
Querying Web Metadata: Native Score
Management and Text Support in Databases
GÜLTEKİN ÖZSOYOĞLU1

İSMAİL SENGÖR ALTINGÖVDE2

ABDULLAH AL-HAMDANI1

SELMA AYŞE ÖZEL2

ÖZGÜR ULUSOY2

and
ZEHRA MERAL ÖZSOYOĞLU1
1EECS Dept, Case Western Reserve University, Cleveland, Ohio
2 Computer Engineering Department, Bilkent University, Ankara
__

In this paper, we discuss the issues involved in adding a native score management system to object-relational
databases, to be used in querying web metadata (that describes the semantic content of web resources). The web
metadata model is based on topics (representing entities), relationships among topics (called metalinks), and
importance scores (sideway values) of topics and metalinks. We extend database relations with scoring
functions and importance scores. We add to SQL score-management clauses with well-defined semantics, and
propose the sideway-value algebra (SVA), to evaluate the extended SQL queries. SQL extensions and the SVA
algebra are illustrated through two web resources, namely, the DBLP Bibliography and the SIGMOD
Anthology.

SQL extensions include clauses for propagating input tuple importance scores to output tuples during query
processing, clauses that specify query stopping conditions, threshold predicates—a type of approximate
similarity predicates for text comparisons, and user-defined-function-based predicates. The propagated
importance scores are then used to rank and return a small number of output tuples. The query stopping
conditions are propagated to SVA operators during query processing. We show that our SQL extensions are
well-defined, meaning that, given a database and a query Q, under any query processing scheme, the output
tuples of Q and their importance scores stay the same.

To process the SQL extensions, we discuss two sideway value algebra operators, namely sideway value
algebra join and topic closure, give their implementation algorithms, and report their experimental evaluations.

Categories and Subject Descriptors: H.2.4 [Database Management]:Systems—query processing; relational
databases; H.2.3 [Database Management]: Languages—query languages;
General Terms: Algorithms, Languages, Experimentation; Design
Additional Key Words and Phrases: Score management for web applications
__
This research was supported by a joint grant from the National Science Foundation (grant INT-9912229) of the
USA and TÜBİTAK (grant no. 100U024) of Turkey, and the National Science Foundation grants ITR-0312200
and DBI-0218061. A preliminary version of this paper is published in the Proceedings of the VLDB 2002
Conference.
Authors' addresses: G. Özsoyoğlu, EECS Department, Case Western Reserve University, Cleveland, Ohio
44106; e-mail: tekin@eecs.cwru.edu; İ. S. Altıngövde, Computer Engineering Department, Bilkent University,
Ankara 06800, Turkey; e-mail: ismaila@cs.bilkent.edu.tr; A. Al-Hamdani, EECS Department, Case Western
Reserve University, Cleveland, Ohio 44106; e-mail: abd@eecs.cwru.edu; S. A. Özel-Özalp, current address:
Industrial Engineering Department, Uludag University, Gorukle, Bursa 16059, Turkey; e-mail:
ayseozalp@uludag.edu.tr; Ö. Ulusoy, Computer Engineering Department, Bilkent University, Ankara 06800,
Turkey; e-mail: oulusoy@cs.bilkent.edu.tr; and Z. M. Özsoyoğlu, EECS Department, Case Western Reserve
University, Cleveland, Ohio 44106; e-mail: ozsoy@eecs.cwru.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© xxxx ACM xxxx-xxxx/xx/xxxx-xxxx $5.00

1. INTRODUCTION

This paper proposes SQL and database query engine extensions that add a “score

management functionality” to DBMSs, where the “scores” of existing database objects

are employed to generate scores for query output objects, and to rank them. Score

management appears frequently in web applications. We illustrate with an example.

Example 1.1 Assume that a researcher wants to locate the top-10 most important

papers listed at the DBLP Bibliography [Ley] and ACM SIGMOD Anthology [ACM

SIGMOD Anthology] sites that are prerequisite papers to understanding the paper “Data

Models in Database Management” by E.F. Codd [1980]. Presently, this task is performed

manually by retrieving the papers cited by Codd’s paper iteratively, attaching importance

scores to them, and eliminating those that are not in the top-10 prerequisites to

understanding the Codd paper; clearly, a time-inefficient process.

Consider a metadata model for DBLP and Anthology sites where “research paper”,

“Data Models in Database Management”, and “E.F. Codd” are topics with importance

scores, Prerequisites is a relationship among topics (called associations in the topic map

standard [Biezunski et al. 1999], and, here, referred to as topic metalinks) with

importance scores; and for each topic, there are links to web documents containing

“occurrences” of that topic, called topic sources. Then, the user can formulate and

evaluate the above-specified query using the metadata data model.

In this paper, we assume that (i) entities (topics) and relationships (metalinks) (in an

object-relational database) have importance scores, and (ii) queries request objects with

top-k or above-a-given-threshold importance scores. We propose handling query-based

score manipulations natively within the database query engine, and discuss, for the target

area of web resource querying, a generic (importance) score management component for

DBMSs as far as SQL and query processing are concerned.

Score functions appear in the literature in the forms of “scores”, “preference values”,

or “probabilistic values”; we generalize these functions and their evaluations as sideway

functions and sideway/importance values, respectively (“sideway” in the sense that these

functions and values are generated not necessarily by web content generators, but by a

third party--possibly a data extraction tool). The terms “importance score” and “sideway

value” are used interchangeably throughout the paper.

We present the score management extensions in a web database context which we

think illustrates best the need for such extensions. We choose as the target area web

resource querying, and, thus, queries have the ability to compare text documents/strings.

For web resource modeling, topics and metalinks constitute metadata (i.e., information

about web resources) representing the advice of data creators whereas topic sources

constitute (URLs to) data, e.g., HTML, XML, ps, pdf, text documents. Topics, metalinks,

and sources [Biezunski et al. 1999] can be maintained and queried from an object-

relational database; the purpose of maintaining topics and metalinks in a database is to be

able to pose complex queries, and to quickly locate and rank the associated topic sources

on the web resource

Example 1.2 Consider the web resources DBLP Bibliography and ACM SIGMOD

Anthology. Assume that information about papers (e.g., paper titles, index terms, author

names, etc.) in these resources are collected as topics, and stored into the Topics relation,

as illustrated in Table I (a). As an example, the tuple with topic id T08 is the 1980 paper

of E.F. Codd [1980]. And, the importance of the tuple with Tid T01 is 0.9.

Table I Topics, Metalinks and Sources relations in the metadata database

(a) Topics relation

Tid TName TType TDomain Imp

T01 Edward F. Codd author database 0.9

T08 Data models database
management

Paper title database 0.8

(b) ResearchPaperOf metalink relation

Mid AuthorId PaperId

M01 T01 T08

(c) Sources relation

Tid URL

T01 http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/Codd80.html

We choose the data model of Table I as our running example for its simplicity; in

practice, topics relation is likely to form an inheritance hierarchy with separate authors,

papers, etc. relations, each with a large number of additional attributes, etc.. In this paper,

we assume the following minimal data model of metadata, represented as relations of the

object-relational model:

o One Topics(Tid, TName,TType, TDomain, Imp) relation having topic id, topic name,

topic type, topic domain and topic importance attributes (and possibly other

attributes as dictated by the application),

o One Sources(Tid,URL) relation with key (Tid, URL) (and possibly other attributes as

dictated by the application), and

o One Metalink relation for each relationship type among topics, with a metalink id

attribute Mid and topic id attributes of topics involved in the relationship (as well as

other attributes as dictated by the application). Metalinks may or may not have

importance scores. As an example, ResearchPaperOf relation of Table I does not

have importance scores; however, RelatedToPapers relation (discussed later) does

have importance scores.

These minimal requirements are sufficient to illustrate our SQL and query engine

extensions.

Data extraction techniques [Grishman 1997, Agichtein et al. 2000, Agichtein and

Gravano 2000, Agichtein and Gravano 2003, Brin 1998] can be employed to obtain

topics and metalinks with importance scores. We have extracted RelatedToPapers and

PrerequisitePapers metalinks for the Anthology (about 15,000) papers [Li 2003, Al-

Hamdani 2003], and used them in the experiments of this paper. (This paper does not

describe the data extraction process, and assumes that the metadata is extracted from web

resources, and maintained in a database.)

Querying web metadata stored in a database has two requirements. First, the query

language should allow approximate text-similarity comparisons as the web contains text

documents. Second, importance scores of the metadata (i.e., input tuples) need to be used

to rank query output topics (tuples), and return either the high-ranking topics above a

given threshold, or the top-k highest-ranking topics. We refer to the mechanism that

propagates the scores of input topics and metalinks to the output topics and metalinks as

the score management mechanism. Presently, such mechanisms, if any, are built into

applications directly, and outside of database query engines, which is wasteful (each

application builds its own score management subsystem) and inefficient (due to the loose

coupling between the application and the DBMS as far as the score management is

concerned). In this paper, we discuss the issues involved in adding a native score

management system to a database query engine that allows top-k and threshold-based

SQL queries with approximate text-similarity predicates. In more detail, the main

contributions of this paper are, after extending database relations with sideway value

functions and importance scores, to (i) add to SQL text-similarity predicates and score-

management clauses with well-defined semantics, (ii) propose an algebra to process the

extended SQL queries efficiently, (iii) discuss logical query trees and algebraic

optimization for such queries, and, (iv) present and evaluate the implementation

algorithms for the algebra operators. Below we elaborate more on our approach.

Topic names in the metadata database are arbitrary phrases, which implies the need

for efficient approximate text processing and comparison techniques to be incorporated

into SQL query processing. We introduce one type of approximate similarity predicates

into SQL, namely, threshold predicates. A threshold predicate compares the text

similarity of two text values, and returns true when the evaluated text similarity is above

a given threshold; otherwise, it returns false. In addition, a threshold predicate returns an

approximate similarity score, which, when the predicate is True, is used for modifying

the score of the involved tuple. Thus, threshold predicates are integrated with the score

management system, and used for importance score propagation and modification during

query processing.

For web (metadata) databases, the database query engine should return ranked

answers to users’ queries, necessitating SQL extensions that specify the ranking of output

tuples (objects). Our approach is to propagate unambiguously input tuple importance

scores of base relations to output tuples, and to use the computed output importance

scores in ranking the output tuples. The procedure for importance score propagation and

modification within a query is to be specified by the user in the SQL query, and

employed by the database system for efficient query processing.

Example 1.3 (Importance score modification). Consider the metadata of Table I, and

assume that the user asks for all authors of database papers with names similar to “E.

Codd”. And, the similarity between “Edward F. Codd” and “E. Codd” is judged to be 0.7.

Then the tuple T01 is returned to the user with the revised importance score of

0.9*0.7=0.63, where 0.9 is the base importance score of the tuple T01.

To return only the “best” answers in a short time, the SQL query output sizes need to

be explicitly controlled by users. For this task, we employ the propagated importance

scores of input tuples, and provide two approaches:

(a) For the final output size control, users specify a ranking threshold k (i.e., output only

the top-ranking k (i.e., top-k) tuples [Carey and Kossmann 1997, Carey and

Kossmann 1998, Chaudhuri and Gravano 1999, Chang and Hwang 2002]).

(b) For intermediate output size controls during query evaluation, and for final output

size controls, users specify a sideway value threshold Vt (i.e., output all the tuples

with importance scores above the threshold Vt).

We refer to these two conditions as query stopping conditions, which constitute a

user-guided and system-enforced use of importance scores.

We also provide users with the power to modify importance scores in application-

dependent ways. For this purpose, UDF (user-defined-function) predicates are defined

where, if the predicate is satisfied, output of the UDF modifies the importance scores of

tuples.

The existence of importance score modifications and query stopping conditions

necessitate the design and evaluation of new join and selection algorithms. In this paper,

we concentrate on the join evaluation algorithms; selection evaluation algorithms are

discussed elsewhere [Al-Hamdani and Özsoyoğlu 2003]

Finally, as illustrated in Example 1.1 with the prerequisite relationship, a recursive

topic closure operator is useful for user queries. Such an operator serves to retrieve topics

related to each other via a particular metalink type, or, more generally, via a regular

expression of metalink types.

In more detail, the contributions of this paper are as follows:

• Extend SQL with score management and text-similarity-based comparison

functionality:

o Clauses that specify unambiguously the propagation and modifications of

importance scores of input relations to query output relations in automated

ways.

o Clauses that specify query stopping conditions.

o Threshold predicates (in the where clause)−if the threshold predicate is

satisfied, the output of the similarity score used in the predicate modifies the

importance scores of output tuples.

o UDF predicates (in the where clause)−if the UDF predicate is satisfied, the

output of the UDF modifies the importance scores of output tuples.

Note that the only relational algebra operators that manipulate scores are selection,

join, and cartesian product. SQL queries with aggregate functions and the SQL

operator having are not discussed here, and constitute future work.

• Show that the above-listed SQL extensions are well-defined, in the sense that, given

a database D, the output of a query on D stays the same, regardless of the query

processing scheme.

• Present the sideway value algebra (SVA) with two new logical operators, namely

SVA join and topic closure, designed to evaluate the extended SQL queries and to

support textual approximate similarity comparisons and recursive closure operations.

• Give implementation algorithms for the SVA join and the SVA topic closure

operators. In particular, the SVA join employs a nested loops-based evaluation

approach where importance scores and textual approximate similarity among tuple

components are exploited for early termination. The closure operator adapts a graph

traversal algorithm for its evaluation.

• Experimentally evaluate the SVA join and the SVA topic closure algorithms using

real data.

In Section 2, we present the basics of the metadata model and web queries with

examples, and define new SQL extensions. Section 3 introduces the SVA operators for

selection, join and topic closure, and presents logical query trees with these operators. In

section 4, we specify the execution semantics of the extended SQL, and prove that the

extended SQL queries are well-defined. Section 5 discusses query processing techniques

for the SVA join. In Section 6, we present topic closure evaluation algorithms. Sections 7

and 8 report the experimental SVA join and topic closure results. In Section 9, we review

the related work in the literature. Section 10 concludes.

2. EXAMPLE QUERIES AND SQL EXTENSIONS

2.1 Metadata-Based Web Queries

Below we illustrate the need for score management and approximate text-similarity

support in databases, with examples from research paper digital libraries (DBLP and

ACM SIGMOD Anthology) as web resources. However, one can easily envision other

web resource metadata for which a database natively supporting score management and

text-similarity comparisons would be equally useful. Some examples are (a) web-based

news articles of news agencies, (b) web-based archeological sites, (c) the Library of

Congress web site [Library], (d) disease-specific (e.g., prostate cancer) web sites, etc.

Moreover, native score management and text-similarity comparison support would also

be useful in non-web-based application frameworks: as mentioned in [Carey and

Kossmann 1997], there exist applications posing queries with similarity-based ranking

requirements to underlying multimedia or text databases.

Example 2.1 (Threshold Predicates). Find the topic ids, topic names and URLs of 20

highest topic-importance-ranked papers having titles (topic names) with similarity above

0.9 to “query processing”. Employ a product-based importance propagation function that

uses only topic importance values.

select T.Tid, T.Tname, S.URL

from Topics T, Sources S

where T.TType=“paper title” and T.TName ≅(threshold 0.9) “query processing”

 and T.Tid = S.Tid

propagate importance as product function of T

stop after 20 most important

Topics relation has attributes Tid, TName, TType, and Imp; Sources relation has

attributes Tid and URL, storing URLs for the sources of each topic in the Topics table.

The predicate “T.TName ≅(threshold 0.9)“query processing”” states that the topic (paper title)

name of T is similar to “query processing” with similarity above 0.9. We assume that the

similarity between a paper title and the phrase “query processing” is evaluated by

information retrieval techniques, e.g., by using the vector space model and the TF-IDF

weighting scheme [Salton 1989] (explained in Section 5.1) to represent the topic names.

The “propagate importance” clause specifies the importance propagation function for

output tuples. In this example, the clause states that the importance scores for output

tuples are computed from the importance scores of the base relation Topics, using a

“product” function revised with similarities.

Assume that there are three papers with titles “query processing: a survey”, “query

processing in a P2P environment with extraordinary network bandwidths” and “string

processing for C++ applications”, and with importance scores 0.9, 0.7 and 1,

respectively. Also assume that the similarity function returns the results 0.9, 0.2 and 0.1

for these titles. In this case, the first topic will have the highest score (0.9 * 0.9 = 0.81).

The second and third topics will have the scores 0.14 (= 0.7*0.2) and 0.1 (= 1*0.1),

respectively.

The importance score (sideway) function of base relations (denoted by fin) has the

range [0,1]. During SVA operations, for a given output tuple, we materialize the

importance score function of the SVA operator, i.e., keep it as a (new) column while

processing queries.

Example 2.2 (Join with a User-Defined Function). Find titles of pairs of conference

and journal papers such that journal paper is an extension of the conference paper. The

user-defined function Extension(T1, T2) returns the similarity of the papers’ sources, and

we assume that T1 is an extension of T2 if they have at least 50% similarity. Employ a

product-based importance propagation function and retrieve top-100 pairs.

select T1.TName, T2.TName

from Topics T1, Topics T2

where T1.TType=“conference paper title” and T2.TType=“journal paper title” and

 Extension(T1.Tid, T2.Tid) ≥sv 0.5

propagate importance as product function of T1, T2

stop after 100 most important

Here, the predicate “Extension(T1.Tid, T2.Tid) ≥sv 0.5” constitutes a user-defined

(UDF) predicate (distinguished from an ordinary predicate by the superscript sv). We

assume that the UDF function Extension(Tid, Tid) is registered to the DBMS beforehand,

and its output modifies the importance scores of output tuples by the value v returned by

the UDF if v is greater than 0.5. While evaluating this query, the system propagates

and/or modifies the importance scores as specified in the importance propagation clause.

In particular, importance scores of selected tuples are determined by multiplying them

with the score returned by the UDF. The actual implementation method for evaluating the

UDF function, i.e., computing content similarity, is “expensive” [Chen 2001, Li 2003],

i.e., it may require (a) access to actual information resources, such as the above query that

needs to do so to compare the contents of two papers, or (b) submitting additional queries

to the database.

Example 2.3 (Topic Closure Query). Given the relation Request(PaperId) containing

user-selected paper ids, the user is interested in finding those ACM SIGMOD Anthology

papers that are recursively prerequisites of papers in Request with importance values

above 0.7. For topic closure, we use a shorthand SQL-like syntax:

select T.TName, S.URL

from Request, Topics T, PrerequisitePapers Prereqs, Sources S

where T.Tid in PrerequisitePapers*(Request,T,{Prereqs}) and T.Tid = S.Tid

topic closure importance computation as product function within a path

 and as max function among multiple paths

stop with threshold 0.7

PrerequisitePapers is a metalink type representing the prerequisite paper relationship,

and PrerequisitePapers is the relation instance that contains PrerequisitePapers metalink

instances. * is the Kleene’s star. We refer to the predicate “T.Tid in

PrerequisitePapers*(Request,T,{Prereqs})” as the topic closure predicate. Note that a

given paper can have multiple (topic) sources on the web in terms of a pdf file, a

postscript file, an HTML document, or an XML document. Finally, another possible

query is to request the top 20 highest importance-valued prerequisite papers of Request,

which is specified by replacing the stop with threshold clause with the stop after 20 most

important clause.

For those database relations that have importance scores (not all may have), we have

two ways of specifying tuple (topic/metalink) importance scores: (i) base relation tuples

have importance scores explicitly specified as a tuple component (all the examples in this

paper use this approach), (ii) base relation has an importance (sideway value) function

attached, which, when evaluated using a given tuple from the relation, the function

returns the importance score of the tuple. Regardless, once the query processing starts, all

importance score functions are materialized, and each (intermediate or final output) tuple

(object) gets a new tuple component containing the tuple’s importance score.

2.2 SQL Extensions

2.2.1 New Predicates

As observed from examples of section 2.1, we employ new SQL where clause predicates

which, in addition to holding truth values as typical predicates, are also used for

importance score modification as dictated by the score propagation clauses (e.g., see

examples 2.1 and 2.2). In this work, we define two particular types of such predicates,

namely threshold predicates and UDF predicates.

The threshold predicate is illustrated in Example 2.1 by “T.TName ≅(threshold 0.9)

“query processing””, and has the syntax “X ≅(threshold t) Y” where X and Y are either text-

valued variables instantiated by tuple component values or text-valued constants, and t is

a real number within the range [0,1]. The threshold predicate with an instantiation x of X

and y of Y is satisfied (returns True) if the similarity between x and y (i.e., Sim(x, y)

where Sim() is a similarity function) is above the threshold t; otherwise it is not satisfied.

Example 2.4. Consider Example 2.1 in which we modify importance scores with a

product function. Then, the importance values of the output tuples for the selection

operator with the selection formula “T.TName ≅(threshold 0.9) “query processing” is

computed as fin * Sim(T.TName, “query processing”) where fin denotes the importance

values of input tuples, and Sim() denotes the similarity function.

User-defined-function (UDF) predicates in SQL queries are illustrated in Example

2.2 by “Extension(T1.Tid, T2.Tid) ≥sv 0.5”. The syntax is “UDF θ c” where UDF is a

user defined function that returns a real value in [0,1], θ is a comparison operator from

the set {<sv, >sv, ≤sv, ≥sv, =sv, ≠sv}, and c is a real constant in [0,1]. The superscript symbol

sv in the comparison operator states that, the UDF function value, when the associated

UDF predicate is true, modifies the importance score of the output tuple during query

processing.

2.2.2 New Clauses

We use the following SQL extensions for score management.

(i) The basic importance propagation clause

 “propagate importance as <ImpAgg> function of <argument list>”

 specifies the formula for propagating importance scores of query input relations

to the output relation (see example 2.1). ImpAgg is an aggregate function type;

in this paper, we use the aggregate function product. As discussed later in

section 4.3.1 (Rule 4), the function ImpAgg is a monotonically decreasing

aggregate function, i.e., with an enlarged input, it returns a value less than or

equal to its previous value. Another aggregate function with this property is min;

on the other hand, the functions max and numeric-average do not satisfy this

property. The argument list is a sublist of relations listed in the from clause of

the SQL query. In example 2.1, ImpAgg function is product.

(ii) For topic closures, the topic closure (importance computation) clause

 “topic closure importance computation as <FPath> function within a path

 and as <FPathMerge> function among multiple paths”

specifies how to compute the derived importance scores of topics encountered

during topic closures (See example 2.3), where FPath and FPathMerge are

aggregate functions. In this paper, we use product as FPath. As discussed later

in Section 4.2 (Rule 2), FPath is a monotonically decreasing aggregate function

of its input. The function FPathMerge, on the other hand, is an aggregate

function that always produces a value upper-bounded by the maximum value in

its input (Rule 3). Thus, possible candidates for FPathMerge include product,

max, min, and numeric-average.

(iii) The query stopping clause “stop after k most important” specifies the ranking

(top-k) threshold, and

(iv) The query stopping clause “stop with threshold Vt” specifies the sideway value

threshold.

In this paper, all four new SQL clauses as defined above are also allowed in

nonaggregate nested SQL subqueries, and have execution semantics similar to ordinary

nested SQL queries (as discussed in Section 4). In particular, if the nested subquery is not

correlated to the outer query block, it is separately evaluated and its output can be viewed

as a materialized input relation for the outer query block. If the nested subquery is

correlated to the outer block, whenever the other formulas in the outer block are satisfied,

the occurrences of the correlated variables in the nested subquery are replaced by the

corresponding variable instantiations of the outer block, and the nested subquery is

evaluated as a standalone SQL query--several times, i.e., once for each correlated

variable set instantiations. In the uncorrelated case, the output of the (nonaggregate)

nested subquery can be viewed as a materialized relation as far as the outer query

evaluation is concerned. In the correlated case, while assigning outer block instantiations

to nested subquery variables, the importance scores are also passed to the nested

subquery for evaluation. In Section 3.4, we provide an example nested query; and, in

section 4.3.2, we discuss the query execution semantics for nested subqueries with the

query stopping clause stop after k most important.

3. SVA OPERATORS FOR EVALUATING EXTENDED SQL QUERIES

For the RA operators selection and join, there is an SVA counterpart extended with an

output sideway value function fout and the output threshold β, which is either the integer-

valued ranking threshold, or the real-valued sideway value threshold Vt in the range [0,

1]. And, we introduce a new SVA operator, SVA topic closure. In this section, we define

and illustrate the SVA selection, SVA join, and topic closure operators with example

queries and their logical query trees.

In the logical query tree examples discussed next, we use the following notation:

Operators with superscript * are SVA operators. Operators without superscript * are

relational algebra (RA) operators. A unary RA operator without * in its superscript

carries (if any) into its output tuples the importance scores of its only operand relation. A

binary RA operator without a superscript * carries (if any) into its output tuples the

importance scores of either its left (hand side) relation or its right (hand side) relation,

indicated (if there is a need) by superscript L or R, respectively.

3.1 SVA Selection Operator

In Example 2.1, we gave a query example where topics with names similar to “query

processing” over a specified threshold are selected during the query evaluation. The

notation)t(
~= in the SVA operator denotes the threshold predicate with the threshold of t.

The logical query tree of Example 2.1 is shown in Figure 1.

Example 3.1 Find the topic ids of the five highest topic-importance-ranked papers

having index terms with similarity to “query processing” above 0.9. Employ min as the

importance propagation function that uses all involved importance values.

select distinct Indx.PaperId

from Topics T, IndexedBy Indx

where T.TType=”Index Term” and T.TId in Indx.TermIdSet and

 T.TName ≅(Threshold 0.9) “query processing”

propagate importance as min function of T, Indx

stop after 5 most important

Fig. 1. Logical Query Tree of Example 2.1. Fig. 2. Logical Query Tree of Example 3.1.

The logical query tree of Example 3.1 is shown in Figure 2. We assume that

IndexedBy is a metalink type that specifies the relationship between index terms and

papers (obtained from keyword/index term list specified in the body of each paper). The

signature of the metalink type is IndexedBy: SetOf IndexTermId PaperId. Due to the

clause “propagate importance”, this query chooses paper ids on the basis of the min of the

importance values of index terms (topics) and their IndexedBy type metalinks.The

function Sim() in Figure 1 and 2 computes the text similarity of two strings, and returns a

value in the range [0, 1]. Here, Sim() is used to modify the importance scores of output

tuples according to their TName similarity to the string “query processing” (see Table I).

The logical query tree shows the SVA selection operator which is denoted as σ*
C, fout, β

(R).

Definition (SVA Selection). The selection operator σ*
C, fout, β (R) takes as input a

relation R with a sideway value function fin, a selection condition C, an output sideway

value propagation function fout, and the output threshold β where β is either a positive

integer k as the ranking threshold, or the real-valued sideway value threshold Vt in the

range [0, 1]. The operator σ * returns, in decreasing order of output importance scores,

either (i) top k fout-ranking output tuples that satisfy the selection condition C (when β is

k), or (ii) all tuples of R with an fout-sideway value greater than Vt and satisfy the

selection condition C (when β is Vt). If the output threshold β is 0.0, it is not applied, i.e.,

the operator is assumed to have no stopping condition and returns all produced tuples.

3.2 SVA Join Operator

Definition (SVA Join). The SVA join operator is (L) *
β fout, B, θA (R) takes as input two

relations L and R with sideway value functions flin and frin respectively, a join condition θ

on attributes A and B of relations L and R, respectively, a sideway value propagation

function fout for the output tuples, and an output threshold β. The join operator produces

joined tuples of L and R with importance scores of output tuples computed as specified

by fout, and satisfying the output threshold β.

SVA join in Example 3.1 (Figure 2) is exact, i.e., no similarity computations are

involved. SVA join in the example below is approximate, with a threshold predicate as a

join condition.

Example 3.2 (join with a threshold predicate). Assume that topics table allows

“journal paper title” and “conference paper title” in topic type field. Find the journal-

conference paper pairs with similar titles (i.e., topic name similarity is above 0.98) and

return only those pairs that have a derived importance score above 0.95. Employ a

product-based importance propagation function that uses all of the involved importance

scores.

 Fig. 3. Logical Query Tree of Example 3.2 Fig. 4. Logical Query Tree of Example 3.3

select T1.Tid, T1.TName, T2.Tid, T2.Tname

from Topics T1, Topics T2

where T1.TType=“journal paper title” and T2.TType=“conference paper title” and

 T1.TName ≅(Threshold 0.98)T2.TName

propagate importance as product function of T1, T2

stop with threshold 0.95

Note that, this query may be posed to see the most important works published both at

a conference and a journal and with highly similar titles.

In Figure 3, the sideway value threshold of 0.95 is propagated to all of the three

operators, namely, the two SVA selections and one SVA join. By employing the

semantics of propagation to be discussed in Section 4, the similarity score revises the fout

value of the joined tuples.

3.3 SVA Topic Closure Operator

Next we define a recursive operator that takes into account the importance scores of its

input tuples. Consider the following query and its logical query tree in Figure 4.

Example 3.3. Find the topic ids, titles and URLs of five highest importance-scored

papers such that the selected papers are either (i) papers with titles similar to “Query

Evaluation Techniques for Large Databases” with a similarity above 0.85, or (ii) the

prerequisites (recursively) of the papers found in (i).

select T2.Tid, T2.TName, S2.URL

from Topics T1, Topics T2, PrerequisitePapers M, Sources S2

where T1.TName≅(Threshold 0.85)“Query Evaluation Techniques for Large

Databases” and T1.Ttype=“PaperTitle” and

T2.Tid in PrerequisitePapers*(T1.Tid, T2, {M}) and T2.Tid=S2.Tid

propagate importance as product function of T1

topic closure importance computation as product function within a path

 and as min function among multiple paths

stop after 5 most important

In the above query, prerequisites of the paper “Query Evaluation Techniques for

Large Databases” are located recursively by following the metalinks of type

PrerequisitePapers. For the topic closure predicate evaluation, we introduce the topic

closure operator, denoted as TClosure*
R, {M}, FPath, FPathMerge, β (X), which computes the

topic closure X+ of a set X of topics with respect to a regular expression R of metalink

types (and, thus, with respect to the set of axioms characterizing the metalink types in R),

a set of metalink relations M, and an output threshold β.

Definition (Topic Closure). The operator TClosure*
R, {M}, FPath, FPathMerge, β (X) takes as

input (1) a topic relation, namely, the relation X of topics with a sideway value function

fX, (2) a set of metalink relations M each with a sideway value function fM, and (3) four

parameters: (a) the regular expression R, (b) a path-based “derived” importance score

computation function FPath that specifies how to compute the derived importance scores

of newly reached topics with respect to a single path, (c) the function FPathMerge that

specifies how to merge the derived importance scores of a given topic obtained through

different paths, and (d) the output threshold β. TClosure* computes the closure X+ of X

with respect to <R, {M}, fX, {fM}, FPath, FPathMerge, β> where each new topic in the

closure is represented as an output tuple, and has a derived importance score satisfying

the output (ranking or sideway value) threshold β. If the output threshold β is 0.0, it is not

applied, i.e., the operator is assumed to have no stopping condition and returns all

produced tuples.

R is a regular expression of metalink types. E.g., the regular expression

PrerequisitePapers*IndexedTerms finds the index terms in all the prerequisite papers (of

a given paper topic). Next we illustrate the notion of paths that satisfy R with an example.

Example 3.4 Let A, B, C, D, and T denote single topics. The metalinks A RelatedTo B,

B RelatedTo C and C RelatedTo T constitute a path P = {A, M1, B, M2, C, M3, T} where all

nodes are single topics and all metalinks M1, M2, and M3 have the type RelatedTo (i.e. R

= RelatedTo*). As another example, metalinks AB Pre C, C Pre DE, and DE Pre T

form a path P={AB, M1, C, M2, DE, M3, T} that starts with a set of topics AB, followed

by a single topic C, then a set of topics DE, and ends with a single topic T. The path P

satisfies R = Prerequisite* since all of its metalinks M1, M2, and M3 are of type

Prerequisite.

FPath is the derived importance score computation function with respect to a single

path. In this paper, we use the product function as FPath. As an example, assume that the

topic t is reached from a topic x in X using a path P = <x m1 a m2 t> where a is a topic

with importance score va, m1 and m2 are metalinks with importance scores vm1 and vm2,

and the metalink types of m1 and m2 satisfy the regular expression R. Assume FPath is

Product. Then, the derived importance score of t with respect to P, denoted by Impd(t, P,

R), is computed as the product of importance scores in P that satisfies R, i.e.,

vx*vm1*va*vm2*vt, where va and vt are the importance scores of x and t, respectively. The

derived importance score of t, denoted by Impd(t, R), is the importance score of t with

respect to R and all paths leading to t.

The intuition for the semantics of derived topic importance scores is as follows:

assume topic t is reached through path P. The derived importance score of t in the closure

should be a function of the length and the type of path P, and less than or equal to the

importance score of t. As the length of P increases, the derived importance score of t

should decrease because t is farther away from (and is less related to) the topics in X, the

original set of topics listed by the user. Thus, Impd(t, P, R) with respect to path P should

be a monotonically decreasing function of the length of path P (i.e., path-monotone).

FPathMerge is one of Product, NumAve, Min, Max, etc., specifying how to compute

the derived importance score Impd (t, R) of topic t in X+ in terms of the Impd(t, P, R)

scores obtained with respect to each path P.

In Example 3.3, the topic closure importance computation clause specifies the use of

product function as FPath, and min function as FPathMerge, as shown in the

corresponding query tree.

Finally, we specify the execution semantics of TClosure*
R, {M}, FPath, FPathMerge, β (X)

procedurally as follows:

(a) Locate metalink paths P from a topic in X to a topic t not in X, where P

“satisfies” the regular expression R, and compute Impd(t, P, R) scores.

(b) Compute the derived importance score of t as sv=Impd(t, R), and, if sv satisfies

the sideway value threshold β then add the new topic t to the closure of X. That

is, if β is a positive integer k as the ranking threshold, then sv satisfies β when sv

is among the top-k output sideway values. If β is the real-valued sideway value

threshold Vt in [0, 1], then sv satisfies β when sv > Vt.

3.4 SVA Operators in Nested Queries

Consider the nested query example below, and its query tree given in Figure 5.

Example 3.5 Find five highest topic-importance-ranked journal papers having titles

similar to “query processing” above 0.9, and then find their ten most important related

papers and the associated URLs. Employ a product-based importance propagation

function.

select T2.Tid, T2.Tname, S2.URL

from Topics T1, Topics T2, RelatedToPapers M, Sources S2

where T1.Tid in (select T.Tid

 from Topics T

 where T.Ttype = “journal paper title” and

T.TName ≅(Threshold 0.9) “query processing”

 propagate importance as product function of T

 stop after 5 most important) and

 T2.Tid in RelatedToPapers*(T1.Tid, T2,{M}, 0.0) and T2.Tid = S2.Tid

topic closure importance computation as product function within a path

 and as min function among multiple paths

stop after 10 most important

 (a) (b)

Fig. 5. Logical Query Tree of Example 3.5: (a) temporary table materialization for inner query, (b) query tree

for the outer query.

In this example, first the inner query block is evaluated, and an intermediate relation

including topic id’s and importance scores (generated automatically) is materialized.

Then, this table is used just like base relation with importance scores by the outer query

block in a join operation (that implements the set membership), and the final query output

is computed. We assume the execution semantics that intermediate relations generated by

inner blocks are implicitly included in the “propagate importance” clause of outer query,

and their scores are propagated. Thus, the importance scores are always propagated from

the inner block to the outer block. In the above example, the join semantics enforce that

the importance scores of the intermediate relation are propagated, and T1 and T2 scores

are suppressed.

4. EXECUTION SEMANTICS OF THE EXTENDED SQL

Importance score computations (as defined through the SQL extensions of Section 2.2)

are functional specifications, superimposed on an SQL query which is logic-based and

(mostly) nonprocedural. Therefore, there is a mismatch between functional importance

score computations and nonprocedural SQL query specifications. Moreover, importance

scores are (a) directly modified by threshold and UDF predicates, and (b) used to choose

the final output tuples. Thus, the question arises as to whether SQL extensions of Section

2.2.2 lead to unambiguous query specifications and unique query outputs.

Definition. An SQL query Q is well-defined if, for a given database D, the output of

Q is unique.

That is, under any query processing scheme, output of Q(D) stays the same. In this

section, we show that, with the SQL extensions introduced in Section 2.2.2, SQL queries

remain well-defined. In other words, input relation importance scores propagate

unambiguously and uniquely to intermediate relations and to the final output of the query,

which is also unique. This constitutes the specification of query semantics (of the SQL

extensions), pertaining to the propagation of importance scores and stopping conditions.

Next, we enumerate the algebra operators used in logical query trees, and discuss

which algebra operators modify and propagate importance scores of their operand

relations, and how.

(a) projection, rename, union, set difference, cartesian product, STOP, GROUP-BY

operators: These operators do not have predicates, and, thus, do not modify

input tuple scores. However, depending on the needs of the query plan, they may

propagate or suppress importance scores of one of their operand relations. Note

that two tuples that are identical in every tuple component but tuple importances

are viewed as two distinct tuples; if they are unioned, both tuples will be in the

output. Similarly, projection will materialize importance scores into its output as

a column (if the user chooses to retain importance scores in the output of the

projection); thus, if two projected tuples are identical in all tuple components

except their importance scores, both will be retained in the output of the

projection.

(b) aggregation operators: When an aggregate function, say, summation on relation

R over attribute A (e.g., SUM(R, A)) executes, it aggregates multiple tuples into

a single output tuple. Then, the question of how to compute the importance

score of the aggregated output tuple from the importance scores of input tuples

arises. A simple solution is to attach to each aggregation operator a new

“importance score computation function”. Such a function would have no

constraints, other than the fact that its input is defined in terms of the input

tuples of R, and its output needs to be in the range [0,1]. In this paper, we do not

deal with aggregate operators.

(c) join and selection operators: Through the use of the basic importance

propagation clause, and threshold and UDF predicates, these two operators may

modify and propagate the importance scores of their operand relations; hence

the introduction of the SVA selection and the SVA join operators in Sections 3.1

and 3.2, respectively. In Section 4.1, we define the execution semantics of these

two operators, and the conditions under which the query engine decides to

generate the appropriate operator (RA or SVA), and then discuss their

correctness (i.e., that they are well-defined).

(d) topic closure operators: This is a new operator. Through the use of the topic

closure importance computation clause and topic closure predicates, this

operator also modifies the importance scores of its input tuples, and its

correctness is discussed in Section 4.2.

The second correctness issue which is orthogonal to the issue of score propagation

within a query tree is the propagation of the two query stopping conditions into the SVA

operators in the query tree. SVA operators are designed to modify the scores of their

input tuples; and, the query processing times will be reduced drastically if the query

stopping conditions, which are query-wide, can be correctly propagated to SVA

operators, and, hence, become “operator-stopping” (i.e., operator-wide) conditions. This

is novel since, with the exception of the STOP operator [Carey and Kossmann 1997],

none of the algebra operators in the literature contain operator-stopping conditions. In

Section 4.3, we study the conditions for propagating the query-wide sideway value

threshold Vt and the query-wide ranking threshold (i.e., the top-k condition) into the SVA

join, the SVA selection, and the topic closure operators.

4.1 Importance Propagation with Threshold and UDF Predicates

In this section, we assume that SQL queries are extended with threshold predicates, UDF

predicates, and the basic importance propagation clause, and discuss the query execution

semantics.

Threshold predicates are used by the DBMS as follows. Assume that, during query

processing, the threshold predicate P is part of an SVA selection or join operator O, and

the evaluation of P for a certain output tuple t of O generates a similarity value v. Then v

is used to modify the importance score of t. That is, the similarity values generated by

threshold predicates are used in the computation of importance scores for SVA operator

output tuples. Consider the where clause of an SQL query with threshold predicates.

During query processing, those predicates in the where clause that compare a single

attribute value to a constant, such as the predicate “T.TName≅(threshold 0.9)“join

algorithms””, will be predicates to an SVA selection operator in the logical query tree,

and those predicates that compare two attribute values will be predicates to an SVA join

operator in the logical query tree. In both cases, the importance score propagation for the

output tuples of the selection or the join operator is extended by the application of a

function that involves the value of the similarity function employed in the threshold

predicate.

Assume that the SQL query Q uses the basic importance propagation clause (but not

the topic closure clause), and has regular, threshold, and UDF predicates (but not topic

closure predicates, which are discussed in the next section). Consider

 Q: select …

 from R, S, T, V

 where …

 propagate importance as product function of R, S

That is, when propagating importance scores of relations R and S for the query at

hand, the system will use a product function, and the tuple importance scores of T and V

are suppressed, i.e., will not be used. We show below that, given an algebra expression E

corresponding to query Q on database D, importance scores for the output tuples of E are

unambiguously computed and the output of E is unique.

Next we discuss join and selection operators, and the conditions under which the

query engine decides to generate an appropriate version (RA or SVA) of the operator.

Consider the join operator J in E, with operands E1 and E2 that denote either base or

intermediate relations, or equivalently the corresponding algebra expressions in E. We

evaluate the alternatives:

(i) Neither E1 nor E2 is R or S, and neither has at least one of R or S as an

argument: In this case, neither of the operands E1 and E2 have tuple importance

scores (i.e., they are suppressed). Then, the join is an RA join, and the output

tuples of the join operator do not have importance scores.

(ii) Only one of E1 or E2 is R or S, or has at least one of R or S as an operand, and

the join condition involves no score-modifying (i.e., threshold or UDF)

predicates : Let E1 be the operand involving R or S. Then E1 has tuple

importance scores, and E2 doesn’t. And, output tuples of J inherit their

importance scores from E1. In this case, the join operator is an RA join with the

provision that it propagates the importance scores of E1 into the output.

(iii) Only one of E1 or E2 is R or S, or has at least one of R, S or both as an operand,

and the join condition involves either a threshold or UDF predicate, or both: Let

E1 be the operand involving R or S (or both). Then E1 has tuple importance

scores, and E2 doesn’t. The output importance scores for the operator J are

computed as the product of the tuple importance scores of E1, similarity values

generated by those join predicates that are also threshold predicates (if any), and

the values of UDFs for the corresponding UDF predicates (if any). In this case,

the join operator is an SVA join.

(iv) E1 and E2 are either R and S, respectively, or each has at least one of R or S as

an argument: If Ei, 1 ≤ i ≤2, is R (or S) then the tuple importance scores of Ei are

the same as R (or S); otherwise they are computed recursively by considering

the operators in E1 and E2. The output importance scores for the operator J are

computed as the product (i.e., the ImpAgg function) of the tuple importance

scores of E1 and E2, the similarity values generated by those join predicates that

are also threshold predicates (if any), and the UDF values of UDF predicates (if

any). In this case, the join operator is an SVA join.

Consider the selection operator L in E, with an operand E1 that denotes either a base

or intermediate relation, and a selection condition C applied to E1. We evaluate the

alternatives:

(i) E1 is either R or S, or has at least one of R or S as an argument, and the selection

condition C involves either a threshold or UDF predicate, or both: If E1 is R (or

S) then the tuple importance scores of E are the same as R (or S); otherwise they

are computed recursively by considering the operators in E1. The output of the

selection operator L contains those tuples that satisfy C. The output tuple

importance scores for operator L are computed as the product of the tuple

importance scores of E1, the similarity values of threshold predicates, and the

UDF values of UDF predicates. In this case, the selection operator is an SVA

selection.

(ii) E1 is either R or S, or has at least one of R or S as an argument, and the selection

condition C involves no score-modifying (i.e., threshold or UDF) predicates: If

E1 is R (or S) then the output tuple importance scores of E1 are the same as R (or

S); otherwise they are computed recursively by considering the operators in E1.

The output of the selection operator L contains those tuples that satisfy C. And,

output tuples of S inherit their importance scores from E1. In this case, the

selection operator is an RA selection with the provision that it simply propagates

the input tuple importance scores into its output tuples.

(iii) E1 is neither R nor S, and neither has at least one of R or S as an argument: In

this case, E1 has no tuple importance scores (i.e., they are suppressed). Hence,

output tuples of the selection operator L do not have importance scores. In this

case, the selection operator is an RA selection.

Finally, during the query plan generation for Q, the initial algebra expression E of Q

can be transformed into other equivalent algebra expressions. One can specify a set T of

algebraic transformations (see Appendix 1) involving RA and SVA operators, and prove

that the output of Q stays the same under T. Thus, we have

Lemma 1. Non-aggregate SQL queries extended with the basic importance

propagation clause, threshold predicates, and UDF predicates are well-defined.

Hence, we have presented unambiguously the query execution semantics due to a

single basic importance propagation clause, and arbitrarily many threshold and UDF

predicates.

4.2 Importance Propagation with Topic Closure Predicates

As illustrated in Example 2.3, the topic closure operator is a recursive operator that

employs a regular expression (in Example 2.3, the regular expression is

“PrerequisitePapers*”) to locate new topics with desired importance scores. While

different metalink types employ different axioms [Özsoyoğlu et al. 2004, Özsoyoğlu et

al. 2000], the topic closure operator translates into a “transitive closure-like” operator that

traverses over paths of metalinks, and computes importance scores of the newly reached

topics that are reached over one or more paths. To compute unambiguously the

propagated importance scores of the newly reached topics, we employ the topic closure

(importance computation) clause (as defined in Section 2.2.2-(ii)) which is self-

explanatory. To have well-defined queries, we use three rules.

Rule 1. Each topic closure predicate is evaluated by a single SVA topic closure

operator.

Rule 1 eliminates the use of multiple SVA operators to evaluate a single topic closure

predicate, and avoids the specification of topic closure operator interactions within one

SQL query.

Definition (Monotonically decreasing function). Let f be an aggregate function that

takes a set of reals in [0,1] and returns a real in [0,1]. Let S be a nonempty set of reals in

[0,1] and v be a real in [0,1]. f is a monotonically decreasing function if f(S∪{v}) ≤ f(S).

FPath is a (derived) importance score computation function for a topic t reached via a

given path.

Rule 2. The function FPath defined in the topic closure clause is a monotonically

decreasing function.

Rule 2 guarantees that, during the evaluation of the topic closure operator, the search

for topics over a metalink path always comes to an end. That is, a topic obtained over a

path that includes topic t (and, thus, is “reached” after t is reached) always has a lower

propagated importance value than the propagated importance value of t.

FPathMerge function (one of Product, NumAve, Min, Max, etc.) specifies how to

compute the (derived) importance score of topic t with respect to multiple paths leading

to t.

Rule 3. Assume that the input of FPathMerge is the set S={v1, …, vn} where vi is a

real in the range [0,1], 1≤ i ≤n. Then FpathMerge(S) ≤ Max(S).

Rule 3 guarantees that, during topic closure computations, the search for topics over

multiple and possibly merging paths comes to an end.

Lemma 2. SQL queries extended with a topic closure importance computation clause

and employing rules 1-3 are well-defined.

4.3 Query Stopping Clauses

In Section 2.2.2, we have defined two SQL query stopping clauses, namely, threshold

and top-k clauses, that specify stopping conditions over the query, whose utility is to

significantly lower the query processing times. These stopping conditions are enforced by

SVA operators (selection, join and topic closure) in a query tree via the output threshold

β.

Next we discuss how the query stopping conditions (i.e., the sideway value threshold

Vt or the top-k condition) are propagated to the SVA operators of the logical query tree

(i.e., the query execution semantics of the query stopping clauses). In summary, we show

below that (i) for the query threshold stopping clause, all SVA operators in the tree

enforce the stopping condition, and (ii) for the top-k query stopping clause, only those

SVA operators, for which the “score-conservative top-k propagation policy” holds,

enforce the stopping condition.

4.3.1 Stop-With-Threshold Clause

The stop with threshold Vt clause directly propagates to all SVA operators of the query

when the basic importance propagation clause function is a monotonically decreasing

aggregate function.

Rule 4. Basic importance propagation clause function f is a monotonically decreasing

function.

This rule guarantees that, after propagating β = Vt to SVA operators in the query tree,

a tuple in the output of a low-level SVA operator and with a score lower than β = Vt can

be safely eliminated from the output since, if kept in the output of the SVA operator, its

score would not increase, and it would not appear in the final query output. Note that the

product function used in section 2.2.2 satisfies Rule 4.

Clearly, such a propagation drastically reduces the intermediate output sizes and

query evaluation time. Please note that, before propagating the threshold Vt, we assume

that the stop with threshold Vt clause is enforced with a single STOP operator at the root

of the logical query tree with β = Vt. After propagating β to all SVA operators in the

query tree, the STOP operator becomes redundant, and is removed from the query tree.

Lemma 3. Consider an SQL query Q with the stop with threshold Vt clause and its

query tree with a single STOP operator at the root and having β = Vt. Then, accompanied

with rule 4, the threshold Vt propagates to all the SVA operators in the query, and Q stays

well-defined.

Thus, for an extended SQL query with a “stop with threshold Vt” clause, all the SVA

operators in the corresponding logical query tree inherit the threshold Vt stopping

condition, and the query stays well-defined.

4.3.2 Stop-After-k-Most-Important Clause

We first discuss the construction of the initial logical query tree. First, a query tree is

constructed with RA and SVA operators in which each SVA operator contains a fout

function as discussed in Section 4.1, but with no stopping condition, i.e., each output

threshold β is set to zero. Second, a STOP operator with the top-k threshold (i.e., the

query stopping condition) is added as the root. In this section, our goal is to propagate the

top-k condition of the STOP operator to lower-level SVA operators as β values whenever

possible.

The stop after k most important clause specifies the size of the final query output (i.e.,

the top-k query), and can not easily propagate to intermediate SVA operators of a logical

query tree during query processing. This is because such a propagation can prune away

some of the intermediate results too early, that may otherwise be included in the final top-

k results [Carey and Kossmann 1997, Carey and Kossmann 1998]. On the other hand,

applying the top-k stopping condition only at the uppermost SVA operator would

eliminate the opportunity of pruning away intermediate tuples which can never appear in

the final output. Here, we revise the conservative strategy proposed by [Carey and

Kossmann 1997], and propagate the top-k stopping condition only to those SVA

operators that do not over-prune the intermediate results.

Definition (Nonreductive predicate) [Carey and Kossmann 1997]. Consider a

predicate p of form x=y where x is an expression computable from an input relation R,

and y is an expression involving one or more new relations to be added into the logical

query tree. Predicate p is called a nonreductive predicate with respect to R if it can be

inferred that x cannot be null and, for each x, there exists at least one y satisfying p.

Intuitively, given a relation R as an input to an operator, a non-reductive predicate

with respect to R is a predicate that, when used in the operator, returns all the tuples of R

in the output of the operator.

Definition (Score-conservative top-k propagation policy). The top-k condition is

propagated to an SVA operator V as a stopping condition only when all operators P that

directly or indirectly consume the output O(V) tuples of V (i) have non-reductive

predicates with respect to O(V), and (ii) propagate tuple importance scores of O(V), but

do not further modify them (i.e., each P is either an RA operator, or an SVA operator

with fout = fin) where fin denotes the scores of O(V)).

Condition (i) guarantees that once a tuple is included in the output of an SVA

operator V, it will not be dropped by any other upper-level operators in the logical query

tree. Note that condition (i) alone is not adequate for our query evaluation framework due

to the score propagation and modification mechanism: assume that an SVA operator

which is an ascendant of V revises its input tuple scores by some function f, and a tuple t

is already pruned away by V. In this case, it is still possible that t revised by f could have

had a higher revised score than the top-k tuples reported in the output O(V) of V, causing

a false-drop of tuple t. Thus, condition (ii) is also needed in our policy.

Example 4.1. In Figure 1, the top-k stopping condition is propagated to the SVA

selection operator (as it has the β value of 20), due to the score-conservative top-k

propagation policy. We assume that every topic has at least one source, and, thus, the join

operator above the selection is non-reductive. Moreover, the join is an RA join, which

does not revise the scores of tuples returned by the selection, but only propagates them.

On the other hand, in Figure 2, the top-k condition is only propagated to the SVA join

operator, but not the SVA selection, which has the β value of 0.0. In this case,

propagating top-k to SVA selection violates the score-conservative policy since SVA join

is both reductive and score-revising. Finally, note that, in Figure 4, the top-k condition

(i.e., β=5) is propagated to the topic closure operator, according to the score-conservative

top-k propagation policy.

Note that the score-conservative top-k propagation policy does not guarantee the

uniqueness of the top-k output, as there may be more than one tuple with the same score

that are candidates to occur in the top-k output result. That is, there may be n more tuples

in the database having the same score with the kth tuple in the output. In this case, for the

sake of providing well-defined query results, we include all of these tuples in the final

query output and return (k+n) tuples.

A final subtle issue for propagating top-k stopping condition to SVA operators is the

need to re-apply the top-k output threshold β after an SVA operator V in the query tree:

Assume that the top-k stopping condition of a query Q is propagated to an SVA-operator

V for which the score conservative top-k propagation policy holds. In this case, the

operator V will produce at most k tuples and stop, during the query evaluation. But,

although the reduction in the intermediate output cardinality is disallowed by our policy,

the increase is left unspecified, i.e., we have not yet specified the semantics when these k

tuples produced by V, say, are joined with more than one tuple in a join later in the query

tree. To handle this case, we assume that a STOP operator [Carey and Kossmann 1997],

which first sorts its input (if necessary) and then returns the top-k (or, k+n as discussed

above) tuples, still remains as the outermost query operator regardless of the top-k

propagation to SVA operators [Carey and Kossmann 1997]. This guarantees that only the

top-k tuples are retained for the final output, but still allows potential reductions in the

intermediate output sizes and query evaluation time.

Example 4.2. In Figure 1, the uppermost RA join operator can increase the number of

tuples, if each of the k tuples generated by the SVA selection joins with more than one

Sources tuples. In this case, the STOP operator at the top of the tree guarantees that only

the k (or, k+n) (and no more) tuples are returned as the query output.

We use the following query execution semantics for an extended SQL query with (i) a

stop after k most important clause, and (ii) no nested subqueries having the new SQL

clauses. The query processor first creates all possible query trees (through applicable

algebraic transformations) in which no SVA operator contains the top-k stopping

condition. In each query tree, a STOP operator is placed as the root due to the reasons

discussed above. The query processor then propagates the top-k condition to the lowest

possible SVA operator(s) that satisfies the score-conservative top-k propagation policy,

in each query tree. As a result, in each query tree, only such SVA operators will be aware

of the top-k condition as an operator-wide stopping condition. The query processor then

chooses the query tree with the lowest cost to construct the query plan to execute.

In the case of SQL queries having nested subqueries with their own stop after k most

important clauses, the above construction is revised as follows. Consider each subquery

independently and materialize it (for subqueries with correlated variables, instantiate the

correlated variables when their instantiations satisfy the outer query block). Thus, each

subquery can be considered as an independent query with its own top-k condition

propagated down the tree properly. Thus, we have

Lemma 4. In any SQL query Q, the clause stop after k most important accompanied

with score-conservative top-k propagation policy propagates to SVA operators of Q

during query processing, and Q stays well-defined.

From lemmas 1-4, we have

Theorem 1. SQL queries as defined in Section 2.2 and satisfying rules 1-4 are well-

defined.

5. SVA JOIN EVALUATION ALGORITHMS

5.1 Text Similarity Metrics

For those functions that require the similarity comparison ≅, we assume that a vector

space based similarity model is employed [Salton 1989]. The vector space model first

creates a vocabulary (W) of all words (i.e., terms) included in the document collections,

and then represents each document with a vector v of |W| terms. The vector entries are

real numbers representing term weights. Let vt denote the vector v element for term t. We

use the weighting scheme TF-IDF, which assigns a zero weight for those terms that do

not appear in the document, and computes the weights of the other terms using the

formula vt = (log (TFv, t) + 1) * log(IDFt), where TFv, t (term frequency) is the number of

occurrences of term t in the document represented by v, and IDFt is the inverse document

frequency that is defined as the ratio of the number of all documents to the number of

documents including t. We focus on attributes with short phrases such as topic names.

The TF-IDF values are normalized and the similarity of two documents represented with

vectors v and u is the cosine of the angle between them, which is defined as Cosine (u, v)

= ∑t in W
 vt * ut.

We assume that term vectors that correspond to string-based attributes of tuples, as

well as the vocabulary, are computed a priori. In this section, we assume that vocabulary

is small enough to fit in the main memory, whereas all other input and output relations

may be arbitrarily large.

Since pipelining is preferable for threshold-based query processing algorithms

[Ramakrishnan and Gehrke 2000], and the nested-loop join algorithm does not disrupt

pipelining [Graefe 1993], next, we discuss block-nested loops-based SVA join

algorithms. Moreover, the nested-loop join is appropriate with arbitrary join conditions.

A set of nested-loops based algorithms for processing joins between textual attributes

have also been presented in [Meng et al. 1998]. We discuss this in Section 9.

In the algorithms below, we assume input relations are sorted in decreasing order of

tuple importance scores, and using sort-merge algorithm might seem like a more

reasonable choice than block nested loops join. However, note that our SVA join

condition does not only involve equality; rather, in addition to score-revising threshold

and UDF predicates, it also involves the computation of an fout function and an inequality

comparison with the threshold value Vt. In this case, each tuple from one relation will be

compared with several tuples from the other relation, and sort-merge algorithm will

almost degenerate to nested loops. That is, it is very unlikely that there will be a single

scan in each relation (unless threshold value is extremely high or tables are very small, in

which case the choice of the join algorithm becomes immaterial) as it is in general sort-

merge cases. Thus, the “merge” pointer in the second relation may need to rewind to

earlier tuples -perhaps even requiring older blocks to be re-read in some cases-per tuple

in the first relation. Of course, the simple early-termination heuristics discussed below for

the nested loops join are equally applicable to sort-merge; but again, performance will not

be drastically different from the nested loops approach.

5.2 Nested-Loops-Based Sideway-Value-Threshold Join Algorithms

We now discuss SVA join algorithms that return joined tuples with derived values above

a specified sideway value threshold. We assume that the input relations are sorted in

decreasing order of tuple importance scores. We sketch two algorithms for join

conditions specifying (i) an arbitrary (user-defined) predicate θ over the join attributes, or

(ii) an approximate match in terms of the textual similarity of the join attributes.

Definition. Monotone fout. Let svt denote the importance score of tuple t. Given

relations R and S with tuples r and s respectively, let fout(r, s) denote the importance score

of the joined output tuple r.s. Then, ∀r1, r2 ∈ R and ∀s1, s2 ∈ S, if fout (r1, s1) ≤ fout (r2, s2)

whenever svr1 ≤ svr2 and svs1 ≤ svs2, the function fout is said to be monotone with respect to

input importance scores of R and S.

Functions product, numeric average and geometric average are monotone with respect

to their input importance scores.

Fig. 6. NLoopSVT algorithm

Given a query involving a join with a monotone fout function, we improve the nested-

loop join algorithm by enforcing new stopping conditions while processing the inner and

outer loops, as shown in the NLoopSVT algorithm in Figure 6. In the NLoopSVT algorithm,

the inner loop exits whenever the fout() value of the output tuple r.s is below the threshold

Algorithm NLoopSVT
Input: Sorted Relations R and S wrpt sideway values; fout() function;
join condition r.A θ s.B; sideway value threshold Vt
Output: {r.s | r∈R and s∈S and fout(r, s) ≥ Vt and r.A θ s.B}
{i := 1;
while (fout (ri, s1) ≥ Vt and i ≤ |R|)
{ j := 1;
while (fout (ri, sj) ≥ Vt and j ≤ |S|)
{ if ri.A θ sj.B then append ri.sj to the output;
j++ } i++ } }

Vt, where r is in R and s is in S. Similarly, the outer loop exits at the ith iteration whenever

the fout() value of the output tuple ri.s1 is below the threshold Vt, where ri is in R and s1 is

the first tuple in S.

In an ordinary block-nested loops (BNL) join [Ramakrishnan and Gehrke 2000],

assuming that the size of R is M pages with p tuples per page, the size of S is N pages

with q tuples per page, and the memory has B+2 buffer pages, we can read B pages of the

outer relation R, and scan the inner relation S by using one of the remaining two buffer

pages, leaving the last page to collect the output tuples. In this case, the disk access cost

of the BNL algorithm is M + (M*N/B) [Ramakrishnan and Gehrke 2000]. In the worst

case, the disk access cost of the NLoopSVT algorithm is the same as the disk access cost of

the BNL algorithm. However, in the expected case, the disk access cost of the NLoopSVT

algorithm will be reduced depending on how large Vt is. Assume that we revise the

allocation of buffer pages as B/2 pages each to the relations R and S; the importance

scores in R and S are uniformly distributed; and fout() is the product function, which is

monotone. Thus, the tuples in the first B/2 blocks of R have importance scores in the

range of [(1 ─ B/(2M)), 1]. Similarly, the tuples in the first B/2 blocks of S have

importance scores in the range of [(1 ─ B/(2N)),1]. During the first outer loop iteration,

the inner loop will terminate in the jth iteration when the lowest expected importance

score of a join tuple in the buffer is equal to (or ε less than) the sideway value threshold

Vt. That is, (1 ─ B/(2M)) * (1 ─ j*B/(2N)) = Vt. Rearranging the above equality, we have

)
2

2()1(
2/ M

BNV
B
Nj t

−
−−∗= . Assuming N>>B and M ≈ N, the above equality

reduces to j=(N/(B/2))*(1-Vt). That is, in the expected case, for Vt=0.9, the inner loop

terminates with 10% of the disk block accesses from S. Since R importance scores are

sorted and decreasing in value, for any outerloop tuple of R, S will always be accessed at

most for the first bS=(N/(B/2))*(1-Vt) blocks. And, since the above computations are

symmetric for R and S, in the expected case, NLoops SVT algorithm will terminate with

bR=(M/(B/2))*(1-Vt) disk block accesses from R as well. Thus, the expected number E of

disk accesses is E = (B/2)* bS + (B/2)(bS ─ (B/2)) + (B/2)(bS ─ 2(B/2))+ … + (B/2)(bS

─ (bR ─ 1)* (B/2)). Assuming bS = bR = b, we have E = (B/2)*b2 ─ (B/2)2*((b2 ─b)/2).

This, as shown in the experimental results section, is significantly less than the cost of the

BNL algorithm.

When the join condition specifies an approximate matching (based on the similarity

of the text-valued join attributes being above a given threshold tsim), we cannot directly

make use of the similarity function sim(r, s), as it is not monotone, and thus makes fout

non-monotone. However, we can still use the NLoopsSVT algorithm of Figure 6 with

provisions: (a) the functions fout (ri, s1) and fout (ri, sj) in the outer and the inner while loop

conditions are replaced by svri * svs1 and svri * svsj , respectively, where svri, svs1 and svsj

are the importance scores of tuples ri, s1 and sj. (b) In the inner while loop, we check if fout

(ri, sj)= svri*svsj*sim(ri.A, sj .B) ≥ Vt and sim(ri.A, sj .B) ≥ tsim where A in R and B in S

are the join attributes. If so, the tuple ri.sj is output.

Note that, so far, the join algorithm has not employed the similarity function in

improving its running time. We now summarize an algorithm that uses the vector-space

model and the similarity function in improving the efficiency of the join algorithm.

Lemma 5. Let ur = <u1 u2 … ux> be the term vector corresponding to the join

attribute A of tuple r of R, where ui represents the weight of the term i in A. Assume that

the filter vector fS = <w1 .. wx> is created such that each value wi is the max weight of the

corresponding term i among all vectors of S. Then, if Cosine(ur, fS) < Vt then r can not be

similar to any tuple s in S with similarity above Vt.

Fig. 7. NLoopSim-SVT Algorithm

In this paper, the value Cosine (ur, fS) is called as the maximal similarity of a record r

in R to any other record s in S. The maximum value of a term for a given relation is

determined while creating the vectors for the tuples, and the filter vector for each relation

may be formed as a one-time cost. In Figure 7, we summarize the NLoopSim-SVT

algorithm which makes use of the sorted order of relations R and S by svr * Cosine (ur ,

fS), and svs, respectively (also one-time costs). Note that, with both while loop conditions,

false drops are possible; that is, a tuple r in R and a tuple s in S may satisfy the while loop

Algorithm NLoopSim-SVT
Input: Relations R and S; text-valued join attributes r.A and s.B; Buffers BS and
BR;

 sim function sim()=Cosine(); sim threshold tsim

Output: {r.s | r∈R and s∈S and fout(r, s) ≥ Vt and Cosine(ur , uS) > tsim }
1. Sort R by svr * Cosine(ur , fS); Sort S by svs;
2. Read tuples from the top of R into a block BR where, for each ri in BR,
 svri * svs1 * Cosine(uri, fS) ≥Vt ;
3. Repetitively, read tuples from the top of S into a block BS, where, for each sj in
BS, svr1* svsj * Cosine(ur1, fS) ≥ Vt, and compare and join tuples in BR and BS:
 for each r ∈BR do for each s ∈ BS do
 if (svr * svs * Cosine (ur , us)≥ Vt and Cosine (ur , us)≥ tsim) then
 add r.s into the output;
4. Repeat 2-3 until svri * svs1 * Cosine(uri, fS) < Vt

conditions, only to be eliminated from the output in the if statement within the inner

while loop (the if condition tests the values of the actual fout() and sim() functions). On

the other hand, while loop conditions do not allow false dismissals; that is, a join tuple

that is in the output will be added to the output.

5.3 Nested-Loops-Based Ranking-Threshold (Top-K) Join Algorithms

It is easy to give an SVA join algorithm with top-k output importance scores. Assume

that (i) input relations are sorted with respect to importance scores, and (ii) the fout()

function is monotone. The algorithm NLoopsTop-k begins in a nested loop like manner,

and computes the first k (but not top k yet) joined output tuples, referred to as the “Top-k-

Set”. And, the importance score of the kth joined tuple becomes the lower bound

(minSV); i.e., no tuple with an importance score below this lower bound can be in the

top-k output. The algorithm proceeds in a nested-loops manner, and updates the lower

bound and the current Top-k-Set whenever it computes a join output with a new

importance score larger than the minimum importance score of Top-k-Set.

Similar to the algorithm NLoopSim-SVT, the algorithm NLoopTop-k can be revised for a

ranking-threshold algorithm NLoopSim-Top-k with approximate matching conditions; to

save space, it is not presented here.

6. SVA TOPIC CLOSURE ALGORITHM

For the sake of simplicity in presentation, we now summarize TClosure algorithms that

compute the topic closure X+ for the simpler case where the regular expression R is a

single metalink type M (however, experimental evaluations of Section 8 use arbitrary

regular expressions). Each metalink V M Tid is represented by a tuple in table M, where

V is a set of topic identifiers, Tid is a topic identifier, M is a metalink type.

Definition (LHS-decomposability). A metalink of type M is left-hand-side(LHS)-

decomposable if the axioms of M allow replacing any metalink instance of type M having

multiple topics on its left-hand-side (LHS) with multiple metalink instances, each having

a single topic on its LHS.

As an example, if LHS-decomposibility holds for metalink type M then a metalink

instance A,B C,D of type M can be replaced without loss by A C,D of type M and

B C,D of type M. We assume in this section that if a metalink type is LHS-

decomposable then each metalink with V in the left-hand-side is decomposed into

multiple metalinks with a single topic in the left-hand-side.

Next, we discuss separately the algorithms for sideway value threshold-based and

ranking-based topic closures.

6.1 Sideway-Value-Threshold-based Topic Closure

We create an index MIndex for all metalink instances of all metalink types; and the

TClosure algorithm uses only MIndex to find the closure of a given set of topics. We

assume that all metalinks are right-hand-side decomposed.

MIndex has five attributes: MType, Tid1, Imp(Tid1), ParentList, and ChildList,

where MType specifies a metalink type, Tid1 contains the topic identifier of the topic

from which the metalink originates, and Imp(Tid1) is the importance score of the topic

Tid1. ParentList is a list of topic identifiers of topics from which emanate metalinks of

type MType to the topic Tid1. ChildList is a list of triplets <Tid2, Imp(Tid2),Imp(Mid)>

where the triplet <Tid2, Imp(Tid2), Imp(Mid)> represents a metalink that has Mid as its

metalink identifier, the topic with Tid1 as its antecedent node, the topic with Tid2 as its

consequent node, the type MType as its metalink type, Imp(Tid2) as the importance score

of the topic with Tid2, and Imp(Mid) as the importance score of the metalink.

The key for MIndex is the two attributes MType and Tid1. Therefore, the MIndex

entries with the key (MType, Tid1) contains all metalinks of type MType that have the

topic with Tid1 as its antecedent. The entries of MIndex are sorted by (MType, Tid1) so

that the metalink of the same type are together within the index.

Fig. 8. Graphical representation for non-LHS-decomposable metalink instances in Example 6.2.

Example 6.1. Figure 8 illustrates graphically a Metalinks relation with RelatedTo and

Pre(requisite) metalink instances between five topics. T1 Pre T2 denotes that (learning)

T2 is a prerequisite to (learning) T1 [Özsoyoğlu et al. 2004]. Assume that the only axiom

for both RelatedTo and Pre metalink types is transitivity (thus, none of the metalinks in

Figure 8 are redundant). Table II shows the tuples of the index MIndex for the Metalinks

relation of Figure 8.

While creating MIndex, for those metalinks that are not LHS-decomposable, we

create a second index H(yper)Index, to maintain all nodes that are not decomposable; and

the topic closure algorithm uses HIndex to compute the closure of a given set of topics.

The HIndex table has two attributes Tid and NodeList, where Tid is the topic identifier of

a topic t within the nondecomposable node, and NodeList is a list of pairs <TidSet, Hid>

where the pair <TidSet, Hid> represents the Tid’s of the nondecomposable (hyper) node

(which contains Tid), and Hid is a new topic identifier for the node. Table III illustrates

HIndex for a nondecomposable node {T3, T4}. We generate a new entry in MIndex for

each nondecomposable node with the identifier Hid as its Tid1 value, and with a set of

topic ids that it contains as its “ParentList”. For example, in Table II, the entry with Tid1

value of H1 and the ParentList value of {T3, T4} represents the nondecomposable

(hyper) node H1 in the HIndex table.

In this section, to simplify the presentation, we assume that the metalink type M has

only the transitivity axiom, and may or may not be LHS-decomposable. And, the product

function is used to compute FPath=Impd(t, P, R).

The topic closure of a set X of topics with respect to R as a single metalink type M

and a sideway value threshold Vt is computed as follows. For each topic t in the topic

closure X+, we create a triplet of the form <t.Tid, Impd(t, R = M), {p | p is a path of type

M from a topic or topics in X to t}>. We use a set-valued variable DiscoveredTids to

contain the topics already in the closure, but not yet checked for paths emanating from

them. We construct X+ by repetitively computing X(0), X(1), …, X(i) where 1 ≤ i. In the

first iteration, for each topic t in X, a triplet <t.Tid, Impd(t, R), {t}> is created in X(1) and

the topic identifier Tid of t is added into DiscoveredTids.

In each iteration of the closure algorithm, a topic t1 is removed from DiscoveredTids,

and all metalinks that emanate from t1 are visited. A triplet <t2,Impd(t2,R), t2.paths> for

the consequent topic t2 of each visited metalink is added into the currently computed

topic closure X(i), if the triplet does not exist in X(i). If the triplet exists then new paths are

added into t2.paths, and Impd(t,R) is recomputed. The topic t2 is then added into

DiscoveredTids. If the metalink type M, for which the topic closure is to be computed, is

not LHS-decomposable then the algorithm checks if topic t1 is in the LHS of a metalink

of type M. The algorithm uses HIndex to find all HIndex entries that contain topic t1 as a

member of their LHS set of topics. For each such HIndex entry, if all of its LHS topics

are in the currently computed topic closure X(i) then new (hyper)paths are created and

new derived importance scores are computed for every metalink that emanates from the

HIndex entry. When DiscoveredTids is empty, the algorithm stops, and X+=X(i). We refer

to this algorithm as the ThresholdTClosure algorithm.

Table II. MIndex Table

MType Tid1 Imp(Tid1) ParentList
ChildList

<Tid2, Imp(Tid2), Imp(Mid)> triplets

Pre T1 0.9 {} <T3,0.85,0.95>, <T4,0.95,0.9>

Pre H1 Avg(0.9,
0.95)=
0.925

{T3, T4} <T5,0.7,0.9>

RelatedTo T1 0.9 {} <T2,0.8,0.6>

Table III. HIndex Table for the non-LHS-decomposable metalink in Figure 8.

Tid NodeList <TidList, Hid>

T3 <{T3,T4}, H1>

T4 <{T3,T4}, H1>

Example 6.2 (Topic Closure Computation for a LHS-Decomposable Metalink Type).

We use the MIndex instance in Table II. Assume that we want to compute the topic

closure for the set X={T1} with SV threshold Vt=0.4 using the metalink type

M=RelatedTo. Also, assume that the average function is used for FPathMerge. Since

X={T1}, X(1)={<T1, 0.9, {T1}>} and DiscoveredTids={T1}. Note that the RelatedTo

metalink type is LHS decomposable. In the first iteration, topic T1 is removed from

DiscoveredTids. Topic T2 has a path T1.T2, obtained using the metalink T1(0.9) RT(0.6)

T2 (0.8), and its derived importance score is Impd(T2,RelatedTo)= 0.9 * 0.6 * 0.8 = 0.43.

Therefore, the triplet <T2, 0.43, {T1.T2}> is added into X(1). After the first iteration, X(2)

={<T1, 0.9,{T1}>,<T2, 0.43, {T1.T2}>} and DiscoveredTids = {T2}. Next, the

algorithm terminates since there is no RelatedTo metalink emanating from topic T2,

therefore, DiscoveredTids becomes empty, and the output of the closure operator is

{<T1,0.9>, <T2, 0.43>}. Clearly, if we have more axioms (in addition to transitivity)

then the output of the closure will have additional tuples. For example, when the axiom

“if A Pre B then A RelatedTo B” holds, then all topics will be included into the closure.

Example 6.3 (Topic Closure Computation for a Non-Left-Hand-Side Decomposable

Metalink). In Figure 8, {(T1 Pre T3),(T1 Pre T4)} Pre T5 forms a hyperpath of type Pre

from topic T1 to topic T5. Assume that we want to compute the topic closure for a set of

topics X={T1} with a sideway value threshold Vt=0.7 using the metalink type M=Pre,

and (a) FPathMerge is max, and (b) the geometric average is used to compute the derived

importance score of a hypernode. Using the MIndex instance in Table II, we compute X+

as {<T1, 0.9>, <T3, 0.727>, <T4, 0.769>}. T5 is not included into the output because its

derived importance score is below the threshold.

During closure computations, a metalink instance (i.e., a tuple in MIndex) can be

visited more than once if there are multiple paths to the left-hand-side topic node of the

metalink. To avoid visiting the same metalink more than once, we use the parent-child

relationship between topics. A topic node with Tid1 is in the parent list of another topic

node with Tid2 in the metalink M if there is a metalink Tid1 M Tid2. In the

ThresholdTClosure algorithm, we use a set-valued variable PostponedTids to add the

restriction that a topic node can not be “processed” until all nodes in its parent list is

processed.

The algorithm ThresholdTClosure needs to maintain all paths from the set of input

topics X to a given topic instance a in order to compute the derived importance score of a

using a generic function. However, some functions, such as max, need to maintain only a

single path to compute the derived importance score of a given topic. That is, using the

max function, the derived importance score of a topic can be computed by finding the

path with the maximum derived importance score. One can give an algorithm

ThresholdTClosureMax that does not maintain the path information for any topic, and

computes the derived importance score of a topic x by comparing its “current” derived

importance score with respect to that of the “currently visited” path P. Clearly,

ThresholdTClosureMax is much more efficient than ThresholdTClosure.

6.2 Ranking-based Topic Closure

We briefly summarize the RankingTClosureMax algorithm that computes the top k-

ranked topic closure using product as FPath and max as FPathMerge. The algorithm

finds the topics with the k highest derived importance scores in the topic closure of a set

X of input topics. It first computes the initial candidate top k ranked topics from the input

topics X. Then, in each iteration i, it extracts the ith top-ranked topic from the current k-

i+1 candidate top-ranked topics and updates the current candidate topics by processing all

emanating metalinks from the ith topic. Therefore, the algorithm needs k iterations in

order to compute the top-k-ranked topic closure of a set X of input topics.

The RankingTClosureMax algorithm maintains two lists X+ and CandidateTopics of

size at most k.The algorithm requires at most Ω(k * |X|) time to compute the initial

CandidateTopics list, where |X| is the size of the input topic set X. Then, the algorithm

iterates k times in order to compute the top-k-ranked topic closure, and, in each iteration,

it finds the next top k topics and updates the CandidateTopics list by applying the

metalinks that emanate from a given top-k topic.

7. EXPERIMENTAL RESULTS: EVALUATING THE SVA JOIN OPERATOR

To evaluate the four SVA-Join algorithms discussed in Sections 5.2 and 5.3, we first

extracted all the titles of journal and conference papers from the DBLP [Ley] data set into

two different files, R and S; R with more than 91,000 journal paper titles (12 Mbytes),

and S with more than 132,000 conference paper titles (18 Mbytes). Next, we eliminated

the stopwords (i.e., removed words like “the”, “a”, “of”, etc.) from the text in each title,

stemmed them and created the word list (vocabulary) for the whole collection (including

about 43000 words). The word list was kept in the main memory. Then, we created the

vectors for each record of R and S, which were added to paper title records in files R and

S.

Topic importance scores for papers are computed based on the rankings of the

journals or conferences they appear. For this purpose, we used the ranking list provided at

CiteSeer [Citeseer 2003]. We split this list into ten bins, giving the importance score 1 to

those venues that are ranked at top 10%, score 0.9 to those at 20% slice, and so on. It

turns out that, some of the publication venues encountered in DBLP data set are not

found in CiteSeer’s list. These are assigned the importance score 0.6, since the average

impact estimation score of DBLP venues that appear in CiteSeer list falls into the bin

with the score 0.6. Note that, we may perhaps overestimate the importance scores of

these venues (and papers published in them), as these unlisted venues are potentially less-

known and less-important ones. As a supporting evidence for this claim, we found out

that through 210,000 journal/conference papers in our test set, less than 5% are published

in those venues. As another observation, a considerable number of the papers listed in

DBLP are published in the venues that are ranked in top 10% of CiteSeer, resulting in the

score attachment of 1. Thus, our importance score assignment is not uniform, but depends

on the properties of real data published at the DBLP site. As a final remark, it could be

argued whether all papers published at the same venue have the same importance scores;

however, our intention in this section is not to develop a method for measuring paper

importance, but rather provide experimental evaluation on a data set that approximately

fits to real life application constraints.

Below, we provide the experimental evaluations of the SVA-join algorithms in terms

of the number of comparisons for a given query. The number of comparisons gives an

idea about the number of tuples read from each relation. Results involving disk-accesses

and execution times are clearly symmetric with the number of comparisons made, and not

reported here.

All experiments have been performed on a dual-processor Pentium III PC with 1-GB

main memory running WindowsNT 4.0. The input and output buffer sizes hold 10,000

tuples. The algorithms are implemented in C programming language.

A. Evaluating NLoopSVT and NLoopTop-k: These algorithms join tuples of R and S

on the basis of an arbitrary join condition (predicate) θ, and return the joined tuples that

are over a given threshold Vt or ranked in the top-k results. For the following

experiments, fout() is specified as the product of the importance scores of joined tuples.

We assume that join condition θ is a user-defined function that requires further (and

presumably expensive) processing of the tuples, as illustrated in Section 3.2. For instance,

such a function may state that a conference paper tuple is to be joined with a journal

paper if they have at least one author in common and the conference paper is published at

most 2 years before the journal paper. Clearly, this predicate can be specified as a user

defined function (UDF) (syntax omitted to save space).

Fig.s 9 and 10. Performance values of BNL vs. NLoopSVT and NLoopTop-k, respectively.

To evaluate a join with an arbitrary condition θ, an ordinary block-nested loops

(BNL) algorithm compares each and every tuple, computes the importance scores for

those tuples satisfying the user defined function, and finally retrieves the ones that are

above the specified threshold or in the specified top-k set. On the other hand, NLoopSVT

and NLoopTop-k evaluate the arbitrary predicate only for those tuples with a derived

importance score that satisfies the query constraints. In Figures 9 and 10, we demonstrate

the performance of these algorithms, compared against the “blind” BNL approach. Note

that, the savings of the proposed algorithms increase, as the SV threshold value increases

or, inversely, as the k value decreases. For instance, when the SV threshold value is 0.9,

the number of tuple comparisons performed by NLoopSVT is approximately 600 millions,

1/20 of the BNL approach which makes 12 billion comparisons. For this case, NLoopSVT

reads only 27% of R and 60% of S from the disk, whereas BNL reads all tuples of the

relations. The saving in terms of execution time also matches well with the 1/20 ratio of

tuple comparisons, i.e., three minutes vs. an hour. Note that, the percentages of tuple

readings from each relation show that tuples with high importance scores dominate

DBLP data set, as we have mentioned before, and savings would increase for those cases

where only a few tuples can exceed the SV threshold.

B. Evaluating NLoopSim-SVT and NLoopSim-Top-k: These algorithms perform

similarity-based (approximate) joins. In the following experiments, the tuples of R and S

are joined if their titles are similar with a similarity value greater than a specified

threshold (90%). In this case, fout() is specified as the product of the importance scores of

joined tuples and this derived value is further multiplied with the similarity value of

tuples, obtained using the cosine similarity measure.

Figures 11 and 12 illustrate the performance superiority of NLoopSim-SVT and

NLoopSim-Top-k with respect to the BNL. Note that, as discussed before, a blind BNL

would compare all pairs, leading to almost 12 billion tuple comparisons. For the special

case of similarity based predicates, we employ an inverted index while computing the

similarity of the tuples that are read and buffered (in a similar fashion to probing phase of

hash-join [Ramakrishnan and Gehrke 2000]). More specifically, we create an in-memory

inverted index [Salton 1989] for the tuples of outer relation on the fly, and compare

tuples of inner relation that only have common words in their titles. Thus, for all of the

algorithms, the results reported in the figures indicate the number of accesses to the in-

memory inverted index during the comparison, i.e., BNL accesses to the index 900

million times, also implying the same number of similarity comparison computations,

although it reads the blocks of the both relations entirely several times. We observe that

SVA algorithms again considerably reduce the cost of join operation. For instance, to

retrieve tuple pairs with titles that are 90% similar and have a derived importance score

greater than 0.9, BNL achieves a total of 900 million computations, whereas NLoopSim-

SVT makes only 50 million computations. This improvement is due to the fact that

similarity based algorithms are tailored to exploit the vector-space model to its greatest

extent.

To summarize, for arbitrary predicates and monotone SV functions, algorithms

NLoopSVT and NLoopTop-k improve the performance of BNL considerably. For the special

case of text similarity-based joins, the algorithms are further optimized (e.g., by using the

maximal similarity filter heuristic), and more gains are obtained.

Fig.s 11 and 12. Performance values of BNL vs. NLoopSim-SVT and NLoopSim-Top-k algorithms, respectively.

8. EXPERIMENTAL RESULTS: EVALUATING THE SVA TOPIC CLOSURE
OPERATOR

We evaluate the performance of the TClosure algorithms using all the articles in the

ACM SIGMOD Anthology [ACM SIGMOD Anthology] between 1969 and 2001. All of

the articles, available as PDF files, are parsed, indices are constructed and used to extract

metalinks between papers, such as the RelatedTo, Prerequisite, and WrittenBy metalinks.

In [Al-Hamdani 2003], we provide a more detailed description of the metadata extraction

process from the ACM Anthology.

Using topics and metalinks, disk-based index files are constructed. And, in order to

efficiently retrieve tuples from two index files (MIndex and HIndex), a memory-based

sparse index table is employed. In implementations of topic closure algorithms, we use

max as the FPathMerge function. We evaluate the performances of the Threshold-based

and Top-k-based TClosure algorithms in terms of the number of disk accesses and the

size of the output result X+.

We employ a finite state automaton (FSA) that corresponds to a given regular

expression R. As an example, the FSA in Figure 13 corresponds to the regular expression

R=PRE*.RT.RT* (where PRE and RT are Prerequisite and RelatedTo metalinks,

respectively).

Fig. 13. FSA for regular expression R=PRE*.RT.RT*

8.1 Data Generation

All ACM Anthology articles (14,891 papers) are converted from PDF files into plain text

files. Then, DBLP bibliography information [Ley] is used to extract the titles, authors,

publication venue (conference or journal), and the publication year for each paper in the

ACM Anthology. We also extract the abstract, index terms, body, and references for each

paper using its text file. The TF-IDF vectors are used to represent each component of

each paper (i.e., the title, abstract, index terms, and body) and to create the corresponding

index files. We also create index files for authors, references, and the publication venue

of the papers.

8.1.1 Topic Extraction

We extract two types of topics: papers and authors, and compute their importance scores.

A. Paper Importances: the importance score of a given paper can be computed in

multiple ways, such as:

(a) Publications that get referenced by highly “important” papers are more

important (residual effect). PageRank [Brin and Page 1998] algorithm can be

used to recursively compute the importance scores of papers using the

importance scores of papers that cite them.

(b) The notion of hubs and authorities (i.e., the HITS algorithm of Kleinberg [1998;

1999]) among papers can be used to compute importances of papers.

(c) Citation count: how many times a paper is cited by other important papers.

(d) Publication venue: e.g., SIGMOD versus CIKM. The importance score of a

conference or journal influences the importance of a paper.

(e) Temporal distributions of citations with respect to duration.

(f) Citation venue: e.g., survey journal versus research paper.

(g) Citations by “important” authors’ work are more significant.

(h) Importance of an author influences importances of his/her papers.

In this paper, we compute importance scores of papers using (a) citation counts, (b)

publication venue, and (c) importance scores of the most important papers that refer to

the given paper.

(a) Citation Count: For a given paper P, let CitationCount(P) be the number of times

paper P is cited by other papers. Using the number of citations, paper P is as

important as those papers that have the same number of citations and more important

than the papers that have fewer citations. Now, let PapersWithCitations(i) be the

number of papers that are cited i times. We compute the importance of a given paper

P with respect to its citation count as follows:

ImpPaperCitationCount(P) =
papers of No.

(i)CitationsPapersWith
(P)untCitationCo

0i
∑
=

(b) Publication Venue: the importance score of a given conference or journal is

computed using the total number of papers it has and the total number of citations to

its papers. We compute the unnormalized conference importance scores using the

following formula:

ImpConfU(V)= (# citations of Conference V)/ V Conference in papers #

Let ImpConfMax be the unnormalized importance score of a conference with the

highest unnormalized importance score. By applying the ConfMinImp factor, where

0 ≤ ConfMinImp ≤ , we have the importance scores for a given conference or a

journal as:

ImpConf(V)= ConfMinImp + (1.0 – ConfMinImp) *
MaxU /(V) ConfImpImpConf

We use ConfMinImp=0.4 in the experiments.

(c) Adding the citation effect of the most important citation: For a given paper P in

conference V, let Pmaxcit be any paper that cites paper P with the highest importance

score. We compute the importance score of a paper P using

ImpPaper(P) = (1 - MaxCitFactor) * [(ConfFactor * ImpConf(V)) +

 (1.0 - ConfFactor) * ImpPaperCitationCount(P)] + MaxCitFactor * Imp(PmaxCit)

where 0 ≤ MaxCitFactor ≤ 1.0 and 0 ≤ ConfFactor ≤ 1.0. In the experiments, we use

MaxCitFactor = 0.2 and ConfFactor = 0.7.

B. Author Importances: the importance score for an author can be computed in multiple

ways:

(a) The most important paper of the author.

(b) Weighted average of the most important k papers of the author.

(c) Weighted average of the most important m% papers of the author

(d) Weighted average of the most-important papers of the author in every y

years

We compute the importance score of an author using 20% of his/her most important

papers. For the ACM anthology, the importance scores of (a) 106 conferences, journals,

and books, (b) 14,891 papers, and (c) 13,208 authors, are computed and stored in files.

The papers are stored in a file of 222KB size, and the authors are stored in a file of

198KB size.

8.1.2 Metalink Extraction

Three types of metalinks and their importance scores are extracted, namely, RelatedTo,

Prerequisite, and WrittenBy.

A.RelatedTo Metalink Instance Extraction

A paper Pi is related to a paper Pj if the similarity Sim(Pi,Pj) is above a given threshold

value Vt (In the experiment, we use Vt value of 0.4). We compute the similarity between

two papers using a weighted function of their title similarity SimTitle, index terms

similarity SimIndexTerms, abstract similarity SimAbstract, body similarity SimBody, author

similarity SimAuthor, and the references similarity SimReferences.

We use the TF-IDF vectors with the cosine similarity measure [Salton 1989] to

compute the similarities between two paper’s titles, abstracts, index terms, and bodies.

Each of these similarities is referred to as a “similarity factor”. We first remove the

stopping words from the terms of a similarity factor, and then use the Porter’s algorithm

[Porter 1980] to stem the terms.

We compute the author similarity between two papers using the “Level-0-author-

overlap” relationship (i.e., common authors between two papers) and the “Level-1-

author-overlap” relationship (i.e., two different authors, each of different papers Pi and

Pj, are co-authors in a third paper Pk). We use the following formula to compute the

author similarity between two papers:

SimAuthor(Pi, Pj) = L0Weight * SimLevel-0-Author(Pi, Pj)+ (1- L0Weight) SimLevel-1-Author(Pi, Pj),

where 0≤L0Weight≤1.

The reference similarity between two papers Pi and Pj is computed using the

bibliographic coupling (the number of common citations between the two papers

[Kessler 1963]) and co-citation (co-citation frequency with which two papers appear as

citations in the same document [Small 1973]) between the two papers. We compute the

reference similarity as follows:

SimReferences(Pi, Pj) = BibWeight * Simbib(Pi, Pj) + (1- BibWeight) Simcoc(Pi, Pj),

where 0≤BibWeight≤1. In the experiment, we use L0Weight and BibWeight values of 0.7

and 0.6, respectively.

Finally, we use the following formula to compute the importance score of the

RelatedTo metalink instance between two papers Pi and Pj.

Imp(RelatedTo(Pi, Pj)) = Sim(Pi, Pj)

= WTitle * SimTitle(Pi, Pj) + WIndexTerms * SimIndexTerms(Pi, Pj) + WAbstract *
SimAbstract(Pi, Pj) +
 WBody * SimBody(Pi, Pj) + WAuthor* SimAuthor(Pi, Pj) +WReferences* SimReferences
(Pi, Pj)

where WTitle+ WIndexTerms + WAbstract + WBody + WAuthor+ WReferences=1.0

There is also the issue of choosing the right values for weights WIndexTerms, WAbstract,

WBody, WAuthor, and WReferences. In [Li 2003], an experiment was performed to locate the

similarity weights that produce the highest precision queries using 1,000 papers. The

experiment shows that the similarity factor weights with the highest precision are

WTitle=0.143225, WIndexTerms=0.0607289, WAbstract=0.183921, WBody=0.151375,

WAuthor=0.202429, and WReferences=0.2583211. Therefore, we use these weights in

computing the importance scores for RelatedTo metalinks.

We normalize the similarity values for each similarity factor, say F (e.g., F=title),

using the maximum similarity SimFmax(Pi) between a paper Pi and all other papers.

RelatedTo metalink is reflexive; therefore, for any two papers Pi and Pj,

Imp(RelatedTo(Pi, Pj)) = Imp(RelatedTo(Pj, Pi)). To maintain the reflexivity property, we

normalize the similarity values for a given similarity factor SimF between papers Pi and Pj

using the minimum of SimFmax(Pi) and SimFmax(Pj). Thus,

SimFNormalized
(Pi, Pj) = SimF(Pi, Pj) / min(SimFmax(Pi), SimFmax(Pj)).

B. Prerequisite Metalink Instance Extraction

We use the citation information to extract Prerequisite metalinks. A paper Pi is a

prerequisite to a paper Pj, written as Pre(Pi,Pj), if paper Pi appears in the references of

paper Pj. We use the occurrences of the cited papers to compute the importance scores for

their prerequisite metalinks. Let Omax(Pj) be the number of occurrences of the most cited

reference in the body of a given paper Pj, and O(Pi,Pj) be the number of occurrences of a

reference Pi in the body of paper Pj. Then, the importance score for the prerequisite

metalink instance Pre(Pi, Pj)is computed using the formula

 Imp(Pre(Pi, Pj)) = (O(Pi,Pj)+1)/ (Omax(Pj)+1) (1)

We add one to the number of occurrences and to the maximum occurrences so that all

the importance scores are greater than zero. Another alternative is to compute the

importance scores using the following formula:

 Imp(Pre(Pi, Pj)) = MinPreFactor + (1 - MinPreFactor) * O(Pi,Pj) / Omax(Pj) (2)

where 0 ≤ MinPreFactor ≤ 1.

In our implementation, we evaluate both formulas (1) and (2).

C. WrittenBy Metalink Instance Extraction

One can construct WrittenBy metalink importance scores using the importance scores of

the authors of papers. However, in the experiments, we assume that WrittenBy metalink

type does not have importance scores (Or, more correctly, for each paper Pi and author

Aj, Imp(WrittenBy, Pi, Aj) is assumed to be 1.0).

Using the papers in the ACM Anthology, we have extracted 40,486 RelatedTo

metalinks, 30,772 Prerequisite metalinks, and 34,244 WrittenBy metalinks. The total size

of the metalink file is 1.8MB.

8.2 Metalink Index Generation

Fig. 14. Disk-based Index Table

We create the index file MIndex with the key <Tid, MType> for all metalink types,

stored as a paged file on secondary storage. Each MIndex page contains data about

metalinks of the same type MType (MIndex is ordered by topics identifiers Tids), and is

of size at most PageSize (we use PageSize of 1KB). Index entries for the metalinks for a

given key <Tid, MType> is maintained in the same page; if there is not enough space in

the current page then they are stored in the next page. HIndex to index hypernodes is

initialized similarly.

A main memory-based sparse index is created to access any entry <Tid, MType> in

MIndex (see Figure 14). In the sparse index, we divide <Tid, MType> entries into blocks

(we use 1,000 blocks). Each block corresponds to one or more pages in the MIndex file.

The sparse index file contains the first <Tid, MType> in a given block and its physical

address in MIndex. In order to retrieve all metalinks of type MType and emanate from

Tid, we first use the sparse index to find the physical address of the first page with key

<Tid, MType> in the MIndex file. If a given block in the sparse index corresponds to

more than one page in the MIndex file then we may need to access more than one page in

order to retrieve the metalinks for the specified key.

In the implementation, a disk-based metalink index MIndex with a page size of 1KB

is used to maintain all extracted metalinks. MIndex contains 2,768 pages and has the size

of 2.785MB. We use a memory-based sparse index of size 1,000; therefore, the first 768

blocks in the sparse index correspond to 3 metalinks pages and the remaining 232 blocks

correspond to 2 pages. Thus, 1,000 pages can be accessed using a single disk access;

1,000 pages can be accessed using two disk accesses, and 768 pages require three disk

accesses. In order to access the metalinks emanating from a given topic t, we need a

single disk access if topic t is in the first page in a given sparse index block, two disk

accesses if it is in the second page, and three disk accesses if it is in the third page.

Assuming that all pages contain the same number of metalinks and they are uniformly

accessed, the expected average number of disk accesses (avgDA) to locate metalinks

emanating from a given topic t is 1.92.

8.3 Experiments

In the experiments of this section, the behavior of TClosure algorithms is evaluated using

different values for the regular expression, input topic size, sparse index size, and page

size.

(a) Regular Expressions

We use three regular expressions, namely, PRE*.RT, PRE*.RT*.WB, and PRE.RT regular

expressions to evaluate the performances of TClosure algorithms.

Observation 1 (Figure 15 and Figure 16): Among the three regular expressions, the

regular expression PRE.RT has the lowest number of disk accesses, and the smallest

closure (i.e., X+) for both top-k and threshold-based TClosure algorithms.

Observation 2 (Figure 15): For the threshold-based TClosure algorithm, the increase

in both the number of disk accesses and the size of output topics X+ is nonlinear with

respect to the decrease in the sideway value threshold Vt. When the sideway importance

value Vt is large then there is a small difference between the numbers of disk accesses

using different regular expressions. But, the difference becomes very large when Vt is

small.

(a) Number of disk Accesses

(b) Size of the output topics X+

Fig. 15. Threshold-based TClosure algorithm using different regular Expressions

Observation 3 (Figure 16): For all three regular expressions, the increase in the

number of disk accesses is linear with respect to the increase in top-k topics for the top-k-

based algorithm.

Observation 4 (Figure 15): Among the three regular expressions, the regular

expression PRE*.RT*.WB has the highest number of disk accesses and the largest closure

(i.e., X+) size for the threshold-based algorithm.

Observation 5 (Figure 16): For the top-k algorithm, the regular expression PRE*.RT

has the highest number of disk accesses when k is less than 250. The reason for such a

behavior is that the importance scores for the WrittenBy metalinks are 1.0, forcing the

algorithm to locate topics with the highest importance using fewer disk accesses.

Fig. 16. Top-k-based TClosure algorithm using different regular Expressions

(b) Input size, Page Size and Sparse Index Size

Observation 6 (Figures 17 and 18): When the number of input topics decreases then both

the number of disk accesses and the sizes of the output topics are decreased almost

linearly.

Observation 7 (Figures 17 and 18): When the page size or sparse index size are

changed then the number of disk accesses are changed with almost a constant rate for

both top-k and threshold-based algorithms.

When the page size is increased from 1KB to 2KB then the number of disk-based

pages in the MIndex file is decreased from 2,768 to 1,340 pages. Therefore, the expected

number of disk accesses per requested metalink is decreased from 1.92 to 1.25 (1,000

pages can be accessed using one disk access and 340 requires two disk accesses). Thus,

the expected number of disk accesses per traversed metalink is decreased by the ratio of

1.25/1.92 = 0.65. Figures 17 and 18 illustrate that the number of the disk accesses per

metalink instance is decreased by the ratio of 0.55 to 0.67 for threshold-based algorithms

and by the ratio of 0.62 to 0.65 for top-k algorithms.

When the size of the sparse index is reduced from 1,000 to 500 blocks then the

expected number of disk accesses per traversed metalink instance is changed from 1.92 to

3.29 (since there are 2768 pages; 500 pages require one disk access, 500 pages require

two disk accesses, 500 pages require three disk accesses, 500 pages require four disk

accesses, 500 pages require five disk accesses, and 268 pages require six disk access).

Therefore, the expected rate becomes 3.29/1.92=1.7. As expected, Figure 17 and Figure

18 illustrate that the number of the disk accesses per requested metalink is increased by

the ratio of 1.72 to 2.1 for threshold-based algorithms and by the ratio of 1.76 to 1.88 for

top-k algorithms.

(a)Number of disk Accesses

(b) Size of the output topics X+

Fig. 17. Threshold TClosure algorithm using different values for the input size, page size, sparse index size

Fig. 18. Top-k TClosure algorithm using different values for the input size, page size, sparse index size

(c) Different Formulas for Pre Metalink Importance scores

We evaluate the performances of TClosure algorithms using different metalink

importance score computations. We use the following two formulas to compute the

importance scores of Prerequisite metalinks:

 (F1) Imp(Pre(Pi, Pj)) = (O(Pi,Pj)+1)/ (Omax(Pj)+1)

 (F2) Imp(Pre(Pi, Pj)) = MinPreFactor + (1 - MinPreFactor) * O(Pi,Pj) / Omax(Pj) where

0 ≤ MinPre ≤ 1

(a) Number of disk accesses

(b) Size of the output topics X+

Fig. 19. Threshold-based TClosure algorithm using different formulas for Prerequisites importance scores

Fig. 20. Top-k TClosure algorithm using different formulas for Prerequisites importance scores

Observation 8 (Figures 19 and 20): For both top-k and threshold-based TClosure

algorithms, formula F2 with MinPre of 0.5 has the highest number of disk accesses and

formula F2 with MinPre of 0.2 has the lowest number of disk accesses.

Observation 9 (Figures 19 and 20): The differences between the number of disk

accesses using different formulas are very small when the sideway threshold Vt is large

(or, when k is small).

9. RELATED WORK

A. Web Data Extraction, Web Querying, and Web Metadata Models

Automatically extracting entities and relationships about entities from web documents

would be very useful for web resource querying [Özsoyoğlu and Al-Hamdani 2003].

DIPRE [Brin 1998] employs a handful of training tuples of a structured relation R (that

represents a specific meta-relationship among entities in the data) to extract all the tuples

of R, from a set of HTML documents. DIPRE uses the training tuples to generate new

patterns, and uses the newly generated patterns to extract more tuples, and so on.

Snowball [Agichtein and Gravano 2000, Agichtein et al. 2000], an extension to DIPRE,

improves the quality of the extracted data by including automatic patterns and tuple

evaluation. One of the key improvements is that Snowball’s patterns include named-

entity tags. In addition, Snowball eliminates unreliable tuples and patterns by using

strategies to estimate the reliability of the extracted tuples and patterns. The Proteus

information extraction system [Grishman 1997, Grishman et al. 2002] divides the

extracted text into sentences and into tokens, performs a lexical look-up for each token,

and determines its parts-of-speech and features. Next, finite-state patterns are used to

recognize names, nouns, verbs, and other special forms. Then, the scenario pattern

matching is used to extract events and relationships for a given relation. Proteus also uses

an inference process to locate implicit information and make it explicit, and combines all

the information about a single event using event emerging rules. The extracted events and

phrases are used to update the database. QXtract [Agichtein and Gravano 2003] uses

automated query-based techniques to retrieve documents that are useful for extracting a

target relation from a large collection text documents. The field of (meta)data extraction

from the web, while promising, has a long way to go at this stage.

There are a number of papers for querying the web via a database-style query

language; for a comprehensive survey, see [Florescu et al. 1998]. Our work is

distinguished from these works in that our focus is on (i) a metadata model for a web

resource (as opposed to the whole web), and (ii) generic SQL extensions, and the

associated query processing, for score management and text support. The SQL

extensions, the associated query processing, and the proposed SVA operators are not

necessarily restricted to metadata databases and web querying; they can also be equally

valuable for databases/applications dealing with score manipulations.

There have been extensive research and standardization efforts on information

representation models for the web. Two well-publicized metadata standards for web

pages are Dublin Core and Warwick framework. As summarized in [Kobayashi and

Takeda 2000], Dublin Core specifies a set of 15 metadata elements (e.g., title, creator,

subject, etc.) for web pages. More recent and more comprehensive proposals to add

semantics to the web include Topic Maps, Resource Description Framework (RDF) and

the Semantic Web effort. A Topic Map data model, as described in [Biezunski et al.

1999], is similar to the Entity-Relationship model specialized for the abstract domain of

topics and topic-related information. Our metadata model can be seen as a subset and an

application of the topic map model, stripped off of many details, stored in an object-

relational DBMS, and enriched with the notion of importance scores. Resource

Description Framework (RDF) [Lassila and Swick 1999] is a graph-based information

model designed to describe web information sources by attaching metadata specified in

XML. In [Lacher and Decker 2001], RDF and topic maps are shown to be equivalent in

expressive power in that each is able to express the other. Semantic Web [Semantic Web,

Berners-Lee 2000] is an RDF schema-based effort to define a semantic-based

architecture for web resources, with multiple layers that include a schema layer, a logical

layer, and a query language. RQL [Karvounarakis et al. 2001] is a declarative language to

query portal catalogs that are created according to the RDF standard in the context of the

C-Web project. RQL query engine attempts to optimize a query at the rewriting stage,

and then leaves the job to the underlying ODBMS. In comparison, we propose a set of

language extensions and evaluation algorithms that are integrated into the query engine.

And, we propose new operators for text similarity joins and topic closure.

B. Function Evaluation, Text Similarity Joins, and IR-style solutions

The notion of user-defined functions (UDF) has been around for quite a long time (i.e.,

SQL table functions [Reinwald and Pirahesh 1998], etc.), and can perhaps be used for

application-based score management. In comparison, we propose a database-centric,

native approach to score management: SQL language and a query engine which, together,

make use of input tuple scores in an embedded manner to answer queries, viewing scores

as a native and internal property of a database schema. In this respect, our algebra

combines function and score manipulation with traditional query processing in a new and

unique way.

As a particular sort of score-generating predicates, we consider IR-style text similarity

functions, which we assume to be natively embedded as threshold predicates in the

system, as opposed to implementing them as user-defined functions. Today’s commercial

DBMSs provide full-text indexing and relevance ranking features for querying single text

attributes (e.g., Oracle 9i Text [Oracle Corp. 2003], IBM DB2 Text Extender [IBM Corp.

2003], SQL Server 2000 Full-text Search [Microsoft Corp. 2003]). In contrast, we allow

similarity computations and comparisons not only as selection predicates, but also as join

conditions. And, as mentioned before, the scores returned by SVA operators are

employed during intermediate stages of query processing to limit the output space, and

used to revise final output tuple scores dynamically; this has not been proposed in a

commercial DBMS or a research prototype.

An earlier work that makes use of text-similarity as a join condition is presented by

Meng et al [1998]. This work describes three nested-loops based algorithms to find top k

documents of a relation that are most similar to each document from another relation.

These three algorithms are distinguished in their use of an inverted index, i.e., the first

algorithm directly compares document vectors from both relations, whereas the second

one builds an inverted index for one of the relations, and the third one employs inverted

indices for both of the relations. The underlying document representation model is the

vector space model as used in our work. Our work differs from Meng et al in that (a) our

emphasis is on importance score handling, (b) our threshold predicates join tuples

representing metadata (with relatively shorter text fields compared to entire documents),

and (c) we make use of a maximal similarity filter as an early termination heuristic.

Additionally, Meng et al algorithms retrieve top-k (most similar) tuples for each tuple in

the “other” relation whereas our top-k algorithms simply retrieve top-k (most similar)

tuple pairs from the (implicit) cartesian product of two relations in a global manner. Note

that the inverted index-based approaches are also applicable to our similarity join

algorithms; but Meng et al report that these approaches can only be efficient when one of

the relations is very small (so that the index can fit into the main memory). In Section 7,

we make use of an in-memory inverted index for the blocks of the outer relation (R) read

into the memory during the nested-loops-based join processing.

 Cohen [1998] describes a new language, called WHIRL, that uses IR-based methods

for similarity joins provided as built-in predicates in a data integration system. Our work

has benefited from WHIRL, which also makes use of the maximal similarity heuristic

(though in the context of the A* search algorithm proposed for query processing).

However, our study emphasizes a general framework for handling scores during query

processing, and threshold predicates in selection and join conditions are only one

particular way of generating such scores, in addition to UDFs or other possible score-

generating predicates.

More recently, database solutions that make use of IR techniques (and vice versa)

have attracted research interest. A number of works have proposed allowing free-form

keyword search over relational databases (e.g., DBXplorer [Agrawal et al. 2002],

Discover [Hristidis and Papakonstantinou 2002], BANKS [Bhalotia et al. 2002] and

Hristidis et al [2003]). These works fundamentally differ from ours in that they intend to

provide a free-form keyword search functionality over databases by automatically

identifying and assembling (joining) a set of separate tuples that constitute a query

answer as a whole. Other than relying on IR-based similarity computation techniques

(employed for evaluating our threshold predicates), our work does not have many

common points with the above-listed works. For instance, BANKS provides browsing

and keyword search for online databases by modeling the database as a graph where

nodes are tuples and edges are connections, such as the primary-foreign key relationships.

An answer to a keyword query is a subset of this graph, which is modeled as a Steiner

tree, with a set of nodes (tuples) including specified keywords and a central informative

(root) node. These output tuple trees are also assigned scores according to node weights,

edge weights and the notion of prestige (similar to the famous Page-rank). Clearly,

BANKS is not a competitive approach with respect to ours, but indeed can be

complementary as it can operate on our metadata database just like any other ordinary

database (possibly by turning off our extended SQL and using its own graph-based

algorithms).

C. Ranked Query Evaluation

The topic of top-k queries has been the subject of extensive research recently. Carey and

Kossmann have introduced the stop after operator, which is an explicit and declarative

way of restricting the cardinality of a query result in SQL [Carey and Kossmann 1997]. If

the input stream is sorted, the scan-stop operator simply returns the first k tuples arriving

as input (in a pipelined manner) and then closes down its input stream. In the case of

unsorted input, the input stream must first be sorted to produce the top k tuples. Our work

is distinguished from Carey and Kossmann’s work in that, instead of using a generic

operator that simply reduces the output size of all other operators, SVA operators

themselves are aware of the cardinality limitation (the SV threshold or the top-k value),

and they only produce the requested tuples. SVA operators with top-k stopping

conditions can be used in accordance with the conservative and aggressive strategies

proposed by Carey and Kossmann [1997] (as top-k can not propagate deeper in the

operator tree safely). In this paper we adapt the conservative approach for defining our

query semantics with top-k stopping condition. In a follow-up paper [Carey and

Kossmann 1998], additional strategies are proposed for processing stop after queries. In

contrast, SV threshold-based stopping conditions, which are unique to our work, safely

propagate to all intermediate operators in the query tree (see Section 4). Thus, SVA

operators with threshold-based stopping conditions can be used anywhere in the place of

their counterparts in relational algebra.

In a similar fashion to our SVA operators with top-k stopping conditions, top-k

selection and join algorithms have been proposed. Two such works for top-k selection are

by Chaudhuri and Gravano [1999] and Chang and Hwang [2002], and the latter also

supports expensive predicates. We discuss the processing of SVA selection operator

elsewhere [Al-Hamdani and Özsoyoğlu 2003]. An early algorithm for top-k join is

provided by Fagin [Fagin 1999], and it is further optimized by Güntzer et al [2000].

These algorithms assume equi-join conditions. More recently, join algorithms that

support user-defined (arbitrary) join predicates have also been proposed, such as the J*

algorithm [Natsev et al. 2001]. In comparison, we give nested-loops-based algorithms for

top-k versions of SVA join, and define a max filter heuristic for joins involving textual

similarity (threshold) predicates. Our algorithms exploit score distributions and/or the

similarity filter, and improve the performance considerably. Optimization of top-k

predicates are also discussed by Mahalingam et al. [Mahalingam and Candan 2001],

where the varying query outputs with respect to the different binding order of top-k

predicates is taken into account.

Ranked-join operators by Ilyas et al. [2003, 2004] have similarities (and differences)

with our work. In an earlier study [Ilyas et al. 2002], the authors proposed to encapsulate

two previously-existing rank join algorithms (namely NRA and J*) in a physical join

operator, with the focus of providing a ranked-join operator which can be used in

pipelining query plans with join hierarchies. To this end, the NRA algorithm was

modified to work in an incremental and pipelining manner. In a follow-up work [Ilyas et

al. 2003], the authors proposed a new-rank join algorithm and two physical join operators

that implement the new algorithm by using variants of the ripple join. Most recently

[Ilyas et al. 2004], the authors introduce “interesting rank expressions” , extend dynamic

programming-based query optimization to generate candidate plans that employ the rank-

join operator, and propose a probabilistic model to estimate the input cardinality (and

subsequently, the cost) of rank-join operators for query optimization purposes.

Both our work and the works of Ilyas et al. concentrate on supporting score-aware

operators in the query engines; however, the two approaches significantly differ in

various aspects: First, we define a general framework for a set of algebraic operators

(namely, selection, join and closure) which can (i) modify scores with newly introduced

threshold predicates involving textual similarities, (ii) compute and propagate scores with

respect to user-defined functions and UDF predicates, (iii) enforce stopping conditions

based on either a threshold or a top-k constraint. For our extended-SQL queries, we

discuss the semantics of algebraic expressions involving our SVA operators interleaved

with ordinary RA operators, and show that the proposed extensions are well-defined. In

comparison, Ilyas et al. focus on defining a rank-join operator for pipelining query plans

and optimization and cost evaluation issues for queries with a sequence of rank-join

operators.

In comparing our SVA join operator and the rank-join operator of Ilyas et al, the most

important distinction is our use of the threshold and UDF predicates, which arbitrarily

change (increase or decrease) the scores of output tuples, making the results of Ilyas et al

not directly applicable to our SVA join algorithms. Put another way, output tuple scores

of SVA join are dependent on tuple component values that are involved in score-

modifying predicates, which is not the case in Ilyas et al’s rank-join framework. In

comparison, the rank-join [Ilyas et al. 2003] applies the same output score generation

function and only to the scores of joining tuples. Another difference is that we allow the

SVA operator itself to be aware of the top-k stopping condition (whenever allowed by

our score-conservative policy) to reduce the intermediate output size in complex query

trees. In contrast, in Ilyas et al’s work, a Scan-Stop(k) [Carey and Kossmann 1997]

operator is applied on top of the uppermost rank-join operator, and the join operators

themselves do not know the top-k constraint. Having said these, adapting the physical

join operators as proposed by Ilyas et al. for our SVA join algorithms is a future research

direction.

D. Transitive Closure

SQL/TC is an extension to SQL to express generalized transitive closure queries [Dar and

Agrawal 1993]. A directed graph G instance can be represented using a relation R with

two columns S and T, where there is a tuple in R with values s and t for S and T if and

only if there exists an edge from node s to node t in graph G. The transitive closure

TC(G) of the graph G corresponds to the transitive closure TC of relation R with respect

to S and T. Each edge in graph G has a value, and the value of an edge in TC(G) is

derived from the values of the edges in the corresponding path-set. Dar et al presents

polynomial algorithms for transitive closure with restricted paths [Dar et al. 1991].

SQL/TC has a complex syntax, and does not support computing the topic closure with

top-k predicates, regular expressions, or hypernodes.

SQL’99 supports recursive queries using “WITH RECURSIVE” statement [Eisenberg

and Melton 1999, Lewis et al. 2003]. A recursive query is composed of two parts: the

definition of a recursive relation and the query against the definition. The recursive

queries employ a complex syntax to express the topic closure operator, and do not deal

with closure with top-k predicates, regular expressions, and hypernodes.

E. Other work

In our earlier work, we described the topic-based metadata model in more detail as well

as some practical approaches for constructing such databases (e.g., the DBLP metadata

database) [Altingövde et al. 2001, Özel et al. 2004]. This paper extends our preliminary

results for the SVA framework [Özsoyoğlu et al. 2002] as follows: First, SVA algebra

operators are defined more completely, and illustrated with logical query tree examples.

Second, threshold and UDF predicates for SQL are introduced. Third, semantics of SQL

extensions (correctness notion for "well-defined" queries) are defined, and proven

correct. Last, but not least, complete experimental evaluations of the SVA join and topic

closure are reported, for which the importance scores of topics and metalinks are

computed from real world data, rather than synthetic data.

Very recently, Al-Khalifa et al. proposed a score-based framework for querying

structured text in XML databases [2003]. This work also extends common algebraic

operators and defines new ones for score manipulation; however, their focus is on

providing IR-style ranked querying facilities for XML documents.

10. CONCLUSIONS

In this paper, we have proposed a native score management and approximate text-

similarity support to databases, to be used for web resource querying on metadata

extracted from the web resource a priori. To this end, we have proposed SQL language

extensions, algebraic extensions, and query processing algorithms that implement the

proposed extensions.

Future work includes (i) adding new (e.g., “top-k”) predicates to SQL extensions, and

(ii) removing the closed world assumption in a controlled manner, and adding focused

crawler executions (at the web information resource) during query evaluation time to

those SVA operator evaluations that do not have “sufficiently large” number of output

tuples.

REFERENCES
ACM SIGMOD ANTHOLOGY. Available at http://www.acm.org/sigmod/dblp/db/anthology.html
ALTINGÖVDE, I.S., ÖZEL, S.A., ULUSOY, Ö., ÖZSOYOĞLU, G., AND ÖZSOYOĞLU, Z.M. 2001. Topic-Centric
Querying of Web Information Resources. In Proceedings of the DEXA Conference, Munich, Germany,
September 2001.
AGRAWAL, S., CHAUDHURI. S., AND DAS, G. 2002. DBXplorer: A System for Keyword-based Search over
Relational Databases. In Proceedings of the 18th International Conference on Data Engineering, San Jose, CA,
February 2002.
AGICHTEIN, E., ESKIN, E., AND GRAVANO, L. 2000. Combining Strategies for Extracting Relations from Text
Collections. In Proceedings of the ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, Dallas, Texas, May 2000.
AGICHTEIN, E., AND GRAVANO, L. 2000. Snowball: Extracting Relations from Large Plain-text Collections. In
Proceedings of the 5th ACM International Conference on Digital Libraries, June 2000.
AGICHTEIN, E., AND GRAVANO, L. 2003. Querying Text Databases for Efficient Information Extraction, In
Proceedings of the 19th IEEE International Conference on Data Engineering (ICDE), Bangalore, India, March
2003.
AL-HAMDANI, A. 2003. ACM Anthology Metadata Extraction: Index and Similarity Factor Construction. Tech
Report, EECS Dept, CWRU, October 2003.
AL-HAMDANI, A., AND ÖZSOYOĞLU, G. 2003. Selecting Topics for Web Resource Discovery: Efficiency Issues
in a Database Approach. In Proceedings of the DEXA Conference, Prague, Czech Republic, September 2003.
AL-KHALIFA, S., YU, C., AND JAGADISH, H.V. 2003. Querying Structured Text in an XML Database. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, San Diego, CA, June
2003.
BHALOTIA, G., HULGERI, A., NAKHEY, C., CHAKRABARTI, S., AND SUDARSHAN, S. 2002. Keyword Searching
and Browsing in Databases Using BANKS. In Proceedings of the 18th IEEE International Conference on Data
Engineering, San Jose, CA, February 2002.
BERNERS-LEE, T. 2000. Semantic Web Roadmap. W3C draft. Available at
http://www.w3.org/DesignIssues/Semantic.html

BIEZUNSKI, M., BRYAN, M., AND NEWCOMB, S. Eds. 1999. ISO/IEC 13250 Topic Maps. Available at
http://www.ornl.gov/sgml/sc34/document/0058.htm
BRIN, S., AND PAGE, L. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer
Networks and ISDN Systems 30, 107-117. Available at http://citeseer.nj.nec.com/brin98anatomy.html
BRIN, S. 1998. Extracting Patterns and Relations from the World Wide Web. In Proceedings of WebDB
Workshop at EDBT, Valencia, Spain, March 1998. Available at
http://citeseer.nj.nec.com/brin98extracting.html
CAREY, M.J., AND KOSSMANN, D. 1997. On Saying "Enough Already!" in SQL. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Tucson, Arizona, USA, May 1997.
CAREY, M.J., AND KOSSMANN, D. 1998. Reducing the Braking Distance of an SQL Query Engine. In
Proceedings of the 24th International Conference on Very Large Data Bases, New York City, New York, USA,
August 1998.
CHAUDHURI, S, AND GRAVANO, L. 1999. Evaluating Top-k Selection Queries. In Proceedings of the 25th
International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, September 1999.
CHANG, K. C-C. AND HWANG, S-W. 2002. Minimal Probing: Supporting Expensive Predicates for Top-k
Queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Madison,
Wisconsin, June 2002.
CHEN, L. 2001. Finding Related Papers in a Digital Library . M.S. Project. CWRU. Available at
http://art.cwru.edu/NSF/chen.pdf
CITESEER. 2003. Estimated Impact of Publication Venues in Computer Science. Available at
http://citeseer.ist.psu.edu/impact.html
CODD, E.F. 1980. Data Models in Database Management. In Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling, Pingree Park, Colorado, June 1980.
COHEN, W. W. 1998. Integration of Heterogeneous Databases Based on Textual Similarity. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, Seattle, Washington, June 1998.
DAR, S., AND AGRAWAL, R. 1993. Extending SQL with Generalized Transitive Closure, IEEE Transactions on
Knowledge and Data Engineering 5, 5, Oct. 1993.
DAR, S., AGRAWAL, R., AND JAGADISH, H. V. 1991. Optimization of Generalized Transitive Closure. In
Proceedings of the 7th International Conference on Data Engineering, Kobe, Japan, April 1991.
EISENBERG, A., AND MELTON, J. 1999. SQL:1999, Formerly Known As SQL3. ACM SIGMOD Record 28,
1,131-138.
FAGIN, R. 1999. Combining Fuzzy Information from Multiple Systems. Journal of Computer and System
Sciences, 58, 83-99. An extended abstract appears in ACM PODS 1996.
FLORESCU, D., LEVY, A., AND MENDELZON, A. 1998. Database Techniques for the World-Wide Web: A
Survey. ACM SIGMOD Record, 27, 3, Sept. 1998.
GRAEFE, G. 1993. Query Evaluation Techniques for Large Databases. ACM Computing Surveys 25, 2, 73-169.
GRISHMAN, R., HUTTUNEN, S., AND YANGARBER, R. 2002. Real-Time Event Extraction for Infectious Disease
Outbreaks. In Proceedings of Human Language Technology Conference (HLT), San Diego, CA, March 2002.
GRISHMAN, R. 1997. Information extraction: Techniques and Challenges. In Proceedings of the Summer School
on Information Extraction (SCIE-97), Maria Teresa Pazienza, Eds. Springer-Verlag.
GÜNTZER, U., BALKE, W.-T., AND KIESSLING, W. 2000. Optimizing Multi-feature Queries for Image Databases.
In Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, September 2000.
HRISTIDIS, V., GRAVANO, L., AND PAPAKONSTANTINOU, Y. 2003. Efficient IR-Style Keyword Search over
Relational Databases. In Proceedings of the 29th International Conference on Very Large Data Bases, Berlin,
Germany, September 2003.
HRISTIDIS, V., AND PAPAKONSTANTINOU, Y. 2002. DISCOVER: Keyword Search in Relational Databases. In
Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, China, August 2002.
IBM CORP. 2003. Db2 Text Extender. http://www-3.ibm.com/software/data/db2/extenders/textoverview/
ILYAS, I.F., AREF, W.G., AND ELMAGARMID, A.K., 2002. Joining Ranked Inputs in Practice. In Proceedings of
the 28th International Conference on Very Large Data Bases, Hong Kong, China, August 2002.
ILYAS, I.F., AREF, W.G., AND ELMAGARMID, A.K. 2003. Supporting Top-k Join Queries in Relational
Databases. In Proceedings of the 29th International Conference on Very Large Data Bases, Berlin, Germany,
September 2003.
ILYAS, I.F., SHAH, R., AREF, W.G., VITTER, J. S., AND ELMAGARMID, A.K. 2004. Rank-aware Query
Optimization. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris,
France, June 2004.
KARVOUNARAKIS, G., CHRISTOPHIDES, V., PLEXOUSAKIS, D. AND ALEXAKI, S. 2001. Querying RDF
Descriptions for Community Web Portals. In Proceedings of the 17ièmes Journees Bases de Donnees Avancees
(BDA'01), pp. 133-144, Agadir, Maroc, 29 October - 2 November, 2001.
KESSLER, M. M. 1963. Bibliographic Coupling between Scientific Papers. American Documentation, 14, 10–25.
KLEINBERG, J. 1998. Authoritative Sources in Hyperlinked Environments. In Proceedings of the 9th ACM-
SIAM Symposium on Discrete Mathematics, San Francisco, CA, January 1998.
KLEINBERG, J. 1999. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM 46, 5, 604-632.
KOBAYASHI, M., AND TAKEDA K. 2000. Information Retrieval on the Web. ACM Computing Surveys 32, 2,
144-173.

LACHER, M. S., AND DECKER, S. 2001. On the Integration of Topic Maps and RDF Data. In Proceedings of the
International Semantic Web Working Symposium, Stanford University, CA, July 30 - August 1, 2001.
LASSILA, O., AND SWICK, R.R. 1999. Resource Description Framework (RDF) Model and Syntax Specification.
W3C Recommendation, Feb. 1999, available at http://www/w3.org/TR/REC-rdf-syntax
LEWIS, P., BERNSTEIN, A., AND KIFER, M. 2003. Database and Transaction Processing, Addison-Wesley.
LEY, M. DBLP Bibliography. Available at http://www.acm.org/sigmod/dblp/db/index.html
LI, L. 2003. Metadata Extraction: RelatedToPapers and its Use in Web Resource Querying. MS Thesis, EECS
Dept, CWRU.
LIBRARY. The Library of Congress, at http://www.loc.gov
MAHALINGAM, L.P., AND CANDAN, S. 2001. Query Optimization in the Presence of Top-k Predicates. In
Proceedings of the Multimedia Information Systems Conference, Villa Orlandi, Capri, Italy, November 2001.
MENG, W., YU, C. T., WANG, W. AND RISHE, N. 1998. Performance Analysis of Three Text-Join Algorithms.
IEEE Transactions on Knowledge and Data Engineering 10, 3, 477-492.
MICROSOFT CORP. 2003. Microsoft SQL Server 2000 Full Text Search Service,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/createdb/cm_fullad_3bs2.asp
NATSEV, A., CHANG, Y., SMITH, J., LI, C., AND VITTER, J.S. 2001. Supporting Incremental Join Queries on
Ranked Inputs. In Proceedings of the 27th International Conference on Very Large Data Bases, Rome, Italy,
September 2001.
ÖZEL, S. A., ALTINGÖVDE, I.S., ULUSOY, Ö., ÖZSOYOĞLU, G., AND ÖZSOYOĞLU, Z. M. 2004. Metadata-Based
Modeling of Information Resources on the Web. Journal of the American Society for Information Science and
Technology (JASIST) 55, 2, 97-110.
ÖZSOYOĞLU, G., AND AL-HAMDANI, A. 2003. WWW Web Resource Discovery : Past, Present, and Future.
Invited paper at ISCIS Conf., Antalya, Turkey, October 2003, available at http://art.cwru.edu/
ÖZSOYOĞLU, G., AL-HAMDANI, A., ALTINGÖVDE, I. S., ÖZEL, S. A., ULUSOY, Ö., AND ÖZSOYOĞLU, Z.M. 2002.
Sideway Value Algebra for Object-Relational Databases. In Proceedings of the 28th International Conference
on Very Large Data Bases, Hong Kong, China, August 2002.
ÖZSOYOĞLU, G., BALKIR, N.H., CORMODE, G., AND ÖZSOYOĞLU, Z.M. 2000. Electronic Books in Digital
Libraries. In Proceedings of the IEEE Advances in Digital Libraries Conf., Washington, D.C., May 2000.
ÖZSOYOĞLU, G., BALKIR, N. H., ÖZSOYOĞLU, Z.M., AND CORMODE, G. 2004. On Automated Lesson
Construction from Electronic Textbooks. IEEE Transactions on Knowledge and Data Engineering 16, 3,
available at http://art.cwru.edu
ORACLE CORP. 2003. Oracle 9i Text, http://www.oracle.com/ip/index.html?text_home.html
PORTER, M.F. 1980. An Algorithm for Suffix Stripping. Program 14, 3, 130-137, available at
http://www.tartarus.org/~martin/PorterStemmer
REINWALD, B. AND PIRAHESH, H. 1998. SQL Open Heterogeneous Data Access. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Seattle, Washington, USA, June 1998.
RAMAKRISHNAN, R., AND GEHRKE, J. 2000. Database Management Systems, McGraw-Hill.
SALTON, G. 1989. Automatic Text Processing. Addison-Wesley.
SMALL, H. 1973. Co-citation in the Scientific Literature: A New Measure of the Relationship Between Two
Documents. Journal of the American Society for Informatin Science 24, 4, 28-31.
SEMANTIC WEB. The Semantic Web Community Portal. Available at http://www.semanticweb.org

APPENDIX 1. SVA EQUIVALENCE RULES

Below, we list the essential algebraic equivalences that either solely involve the SVA

operators for selection, join and topic closure, or mix ordinary RA operators with these

three SVA operators. Clearly, the following set is not complete; it is provided to give the

basic flavor of the algebraic equivalence rules and to illustrate some well-known

algebraic equivalences that do not hold for SVA or mixed algebra expressions. We

assume that all relations in the expressions below have importance scores, and, unless

otherwise indicated, we use

1) ImpAgg = product. That is, the basic importance clause function is product.

Thus, for SVA selection and join operators, fout is defined as the product of fin of

input relations, Sim() function values of threshold predicates, and UDF values of

UDF predicates.

2) FPath = product and FPathMerge = max (i.e., the topic closure clause/operator

functions).

3) β = Vt. That is, as the output threshold β, we use the sideway value threshold Vt

(not the ranking threshold k).

Therefore, for the sake of readability, in the equivalence transformations listed below,

we simplify our notation by not specifying fout (ImpAgg), FPath, FPathMerge and β in

SVA operator specifications.

I. Transformation rules that only involve SVA operators

• SVA Selection Cascade Rule: σ*P1 ∧ P2…∧ PN(R) = σ*P1(σ*P2…(R))

Proof (by contradiction): Assume that σ*P1 ∧ P2…∧ PN(R) ≠ σ*P1(σ*P2…(R)). Then, ∃ at

least one tuple t in R such that either t ∈ σ*P1 ∧ P2…∧ PN(R) and t ∉ σ*P1(σ*P2…(R)), or t ∉

σ*P1 ∧ P2…∧ PN(R) and t ∈ σ*P1(σ*P2…(R)).

Case 1. ∃ tuple t in R such that t ∈ σ*P1 ∧ P2…∧ PN(R), but t ∉ σ*P1(σ*P2…(R)). As t ∈

σ*P1 ∧ P2…∧ PN(R), t satisfies the formula P1 Λ P2 Λ … PN and yields a modified importance

score greater than Vt. Assume that each predicate Pi modifies importance score of its

input tuple by a real valued factor si which is in the range [0.0, 1.0]. Thus, the modified

importance score of t is fin*∏
=

N

i
is

1

. As t ∉ σ*P1(σ*P2…(R)), t either does not satisfy at

least one of the predicates P1, P2, …, PN, or modified importance score of t is less than Vt.

As t satisfies P1 Λ P2 Λ … PN, t satisfies all of the selection predicates P1, P2, …, PN. For

the cascading selection expression σ*P1(σ*P2…(R)), the importance score of the input

tuple is modified such that, each of the selection operator multiplies the importance score

of its input tuple with a factor si in [0.0, 1.0]. Thus, PN modifies importance score of t as

fin*sN, the predicate PN-1 modifies as fin*sN*sN-1, …, finally predicate P1modifies the

importance score of t as fin*sN*sN-1*sN-2*…*s1. So, the modified importance score of t in

σ*P1(σ*P2…(R)) is equal to fin*∏
=

N

i
is

1

which is greater than Vt, contradiction. Thus t ∈

σ*P1(σ*P2…(R)).

Case 2. ∃ tuple t in R such that t ∉ σ*P1 ∧ P2…∧ PN(R) and t ∈ σ*P1(σ*P2…(R)). As t ∈

σ*P1(σ*P2…(R)), t satisfies all the selection predicates P1, P2, …, PN and yields a

modified importance score fin*∏
=

N

i
is

1

> Vt. As t satisfies all the selection predicates P1,

P2, …, PN, t also satisfies P1 Λ P2 Λ … PN. Also, as fin*∏
=

N

i
is

1

> Vt for tuple t, t ∈ σ*P1 ∧

P2…∧ PN(R), contradiction. Q.E.D.

Note that when β is changed to the ranking threshold k or when ImpAgg is not the

product function and, say, the average function then the SVA cascade equivalence does

not hold.

• SVA Selection Commutativity Rule: σ*P1(σ*P2(R)) = σ*P2(σ*P1(R))

Proof (by construction):

σ*
P1(σ*

P2(R)) = σ*
P1∧P2(R) by the cascade rule of SVA selection operator.

σ*
P1∧P2(R) = σ*

P2∧P1(R) by the commutativity of conjunction, and by the fact that t in

σ*
P1∧P2(R) and t in σ*

P2∧P1(R) have the same derived importance scores.

σ*
P2∧P1(R) = σ*

P2(σ*
P1(R)) by the cascade rule of SVA selection operator. Q.E.D.

• SVA Join Commutativity Rule: R Join* S = S Join* R where the join condition is

commutative.

Proof (by contradiction): Assume that (R Join * S) ≠ (S Join * R). Then ∃ a tuple r in R

and a tuple s in S such that r.s ∈ (R Join * S), but s.r ∉ (S Join * R). As r.s ∈ (R Join * S),

then r.s satisfies the join condition θ and its importance value is Imp(r)*Imp(s). Note that,

the importance score may be further refined by threshold predicates Pth (or UDFs) in the

join predicate (if any) as Imp(r)*Imp(s)*Pth(r.s). Since r.s is in the output of (R Join * S),

its importance score is greater than Vt. Since θ is a commutative join condition and a

commutative basic importance propagation function (e.g., product) is employed, as r and

s satisfy θ, s and r also satisfy θ, and the importance score of s.r in (S Join * R) is

Imp(s)*Imp(r)* Pth(s.r) which is equal to Imp(r)*Imp(s)* Pth(r.s), contradiction. Thus, s.r

∈ (S Join * R). Q.E.D.

• SVA Join Associativity Rule: ((R Joinθ1
* S) Joinθ2

* T) = (R Joinθ1
 * (S Joinθ2

* T))

where the join conditions θ1 and θ2 are associative.

Proof (by contradiction): Assume that ((R Join* S) Join* T) ≠ (R Join * (S Join* T)). Let

us call the former join order as Plan-1 and the latter as Plan-2. The join condition

between R and S is θ(R.A, S.A), and the join condition between S and T is θ(S.B, T.B) . For

simplicity, we first consider the case where join conditions do not include a score-

modifying predicate (like a threshold predicate or UDF), and later we extend our proof to

also cover score-modifying join conditions.

Since the two plans are not equal, then ∃ a tuple r in R, a tuple s in S and a tuple t in

T such that r.s.t ∈ (R Join * (S Join* T)), but r.s.t ∉ ((R Join* S) Join* T). As r.s.t is

produced by Plan-2, then s.t satisfies the join condition θ(S.B, T.B) and its importance value

Imp(s)*Imp(t) is greater than Vt. Furthermore, as r.(s.t) is in final output, the join

condition θ(R.A, S.A) should also be satisfied and Imp(r)*(Imp(s)*Imp(t)) is greater than Vt.

Initially, we have assumed that r.s.t is not produced by Plan 1. To begin, let us assume

that the tuple r.s is produced by (R Join* S), but then discarded during the join operation

with T. In this case, since the join condition θ(S.B, T.B) is associative, the join condition

θ(S.B, T.B) must be satisfied. Furthermore, since the basic importance propagation function

(i.e., product) is also associative, (Imp(r)*Imp(s))*Imp(t) would still be greater than Vt

and r.s.t would also be produced by Plan 1, which is a contradiction. Thus, if r.s.t is not in

the final output, then r.s should not be produced by (R Join* S). But, again, we know that

for tuples r and s, θ(R.A, S.A) is satisfied. Furthermore, Imp(r)*Imp(s) is guaranteed to be

greater than Vt (i.e., follows from the facts that Plan-2 produces r.s.t tuple,

Imp(r)*(Imp(s)*Imp(t)) > Vt and Imp(t)<=1, by definition). But then, the tuple r.s would

also be in the intermediate result (R Join* S), and subsequently in the final result. This

contradicts the initial assumption, and thus we show that if a tuple is produced by Plan-2,

it is also produced by Plan-1. Note that, by a similar argument, we can easily show that if

a tuple is not produced by Plan-2, it cannot be produced by Plan-1, either. Thus, the

outputs of these two plans are equal.

Now, let us extend the above proof for score-modifying predicates. W.l.o.g., let us

assume θ(R.A, S.A) involves one such predicate PR.A, S.A with threshold T1 (e.g., Sim(R.A,

S.A) > T1) and θ(S.B, T.B) involves PS.B, T.B with threshold T2. As in the above, let us assume

that then ∃ a tuple r in R, a tuple s in S and a tuple t in T such that r.s.t is produced by

Plan-2 but not Plan-1.As r.s.t is produced by Plan-2, then s.t satisfies the join condition

θ(S.B, T.B) with PS.B, T.B > T2, and its importance score Imp(s)*Imp(t)*PS.B, T.B is greater than

Vt. Furthermore, as r.(s.t) is in final output, the join condition θ(R.A, S.A) should also be

satisfied with PR.A, S.A>T1 and Imp(r)* PR.A, S.A*(Imp(s)*Imp(t)* PS.B, T.B) is greater than

Vt. Along the lines of the above discussion, we can easily realize that tuple r.s must be

produced by (R Join* S) in Plan-1, because, for tuples r and s, join condition will still

hold and PR.A, S.A>T1 (otherwise, it would not be produced by the join of r and s.t in Plan-

2). Again, Imp(r)* PR.A, S.A*Imp(s) is guaranteed to be greater than Vt (by the same

reasoning), and thus r.s is in the intermediate result. Once r.s is produced, it joins with t,

as the join condition holds with PS.B, T.B>T2, and is included in the final result of Plan-1.

Thus, in the presence of score-modifying predicates, the associativity property holds.

Q.E.D.

SVA Topic Closure:

• TClosure does not cascade since each topic closure clause in extended SQL

corresponds to a single TClosure operator, regardless of its predicates’ complexity.

• TClosure is not commutative: TClosureM2(TclosureM1(R)) ≠

TClosureM1(TclosureM2(R)) where M1 and M2 are two different regular expressions

(REs).

Proof (by counterexample): Assume that M1 includes PrerequisitePapers* and M2

includes RelatedTo*, and the following metalink instances are specified: A Pre

C, C Pre D, D Pre E, B Pre F and A RelatedTo B, B RelatedTo E.

Then, TClosureRelatedTo*(TClosurePrerequisitePapers*(A)) = TClosureRelatedTo*(A, C, D, E) =

{A, B, C, D, E} whereas TClosurePrerequisitePapers*(TClosureRelatedTo*(A)) =

TClosurePrerequisitePapers*(A, B, E) = {A, B, C, D, E, F} and thus TClosure operator is not

commutative. Q.E.D.

• Topic closure does not distribute over SVA join:

 TClosureM1 (R Join* S) ≠ (TClosureM1 (R) Join* S) ≠ (R Join* TClosureM1 (S))

Proof (by counterexample): Assume that relation R and S include topics A, B, Q, and A,

X, F, respectively, and the following metalink instances hold in the database D: A P1 X,

A P1 Y, F P1 Q. Then, TClosureM1 (R Join* S) = TClosureM1 (A) = {A, X, Y} whereas

TClosureM1 (R) Join * S = TClosureM1 (A, B, Q) Join* S = {A, X, Y, B, Q} Join* {A, X,

F} = {A, X} and (R Join* TClosureM1 (S)) = {A, B, Q} Join * TClosureM1 (A, X, F) =

{A, B, Q} Join* {A, X, F, Y, Q} = {A, Q}, which are all different. Q.E.D.

Note that, in the above example, we assume that the topics with the same name satisfy

the join condition. The selection of the notation is just for the sake of simplicity and is not

intended to restrict the proof to exact join conditions, as the above proof clearly applies to

theta joins as well.

• TClosureM1 (R Join* S) ≠ TClosureM1 (R) Join* TClosureM1 (S)

Proof (by counterexample): Proof is similar to the one given above, and the same

example serves to prove this inequality.

• SVA Join and selection: R Join*
θ S = σθ*(R Join* S)

• Distributing SVA selection over SVA join: σ*P1 (R Join* S) ≠ (σ*P1 (R) Join* S),

where P1 is a formula whose predicates are in Attr(R).

Proof (by counterexample): Assume that ∃ a tuple r in R and s in S such that Imp(r) =

0.9, Imp(s) = 0.7, and Pth(r) = 0.4 where Pth ⊆ P1 denotes the threshold predicate(s) that

revise the importance value of tuples selected by the σ* operator. Further assume that

selection threshold β1=0.3 and join threshold β2=0.1.Now, consider the left-hand-side

(LHS) of the above inequality. Since Imp(r.s) = 0.9*0.7= 0.63 > β2, r.s is in the join

output. Then, its importance score is further revised by the threshold predicates as

0.63*Pth(r) = 0.63*0.4 = 0.252 <β1=0.3. Thus, r.s is not in the final output of LHS. For

the right-hand-side (RHS), however, σ*P1 (R) computes the importance score of r as

Imp(r) = 0.9*Pth(r) = 0.9*0.4 = 0.36 > β1=0.3 and Imp(r.s) = 0.36*0.7 = 0.252>β2=0.1.

Thus, r.s is in the output of RHS, and we show that the inequality holds. Q.E.D.

• Distributing SVA selection over SVA join: σ*P1 (R Join* S) = (σ*P1 (R) Join* S),

where P1 is a formula whose predicates are in Attr(R) and either β1=β2 or P1 does

not include any threshold predicates.

Proof (by contradiction): First, assume that β1=β2=β and the above equality does not

hold. Then, ∃ a tuple t such that either t is included in the output of σ*
P1 (R Join* S) but

not in the output of σ*P1 (R) Join* S, or vice versa. For the former case, if t is included in

the output of σ*P1 (R Join* S), then ∃ a tuple r in R and s in S such that their theta join

produces the tuple r.s with the importance value Imp1(r.s)= Imp(r)*Imp(s) > β (the join

threshold). To be in the final output, r.s satisfies P1 and its revised importance score by

the threshold predicates Pth is Imp2(r.s) = Imp1(r.s)*Pth(r) which is greater than β (the

selection threshold) . But since P1 only involves attributes from R, the attributes of t that

satisfy P1 are the attributes that come from the R tuple r. Similarly, if Imp2(r.s)>β, then

Imp(r)* Pth(r) is also greater than β (since all importance scores are in the range [0, 1]).

But then, the expression σ*P1 (R) would select r in its output and its join with s from S

would also locate r.s in the output of RHS expression as well. Contradiction.

Now, consider the case that a tuple that is not included in LHS output is included in

the RHS output. This means that ∃ a tuple r in R such that Imp(r)* Pth(r) > β and ∃ a tuple

s in S such that Imp(r)* Pth(r)*Imp(s) > β. But then, since Imp(r)*Imp(s) would also be

greater than β, the tuple r.s would also be included in the join output of LHS expression

and it would also be located in the final output as well. Thus, this contradicts our initial

assumption that there may be an extra or missing output tuple in the LHS output when

compared with RHS output, and thus the equality holds.

If there are no threshold predicates involved in the selection predicate then trivially

the selection predicate cannot modify the importance scores of the selected tuples and

thus the equality holds. Q.E.D.

• σ*P1 ∧ P2 (R Join* S) ≠ (σ*P1 (R) Join* σ*P2 (S)), Attribute(P1) ⊆ R, Attribute(P2) ⊆

S

• σ*P1 ∧ P2 (R Join* S) = (σ*P1 (R) Join* σ*P2 (S)), Attribute(P1) ⊆ R, Attribute(P2) ⊆

S and either β1=β2 or P1 and P2 do not include any threshold predicates.

Proof: Similar to the preceding proof.

II. Transformation rules that involve both SVA and RA operators:

• Associativity: (R Join* S) Join T = R Join* (S Join T)

Distribution of RA selection over SVA join:

• σP1 (R Join* S) = (σP1 (R) Join* S), P1 ⊆ R

• σP1 ∧ P2 (R Join* S) = (σP1 (R) Join* σP2 (S)), P1 ⊆ R, P2 ⊆ S

TClosure with typical RA operators:

• TClosureM1 (σP1 (R)) ≠ σ P1 (TclosureM1(R))

Proof (by counterexample): Assume that the database D specifies that A M1 C, C M1

D, D M1 E and B M1 F. Further assume that only the topics A and B satisfy the

selection predicate P1. Then, TClosureM1 (σP1 (R)) = TClosureM1 (A, B) = {A, B, C, D, E,

F} whereas σ P1 (TClosureM1(R)) = σP1(TClosureM1 (A, B, C, D, E, F)) = {A, B}. Q.E.D.

• TClosureM1 (R1 Join*R2) ≠ TClosureM1 (R1) Join* R2 ≠ R1 Join* TClosureM1 (R2)

• TClosureM1 (R1 Join* R2) ≠ TClosureM1 (R1) Join* TClosureM1 (R2)

APPENDIX 2. PROOFS OF THE LEMMAS AND THEOREMS

Lemma 1. SQL queries with the basic importance propagation clause and threshold

predicates are well-defined, under the set of transformations T (of Appendix 1).

Proof (by contradiction): Assume that extended SQL queries with the basic importance

propagation clause and threshold predicates are not well-defined. Then, there are at least

two SQL query executions QE1 and QE2 that process an SQL query under the pre-

specified transformation rules T and that produce different outputs. This implies that,

given a query and its initial logical query tree T1 for query executions QE1 and QE2, the

final trees T1’ and T1”, which are selected as the best plans to be executed (i.e., least

costly alternatives), yield different outputs. Then, to produce different outputs, two trees

T1’ and T1” must differ by at least one transformation applied while alternative trees are

being generated, and these transformations invalidate the uniqueness of the output.

However, all equivalent transformations that can be performed over a given logical query

tree are specified in Appendix 1, and are proven correct. Thus, any such transformation

permitted in T that differ between the trees T1’ and T1” are equivalent and must produce

a unique output, contradiction. Q.E.D.

Lemma 2. SQL queries having a topic closure clause and employing rules 1-3 are well-

defined , under the set of transformations T (of Appendix 1).

Proof (by contradiction): Assume that SQL queries with topic closure clauses are not

well-defined. Then, w.l.o.g, there are two SQL query executions QE1 and QE2 that

process an SQL query with topic closure under rules 1-3 (of Section 3) and the pre-

specified transformation rules T, and that produce different outputs. The difference is

caused by either different transformations that yield different logical query trees or due to

the differing evaluations of the topic closure operator. By Lemma 1, a query tree and its

transformations under the equivalent transformation set T yield unique output, and the

set T specifies all and only permissible equivalences for the topic closure operator. Thus,

the interaction of topic closure operator with all other operators does not invalidate the

uniqueness of the query output. Then, the different evaluations of the topic closure

operator leads to different query outputs. Due to Rule 1, each topic closure predicate is

processed by a single topic closure operator producing the same output, and, Rules 2 and

3 guarantee that the output is finite, a contradiction. Q.E.D.

Lemma 3. Consider an SQL query Q with the stop with threshold Vt clause and its query

tree with a single STOP operator at the root and having β = Vt. Then, accompanied with

rule 4, the threshold Vt propagates to all the SVA operators in the query, and Q stays

well-defined.

Proof (by induction): Assume that, for a given query Q with stop with threshold clause,

all input relations and the intermediate relations materialize their importance scores and

keep them in the column sv. Then, we express the query Q with stop with threshold

clause and with output attributes, say, A, B as follows:

E = π (STOPVT(E2))

where E2 is the SVA expression to evaluate the query Q without the stop with threshold

clause. We assume that all the operators in E2 keep their sv columns during the query

processing, and all projections retain the input relation sv column as well as the projected

columns. The outermost projection then simply drops the sv column and keeps the

attributes A, B that are specified in the query. Now, we show that the stop with threshold

condition is propagated to all the operators in the expression E2, and the outermost

STOPVt, which becomes redundant, is dropped.

For the basis, assume that the first innermost operator of E2 is Op. Then, Op simply

computes its output where the importance value impt of an output tuple t is computed by

fout. Let us change Op to Op’ where Op’ employs β = Vt, and also drop the outermost

STOPVt operator. Then Op’ simply compares impt with Vt and retains t if impt ≥ Vt. We

now show that replacing Op with Op’ in E, and thus changing E to E’ produces the same

query output. If t contributes to the output of E then impt ≥ Vt and t is in the output of

Op’, and thus it is in the output of E’. If t does not contribute to the output of E (but

produced by E2) then it must be eliminated by the final STOP operator that is applied to

E2. Then, impt < Vt and t is not in the output of Op’, and thus it is also not in the output

of E’. Thus E and E’ are equivalent.

For the induction step, assume that Lemma 3 holds after replacing the first k operators

in the expression E, where the output of the expression with the first k operators is the

intermediate relation I. Consider the (k+1)th operator Op. Replace the first k operators

with their output I, and reconsider the operator Op as if it is a base relation. Clearly, this

case becomes identical with the basis case, and the lemma holds. Q.E.D.

Lemma 4. In any SQL query Q, the clause stop after k most important accompanied with

the score-conservative top-k propagation policy propagates to SVA operators of Q during

query processing, and Q stays well-defined.

Proof sketch (by induction): Assume that, for a given query Q with stop after k most

important clause and without any extended-SQL subqueries, all input relations and the

intermediate relations materialize their importance scores and keep them in the column

sv. Then, we express the query Q with stop after k most important clause and with output

attributes, say, A, B as follows:

E = π (SORT-STOPk(E2))

where E2 is the SVA expression to evaluate the query Q without the stop after k most

important clause. The output of E2 is then sorted1, and the top-k (or, k+n, in case of

equality) tuples are returned (as SORT-STOP is defined in [Carey and Kossmann 1997]).

Note that the SORT-STOP operator is always placed before the final projection operator

in the algebraic expression corresponding to a query Q with stop after k most important

clause, regardless of the further propagation of top-k constraint to other SVA operators

(as discussed in Section 4.3.2). We further assume that all the operators in E2 keep their

sv columns during the query processing, and all projections retain the input relation sv

column as well as the projected columns. The outermost projection then simply drops the

sv column and keeps the attributes A, B that are specified in the query. Now, we show

that the stop after k most important condition is propagated to the deepest SVA

operator(s) in the expression E2 that satisfy the score-conservative top-k propagation

policy.

For the basis, assume that the first innermost SVA operator of E2 is Op, for which the

score conservative policy holds. That is, all other operators in E2 that succeed Op are

guaranteed not to reduce the cardinality of Op’s output tuples, or modify their importance

scores. Then, Op simply computes its output where the importance value impt of an

output tuple t is computed by fout. Let us change Op to Op’ where Op’ employs β = k.

Then, Op’ operator returns only the first k tuples with highest scores. We now show that

replacing Op with Op’ in E, and thus changing E to E’ and E2 to E2’ produces the same

query output: i) If t contributes to the output of E then t is produced by E2 and impt is in

top-k importance scores (as it satisfies the SORT-STOP operator). Then, since the

1 In this proof, we assume that the STOP operator is SORT-STOP, for generality. If the input is already sorted,
the query processor can simply replace the SORT-STOP with SCAN-STOP, which simply returns its first k
input tuples.

importance of this operator is last modified by operator Op in E, the tuple t would also be

generated by operator Op’ in its top-k outputs. Furthermore, since a tuple in the output of

Op’ is never dropped afterwards, it may never be discarded, and since its score is never

modified, t will always remain in the top-k outputs of the final SORT-STOP operator.

Subsequently, t would also be generated by E2’ and thus it is in the output of E’. ii) If t

does not contribute to the output of E then impt is not in the top-k scores and must have

been pruned by the SORT-STOP operator (as the output of operator Op can not be

discarded by any other operator in E2). But, since the tuple score is last computed by the

Op, then either one of the following must be true: (a) tuple t is not at all in the output of

Op’ and thus in the output of E2’, or (b) tuple t is included in the output of Op’ with some

rank i (i<=k), but the first i-1 tuples yield more than k tuples after the application of Op’

(e.g., by applying a join operation), and tuple t is eliminated by the SORT-STOP

operator2 after E2’. Nevertheless, t is not in the output E’, neither. Thus E and E’ are

equivalent.

For the induction step, assume that Lemma 4 holds after replacing the deepest score-

conservative SVA operator Op in the expression E. We provide a proof-sketch to show

that we can proceed replacing SVA operators with top-k stopping conditions as long as

such score-conservative SVA operators still exist in E.

Let us assume that, after the first replacement the algebraic expression E for query Q

can be shown as

E = π (SORT-STOPk(E2(Op(E’)))).

First, there is no operator in E’ which also enforces the top-k stopping condition (i.e.,

there can be other SVA operators in E’ that modify scores, but they don’t apply any

stopping condition). Suppose an SVA operator Op’ exists in E’ with the top-k stopping

condition. Then, its intermediate result scores will be further modified by Op, which is a

contradiction to the score-conservative policy, and thus such an Op’ can not exist. That

is, Op is the first score-conservative SVA operator encountered in the algebraic

expression Op(E’).

Now, let us consider the cases for E2.

i) E2 only includes unary operators: In this case, Op is the only SVA operator that

enforces the top-k stopping condition in E. This is because, if some SVA operator

Op’ exists in E2 that enforces top-k condition, the intermediate output scores of Op

2 Note that, as discussed in Section 4.3.2, this case is only possible if the cardinality of the output of an SVA
operator with ranking threshold k is increased by a successive (say, join) operator. And this is why we always
enforce an outermost (SORT) STOP operator.

would be modified by Op’, which means Op does not satisfy score-conservative

policy. This contradicts to the induction hypothesis.

ii) E2 also includes binary operators: In this case, all binary operators that involve Op

must be typical RA operators (i.e., all binary antecedents of Op are RA operators).

Otherwise, they would modify the scores produced by Op, which contradicts with

the induction hypothesis. In particular, there must exist at least one such outermost

RA binary operator B (e.g., union) with inputs E2Left and E2Right = E’’ (Op(E’)).

Then, if a score conservative SVA operator Op2 exists in E2Left, the case becomes

identical with the base case and E2Left will be expressed as E3Left(Op2(E3Right)).

The above discussions can then be applied for E3L recursively as long as another

score conservative SVA operators exists, and thus all score-conservative SVA

operators will be replaced to enforce the top-k stopping condition.

Thus, we show that for a query Q with no nested subqueries, the output is well-

defined. For queries that include subqueries with extended SQL clauses, each sub-query

algebra expression is separately considered in the same manner as discussed in above.

Q.E.D.

Theorem 1. SQL queries as defined in Section 2.2.2 and satisfying rules 1-4 are well-

defined.

Proof: The proof directly follows from Lemmas 1-4.

Lemma 5. Let ur = <u1 u2 … ux> be the term vector corresponding to the join attribute A

of tuple r of R, where ui represents the weight of the term i in A. Assume that the filter

vector fS = <w1 .. wx> is created such that each value wi is the max weight of the

corresponding term i among all vectors of S. Then, if Cosine(ur, fS) < Vt then r can not be

similar to any tuple s in S with similarity above Vt.

Proof (by contradiction): Assume that Cosine(ur, fS) < Vt and ∃ a tuple t in S with the

term vector v = <v1 v2 … vx> for join attribute A such that Cosine(ur, vs) >= Vt. Since

Cosine(ur, vs) >= Vt > Cosine(ur, fS), ∃ a term i in vector v with weight vi such that vi>

wi in fs. But then, vi is greater than the maximum weight for the term i among all vectors

of S, which contradicts the definition of filter vector fs. Thus, we show by contradiction

that no such tuple t can exist in S. Q.E.D.

APPENDIX 3. THRESHOLD-BASED CLOSURE ALGORITHM

Threshold-TClosure(R, X, Vt, MIndex, HNode)

Input: regular expression R, Input topics X, sideway threshold Vt, metalink index table

MIndex, hypernode table HNode.

Output: Topics in X+ that satisfy the threshold Vt

1. Generate the FSA that corresponds to the regular expression R;

2. X+:= φ; PossibleOutput:= φ; S:= The starting state in the FSA;

3. for each topic t in X do

4. if(Imp(t)≥Vt) then

 Add the triplet <t.Tid,Impd(t):=Imp(t), t.state:=S> into PossibleOutput;

5. while (PossibleOutput is not empty) do

6. { Remove triplet tr := <tv.Tid, Impd(tv), Sv> with the maximum Impd from

PossibleOutput ;

7. if(triplet tr ∉ X+) then add triplet tr into X+;

 //Steps 8-20: Process all metalinks emanating from topic tv

8. for each metalink M:=Expand(Sv) do
9. { Sw:=NextState(M,Sv);

10. for each metalink tv.Tid M tw.Tid in MIndex do

11. { Impd(tw) := Impd(tv)* Imp(M) * Imp(tw);

12. if (Impd(tw) ≥ Vt) then

13. { if (there exists a triplet trw with key <tw.Tid,Sw> in PossibleOutput) then

14. { if(Impd(trw) < Impd(tw) then update triplet trw with Impd(trw):=Impd(tw);}

15. else (there does not exists a triplet with key <tw.Tid,Sw> in X+)

16. then Add triplet <tw.Tid, Impd(tw), Sw> into PossibleOutput;}

 //Handling HyperNodes

17. for each pair <TidList, NTid> in HNode(tv.Tid).NodeList do

18. if (for each topic t with t.Tid ∈TidList, there exists a triplet for topic t in

 X+) then

19. for each metalink NTid M tw.Tid in MIndex do

 //Process metalinks of type M emanating from node NTid

20. {Perform steps 11-16 with tv.Tid:=NTid and

 Impd(tv):=GAVG({tn}:tn∈TidList);}}}

21. Return X+ ;

Example A3.1. We use the MIndex instance in Table II. Also, assume that we want to

compute the topic closure for the set X={T1} with SV threshold Vt=0.5 using the regular

expression R=PRE*.RelatedTo*. Also, assume that the average function is used for

FPathMerge.

We first generate the FSA that corresponds to the regular expression

R=PRE*.RelatedTo*, see Figure 13. The FSA has two states S1 and S2. The state S1 is

the initial state and expands to Pre and RelatedTo metalinks, therefore,

Expand(S1)={Pre, RelatedTo}. The state S2 expands to RelatedTo metalink, therefore,

Expand(S2)={RelatedTo}. If the current state Sv is S1 then the next state Sw for

RelatedTo metalink is S2, Sw=NextSate(RelatedTo, S1)=S2. The following table shows

the next states for the regular expression R=PRE*.RelatedTo*.

Table A3.1: The next states for the regular expression R=PRE*.RelatedTo

Current State Sv Metalink Type Next Sate Sw

S1 Pre S1

S1 RelatedTo S2

S2 RelatedTo S2

Since X={T1}, PossibleOutput={<T1, 0.9, S1>} and X+={}. Note that the RelatedTo

metalink type is LHS decomposable. In the first iteration, topic T1 is removed from

PossibleOuput.

Expand(T1.State=S1)={Pre, RelatedTo}, therefore, the algorithm search for <T1,

Pre> and <T1, RealtedTo> in MIndex table. For the RelatedTo metalink, Topic T2 has a

path T1.T2, obtained using the metalink T1(0.9) RT(0.6) T2 (0.8), and its derived

importance value is Impd(T2,RelatedTo)= 0.9 * 0.6 * 0.8 = 0.43 < Vt. Therefore, the

triplet for topic T2 will be not added into PossibleOutput. For the Pre metalink, Topic

T3 and T4 have path T1.T3 and T1.T4, obtained using the metalink T1(0.9) Pre(0.95) T3

(0.85) with Impd(T4,Pre)= 0.73 > Vt and T1(0.9) Pre(0.9) T4 (0.95) with Impd(T4,Pre)=

0.77 > Vt, respectively. Therefore, the triplets <T3,0.73, NextState(Pre,S1)=S1> and

<T4,0.77, NextState(Pre,S1)=S1> will be added into PossibleOutput. After the first

iteration, X+={<T1,0.9>} and PossibleOutput = {<T3, 0.73, S1 >, <T4, 0.77, S1>}. In

the second iteration, the triplet for topic T3 will be removed from PossibleOuput and will

be added into X+. There is Pre metalink T3T4 Pre T5 but T4 is not in X+, therefore, it

will be not processed. After the second iteration X+={<T1,0.9>,<T3, 0.73>} and

PossibleOutput = {<T4, 0.77, S1>}. In the third iteration, the triplet for topic T4 will be

removed from PossibleOuput and will be added into X+. There is Pre metalink

T3T4(0.75) Pre(0.9) T5(0.7) and both T3 and T4 are in X+ but with Impd(T5,Pre)= 0.47 <

Vt. Therefore, the triplet for topic T5 will be not added into PossibleOutput. After the

third iteration X+={<T1,0.9>,<T3, 0.73>,<T4,0.77>} and PossibleOutput is empty.

Therefore, the algorithm terminates and the output of the closure operator is {<T1,0.9>,

<T3, 0.73>,<T4,0.77>}.

APPENDIX 4. TOP-K-BASED CLOSURE ALGORITHM

Top-k-TClosure(R,X,k, MIndex, HNode)

Input: regular expression R, Input topics X, k, metalink index table MIndex, hypernode

table HNode

Output: top-k topics in X+

1. Generate the FSA that corresponds to the regular expression R;

2. X+:= Φ; PossibleOutput:= Φ; i:=1; S := The starting state in the FSA;

3. Compute the initial top-k topics (those with the k highest Impd values) from X and

for each topic t do add the triplet <t.Tid, Impd(t):=Imp(t), t.state:=S> into

PossibleOutput ;
4. while i < k do

5. { Remove triplet tr := <tv.Tid, Impd(tv), Sv> with the maximum Impd from

PossibleOutput ;
6. if (triplet tr ∉ X+) then {Add triplet tr into X+; i:=i+1;}

 //Steps 7-20: Process all metalinks emanating from topic tv

7. for each metalink type M∈Expand(Sv) do
8. { Sw := NextState(Sv,M);

9. for each metalink tv.Tid M tw.Tid in MIndex do
10. { Impd(tw):= Impd(tv) * Imp(M) * Imp(tw);

11. Let tmin be a topic whose triplet in PossibleOutput has the minimum Impd;
12. if (Impd(tw) > Impd(tmin)) then

13. { if (there exists a triplet trw with key <tw.Tid, Sw> in X+) then

 discard topic tw;
14. else if (there exists a triplet trw with key <tw.Tid, Sw> in PossibleOutput)

 then

15. { if (Impd(trw) < Impd(tw)) then

 update triplet trw with Impd(trw):=Impd(tw);}
16. else{ Add triplet <tw.Tid, Impd(tw), Sw> into PossibleOutput;}}}

 //Handling HyperNodes

17. for each pair <TidList, NTid> in HNode(tv.Tid).NodeList do

18. if (for each topic t with t.Tid ∈TidList, there exists a triplet with key

 <t.Tid,Sv> in X+)
19. then for each metalink NTid M tw.Tid in MIndex do

 //Process metalinks of type M emanating from node Ntid

20. {Perform steps 10-16 with tv.Tid:=NTid and Impd(tv):=GAVG({tn}: tn∈TidList);}}}}

21. Return X+ ;

Example A4.1. We use the MIndex instance in Table II. Also, assume that we want to

compute the topic closure for the set X={T1} with top-k threshold k=3 using the regular

expression R=PRE*.RelatedTo*. Also, assume that the average function is used for

FPathMerge.

We first generate the FSA that corresponds to the regular expression

R=PRE*.RelatedTo*, see Figure 13 and Table A3.1. Next, algorithm computes the initial

top-k topics from input topics X. Since X={T1}, PossibleOutput={<T1, 0.9, S1>} and

X+={}. In the first iteration, topic T1 has the highest Impd, therefore, its triplet is

removed from PossibleOuput and is added into X+. Expand(T1.State=S1) = {Pre,

RelatedTo}, therefore, the algorithm search for <T1, Pre> and <T1, RealtedTo> in

MIndex table. For the Pre metalink, Topic T3 and T4 have the metalinks T1(0.9)
PRE(0.95) T3 (0.85) with Impd(T4,Pre)= 0.73 and T1(0.9) PRE(0.9) T4 (0.95) with

Impd(T4,Pre)= 0.77 , respectively. Therefore, the triplets <T3,0.73,

NextState(Pre,S1)=S1> and <T4,0.77, NextState(Pre,S1)=S1> will be added into

PossibleOutput. For the RelatedTo metalink, Topic T2 has a path T1.T2, obtained using

the metalink T1(0.9) RT(0.6) T2 (0.8) with Impd(T2,RelatedTo)= 0.43. Topic T2 can not

be in the top-3 topics because its Impd is less that that for T1, T3, and T4. Therefore, its

triplet will not be added into PossibleOutput. After the first iteration, X+={<T1,0.9>} and

PossibleOutput = {<T3, 0.73, S1 >, <T4, 0.77, S1>}. In the second iteration, topic T4 has

the highest Impd, therefore, the triplet for the topic T4 will be removed from

PossibleOuput and will be added into X+. There is Pre metalink T3T4 Pre T5 but T3 is

not in X+, therefore, it will be not processed. After the second iteration

X+={<T1,0.9>,<T4, 0.77>} and PossibleOutput = {<T3, 0.73, S1>}. In the third

iteration, the topic T3 has the highest Impd, therefore, its triplet will be removed from

PossibleOuput and will be added into X+. In this iteration, all top-k topics are found.

Therefore, the algorithm terminates and the output of the closure operator is {<T1,0.9>,

<T4, 0.77>,<T3,0.73>}.

