arXiv:2509.25672v1 [cs.Al] 30 Sep 2025

SING-SQL: A Synthetic Data Generation Framework for
In-Domain Text-to-SQL Translation

Hasan Alp Caferoglu
Bilkent University
Ankara, Turkey
alp.caferoglu@bilkent.edu.tr

ABSTRACT

Translating natural language questions into SQL has become a
core challenge in enabling non-technical users to query databases.
While recent work has explored large-scale synthetic data gener-
ation to improve model performance through post-training, most
efforts emphasize cross-domain generalization. This leaves a gap
for real-world enterprise scenarios, where models need to specialize
to a single database schema and organizations require to be able
to evaluate their Text-to-SQL systems on their own databases. To
address this, we introduce SING-SQL!, a fully automated two-stage
framework for generating high-quality, high-coverage synthetic
Text-to-SQL data for any target database, without relying on SQL
logs or manual annotations. Our approach hierarchically partitions
a database schema into sub-schemas, synthesizes SQL queries across
multiple complexity levels, and applies a quality-aware pipeline that
includes LLM-as-a-judge validation, executability checks, automatic
repair, and column balancing. We further release SingSQL-LM, a
family of compact language models fine-tuned on the synthetic
data, achieving strong in-domain generalization. On the subset of
the BIRD benchmark, SingSQL-LM-3B-R64 reaches 82.87% Soft F1
and 73.03% EX upper bound with 32 candidates, outperforming the
best 3B-scale baseline by +16.21 in Soft F1 and +12.36 in EX. At
the 1.5B scale, SingSQL-LM-1.5B-R64 improves over prior systems
by +9.30 in Soft F1 and +4.49 in EX. On synthetic evaluation sets,
SingSQL-LMs exceed prior systems by wide margins, establishing
state-of-the-art performance among open models at comparable
scales. Moreover, our study of context management strategies re-
veals that schema-free fine-tuning combined with schema-only
inference provides the most robust results. Together, these findings
establish SING-SQL as a scalable, database-agnostic paradigm for
producing and evaluating enterprise-grade Text-to-SQL systems.

1 INTRODUCTION

Translating natural language queries into structured query lan-
guage (Text-to-SQL) has become a key area of interest for both
academia and industry, as it enables non-technical users to query
relational databases using natural language. Typical Text-to-SQL
systems consist of several core components, including schema link-
ing, SQL generation, SQL correction, and SQL selection. To improve
performance at each stage of this workflow, fine-tuning large lan-
guage models (LLMs) on task-specific data has become a common
practice. However, such improvements often come at the cost of
obtaining large-scale, high-quality annotated datasets, which are
expensive and time-consuming to collect.

! Artifacts have been made available at https://github.com/HasanAlpCaferoglu/SING-
SQL.

Mehmet Serhat Celik
Bilkent University
Ankara, Turkey
serhat.celik@ug.bilkent.edu.tr

Ozgtir Ulusoy
Bilkent University
Ankara, Turkey
oulusoy@cs.bilkent.edu.tr

While prior work has proposed frameworks to synthetically gen-
erate labeled Text-to-SQL data [4, 9, 16, 17, 42], most focus on the
cross-domain setting—targeting generalization across diverse and
unrelated databases. However, this setting does not reflect the needs
of many real-world applications, where models are deployed in nar-
rowly scoped environments and are expected to serve a specific
organization operating on one or a few domain-specific databases.
For example, an e-commerce company is unlikely to require query-
ing a Formula 1 database, but instead needs highly accurate query
generation over its internal, proprietary schema. In such scenarios,
domain-specialized models trained with high-coverage in-domain
data are far more beneficial than broadly generalized models.

To address this need, we introduce SING-SQL (Synthetic IN-
domain Data Generation for Text-to-SQL), a framework designed
to generate high-quality synthetic Text-to-SQL data tailored to
any specific relational database. In addition, we present SingSQL-
LM, a family of compact language models fine-tuned on the data
produced by SING-SQL. We evaluate our approach on a subset
of the BIRD benchmark as well as on our own synthetically gen-
erated in-domain dataset. Experimental results demonstrate that
SING-SQL enables the creation of large volumes of high-quality,
high-coverage domain-specific Text-to-SQL pairs. Such data can
be leveraged by enterprises to fine-tune internal language models
or to evaluate the performance of agentic systems operating in
Text-to-SQL workflows.

In SING-SQL, we design a two-stage synthetic data generation
framework. In the first stage, the target database is systematically
partitioned into a diverse collection of sub-schemas, each defined
by a unique combination of tables and column subsets. This decom-
position is performed at two levels: first, at the table level, where
joinable subsets of tables are selected; and second, at the column
level, where a sliding window strategy is applied over non-key
columns to generate multiple column-wise variations for each ta-
ble. This hierarchical partitioning enables fine-grained control over
the schema context of each example, reduces generation noise, and
ensures semantic alignment between input questions and the under-
lying schema. By systematically varying both table and column con-
figurations, the process promotes full database coverage across the
synthesized dataset while keeping the generation process tractable
and interpretable. In the second stage, we generate SQL queries for
each sub-schema across multiple complexity levels—simple, mod-
erate, challenging, and window—and translate them into natural
language questions. To ensure data quality, we apply a series of
filtering steps: first, an LLM-as-a-judge module evaluates the logi-
cal validity and semantic alignment of each SQL-Text pair; next,
we test the executability of each SQL query and invoke automatic
repair for non-executable cases when possible. For the subset of


https://github.com/HasanAlpCaferoglu/SING-SQL
https://github.com/HasanAlpCaferoglu/SING-SQL
https://arxiv.org/abs/2509.25672v1

validated and executable examples, we instruct the model to gen-
erate step-by-step reasoning traces using a divide-and-conquer
prompting strategy, enhancing interpretability and instructional
value. Finally, to address schema imbalance, we perform a second
round of column-focused SQL generation, targeting underrepre-
sented columns based on usage frequency thresholds. Together,
these components produce a high-quality, high-coverage synthetic
dataset tailored for in-domain Text-to-SQL tasks.
Our key contributions can be summarized as follows:

e We propose SING-SQL, a two-stage synthetic data genera-
tion framework designed for in-domain Text-to-SQL tasks.
It generates high-quality, high-coverage SQL-Text pairs
tailored to any specific relational database.

e We introduce a hierarchical sub-schema construction
strategy that partitions the database at both table and col-
umn levels, enabling controllable and semantically mean-
ingful data generation while ensuring comprehensive schema
coverage.

o With SING-SQL, we present a quality-aware SQL-Text
generation pipeline that incorporates complexity-controlled
SQL synthesis, LLM-as-a-judge validation, executability
checks, automatic SQL repair, and reasoning trace genera-
tion.

e We address schema imbalance through a column-focused
generation step, which targets underrepresented columns
using frequency-based thresholds to improve column-level
data coverage.

o We release SingSQL-LM, a family of compact language
models fine-tuned on the synthetic data produced by SING-
SQL, and demonstrate their effectiveness on a subset of the
BIRD benchmark and in-domain synthetic datasets.

2 RELATED WORK

2.1 Synthetic Data Generation for Text-to-SQL

Large language models (LLMs) for Text-to-SQL often benefit from
fine-tuning on curated datasets, either drawn from existing bench-
marks [24, 26] or synthesized to expand coverage across domains.
A series of recent works propose diverse strategies for generating
synthetic training data.

CODES [17] constructs data from two sources: SQL-related cor-
pora and NL-to-code datasets. It introduces a bi-directional aug-
mentation procedure. In the question-to-SQL direction, proprietary
LLMs generate user-like questions from real examples, followed by
SQL generation. In the SQL-to-question direction, SQL queries are
paired with template-based questions, which are then rephrased
by LLMs to improve naturalness. Yang et al. [42] synthesizes train-
ing data in two complementary phases. First, strong proprietary
LLMs are used to synthesize diverse, high-quality Text-to-SQL pairs
across domains, thereby avoiding over-representation of specific
schemas. This strong data is used to enhance the base model’s
Text-to-SQL translation capabilities. Next, through preference learn-
ing, weak data is generated from smaller LLMs by sampling candi-
date SQLs, labeling them through execution agreement with gold
queries, and applying Direct Preference Optimization (DPO) on
positive/negative pairs. OMNISQL[16] scales up data generation by

first synthesizing realistic databases from web tables via LLMs, en-
suring broad domain coverage. SQL queries are then produced with
complexity-aware strategies to balance query difficulty, followed
by back-translation into natural questions. To enrich linguistic
diversity, questions are paraphrased in different language styles.
Additionally, chain-of-thought (CoT) rationales[13, 40] are gener-
ated alongside each question-SQL pair to provide auxiliary training
signals and interpretability. A synthetic Text-to-SQL framework
SQLForge [9] focus on the reliability and diversity of the generated
data in four-stage. Initially, An AST-based SQL Parser turns seed
queries into grammar-preserving templates and enriches them by
subtree crossover. Secondly, SQL foundry stage, iteratively explores
new domains by jointly proposing domain names with auxiliary
SQL to prevent domain drift. Then, for the synthesized SQL state-
ments, corresponding database schema expression is generated
via schema architect stage. Finally, a schema-aware reverse trans-
lator produces human-readable questions that reflect the SQL’s
intent. SQLord [4] addresses data scarcity by exploiting developer-
authored SQL queries and their comments. A model called RevLLM
is trained on a small set of SQL-comment pairs to generate natu-
ral questions for SQL queries. Using RevLLM, large-scale pseudo-
labeled question-SQL pairs are synthesized, which in turn train a
specialized Text-to-SQL model. Shkapenyuk et al. [35] take a dif-
ferent angle by focusing on metadata extraction through profiling,
query log analysis, and SQL-to-text generation.

Most prior works primarily focus on cross-domain data synthesis
to improve generalization across databases. However, in enterprise
contexts, organizations often require models specialized for their
own databases. Recent efforts move in this direction. TailorSQL [37]
constructs a workload-aware retrieval corpus by synthesizing doc-
uments from both schema and query logs, using LLMs to generate
natural-language questions conditioned on SQL and schema. How-
ever, it primarily improves performance through prompt augmen-
tation rather than large-scale data generation and post-training.
Having a similar objective to our work, SelectCraft [3] introduces
a domain-specific data generation framework that synthesizes SQL
queries by mimicking real-world query distributions over exist-
ing databases. Its controllability is limited to distributional aspects
of SQL components (e.g., operators, conditions, join counts and
types), but it does not enable fine-grained control over database
elements such as tables or columns, nor does it address scalability
to large and complex schemas. In parallel, SiriusBI [12] introduces
an automated pipeline for domain-specific data generation, with
optional manual verification to further enhance quality assurance.
The system aims to mitigate the sharp performance drops often
observed when models are transferred across domains with limited
generalization capacity. However, SiriusBI primarily leverages SQL
query logs, which are not always available, and it lacks mechanisms
for fine-grained control over schema elements. As a result, while
it provides a practical solution for reducing domain transfer bot-
tlenecks, its capacity for scaling to complex schemas or enforcing
systematic schema coverage remains limited.

Our work, SING-SQL, addresses this gap by enabling enterprises
to curate Text-to-SQL data tailored to their schema without rely-
ing on prior workloads. It enforces comprehensive schema cov-
erage through hierarchical sub-schema construction and targeted
column balancing, while ensuring complexity-controlled data via



quality-aware SQL-Text synthesis, thereby moving beyond the
cross-domain paradigm.

2.2 LLM Post-Training for Text-to-SQL

Out-of-the-box, open-source LLMs generally underperform pro-
prietary counterparts on Text-to-SQL benchmarks. Recent work
shows, however, that with targeted post-training strategies using
synthetic data, open-source models can achieve competitive or even
superior performance.

Supervised fine-tuning (SFT) has been the most widely used
method for adapting models to Text-to-SQL corpora [7, 16, 20, 24,
26, 33, 36, 38]. Beyond SFT, direct preference optimization (DPO),
a preference learning technique, has been utilized to further align
models with desired behaviors [29, 42]. More recently, reinforce-
ment learning (RL) methods have been explored to strengthen
LLM reasoning. Group Relative Policy Optimization (GRPO)[30]
has been applied to incorporate reward signals, demonstrating
promising improvements in Text-to-SQL systems [27, 44]. Hybrid
post-training pipelines that combine SFT with RL-based optimiza-
tion also explored to enhance model performance by leveraging
both supervised and reward-driven signals [21, 23, 31, 32].

Despite these advances, reinforcement learning methods can be
computationally expensive and difficult to scale for small enterprise
settings. In our work, we adopt a parameter-efficient alternative:
supervised fine-tuning with Low-Rank Adaptation (LoRA) [10],
enabling scalable specialization of open-source models to enterprise
databases without the overhead of RL training.

2.3 Text-to-SQL Systems

2.3.1 Schema Linking. As the context length and capabilities of
LLMs increase, more information can be inserted into prompt.
The contextual information becomes important and effect the sys-
tem performance [5]. One of the component of the context for
the Text-to-SQL systems is database schema. Although there are
works [1, 22] stating the schema filtering is not needed as the
the model capabilities and context length increase since models
can identify relevant schema component during SQL generation,
best performing Text-to-SQL systems [20, 24, 27, 35, 36] shows the
effectiveness of schema filtering and utilize it to achieve high per-
formance. TA-SQL [28] leverages initially generated dummy SQL
queries to improve schema linking performance. Similarly, with
the help of an LLM, Gen-SQL [34] construct a pseudo-SQL and
then pseudo-schema solely based on the question without provid-
ing the database schema. Leveraging embedding based retriever
to eliminate the irrelevant schema components, pseudo-schema is
grounded in actual database schema. ExSL [8] proposes a decoder-
only approach that reformulates schema linking as an extraction
task rather than a generative one. ExSL treats all schema columns
as candidates and predicts their relevance using hidden states from
the LLM, enabling efficient probability estimation. PSM-SQL [43]
couples multi-granularity semantics with a chain-loop pruning
strategy for schema linking. Solid-SQL [19] enhances schema link-
ing by parsing gold SQL to obtain supervision and fine-tuning a
schema selector with paraphrase-augmented data to improve ro-
bustness against synonyms and rephrasings. Schema linking model

predictions are integrated into prompts via a “focus on” mecha-
nism that highlights selected tables and columns while retaining
full-schema context for fault tolerance. RSL-SQL [2] introduces
bidirectional schema linking that unions an LLM-extracted schema
with a schema parsed from a preliminary SQL, producing a pruned
schema that preserves high recall. For schema linking, CHESS [36]
employs an LLM-based schema selector that filters relevant tables
and columns, guided by candidate values retrieved through an
LSH-based entity matching mechanism and enriched with column
descriptions extracted from a vector database. In our work, we
adopt the LSH-based entity matching mechanism from CHESS [36]
and incorporate synthetic Text-to-SQL data to enhance LLM-based
column filtering.

2.3.2 SQL Generation and Selection. For a single user question, gen-
erating multiple SQL queries is best practice for the Text-to-SQL
translation systems in order to improve system performance. [14,
15, 20, 24, 31, 32, 36, 38]. As the number of candidate SQL query
increases, the system performance increases upto a point. [24,
36]. In addition to multiple SQL generation, Text-to-SQL systems
contain self-correction [1, 15, 24, 25] module to fix or refine the
generated SQL queries to improve the system performance. Self-
consistency [39] is another technique utilized largely by Text-
to-SQL systems [6, 14, 41]. In our work, we do not employ self-
consistency or self-correction to solely measure the model Text-to-
SQL translation capability.

3 IN-DOMAIN TEXT-TO-SQL SYNTHESIS
FRAMEWORK

To enable comprehensive supervision over all components of a
target database, we introduce a two-stage framework for in-domain
synthetic Text-to-SQL generation. The first stage involves partition-
ing the database into a diverse set of sub-schemas, varying in size
and structure, to capture different combinations of schema elements.
This step ensures that each table and column is systematically in-
cluded in at least one context. In the second stage, we generate
synthetic Text-to-SQL examples conditioned on each sub-schema,
enabling fine-grained alignment between natural language ques-
tions and the underlying database structure. The resulting dataset
achieves high coverage and semantic diversity, enabling more reli-
able post-training and comprehensive evaluation. The SING-SQL
framework is further detailed in Algorithm 1.

3.1 Sub-Schema Generation

Effective in-domain Text-to-SQL synthesis demands controllability,
semantic fidelity, and comprehensive schema coverage. However,
considering the entire database schema when generating synthetic
data is often impractical—especially for large-scale databases—due
to the context length limitations of large language models (LLMs),
reduced control over the generation process, and challenges in
maintaining high semantic alignment between natural language
questions and their corresponding SQL queries.

To address these issues, we introduce a sub-schema generation
approach that partitions the original database into smaller, manage-
able segments. Each sub-schema is composed of a limited number



; @ - . o) | @ tmc v e e .
. Vo \ ,
! — i — Vo | e [Crmes ] ' / Y
R T e waew| va | oo | oo . H i a \
 EE—— o = ‘ Vol i I '
i I H v juaen| e | e | oo o | g | oss | 0w | ve H
! ‘ ‘ v Ol e ! . | ‘ ‘ !
' Pt I ) p Vo ' ' | é\ '
' s J V R e N — ) ~ ;
' i o ' ' ™~ < . \ '
! s A o v | | ' ! ™ Q| maten soL eneraton \ '
! wafaafoalaaaa]aa Fo[walwn [owa] | © I ) g Coreaion \ :
1=z T mem= \ -
' I ' ! ~ \
N =N A '
\ S A B S B T B h ! %L e \\ .
\ LN / 2 L h
. . . h b i
G e - ' U = ‘\ :
' e '
.- - ! K= \ '
! @ . ) \ :
! Table 1 and Table 3 ! ! NG [ 5 «\ !
' . p ' ! .50t Execution \ !
N et e ( et [ T3 H ' N 1 I
' '
| I H %5
: \ ‘ K el e P
'\ \ H h Lrer { .
' ' ' = ]
h h
V( N ( - ' _ i
H ) s ) | s H H —~ i
] | e [ S5 [ o [t [ om v | we [ae 5806 os [enfea] 1 | N ;
' | ‘ ' . i ~ /
1 \ 2 ~ /
: | 2N o . G
/ Reasoning Generation

Figure 1: Overview of the Synthetic Data Generation Framework

Algorithm 1 General Synthetic Data Generation Algorithm for
Single Database

Algorithm 2 Sub-Schema
(ConstructSubSchemas)

Construction  Algorithm

Require: window w, stride s, table counts for sub-schemas tc¢
Ensure: t2sExamples
1: subSchemas «— CONSTRUCTSUBSCHEMAS(W, s, tc)
2: t2sExamples <« GENT2S(SubSchemas)
3: columnCounts « CouNTCoLs(t2sExamples)
4: focusColumns «— GeTFocusCots(columnCounts) > Identify
underrepresented or critical columns
5: focusSubSchemas « FINDFocusScHEMAS(focusColumns) »
Sub-schemas that include the targeted columns
6: colFocusedT2SExamples « GENT2S(focusSubSchemas) »
Generate more examples focusing on underused columns
7: t2sExamples « t2sExamples + colFocusedT2SExamples
8: t2sExamples « FILTER(t2sExamples)
logically/syntactically incorrect pairs

> Removing

of relationally connected tables and portions of their columns, en-
abling focused and interpretable contexts for generation. This strat-
egy offers several key advantages. First, it provides fine-grained con-
trol over the scope of each example, allowing the generation process
to focus on specific parts of the schema. Second, by narrowing the
schema context, it reduces noise and improves the semantic align-
ment between natural language questions and their corresponding
SQL queries. Third, by systematically varying the structure and
composition of sub-schemas, we ensure that all schema elements
appear across diverse relational settings. This not only enhances the
diversity of the generated data but also ensures thorough coverage
of the database, which is especially important for large and complex
schemas. Overall, this step lays a strong foundation for generat-
ing high-quality, diverse, and semantically grounded Text-to-SQL
pairs. The complete sub-schema generation procedure is formally
described in Algorithms 2, 3 and 4, and is further illustrated in
Figure 1 to provide a visual understanding of the process.

Require: window w, stride s, table counts for sub-schemas tc
Ensure: columnLevelSubSchemas
1: tableLevelSubSchemas <« GENTABLELEVELSUBSCHEMAS(tc)
2: columnLevelSubSchemas GENCOLUMNLEVELSUB-
ScuemAs(tablelLevelSubSchemas, w, s)

—

3.1.1 Table Level Sub-Schema Generation. We begin sub-schema
construction at the table level by identifying meaningful subsets of
tables that preserve database integrity and relational connectivity.
As outlined in Algorithm 3, all joinable tables are first extracted
using the foreign key constraints defined in the database schema.
In cases where foreign key information is incomplete or missing,
the schema must be updated or manually annotated to restore valid
join paths and ensure relational completeness. This step is essential
for constructing sub-schemas capable of supporting executable and
semantically meaningful SQL queries. In the next step, we enumer-
ate all valid table combinations that maintain joinability—i.e., every
table within a combination must be transitively joinable with the
others.

To ensure practical relevance and avoid overly complex sub-
schemas, we introduce a hyperparameter that limits the maximum
number of tables per sub-schema. This constraint reflects the ob-
servation that real-world SQL queries rarely involve all tables in
a schema, especially in large databases. For instance, in the Card
Games database from the BIRD dev set, which contains 6 tables,
setting the maximum number of tables per sub-schema to 3 can lead
to more manageable and potentially more realistic combinations.
While this value may vary depending on the schema complexity
and target use case, it serves as a practical upper bound that helps
constrain the sub-schema space. In addition to guiding the realism
of generated queries, this hyperparameter also prevents an explo-
sion in the number of possible sub-schemas, making the overall
synthesis process more computationally feasible. To offer further



insights, Appendix E presents sub-schema statistics across a range
of SING-SQL parameters.

Algorithm 3 Table Level Sub Schema Construction (Generation)
Algorithm (GenTableLevelSubSchemas)

Require: table counts for sub-schemas tc
Ensure: tablelLevelSubSchemas » tlss = table level sub-schemas
1: joinableTables « GETJOINABLETABLES
2: AllTableCombinations <— GETALLDBTABLECOMB
3: tableLevelSubSchemas < FINDSUBSCHEMAS(joinableTables,
AllTableCombinations) > Ensure that all tables
in a table combination can joinable and are able to construct a
sub-schema

3.1.2  Column Level Sub-Schema Generation. Building on the table-
level sub-schemas, we further refine the schema context by select-
ing subsets of columns for each table, yielding column-level sub-
schemas. For each table in a given table-level sub-schema, we begin
by including all connection columns, defined as primary keys and
columns participating in foreign key relationships. These columns
are essential for preserving the relational structure across tables
and ensuring that the synthesized SQL queries will be executable
and semantically valid.

The remaining non-connection columns are then considered for
selective inclusion using a controlled sliding window strategy. Two
hyperparameters govern this process: the window size w, which
specifies the number of non-connection columns selected at a time,
and the stride s, which determines the number of positions the
window shifts after each selection. Prior to windowing, the non-
connection columns of each table are randomly shuffled to increase
variation. The sliding window is then applied to generate multiple
column subsets for each table.

These subsets are combined across tables using a Cartesian prod-
uct to yield diverse column-level sub-schemas derived from the
original table-level sub-schema. Compared to an exhaustive enu-
meration of all possible column combinations—which would lead to
a combinatorial explosion in the number of sub-schemas, making
exhaustive enumeration impractical—this strategy offers a scalable
and tunable mechanism for achieving both coverage and diversity
in the generated data.

This hierarchical construction—first over tables, and then over
columns—yields a rich and diverse collection of sub-schemas with
varying granularity. It enables fine-grained control over schema
exposure during data generation while maintaining syntactic va-
lidity and semantic coherence. A visual overview of this process
is provided in Figure 1, and the full column-level sub-schema con-
struction procedure is detailed in Algorithm 4.In Appendix E, we
present sub-schema statistics for various SING-SQL parameters to
provide further insights.

3.2 Synthetic Text-to-SQL Generation

Following the construction of diverse sub-schemas, the second
stage of our framework focuses on synthesizing high-quality nat-
ural language and SQL query pairs. Unlike prior work [17, 42]
that typically follows a Text-to-SQL approach—generating natu-
ral language questions first and then deriving the corresponding

Algorithm 4 Column-Level Sub-Schema Construction

(GenColumnLevelSubSchemas)

Require: window size w, stride s, tableLevelSubSchemas
Ensure: columnLevelSubSchemas
1: Initialize columnLevelSubSchemas « [ ]
2: for each tlss in tableLevelSubSchemas do
3 Initialize tableColumnParts « empty dictionary
4 for each table in tlss do
5 connCols < GETCoNNECTIONCOLUMNS(table)
6: nonConnCols « AllColumns(table) \ connCols
7 if nonConnCols is empty then
8 tableColumnParts[table] « [connCols]
9

: else
10: Randomly shuffle nonConnCols
11: Initialize colParts « [ ]
12: i—20
13: while i < len(nonConnCols) do
14: portion « nonConnCols[i : i+ w]
15: portion « connCols + portion
16: Append portion to colParts
17: i—i+s
18: end while
19: tableColumnParts[table] < colParts
20: end if
21: end for
22: colLevelSchemas « Cartesian product of all table-column
partitions in tableColumnParts
23: for each schema in colLevelSchemas do
24: Append newSchema to columnLevelSubSchemas
25: end for
26: end for

27: return columnLevelSubSchemas

SQL—we adopt the reverse paradigm. Specifically, we first generate
SQL queries and subsequently translate them into natural language
questions. This decision is motivated by findings from prior work
such as OMNI-SQL [16], which demonstrate that SQL-to-Text gen-
eration is generally more reliable due to the greater flexibility and
expressiveness of natural language.

For each sub-schema, the large language model (LLM) is prompted
to generate N SQL queries spanning four predefined complexity
levels: simple, moderate, challenging, and window. The first three
levels are consistent with those adopted in established benchmarks
such as BIRD, while the window level is introduced to explicitly
control for the inclusion of window functions—an area where LLMs
tend to struggle when left unguided. By defining this complexity
level explicitly, we avoid relying solely on model inference to en-
sure such queries are included. In our work, we use N = 3, resulting
twelve SQL-Text pair generation for each sub-schema. To encour-
age broad schema coverage, we explicitly instruct the model to
utilize all available tables and columns in the sub-schema during
SQL generation.

Although SQL-to-Text synthesis yields more semantically aligned
pairs compared to the reverse direction, errors may still occur—such
as flawed natural language translations or illogical SQL-question
pairs (see Appendix A and Appendix B). To identify and eliminate



such issues, we introduce a validation stage in which the LLM is
employed as a judge (LLM-as-a-judge). Each SQL-Text pair is eval-
uated within the context of its sub-schema, and pairs exhibiting
misalignment, ambiguity, or logical flaws are discarded.

Subsequently, we assess the executability of each synthetic SQL
query. Queries that fail to execute are passed through an automated
repair step using the LLM. If the query remains non-executable
after correction attempts, it is excluded from the dataset. Once
a validated and executable set of SQL-Text pairs is obtained, we
further enrich the dataset by generating accompanying reasoning
traces. These traces are constructed using a divide-and-conquer
prompting strategy inspired by CHASE-SQL [24], which aims to
improve the interpretability of the data and instructional signal of
the synthetic examples for LLMs.

To promote sufficient schema coverage in the final dataset, we in-
troduce an additional column-focused synthesis step. Following the
first data generation round, we calculate the occurrence frequency
of each column within the synthesized SQL queries. Columns that
appear fewer times than a predefined threshold are considered un-
derrepresented and are flagged for targeted inclusion. Sub-schemas
containing these low-frequency columns are then reselected, and
a second round of SQL-Text generation is performed. During this
iteration, the LLM is explicitly instructed to focus on incorporat-
ing the underused columns into the generated SQL queries. While
this strategy does not guarantee equal representation across all
columns, it effectively eliminates extremely low-frequency cases
and enforces a minimum level of exposure for each column, thereby
improving overall schema coverage.

An overview of the complete synthesis workflow is illustrated
in Figure 1, and the corresponding procedure is detailed in Algo-
rithm 5.

Algorithm 5 Synthetic Text-to-SQL Generation Algorithm
(GenT2S)

Require: columnLevelSubSchemas

Ensure: t2sExamples
1: Initialize t2sExamples « []
2: for each subSchema in columnLevelSubSchemas do
3 SQL2TextExamples «— GENERATEWITHLLM
4 for each SQL2TextItem in SQL2TextExamples do
5 isLogical <~ EVALUATESQL2TEXTITEM(SQL2TextItem)
6 if isLogical then
7: isExecutable < EXEcUTESQL(SQL)
8
9

if isExecutable is False then
SQL2TextItem < FixSQL(SQL2TextItem)
10: end if

11: GENERATEREASONING(SQL2TextItem)
12: Append SQL2TextItem to t2sExamples
13: end if

14: end for

15: end for

16: return t2sExamples

4 DATA STATISTICS

To better understand the characteristics of our synthetic dataset and
to compare it with the BIRD benchmark, we analyze both dataset
composition and SQL query statistics across multiple dimensions.
In particular, we examine question distributions across levels, join
counts, and aggregation usage, which are widely adopted indica-
tors of SQL complexity and diversity. We also investigate schema
coverage, as incomplete coverage may hinder reliable evaluation.

Table 1 summarizes the distribution of questions across levels for
the California Schools database. BIRD-Dev is dominated by simple
and moderate queries (94.4% in total), with very few challenging
(5) or window (2) queries. In contrast, our synthetic splits yield
a substantially larger number of questions with a more balanced
distribution, including large number of challenging and window
queries. This broader coverage ensures that models trained on the
synthetic dataset are exposed to a wider variety of SQL patterns.
This also enables evaluation under more realistic data analysis
scenarios, where complex queries involving multiple tables and
conditions are prevalent.

Figure 2 reports the average number of joins per SQL across
different difficulty levels. We observe that the synthetic data ex-
hibits comparable or slightly higher join complexity than BIRD,
except simple questions. This suggests that our generation process
successfully incorporates complex relational reasoning patterns.

Similarly, Figure 3 illustrates the distribution of queries with
aggregation operators. While BIRD-Dev has a larger fraction of ag-
gregations in the simple category (31.48%), our synthetic data intro-
duces a higher proportion of aggregation in moderate, challenging,
and window queries, reaching up to 78.76% in the challenging level.

Table 2 further highlights a limitation of the BIRD development
split: 15 columns (16.85% of the schema) in the California Schools
database remain completely unused. This under-utilization implies
that BIRD-Dev cannot fully measure the performance of Text-to-
SQL systems on queries involving these columns, nor capture po-
tential interactions among them. In contrast, our synthetic dataset
achieves complete coverage across all columns in the train, dev, and
test splits, thereby enabling more comprehensive evaluation and
supervision over the entire schema. Column coverage comparison
for California Schools database provided in Appendix F.

Together, these results demonstrate that the synthetic dataset
is not only well aligned with the BIRD benchmark but also of-
fers richer coverage of SQL constructs and schema elements at
higher complexity levels, providing stronger supervision for train-
ing and evaluation of Text-to-SQL systems. Moreover, since our
SING-SQL framework is database-agnostic, it can be applied to
arbitrary databases, facilitating better schema alignment for LLMs
and enabling more comprehensive evaluation.

Table 1: Question counts per difficulty level for the California
Schools database in BIRD-Dev and synthetic splits.

Dataset Overall ~ Simple  Moderate  Challenging ~ Window
BIRD-Dev 89 54 30 5 2
Synthetic Train 34,266 8,685 8,556 8,046 9,286
Synthetic Dev 1,124 297 259 259 319

Synthetic Test 1,124 299 248 248 340




- ev Synthetic Tain Synthetic Dev  mm Synthetic Test
Join Count per SQL per Level across Datasets

Simple

Figure 2: Join Count Comparison of Bird and Synthetic Data

- Dev Synthetic Train Synthetic Doy mm Synthetic Test
Aggregation Percentage for Each Level Across Datasets
B 7978

Simple Moderate Challenging Window overall

Figure 3: Aggregation Comparison of Bird and Synthetic Data

Table 2: Unused column statistics for the California Schools
database.

Dataset Unused Column Count  Unused Column Rate (%)
Bird-Dev 15 16.85
Synthetic Train 0 0.0
Synthetic Dev 0 0.0
Synthetic Test 0 0.0

5 TEXT-TO-SQL TRANSLATION

A typical Text-to-SQL translation pipeline consists of four core com-
ponents: schema linking, candidate generation, candidate refine-
ment, and candidate selection. In this work, our focus is on evaluat-
ing the SQL generation capabilities of models without constructing
a full agentic pipeline. Therefore, we restrict our experiments to
the schema linking and candidate generation stages. As detailed in
Section 2, unlike prior studies, our approach leverages synthetically
generated in-domain Text-to-SQL data for both schema linking and
the construction of few-shot examples for SQL generation.

5.1 Schema Linking

Our schema linking process is partly driven by synthetically gener-
ated in-domain Text-to-SQL pairs. To retrieve relevant synthetic
examples and associated database items, we first extract keywords
from the input question following the approach in CHESS [36].
Relying solely on individual keywords can be limiting, as questions
often contain multiple terms whose combinational usage influences
retrieval quality. To address this, we expand the search space by
forming keyword pairs, enabling more precise matching against
synthetic examples.

For retrieving synthetic question-SQL pairs, we implement a
retrieval process that operates over both the question and SQL

text. Specifically, we experiment with two methods: (1) BM25 lex-
ical matching, and (2) semantic search using dense vector repre-
sentations. While both approaches are capable of identifying rele-
vant examples, semantic search is substantially slower in practice.
Considering real-world deployment scenarios, we therefore adopt
BM25 as our primary retrieval method due to its efficiency. In par-
allel, we retrieve relevant database columns and entities, following
CHESS [36], to further enhance the schema linking process. Finally,
we filter the candidate database tables using the retrieved synthetic
examples, relevant columns, and entities, ensuring a focused and
schema-consistent context for downstream SQL generation.

5.2 Candidate Generation

After schema filtering, we generate multiple SQL candidates follow-
ing the general strategy adopted in prior work [14, 15, 20, 24, 31, 32,
36, 38]. Here again, our in-domain synthetic dataset plays a central
role. Using the same keyword-pair retrieval process described in
the schema linking stage, we identify the most relevant synthetic
examples for the input question. We then rank these examples by
similarity and select the top-k as few-shot demonstrations for the
LLM. This targeted retrieval ensures that the few-shots are both
semantically relevant and schema-consistent. In addition, we incor-
porate detailed column metadata—such as semantic descriptions or
representative values—into the prompt, providing richer context
for the model during SQL generation.

6 EXPERIMENT SETTINGS
6.1 Dataset

We conduct experiments on the California Schools database from
the BIRD development benchmark [18], as well as on our syn-
thetically generated in-domain dataset produced by the database-
agnostic SING-SQL framework. While BIRD-Dev provides a limited
set of 89 questions, heavily skewed toward simple and moderate
difficulty, our synthetic dataset achieves full schema coverage and
a more balanced distribution across difficulty levels, including a
substantial number of challenging and window queries, as shown
in Table 1.

6.2 Evaluation Metrics

We evaluate model performance using two official metrics from the
BIRD [18] benchmark: Execution Accuracy (EX) and Soft F1-score.
Execution Accuracy (EX) measures whether the execution results
of predicted SQL queries exactly match those of the gold queries.
While EX accounts for the semantic equivalence of structurally
different SQLs, it remains a strict metric: a single discrepancy, such
as column order variation, leads to a score of zero even if the query
produces an otherwise correct result. This rigidity makes EX use-
ful for measuring exact correctness but less suitable for reflecting
practical robustness.

To address these limitations, the BIRD benchmark introduced
the Soft F1-score, which compares the overlap between predicted
and gold result tables in a precision-recall framework. By tolerating
column reordering and minor inconsistencies such as missing val-
ues, Soft F1 provides a more faithful estimate of how well a model
captures the intended semantics of a query. For example, when a
predicted query retrieves the correct tuples but orders or partially



~
"“*‘[ Keyword 1 I Keyword 2 I Keyword 3I

Keyword 1
Keyword 2

Keyword 1
Keyword 3

Keyword 2
Keyword 3

[

IE=HE=

\ i /
\ { v )
Ki rd '
ot 4
Entity Retrieval
Table 1 via LSH
L
L e !
CT T T 1] }
\

Filtered Schema

PO

Similar Database
Column Retrieval

\

!

/

%,,

2

Similar Synthetic
Text-to-SQL Pair Retrieval

5
N

\{ \;/

N
\
\\

Useful Database
Entities

) (oo

\f
Synthetic Text-to-SQL Pairs

A

@

Table Column

v
Columns}

on

\\
DB

W <
N
Filtration
ca ) e
i o0

Figure 4: Overview of the SING-SQL Schema Filtering

aligns columns differently, Soft F1 still rewards the overlap instead
of reducing the score to zero.

In this work, we primarily rely on the Soft F1-score for evaluation.
We argue that Soft F1 better reflects the reliability of Text-to-SQL
systems in real-world deployments, where users care about retriev-
ing semantically correct answers rather than perfectly ordered
result tables. Execution Accuracy is still reported for completeness
and comparability with prior work, but we consider Soft F1 to be a
more informative measure of model performance and a stronger
indicator of progress in in-domain Text-to-SQL translation.

6.3 Models and Hyperparameters

For synthetic data generation, we employ the Gemini-2.5-Flash
model across all stages of the SING-SQL framework, ensuring effi-
cient and consistent synthesis of SQL-Text pairs with high semantic
fidelity. Again, we employ Gemini-2.5-Flash in LLM-based schema
filtering for accurate and comparable filtering performance. For
downstream Text-to-SQL translation, we adopt Qwen2.5-Coder-
1.5B Instruct and Qwen2.5-Coder-3B Instruct [11] as the base model.
To adapt this backbone to in-domain settings, we apply supervised
fine-tuning (SFT), yielding specialized variants that we refer to as
SingSQL-LM.

The fine-tuning process is carried out using parameter-efficient
Low-Rank Adaptation (LoRA) [10], explored under two configu-
rations: LoRA rank 32 and LoRA rank 64. In the rank-32 setting,
we configure LoRA Alpha as 32, a learning rate of 1.0 x 1074, an
effective batch size of 8, a warm-up ratio of 0.1, and cosine sched-
uling. In the rank-64 setting, we set LoORA Alpha as 64, a learning
rate of 7.5 X 1072, an effective batch size of 8, a warm-up ratio of
0.1, and the same cosine scheduler. All models are trained for two
epochs. Fine-tuning is performed using the Unsloth! library to
enable efficient large-scale adaptation.

All experiments are conducted on a single NVIDIA A40 GPU
equipped with 48 GB of VRAM.

7 RESULTS

In Section 7.1, we report the performance of the fine-tuned SINGSQL-
LM models on Bird benchmark [18] and synthetic datasets. Sec-
tion 7.2 presents an evaluation of schema filtering techniques that
leverage the generated synthetic data. Section 7.3 examines the

effect of different context management strategies on model perfor-
mance.

7.1 Text-to-SQL Translation Performance

In evaluating translation performance, we restrict our analysis
to SQL generation stage where filtered schema used, deliberately
excluding candidate selection mechanisms. This ensures that results
reflect the intrinsic quality of the generated SQL queries, rather
than the effectiveness of downstream ranking or selection modules.
We report both Execution Accuracy (EX) and Soft F1-score [18],
under lower- and upper-bound settings, across varying candidate
counts. Results are presented on the California Schools subset of
the BIRD development benchmark and on the synthetic California
Schools data generated with the SING framework in Table 3 and
Table 4, respectively.

On BIRD-Dev, shown in Table 3, SingSQL-LM consistently out-
performs comparable baselines. Among 1.5B-scale models, SingSQL-
LM deliver substantial gains, reaching up to 73.82% Soft F1 UB and
64.04% EX UB with 32 candidates—9.30% and 4.49% gain over SLM-
SQL-1.5B (64.52% Soft F1 UB, 59.55% EX UB) in terms of Soft F1
and EX respectively and clearly surpassing CODES-1B and 3B. At
the 3B scale, SingSQL-LM achieves state-of-the-art performance
among open models. With 32 candidates, SingSQL-LM-3B-R64 ob-
tains 82.87% Soft F1 UB and 73.03% EX UB, outperforming the best
3B-scale baseline by +16.21 in Soft F1 and +12.36 in EX. Remarkably,
SingSQL-LM-3B-R64 surpasses the 7B-scale CscSQL model, demon-
strating that compact models can achieve superior performance
with targeted in-domain supervision. Lower-bound scores remain
close to zero across most settings due to the absence of refinement
or self-consistency, but the strong upper bounds demonstrate that
the models reliably generate high-quality SQL candidates.

On the synthetic evaluation splits, given in Table 4, the advan-
tages of SingSQL-LM become even more pronounced. SingSQL-
LM-1.5B-R64 achieves 68.05% Soft F1 UB and 56.85% EX UB on
SING-Dev, and 66.59% Soft F1 UB and 58.10% EX UB on SING-Test,
outperforming larger baselines such as CscSQL-Grpo-7B-Instruct,
which remain below 40% Soft F1 and 31% EX. The 3B-scale variants

Lhttps://unsloth.ai
Zhttps://github.com/RUCKBReasoning/OmniSQL/tree/main/OmniSQL_prediction_
results


https://unsloth.ai
https://github.com/RUCKBReasoning/OmniSQL/tree/main/OmniSQL_prediction_results
https://github.com/RUCKBReasoning/OmniSQL/tree/main/OmniSQL_prediction_results

Table 3: Comparison of system performance on the California Schools subset of the BIRD development benchmark.

System Candidate Count = 8 Candidate Count = 16 Candidate Count = 32
EXUB EXLB F1UB F1LB EXUB EXLB F1UB Fi1LB EXUB EXLB F1UB F1LB
CODES-1B 43.82 6.74 49.40 9.32 44.94 3.37 51.90 5.02 50.56 1.12 60.72 44.94
SLM-SQL-1.5B + 40.45 0.0 47.08 0.0 52.81 0.0 59.84 0.0 59.55 0.0 64.52 0.0
CODES-3B 50.56 11.24 56.46 14.50 56.18 3.37 62.17 5.80 60.67 1.12 66.66 1.77
OmniSQL-7B * 73.03 35.96 80.36 44.81 - - - - - - - -
CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct 66.29 1.12 72.02 1.12 74.15 0.0 76.99 0.0 77.55 0.0 81.45 0.0
CHESS 61.80 23.60 73.04 32.83 69.66 14.61 75.73 18.32 76.40 11.24 82.63 16.13
SingSQL-LM-1.5B-R32 41.57 0.0 53.26 0.0 52.80 0.0 64.75 0.0 59.55 0.0 67.55 0.0
SingSQL-LM-1.5B-R64 53.93 0.0 63.89 0.0 58.43 0.0 67.20 0.0 64.04 0.0 73.82 0.0
SingSQL-LM-3B-R32 58.42 0.0 71.06 1.00 67.42 0.0 77.61 0.56 70.79 0.0 81.76 0.0
SingSQL-LM-3B-R64 64.04 1.12 73.61 6.26 68.54 0.0 79.21 0.85 73.03 0.0 82.87 0.0

R represents the LoRA rank. UB represents upper bound and LB represents lower bound. We do not provide 3B models of CSC-SQL as we found its output inconsistent. T Only the SQL generator model is used
for SLM-SQL. ¥ The values are calculated from candidate SQL queries directly given by the OmniSQL authors in Github?.

Table 4: Comparison of system performance (Candidate SQL count is 8) on the Synthetic California Schools Development and

Test Sets of SING Framework.

SING-Dev SING-Test

System

EXUB EXLB F1UB F1LB EXUB EXLB Fi1UB Fi1LB
CODES-1B 17.97 0.53 28.70 1.96 16.73 0.36 27.11 1.79
SLM-SQL-1.5B 24.02 0.44 30.24 0.69 22.15 0.27 27.89 0.43
CODES-3B 22.42 0.53 34.57 2.18 20.20 0.71 33.07 2.80
CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct ~ 30.60 0.80 39.61 1.04 27.85 0.36 37.29 0.59
CHESS 38.70 10.23 53.44 16.79 40.75 9.16 55.24 18.24
SingSQL-LM-1.5B-R32 55.43 1.69 65.90 3.38 55.07 0.98 65.27 2.28
SingSQL-LM-1.5B-R64 56.85 2.22 68.05 4.04 58.10 1.60 66.59 3.00
SingSQL-LM-3B-R32 62.99 3.73 73.14 8.95 63.52 3.83 71.74 7.84
SingSQL-LM-3B-R64 65.21 5.25 75.33 10.58 64.08 5.16 72.37 9.87

further improve these results, with SingSQL-LM-3B-R64 reaching
75.33% Soft F1 UB and 65.21% EX UB on SING-Dev, and 72.37%
Soft F1 UB and 64.08% EX UB on SING-Test. These results exceed
all reported baselines by wide margins, underscoring that fine-
tuning on SING-SQL’s high-coverage synthetic data enables robust
in-domain generalization and offers a reliable evaluation path for
database-specific performance.

Together, these findings emphasize two main points. First, SingSQL-
LM demonstrates state-of-the-art performance among open models,
while rivaling or surpassing 7B-scale systems. Second, the substan-
tial improvements observed on the synthetic development and test
sets underscore the value of database-specific supervision: models
fine-tuned with SING-SQL not only outperform cross-domain base-
lines but also demonstrate consistent robustness across synthetic
evaluation splits. This confirms the utility of synthetic in-domain
data as a scalable path toward enterprise-grade Text-to-SQL sys-
tems.

7.2 Schema Filtering Performance

Table 5 reports schema filtering results on the California Schools
database from the BIRD development split, comparing multiple
filtering strategies that leverage synthetic Text-to-SQL pairs. We
evaluate recall and precision at both the table and column levels,

along with strict schema recall rate (SRR) [2]. While both precision
and recall are informative, recall is particularly critical in Text-to-
SQL systems [5], as omitting any part of the ground-truth schema
inevitably leads to incorrect translations.

As described in Section 5.1, our schema linking process relies
on synthetically generated Text-to-SQL pairs. We evaluate schema
filtering performance under different retrieval methods. Since our
approach does not filter tables, table recall remains consistently at
100%. For each keyword pair, we extract a single synthetic Text-to-
SQL example. When all retrieved examples are considered, column
recall reaches 87.23% with BM25 and 94.20% with vector-based
retrieval. However, augmenting prompts with all retrieved examples
is impractical for downstream tasks due to increased inference time
and cost. To this end, we restrict the context to the top-6 most
relevant examples, which reduces column recall to 71.93% (BM25)
and 70.53% (vector retrieval). These results indicate that relying
solely on synthetic examples retrieved via basic similarity methods
yields limited effectiveness and can negatively impact overall Text-
to-SQL translation.

To mitigate this, we incorporate an LLM-based filtering stage
on top of retrieval. This hybrid strategy significantly improves
the recall with the limited number of example. Specifically, BM25-
Top6+LLM achieves 97.45% column recall with 46.77% precision,
corresponding to an SRR of 88.76. Similarly, Vec-Top6+LLM reaches



97.91% recall with 47.52% precision, yielding the best SRR of 91.01.
Since all tables are always included in the filtered schema along
with their primary and foreign key columns, our precision scores
are lower compared to systems that apply stricter pruning. The
performance of schema filtering across different mechanisms on
synthetic datasets is further detailed in Appendix D.

Table 5: Schema Filtering Performance on California Schools
database in Bird Development Split.

Method TR TP CR CP SRR
RSL-SQL® - - - - 91.80
CHESS® 97.69 89.72 97.12 69.43 89.70
MCS® - - 89.80 - -

BM25-Top6 100 58.82 7193 27.33 25.84
Vec-Top6 100 59.29 70.53 28.90 24.72
BM25-All 100 56.18 87.23 14.86 51.68
Vec-All 100 5639 9420 12.59 73.03
BM25-Top6 + LLM 100 5837 97.45 46.77 88.76
Vec-Top6 + LLM 100 57.03 97.91 47.52 91.01

© Given metrics are for the whole development set of BIRD benchmark.

All our methods retrieve few-shots using user-question keyword pairs. “BM25”
retrieves examples using BM25 algorithm; “Vec” retrieves examples using se-
mantic similarity over a vector database. “All” uses all retrieved few-shots to
construct filtered schema while “Top6” uses the top-6 most similar examples to
the user question. “+LLM” applies LLM-based table column filtering leveraging
retrieved synthetic examples. “TR” and “TP” represent Table Recall and Precision
respectively. Similarly, “CR” and “CP” represent Column Recall and Precision
respectively. “SRR” denotes strict schema recall rate [2].

Overall, these results highlight that combining synthetic in-
domain supervision with the LLM-based filtering produces robust
schema linking. By coupling efficient retrieval with targeted LLM
refinement, SING-SQL achieves strong schema coverage while en-
suring practical scalability, thus establishing a reliable foundation
for downstream SQL generation.

7.3 Context Management

We evaluate the effect of different contextual signals on SQL gener-
ation, focusing on schema, few-shot demonstrations and few-shot
reasoning traces.

For the base model, schema grounding provides the most stable
supervision. As shown in Table 9, supplying six few-shots with
reasoning consistently reduces performance, while providing few-
shots without reasoning improves the performance slightly, sug-
gesting that few-shots can offer marginal benefits but reasoning
traces can introduce noise.

When fine-tuned models are considered, schema-only inference
emerges as the most effective configuration across all training
regimes. Adding few-shots at inference consistently lowers accu-
racy, particularly when reasoning traces are included as seen in
Table 9. An important observation is that training with schema-
aware data (T2SWS) leads to intermediate performance, whereas
models fine-tuned on schema-free data (T2S) achieve the highest
scores under schema-only inference. This indicates that schema-
free fine-tuning allows the model to internalize SQL patterns and
leverage schema more effectively during inference, while explicit
schema supervision during training provides less robust transfer.

Overall, three findings stand out. First, schema grounding is
the most robust contextual signal, outperforming configurations
with additional few-shots for fine-tuned models. Second, schema-
free fine-tuning combined with schema-only inference yields the
strongest generalization to in-domain queries. Third, few-shots
especially with reasoning traces tend to destabilize performance,
limiting their utility once schema context is explicitly provided.
Additional experiments with other fine-tuned models confirm these
patterns, as detailed in Appendix G.

Table 6: Comparison of model performance across different
training and inference contexts (candidate SQL count = 8).

Training Context Inference Context Performance

Dataset FS-C FS-R Schema FS-C FS-R EXUB F1UB
Base Model v 6 v 38.20 43.20

Base Model v 6 v 47.19 54.94

Base Model v 0 NA 46.06 54.37

T2SWS 6 X v 6 v 40.44 52.55
T2SWS 6 X v 6 X 33.70 46.38
T2SWS 6 X v 0 NA 46.07 56.00
T2SWS 0 NA v 6 v 35.96 49.87
T2SWS 0 NA v 6 X 40.45 53.29
T2SWS 0 NA v 0 NA 51.69 63.20
T2SWS, T2S 6 X v 6 v 30.34 43.49
T2SWS, T2S 6 X v 6 X 42.69 54.10
T2SWS, T2S 6 X v 0 NA 47.19 59.57
T2SWS, T2S 0 NA v 6 v 33.70 46.01
T2SWS, T2S 0 NA v 6 X 46.07 56.50
T2SWS, T2S 0 NA v 0 NA 46.08 59.03
T2S 6 X Vv 6 v 41.57 56.67
T2S 6 X Vv 6 X 42.69 55.40
T2S 6 X v 0 NA 52.80 69.63
T2S 0 NA v 6 + 39.33 55.58
T2S 0 NA v 6 - 48.31 62.83
T2S 0 NA v 0 NA 60.67 72.35

Qwen2.5-Coder-Instruct-3B serves as the base model. FS denotes few-shot examples.
FS-C is the number of few-shot examples, and FS-R indicates whether reasoning traces
of few-shots are included in the prompt. T2S refers to the fine-tuning dataset without
schema context, whereas T2SWS includes filtered schema context. All fine-tuned
models use LoRA (Rank = 32, Alpha = 32) with a learning rate of 1.0 X 1074, two
training epochs, and an effective batch size of 8.

8 DISCUSSION AND LIMITATIONS

One limitation of the proposed framework arises when foreign-
key constraints are absent or not explicitly defined in the database
schema. Since the initial stage of SING-SQL relies on foreign-key
relationships to guide schema partitioning, the lack of such con-
straints restricts the ability of the framework to construct accurate
sub-schemas. In practice, this limitation can be mitigated by manu-
ally specifying foreign-key relationships, enabling the framework
to proceed with schema partitioning even in databases where con-
straints are incompletely defined.

Another limitation of our framework arises when a set of columns
within a table are semantically or functionally related and should
be frequently queried together. Our current schema partitioning



strategy applies a sliding window at the column level to gener-
ate sub-schemas. However, this approach does not consider inher-
ent relationships among columns, which may result in separating
fields that are typically used together. However, similar limitation
can also be observed in the BIRD benchmark, despite being cu-
rated by domain experts. Appendix C illustrates this issue with
the Schools table in the California Schools database (part of the
BIRD dev set), where administrator-related fields are split across
different sub-schemas. Consequently, a question requiring all ad-
ministrator email addresses may yield only partial results, reducing
the semantic fidelity of question-SQL pairs.

A potential solution is to first identify and group semantically re-
lated columns before partitioning the columns via sliding window.
This would help preserve meaningful column groupings within
sub-schemas and avoid undesirable separation. However, such an
approach generally requires domain knowledge and manual inter-
vention, making it labor-intensive and not easily scalable.

Additionally, grouping semantically related columns would likely
reduce the number of distinct sub-schemas and, in turn, the number
of synthesized examples. To maintain data volume and diversity,
this reduction could be addressed by generating larger amount
of question-SQL pairs per sub-schema with variations in query
focus or changing the parameters of the SING-SQL. Incorporating
diverse natural language styles—similar to those used in OMNI-
SQL [16]—can further enhance the richness of the dataset without
sacrificing structural coherence.

As future work, automated techniques could be developed to de-
tect and preserve column groupings using LLMs, thereby mitigating
this limitation without relying on manual effort or domain-specific
expertise.

We do not study the effect of decoding hyperparameters such as
temperature or top-p. These are fixed throughout our experiments
to ensure consistency.

Reasoning traces are generated only through the divide-and-
conquer prompting strategy. Exploring multiple reasoning paths
could improve robustness and diversity but would substantially
increase cost, and is therefore left as future work.

While schema linking could potentially be enhanced by incorpo-
rating LLM-based table filtering, optimizing linking performance is
not the primary focus of this work. Instead, our goal is to demon-
strate the effectiveness of different schema linking strategies when
supported by synthetic data, rather than to develop the strongest
possible schema linking system.

Additionally, we do not incorporate reinforcement learning (e.g.,
GRPO [30]) as a post-training step. While such methods could
further improve SQL generation by aligning outputs with execution
results, we leave this as future work.

9 CONCLUSION

In this work, we introduced SING-SQL, a two-stage synthetic data
generation framework tailored for in-domain Text-to-SQL tasks.
By hierarchically partitioning target databases into diverse sub-
schemas and generating SQL-Text pairs across multiple complexity
levels, SING-SQL achieves both comprehensive schema coverage and
semantic alignment. To ensure data quality, our framework inte-
grates LLM-as-a-judge validation, executability checks, automatic

repair, and column-focused balancing, resulting in datasets that are
both high-coverage and structurally reliable.

We further released SingSQL-LM, a family of compact language
models efficiently fine-tuned on the synthetic data produced by
our framework. Extensive experiments on both the BIRD bench-
mark and our synthetic evaluation splits demonstrate consistent
improvements in in-domain generalization. On the BIRD develop-
ment subset, SingSQL-LM-3B-R64 attains 82.87% Soft F1 and 73.03%
EX upper bound with 32 candidates, surpassing the best 3B-scale
baseline by +16.21 points in Soft F1 and +12.36 points in EX. At
the 1.5B scale, SingSQL-LM-1.5B-R64 improves over prior systems
by +9.30 in Soft F1 and +4.49 in EX. On the synthetic evaluation
splits, SingSQL-LM models further extend these gains. These re-
sults confirm high-coverage synthetic supervision not only benefits
small-scale models but also establishes state-of-the-art performance
among open models at comparable scales.

Notably, schema-free fine-tuning combined with schema-only
inference yields the strongest results. This setting allows the model
to internalize SQL patterns during training without being overly
dependent on explicit schema supervision, while still leveraging
schema context effectively at inference time. Our experiments show
that synthetically generated few-shots and reasoning traces often
destabilize performance once schema is provided, whereas schema-
only inference consistently offers the most robust and scalable
configuration for fine-tuned model. These findings underscore the
practicality of schema-free training, as it reduces prompt complex-
ity and cost at deployment while maintaining strong accuracy in
domain-specific databases.

Beyond performance gains, our findings highlight the broader
utility of synthetic database-specific data generation: it enables
robust schema filtering with the help of LLM, enhances SQL genera-
tion, and offers a practical path for enterprises to adapt open-source
LLMs without costly learning pipelines or large-scale manual an-
notation. Moreover, by combining parameter-efficient fine-tuning
with compact models, we provide a viable solution for low-resource
environments where annotated data or computational capacity is
limited, making domain-specialized Text-to-SQL systems accessible
even to organizations with constrained resources.

While our work addresses critical challenges in domain special-
ization, limitations remain. Current sub-schema partitioning may
separate semantically related columns, and reasoning traces are
generated through a single prompting strategy. Future work can
explore automated column grouping, diverse reasoning styles, and
reinforcement learning to further strengthen robustness.

Overall, SING-SQL establishes a scalable and database-agnostic
paradigm for generating high-quality in-domain data, providing a
strong foundation for advancing Text-to-SQL translation in real-
world enterprise settings.

ACKNOWLEDGMENTS

We thank TUBITAK ULAKBIM for granting access to the High
Performance and Grid Computing Center (TRUBA), and Ko¢ Uni-
versity High Performance Computing Center for providing GPU
resources used in this work.



REFERENCES

(1]

(2]

[10

[11

[12

[13

[14]

[15

[16]

[17]

[18]

[19

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2025. E-SQL: Direct Schema Linking
via Question Enrichment in Text-to-SQL.  arXiv:2409.16751 [cs.CL] https:
//arxiv.org/abs/2409.16751

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, and Wei Chen. 2024.
RSL-SQL: Robust Schema Linking in Text-to-SQL Generation. arXiv preprint
arXiv:2411.00073 (2024).

Salmane Chafik, Saad Ezzini, and Ismail Berrada. 2025. Towards Automating
Domain-Specific Data Generation for Text-to-SQL: A Comprehensive Approach.
ACM Trans. Softw. Eng. Methodol. (June 2025). https://doi.org/10.1145/3746226
Just Accepted.

Song Cheng, Qiannan Cheng, Linbo Jin, Lei Yi, and Guannan Zhang. 2025.
SQLord: A Robust Enterprise Text-to-SQL Solution via Reverse Data Generation
and Workflow Decomposition (WWW °25). Association for Computing Machin-
ery, New York, NY, USA, 919-923. https://doi.org/10.1145/3701716.3715541
Yeounoh Chung, Gaurav Tarlok Kakkar, Yu Gan, Brenton Milne, and Fatma Ozcan.
2025. Is Long Context All You Need? Leveraging LLM’s Extended Context for
NL2SQL. Proc. VLDB Endow. 18, 8 (2025), 2735-2747. https://www.vldb.org/
pvldb/vol18/p2735-ozcan.pdf

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jin-
shu Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT.
arXiv:2307.07306 [cs.CL] https://arxiv.org/abs/2307.07306

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding,
and Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models:
A Benchmark Evaluation. Proc. VLDB Endow. 17, 5 (may 2024), 1132-1145.
https://doi.org/10.14778/3641204.3641221

Michael Glass, Mustafa Eyceoz, Dharmashankar Subramanian, Gaetano Rossiello,
Long Vu, and Alfio Gliozzo. 2025. Extractive Schema Linking for Text-to-SQL.
arXiv:2501.17174 [cs.DB] https://arxiv.org/abs/2501.17174

Yu Guo, Dong Jin, Shenghao Ye, Shuangwu Chen, Jianyang Jianyang, and Xiaobin
Tan. 2025. SQLForge: Synthesizing Reliable and Diverse Data to Enhance Text-
to-SQL Reasoning in LLMs. In Findings of the Association for Computational
Linguistics: ACL 2025, Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (Eds.). Association for Computational Linguistics,
Vienna, Austria, 8441-8452. https://doi.org/10.18653/v1/2025 findings-acl.443
Edward ] Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of
Large Language Models. In International Conference on Learning Representations.
https://openreview.net/forum?id=nZeVKeeFYf9

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang,
An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong
Feng, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang Lin. 2024.
Qwen2.5-Coder Technical Report. arXiv:2409.12186 [cs.CL] https://arxiv.org/
abs/2409.12186

Jie Jiang, Haining Xie, Sigi Shen, Yu Shen, Zihan Zhang, Meng Lei, Yifeng Zheng,
Yang Li, Chunyou Li, Danqing Huang, Yinjun Wu, Wentao Zhang, Bin Cui,
and Peng Chen. 2025. SiriusBI: A Comprehensive LLM-Powered Solution for
Data Analytics in Business Intelligence. Proc. VLDB Endow. 18, 12 (Sept. 2025),
4860-4873. https://doi.org/10.14778/3750601.3750610

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. In
Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 22199-22213. https://proceedings.neurips.cc/paper_files/paper/2022/file/
8bb0d291acd4acf06ef112099¢16f326-Paper-Conference.pdf

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. 2024. MCS-SQL:
Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL
Generation. arXiv:2405.07467 [cs.CL] https://arxiv.org/abs/2405.07467

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The
Dawn of Natural Language to SQL: Are We Fully Ready?. In Proceedings of the
VLDB Endowment (PVLDB), Vol. 17. https://doi.org/10.14778/3681954.3682003
Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin
Jiang, Shuai Wang, Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and
Cuiping Li. 2025. OmniSQL: Synthesizing High-quality Text-to-SQL Data at
Scale. arXiv:2503.02240 [cs.CL] https://arxiv.org/abs/2503.02240

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie
Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. CodeS: Towards Building
Open-source Language Models for Text-to-SQL. Proc. ACM Manag. Data 2, 3,
Article 127 (may 2024), 28 pages. https://doi.org/10.1145/3654930

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems 36 (2024).

Geling Liu, Yunzhi Tan, Ruichao Zhong, Yuanzhen Xie, Lingchen Zhao, Qian
Wang, Bo Hu, and Zang Li. 2025. Solid-SQL: Enhanced Schema-linking based In-

context Learning for Robust Text-to-SQL. In Proceedings of the 31st International
Conference on Computational Linguistics, Owen Rambow, Leo Wanner, Marianna

[20

[21

[22]

[23

[24]

[25]

[26]

[27]

(28]

™~
20,

[30

(31]

(32]

[33

(34

[35

[36

(37

(38]

Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (Eds.).
Association for Computational Linguistics, Abu Dhabi, UAE, 9793-9803. https:
//aclanthology.org/2025.coling-main.654/

Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia Li, Xiaorong Shi, Yuntao Hong,
Jinyang Gao, Yu Li, Bolin Ding, and Jingren Zhou. 2025. XiYan-SQL: A Novel
Multi-Generator Framework For Text-to-SQL. (2025). arXiv:2507.04701 [cs.CL]
https://arxiv.org/abs/2507.04701

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo.
2025. SQL-R1: Training Natural Language to SQL Reasoning Model By Rein-
forcement Learning. arXiv:2504.08600 [cs.DB] https://arxiv.org/abs/2504.08600
Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi.
2024. The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned
Language Models. In NeurIPS 2024 Third Table Representation Learning Workshop.
https://openreview.net/forum?id=fglyh5pa7d

Simone Papicchio, Simone Rossi, Luca Cagliero, and Paolo Papotti.
2025. Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL.
arXiv:2504.15077 [cs.LG] https://arxiv.org/abs/2504.15077

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei,
Gaurav Tarlok Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik.
2025. CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate
Selection in Text-to-SQL. In The Thirteenth International Conference on Learning
Representations. https://openreview.net/forum?id=CvGqMD50tX
Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decom-
posed In-Context Learning of Text-to-SQL with Self-Correction. In Advances
in Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 36339-36348. https://proceedings.neurips.cc/paper_files/paper/2023/file/
72223cc66f63calaa59edaec1b3670e6-Paper-Conference.pdf

Mohammadreza Pourreza and Davood Rafiei. 2024. DTS-SQL: Decomposed
Text-to-SQL with Small Large Language Models. arXiv:2402.01117 [cs.CL]
https://arxiv.org/abs/2402.01117

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li,
Azalia Mirhoseini, Amin Saberi, and Sercan "O. Arik. 2025. Reasoning-SQL: Rein-
forcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced
Text-to-SQL. arXiv:2503.23157 [cs.LG] https://arxiv.org/abs/2503.23157

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold
Cheng. 2024. Before Generation, Align it! A Novel and Effective Strategy for Mit-
igating Hallucinations in Text-to-SQL Generation. In Findings of the Association
for Computational Linguistics ACL 2024, Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand
and virtual meeting, 5456-5471. https://aclanthology.org/2024.findings-acl.324
Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2023. Direct Preference Optimization: Your Language
Model is Secretly a Reward Model. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems. https://openreview.net/forum?id=HPuSIXJaa9
Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei
Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. DeepSeek-
Math: Pushing the Limits of Mathematical Reasoning in Open Language Models.
arXiv:2402.03300 [cs.CL] https://arxiv.org/abs/2402.03300

Lei Sheng and Shuai-Shuai Xu. 2025. CSC-SQL: Corrective Self-Consistency
in Text-to-SQL via Reinforcement Learning. arXiv:2505.13271 [cs.CL] https:
//arxiv.org/abs/2505.13271

Lei Sheng and Shuai-Shuai Xu. 2025. SLM-SQL: An Exploration of Small Lan-
guage Models for Text-to-SQL. arXiv:2507.22478 [cs.CL] https://arxiv.org/abs/
2507.22478

Lei Sheng, Shuai-Shuai Xu, and Wei Xie. 2025. BASE-SQL: A powerful open
source Text-To-SQL baseline approach. arXiv:2502.10739 [cs.CL] https://arxiv.
org/abs/2502.10739

Jie Shi, Bo Xu, Jiaqing Liang, Yanghua Xiao, Jia Chen, Chenhao Xie, Peng Wang,
and Wei Wang. 2025. Gen-SQL: Efficient Text-to-SQL By Bridging Natural
Language Question And Database Schema With Pseudo-Schema. In Proceedings
of the 31st International Conference on Computational Linguistics, Owen Rambow,
Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and
Steven Schockaert (Eds.). Association for Computational Linguistics, Abu Dhabi,
UAE, 3794-3807. https://aclanthology.org/2025.coling-main.256/

Vladislav Shkapenyuk, Divesh Srivastava, Theodore Johnson, and Parisa Ghane.
2025. Automatic Metadata Extraction for Text-to-SQL. arXiv:2505.19988 [cs.DB]
https://arxiv.org/abs/2505.19988

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and
Amin Saberi. 2024. CHESS: Contextual Harnessing for Efficient SQL Synthesis.
arXiv preprint arXiv:2405.16755 (2024). https://arxiv.org/abs/2405.16755 Preprint
arXiv:2405.16755.

Kapil Vaidya, Jialin Ding, Sebastian Kosak, David Kernert, Chuan Lei, Xiao
Qin, Abhinav Tripathy, Ramesh Balan, Balakrishnan Narayanaswamy, and Tim
Kraska. 2025. TailorSQL: An NL2SQL System Tailored to Your Query Workload.
arXiv:2505.23039 [cs.DB] https://arxiv.org/abs/2505.23039

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai,
Zhao Yan, Qian-Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. 2024. MAC-SQL: A


https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://doi.org/10.1145/3746226
https://doi.org/10.1145/3701716.3715541
https://www.vldb.org/pvldb/vol18/p2735-ozcan.pdf
https://www.vldb.org/pvldb/vol18/p2735-ozcan.pdf
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2307.07306
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2501.17174
https://arxiv.org/abs/2501.17174
https://doi.org/10.18653/v1/2025.findings-acl.443
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://doi.org/10.14778/3750601.3750610
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://doi.org/10.14778/3681954.3682003
https://arxiv.org/abs/2503.02240
https://arxiv.org/abs/2503.02240
https://doi.org/10.1145/3654930
https://aclanthology.org/2025.coling-main.654/
https://aclanthology.org/2025.coling-main.654/
https://arxiv.org/abs/2507.04701
https://arxiv.org/abs/2507.04701
https://arxiv.org/abs/2504.08600
https://arxiv.org/abs/2504.08600
https://openreview.net/forum?id=fglyh5pa7d
https://arxiv.org/abs/2504.15077
https://arxiv.org/abs/2504.15077
https://openreview.net/forum?id=CvGqMD5OtX
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2503.23157
https://arxiv.org/abs/2503.23157
https://aclanthology.org/2024.findings-acl.324
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2505.13271
https://arxiv.org/abs/2505.13271
https://arxiv.org/abs/2505.13271
https://arxiv.org/abs/2507.22478
https://arxiv.org/abs/2507.22478
https://arxiv.org/abs/2507.22478
https://arxiv.org/abs/2502.10739
https://arxiv.org/abs/2502.10739
https://arxiv.org/abs/2502.10739
https://aclanthology.org/2025.coling-main.256/
https://arxiv.org/abs/2505.19988
https://arxiv.org/abs/2505.19988
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2505.23039
https://arxiv.org/abs/2505.23039

[39]

[40]

[41]

Multi-Agent Collaborative Framework for Text-to-SQL. arXiv:2312.11242 [cs.CL]
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan
Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Im-
proves Chain of Thought Reasoning in Language Models. In The Eleventh Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=1PLINIMMrw

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2024. Chain-of-thought prompting
elicits reasoning in large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS °22). Curran Associates Inc., Red Hook, NY, USA, Article 1800, 14 pages.
Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie Guo. 2025. OpenSearch-
SQL: Enhancing Text-to-SQL with Dynamic Few-shot and Consistency Align-
ment. Proc. ACM Manag. Data 3, 3, Article 194 (June 2025), 24 pages. https:
//doi.org/10.1145/3725331

[42]

[43]

[44]

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou.
2024. Synthesizing Text-to-SQL Data from Weak and Strong LLMs. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, Bangkok, Thailand, 7864-7875. https:
//doi.org/10.18653/v1/2024.acl-long.425

Zhuopan Yang, Yuanzhen Xie, Ruichao Zhong, Yunzhi Tan, Enjie Liu, Zhenguo
Yang, Mochi Gao, Bo Hu, and Zang Li. 2025. PSM-SQL: Progressive Schema Learn-
ing with Multi-granularity Semantics for Text-to-SQL. arXiv:2502.05237 [cs.DB]
https://arxiv.org/abs/2502.05237

Zhewei Yao, Guoheng Sun, Lukasz Borchmann, Zheyu Shen, Minghang Deng,
Bohan Zhai, Hao Zhang, Ang Li, and Yuxiong He. 2025. Arctic-Text2SQL-R1:
Simple Rewards, Strong Reasoning in Text-to-SQL. arXiv:2505.20315 [cs.CL]
https://arxiv.org/abs/2505.20315


https://arxiv.org/abs/2312.11242
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.1145/3725331
https://doi.org/10.1145/3725331
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
https://arxiv.org/abs/2502.05237
https://arxiv.org/abs/2502.05237
https://arxiv.org/abs/2505.20315
https://arxiv.org/abs/2505.20315

A FLAWED SQL-TO-TEXT TRANSLATION

When synthesizing Text-to-SQL pairs, one common strategy is to first generate SQL queries based on the database schema and subsequently
produce corresponding natural language questions. This direction is often preferred as translating from SQL to natural language is considered
a relatively simpler task compared to the inverse. However, SQL-to-text generation does not always yield high-quality question formulations.
Accurate translation requires a deep semantic understanding of the database schema—specifically, what each column represents. In our
experiments, we observed that even state-of-the-art large language models (LLMs) occasionally fail to capture these semantics accurately,
resulting in flawed natural language questions. An illustrative example is provided in Figure 5, where a SQL query generated by Gemini-2.5-
Pro selects the enrol112 column from the satscores table. This column denotes the total number of students enrolled from 1st through
12th grade. However, the corresponding generated question incorrectly refers only to 12th-grade enrollment, demonstrating a semantic
misinterpretation of the column’s meaning and resulting in low-quality data.

SQL:

SELECT T1.AdmEmaill, T2.dname, T2.enroll12 FROM schools AS T1 INNER JOIN satscores AS T2 ON
T1.CDSCode = T2.cds INNER JOIN frpm AS T3 ON T1.CDSCode = T3.CDSCode WHERE T2.cname = ’Los Angeles’
AND T3.’District Type’ = ’Unified School District’;

Question:

Show me the administrator’s email, the district name, and the 12th-grade enrollment for all schools located in Los Angeles
county that are part of a Unified School District.

Figure 5: Example of flawed SQL-to-Text translation where the model misinterprets column semantics.

B ILLOGICAL SQL-TO-TEXT PAIRS

In the process of generating Text-to-SQL training data, some SQL queries—though syntactically correct and semantically aligned with their
corresponding questions—can still be illogical from an analytical or real-world perspective. These pairs are referred to as illogical SQL-to-text
pairs. Unlike flawed translations that arise from misinterpretations of column semantics, illogical pairs emerge when the intent or logic of
the SQL query lacks analytical validity or practical utility.

One scenario involves performing numerical operations, such as computing an average, on values that are not inherently quantitative.
This misstep often arises from a superficial interpretation of a column’s name or datatype (e.g., treating textual identifiers as numerically
meaningful). While language models may generate SQL and natural language questions that are mutually consistent, the underlying query
logic may not serve a meaningful purpose in practice.

An illustrative example is shown in Figure 6. Here, the SQL query attempts to calculate the average charter school identification number for
district types that have more than 500 schools. While technically executable and syntactically valid, the query is conceptually flawed—charter
school identification numbers are unique IDs and not numerical attributes that should be averaged. Thus, the question generated from this
query, despite being a literal translation, is illogical from an analytical standpoint.

SQL:

SELECT "District Type", AVG(CASE WHEN "Charter School Number" IS NOT NULL THEN CAST("Charter School
Number" AS REAL) ELSE NULL END) AS AverageCharterSchoolNumber FROM frpm GROUP BY "District Type"
HAVING COUNT(CDSCode) > 500;

Question:

Which school district types have more than 500 schools, and what is their average charter school identification number (if
available)?

Figure 6: Example of an illogical SQL-to-Text pair. The SQL and question are semantically aligned but reflect an implausible
analytical intent—averaging unique identifiers.



C SEPARATION OF COLUMNS HIGHLY USED TOGETHER LIMITATION EXAMPLE

As discussed in Section 8, one drawback of our column-wise schema partitioning arises when semantically or functionally related columns
are separated across different sub-schemas. In the California Schools dataset (from the BIRD dev set), the Schools table contains the
following administrator-related columns: AdmFName1, AdmLName1, AdmEmail1l, AdmFName2, AdmLName2, AdmEmail2, AdmFName3, AdmLName3,
AdmEmail3.

If not clearly stated, these columns should be often used together in queries that involve administrative contact information. However,
because our current framework partitions columns using a sliding window without considering such semantic groupings, they may be split
across multiple sub-schemas. However, similar limitation can also be observed in the BIRD benchmark, despite being curated by domain
experts.

Figure 7 illustrates an example of inconsistent handling of semantically related columns in the BIRD benchmark. The question asks
for the common first names among school administrators, yet the provided SQL query only considers the first administrator (AdmFName1).
This mismatch introduces ambiguity: either the SQL should aggregate across all administrator first-name columns, or the question should
explicitly restrict the scope to the first administrator. A third possibility is to adopt a schema-level convention (e.g., defaulting to the first
administrator unless otherwise specified), but such rules should be explicitly stated to avoid misinterpretation. Figure 8 presents a synthetic
example illustrating this limitation. The example question asks for administrator email addresses and unique identifiers for schools classified
as ’County Community School’. Yet the corresponding SQL query only returns one email field (AdmEmail3), as the sub-schema does not
include the other administrator email columns. This mismatch reduces the fidelity of the synthesized question-SQL pair and can negatively
impact model training and evaluation when such examples appear in the train, dev, or test splits.

Question:
What are the two most common first names among the school administrators? Indicate the district to which they administer.

SQL:

SELECT DISTINCT T1.AdmFNamel, T1.District FROM schools AS T1 INNER JOIN ( SELECT admfnamel FROM
schools GROUP BY admfnamel ORDER BY COUNT(admfnamel) DESC LIMIT 2 ) AS T2 ON T1.AdmFNamel =
T2.admfnamel;

Figure 7: Data example in Bird development set for the separation of semantically related columns problem.

Sub-Schema:

"frpm": [ "CDSCode", "Percent (%) Eligible FRPM (Ages 5-17)", "High Grade" ],
"satscores": [ "cds", "AvgScrWrite", "NumTstTakr" ],

"schools": [ "CDSCode", "EdOpsCode", "AdmEmail3" ]

SQL:
SELECT T1.AdmEmail3, T1.CDSCode FROM schools AS T1 WHERE T1.EdOpsCode = ’COMM’;

Question:
What are the administrator email addresses and unique identifiers for schools classified as ’County Community School’?

Figure 8: Synthetic Data Example for a separation of semantically related columns.



D SCHEMA FILTERING PERFORMANCE ON SYNTHETIC DATA

Table 7: Schema Filtering Performance on the Synthetically generated Text-to-SQL data for the California Schools database in
Bird Dev Split. All methods retrieve few-shots using user-question keyword pairs. “BM25” retrieves examples using BM25; “All”
uses all retrieved few-shots to construct filtered schema while “Top6” uses the top-6 most similar examples to the user question.
“+LLM” applies LLM-based table filtering leveraging retrieval. “TR” and "TP”represents Table Recall and Precision respectively.
Similarly, ”CR” and ”CP” represents Column Recall and Precision respectively. SRR” represents strict schema recall rate

Method TR TP CR CP SRR
Synthetic Train Dataset
BM25-Top6 96.50 6848 89.41 39.15 75.65
BM25-All 97.14 6496 93.10 16.88 87.78
BM25-Top6 + LLM  97.09 65.92 92.08 45.59 83.66
Synthetic Dev Dataset
BM25-Top6 95,51 6571 86.94 37.01 7197
BM25-All 96.20 62.26 90.99 15.70 84.51
BM25-Top6 + LLM  96.20 63.35 90.20 45.59 81.93
Synthetic Test Dataset
BM25-Top6 96.12 66.63 89.03 37.78 75.71
BM25-All 96.67 6250 92.88 15.96 89.05

BM25-Top6 + LLM  96.63 63.59 91.13 40.03 82.74

E SUB-SCHEMA AND SYNTHETIC DATA STATISTICS

While synthetic Text-to-SQL data is generated only for the California Schools database in the development set of the BIRD benchmark,
Table 8 reports statistics across multiple databases to illustrate how sub-schema generation varies with different parameter choices. For the
experiments in this work, we specifically use the configuration in the first row of Table 8: the California Schools database with 3 tables and
89 columns (an average of 29.66 columns per table). With a sliding window length of 3 and stride of 2, we obtain 2,249 sub-schemas and
ultimately generate 39,734 synthetic examples.

Table 8: Sub-Schema and Synthetic Data Statistics

Database Properties Sub-Schema and Synthetic Data Generation Parameters Resulting Statistics
Slidi Min Col Syntheti
Table Column Avg. Cols Table-Level Sub-Schema Lding . MO Sub-Schema  DYhon€
Database Window  Stride Example Data
Count  Count  per Table Table Counts Count
Length Count Count
California Schools 3 89 29.66 [3,2,1] 3 2 400 2249 39734
California Schools 3 89 29.66 [3,2,1] 3 1 - 11420 -
Card Games 6 115 19.16 [3,2,1] 3 2 - 2938 -
Card Games 6 115 19.16 [3,2,1] 2 1 - 13352 -
Codebase Community 8 71 8.875 [4,3,2,1] 3 2 - 3533 -
Codebase Community 8 71 8.875 [3,2,1] 3 2 - 1134 -




F COLUMN COVERAGE COMPARISON FOR CALIFORNIA SCHOOLS DATABASE (BIRD VS.
SYNTHETIC DATASET)

Column Coverage Comparison for California Schools Database (Bird vs. Synthetic Dataset)

schools.admfname?

schools.adminame3 -
schools.closeddate -

schools.magnet

schools.edopsname

schools.doctype
schools.fundingtype
schools.adminamel

schools.admfniame3

schools.admemail3 -

schools.mailstrabr -

frpm.charter school (y/n) {
frpm.irc o

schools.zip
schools.soctype

schools.gsoffered
schools.gsserved -
schools.eilname

schools.virtual -

schools.ncesdist

schools.soc o

schools.admemail2 -

schools.mailzip
schools.streetabr -

frpm.academic year

schools.county -

schools.charter

schools.edopscode
schools.opendate

schools.charternum -

schools.state -

frpm.district code
schools.mailstreet

satscores.rtype -
schools.doc

schools.adminame2 -

schools.eilcode

schools.ext

frpm.frpm count (ages 5-17) 4
frpm.school code

schools.longitude <
schools.statustype -
schools.lastupdate <
frpm.frpm count (k-12) -
schools.latitude

schools.mailstate

schools.admnamel

frpm.2013-14 calpads fall 1 certification status -
schools.website

schools.street §

schools.admemaill -

schools.ncesschool -

Columns (table.column)

\|||\||“”\P|\l “|P|||ru|\|m|n|\|||P||||||\P|m||||rqmmr I

frpm.free meal count (ages 5-17) 4
frpm.district name

schools.mailcity -
schools.phone -

frpm.county name -
frpm.Iow grade

frpm.charter funding type

frpm.county code
frpm.charter school number

frpm.nsip provision status
frpm.high grade -

schools.city
from.enroliment (ages 5-17) 4

frpm.educational option type -
schools.school

schools.district

from.percent (%) eligible from (k-12)
frpm percent (%) eligible free (ages 5-17) o

frpm.percent (%) eligible frpm (ages 5-17)
frpm.school type

frpm.free meal count (k-12) 4
frpm.enrollment (k-12) -
frpm.school name -

frpm.percent (%) eligible free (k-12) 4
satscores.numge1500

frpm.district type
satscores.numtsttakr

satscores dname
satscores.avgscrwrite

satscores.avgscrmath -
satscores.cname |

satscores.sname |

satscores avgscrread -
satscores.enroll12

satscores.cds -
frpm.cdscode -

schools.cdscode o

[0 bird_dev W syn_train  EEE syn_dev [ syn_test O 0 (marker at x=0)

10° 10t 102 10 10%
Count

oA

Figure 9: Column Coverage Comparison for California Schools Database (Bird vs. Synthetic Dataset)

1

3



G CONTEXT MANAGEMENT STUDY

Table 9: Comparison of model performance across different training and inference contexts (candidate SQL count = 8).

Training Context Inference Context Performance-R32 Performance-R64

Dataset FS-C FS-R Schema FS-C FS-R EXUB F1UB EX UB F1UB

T2SWS 6 X v 6 v 40.44 52.55 38.20 45.65
T2SWS 6 X v 6 X 33.70 46.38 44.94 57.93
T2SWS 6 X v 0 NA 46.07 56.00 47.19 60.23
T2SWS 0 NA v 6 v 35.96 49.87 39.32 49.18
T2SWS 0 NA v 6 X 40.45 53.29 44.94 55.07
T2SWS 0 NA v 0 NA 51.69 63.20 51.68 62.81
T2SWS, T2S 6 X v 6 v 30.34 43.49 42.01 51.11
T2SWS, T2S 6 X v 6 X 42.69 54.10 42.76 53.05
T2SWS, T2S 6 X v 0 NA 47.19 59.57 43.82 55.63
T2SWS, T2S 0 NA v 6 v 33.70 46.01 43.82 52.33
T2SWS, T2S 0 NA v 6 X 46.07 56.50 35.95 50.73
T2SWS, T2S 0 NA v 0 NA 46.08 59.03 48.31 61.64
T2S 6 X v 6 v 41.57 56.67 46.06 64.57
T2S 6 X v 6 X 42.69 55.40 49.44 61.40
T2S 6 X v 0 NA 52.80 69.63 52.81 64.06
T2S 0 NA v 6 + 39.33 55.58 46.07 59.49
T2S 0 NA v 6 - 48.31 62.83 44.94 61.07
T2S 0 NA v 0 NA 60.67 72.35 64.04 73.61

Qwen2.5-Coder-Instruct-3B serves as the base model. FS denotes few-shot examples. FS-C is the number of few-shot examples, and
FS-R indicates whether reasoning traces of few-shots are included in the prompt. T2S refers to the fine-tuning dataset without schema
context, whereas T2SWS includes filtered schema context.



H SCHEMA TABLE COLUMN FILTRATION PROMPT TEMPLATE

### You are an excellent data scientist. You can capture the link between user question and database elements (columns). You determine the relevant database
columns perfectly. Your objective is to analyze and understand the essence of the given question, single database table schema, examples and then select the
relevant columns of a given table.

### Follow the instructions below step by step:
# Step 1 - Read the Question Carefully:

* Understand the primary focus and specific details of the question. Identify named entities ( such as organizations, locations, etc.), technical terms,
and other key phrases that encapsulate important aspects of the inquiry to establish a clear link between the question and the table columns.

* If a hint is given with the quesiton, review it. The hint provides specific information and directs attention toward certain elements relevant to the
question and its answer. Use the hint to understand the relation between the question, the hint, and the given table columns. Always follow such logic
explicitly.

# Step 2 - Analyze the Table Schema:

* You are given a schema of a single table in a database. Examine the table schema and detailed information about the columns to identify relevant columns

that are pertinent to the question.

* Understand the meaning and purpose of the column, not just its name.

# Step 3 - Examine the Examples:

* Review each Text-to-SQL example that use the database elements the table come from.

* Analyze each question-SQL pair to understand the table columns and learn how they are used, in which contexts they are used.

* Use examples to guide your decision, but **do not restrict yourselfx* to only columns seen in examples.

# Step 4 - Select Useful Columns:

* Consider each column one by one in detail to determine it is useful and required to answer the questions. When iterating through each column, write
detailed reasoning why a column is necessary and useful or not. While evaluating a column, you can take the advantage from the examples.

- At each new line, start with column name that you consider. Go through the information about the column and state the properties of the column. Then
start reasoning whether it is related to the questoin or not.

* For each column in the given table schema, ask yourself: Is this column directly necessary or indirectly helpful to answer the question?

- If yes, include it.

- If the question or hint specifies this column, include it.
- If it's part of a formula or computation, include it.

- If you're unsure, err on the side of including it.

* When unsure about a column, prefer to include a column unless it explicitly contradicts the question or hint. Use examples to inform your judgment, but
do not overfit to them.

* Always follow the formula or calculation logic explicitly provided in the question or hint.

* *xIMPORTANT** If the question and hint describe a formula using specific column names, you must select those exact columns, even if alternative or
redundant columns (e.g., percentage, rate, average) are present in the schema. **Do not** assume that similar-looking columns satisfy the requirement.

* If a question requires aggregate function on a column, you **must** select that column.

* Determine a question requires aggregate function, then think and elaborate on which column aggretation should be applied.
* For example, if a user question needs counting (requiring COUNT aggregate function), then select a column on which aggregate function should be
applied. You *xmust*x list that column in your answer.
* When the question requires unique values (e.g., IDs, URLs), the corresponding SQL query will use ~SELECT DISTINCT . Refer to column statistics ("
Value Statics") to determine if “DISTINCT™ is necessary.
* If all columns of the table are irrelevant to the question, then return empty Python List for the selected_columns key in the response.
# Step 5: Output Format:

* Give your response in JSON format with two following keys: "reasoning" and "selected_columns" where value of a selected_columns **must** be a Python

List and the value of the "reasoning" should be string reasoning on each column and their usefulness.

- **IMPORTANT NOTE:#** Some columns might not be used in the examples given, but it can be necessary or useful. Although a column is not used in examples, it
might be necessary or useful to answer the questions. Pay attention on the those columns that are not seen in the examples but important to answer the user
question.

- **xIMPORTANT NOTE:** You should output the column names as it is given in the Table Schema.

- **IMPORTANT NOTE:xx **If a hint given, you **MUST** add all columns mentioned or exist in the hint directly. This is a strict rule.**

- **xIMPORTANT NOTE:#** **IN your reasoning part, start new line and evaluate a single column in detail by first writing its name, properties, your
understanding about the column and then the reasons for why the column is relavent or irrelevant to the question by strictly following the instruction steps
above one by one.*x*

{TABLE_SCHEMA}
{EXAMPLES}

User Question:
{QUESTION_AND_HINT}

##H Now, it is your turn.
### Respond in the JSON format as follows:
i
"reasoning": "Iterate over each column in the table and provide reasoning whether the column is useful and necessary to answer the user question. If you
are not sure about the usefulness of a column, you should add it as well. While evaluation column, take advantage from the examples.",
"selected_columns": ["column_1", "column_2", "column_3", ...]

33




SOL GENERATION PROMPT TEMPLATE

*xx You are an expert SQL generator. Your task is to generate a SQL query for the given user question, considering *onlyx the {DB_ID} database.

### INTRUCTIONS:
* Understand the question:

- Carefully read and interpret the user's natural language question.

- Consider only the {DB_ID} database when analyzing the question.

- Analyze the relation between question and database items.
* Determine the required database items:

- In order to construct the SQL query to answer the user question, Determine which tables, columns, and values from the database are needed to answer the
question.

- Analyze the relations between selected tables and columns
* Apply Logical Filtering:

- Identify the required filtering conditions, aggregations, groupings, window functions, orderings or limit needed to fulfill the intent of the question.
* Construct the SQL query:

- Construct a valid and executable SQLite SQL query that directly answers the question using only the relevant parts of the schema.

{AUGMENTATION}

### Generate SQLite SQL query for the following question considering **onlyx* {DB_ID} database.
*%x% Question **xx
{QUESTION}

### Respond in the following format:

<reasoning>

Analysis about the question purpose and relation between database items. Steps to answer the user question and create correct SQL query in detail. Very
detailed reasoning and logic to create correct SQLite SQL query. The reasons for selecting database items (tables and columns). Filters, aggregations and
window functions that should be utilized and applied with their reasoning.

</reasoning>

<answer>

Generated SQLite SQL query to answer the question.

</answer>

### Now is your turn to respond in the above format:

20




	Abstract
	1 Introduction
	2 Related Work
	2.1 Synthetic Data Generation for Text-to-SQL
	2.2 LLM Post-Training for Text-to-SQL
	2.3 Text-to-SQL Systems

	3 In-Domain Text-to-SQL Synthesis Framework
	3.1 Sub-Schema Generation
	3.2 Synthetic Text-to-SQL Generation

	4 Data Statistics
	5 Text-to-SQL Translation
	5.1 Schema Linking
	5.2 Candidate Generation

	6 Experiment Settings
	6.1 Dataset
	6.2 Evaluation Metrics
	6.3 Models and Hyperparameters

	7 Results
	7.1 Text-to-SQL Translation Performance
	7.2 Schema Filtering Performance
	7.3 Context Management

	8 Discussion and Limitations
	9 Conclusion
	Acknowledgments
	References
	A Flawed SQL-to-Text Translation
	B Illogical SQL-to-Text Pairs
	C Separation of Columns Highly Used Together Limitation Example
	D Schema Filtering Performance on Synthetic Data
	E Sub-Schema and Synthetic Data Statistics
	F Column Coverage Comparison for California Schools Database (Bird vs. Synthetic Dataset)
	G Context Management Study
	H Schema Table Column Filtration Prompt Template
	I SQL Generation Prompt Template

