truth is based on the clicked results per query

FIGURE 2 Distribution of click counts for the query “light”
across each dimension: education level (top-left), type (top-right),

topic (bottom). For the latter, the topical aspects shown as ST1 to

ST7 on the x-axis correspond to “light and color,” “light filter,”
“white light,” “absorption,” “refraction,” “light year,” and “light
sources,” respectively
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instance, following Bai et al. (2017). Furthermore, we fil-
ter them so that only those clicks on the documents that
are labeled as relevant in the annotation-based evalua-
tion (see the section entitled Document-level Annotation)
are kept in each instance's ground truth. Among the total
of 1,895 clicks for all our query instances, only 12% of the
clicks are for documents labeled as nonrelevant. In other
words, 88% of the users' clicks were for documents judged
“relevant.” For the remaining 12% of clicks, a manual
analysis of some randomly chosen results revealed that
these clicks are noisy (i.e., the user—most likely to be a
young student, as our dataset covers the educational
levels between 4 and 8—may have clicked
unintentionally) as they seem definitely nonrelevant, and
hence we discard them.

However, note that not every relevant result may be
clicked in every instance; as discussed before, certain
users may be interested in certain aspects only, and thus
may skip documents that are labeled as relevant yet cov-
ering the other aspects that are not interesting for such
users. Therefore, the evaluation framework presented in
this section differs from that of the previous section.

To summarize, for each instance, the ground truth
involves those results that are both clicked by the user in
this instance's result list and also labeled as relevant by
our judges. Based on this ground truth, we compute the
traditional relevance metrics as well as the diversification
metrics (this is possible, since the ground truth aspects
are available for the documents labeled as relevant). We
report the Precision and nDCG metrics for relevance, and
P-IA and α-nDCG for diversity, at early rank cutoff values
of 2 and 5.

Results. Table 7 presents the diversification perfor-
mance of the multidimensional xQuAD algorithm with
different aspect importance weights. The “Uniform” tag
in the table denotes that the aspects' importance under
each dimension are assumed to be uniform, whereas the
“with Priors” tag denotes that the aspects' importance of
a query across each dimension are learned from the
training data and using Equation (9). For the multi-
dimensional approaches, the dimension importance is set

using the Adaptive strategy described in the section enti-
tled Multidimensional xQuAD.

Note: The best values for each case are shown in bold.
Table 7 reveals that both the flat and multi-

dimensional diversification methods (with Priors) out-
perform the baseline especially for the top-2 results. We
also find that the multidimensional approach with Uni-
form aspect priors yield inferior results both to the flat
and multidimensional approaches (with Priors), and
sometimes, even to the nondiversified baseline. This con-
firms our intuition that the diversification methods in
this setup should incorporate realistic aspect priors
learned from the user interactions, that is, clicks. The
multidimensional approach with the Priors achieves the
best results overall, with relative improvements over its
flat counterpart reaching up to 2.0% (i.e., 0.350 vs. 0.343)
and 1.4% (i.e., 0.442 vs. 0.436) for the diversification and
relevance metrics P-IA@2 and P@2, respectively.

In our query log, since the number of instances for
each query varies (i.e., the minimum and maximum
number of instances is 4 and 97, respectively), it is worth-
while to investigate what happens if the diversification
scores are first averaged over the instances of each query,
and then over the queries (i.e., a macro averaging per-
spective); so that a query with too many instances does
not dominate the overall performance and conclusions
drawn.

Table 8 presents the diversification performance of
the flat and multidimensional xQuAD approaches (both
with Priors) by macro averaging the scores over queries.
The trends are similar to those in Table 7, as multi-
dimensional xQuAD outperforms both of its competitors,
with even larger margins for the diversification metrics.
In particular, the latter method achieves improvements
of 1.6% and 2.6% over its flat counterpart in terms of
α-nDCG@2 and P-IA@2, respectively. In other words,
our gains presented in Table 7 still occur when the query
frequency effect is eliminated from our evaluation.

Note: The best values for each case are shown in bold.
Overall, our evaluations based on the user clicks and

relevance annotations (as presented in the current and

TABLE 7 Performances of flat and multidimensional xQuAD using the click-based evaluation

Div Method

Relevance Diversity

P@2 P@5 nDCG@2 nDCG@5 P-IA@2 P-IA@5 α-nDCG@2 α-nDCG@5

NonDiv 0.411 0.306 0.462 0.542 0.345 0.228 0.524 0.625

Flat withPriors 0.436 0.303 0.477 0.544 0.343 0.226 0.532 0.630

M-Dim Uniform 0.422 0.305 0.461 0.537 0.336 0.224 0.517 0.619

withPriors 0.442 0.305 0.484 0.545 0.350 0.228 0.539 0.632

Note: The best values for each case are shown in bold.
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previous sections, respectively) reveal that the proposed
multidimensional diversification approach yields
improvements of up to 2.6% for various relevance and
diversification metrics (c.f. Tables 3–8), a finding that
indicates the robustness of our approach for the educa-
tional search scenario addressed in this article.

6 | CONCLUSIONS

We introduced the multidimensional diversification of
results in the context of educational search to help the
users' learning-oriented search activities. Our proposed
enhancement of the xQuAD diversification model (also
applied to PM2 and R-LTR) allows the multiple dimen-
sions that are available in this context to be taken into
account when ranking documents, such as the type and
target educational level of each document. Our extensive
experiments upon a newly-created test collection using the
logs of a real-life educational search engine show that our
proposed approach can surface a variety of document
types, education levels and topics within the top-ranked
documents, and exhibits 2.6% improvement over tradition-
ally strong “flat” diversification approaches and a marked
15.1% improvement over a BM25-based initial ranking
obtained within a TREC-style evaluation framework, that
is based on relevance annotations, for the ERR-IA metric.

We also employed another evaluation framework
based on the user clicks. Contrary to the annotation-
based evaluation, the click-based setup is sensitive to the
users' learning preferences for query aspects, which vary
wildly in practice, and hence, the diversification methods
use aspect importance priors that are also obtained from
the query logs. In this realistic evaluation framework,
multidimensional diversification again proves to be use-
ful, for instance, providing good gains of 1.4% and 7.5%
for the P@2 metric over the “flat” diversification and
nondiversified initial ranking, respectively.

In light of previous works (Collins-Thompson et al.,
2016; Syed & Collins-Thompson, 2017), which showed
the positive impact of diversified result presentation on
the learning outcomes (e.g., knowledge gains of users),
we would like to end this article by highlighting that our

observed improvements in diversification performance
using the traditional metrics are likely to materialize into
human learning gains in the educational search context,
which is the ultimate goal of our present investigation.

As future work, we plan to extend our multi-
dimensional diversification framework by taking person-
alization into account, again for the purposes of
enhancing learning in the educational search context.
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ENDNOTES
1 As discussed in the Related Work section, for general-purpose sea-
rch engines, there are several earlier works, which aimed to diver-
sify the results for ambiguous queries when a single (topical)
dimension is used, as well as a few approaches that addressed a
hierarchy of (or, dimensions for) the query aspects.

2 https://github.com/syigitsert/multi-dim-diversification
3 https://av.tib.eu
4 In the section entitled Click-based Evaluation, we go beyond this
assumption and learn the aspect importances from the users'
clicks.

5 http://www.vitaminegitim.com/
6 i.e., targeting students aged 5–17 and covering primary, middle
and high school educations (as in U.S.A.).

7 For the type and education level dimensions, we only consider
the aspects observed in the candidate set.
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