
Distributed and Parallel Databases, 2, 405436 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Processing Real-Time Transactions in a Replicated
Database System

C)ZGOR ULUSOY 1 oulusoy @bilkent.edu.tr
Department of Computer Engineering and Information Science, Bilkent University, Bilkent, Ankara 06533, Turkey

Received September 30, 1992; Revised September 10, 1993

Recommended by: A. Elmagarmid

Abstract. A database system supporting a real-time application has to provide real-time information to the
executing transactions. Each real-time transaction is associated with a timing constraint, typically in the form of
a deadline. It is difficult to satisfy all timing constraints due to the consistency requirements of the underlying
database. In scheduling the transactions it is aimed to process as many transactions as possible within their
deadlines. Replicated database systems possess desirable features for real-time applications, such as a high level
of data availability, and potentially improved response time for queries. On the other hand, multiple copy updates
lead to a considerable overhead due to the communication required among the data sites holding the copies. In this
paper, we investigate the impact of storing multiple copies of data on satisfying the timing constraints of real-time
transactions. A detailed performance model of a distributed database system is employed in evaluating the effects
of various workload parameters and design alternatives on the system performance. The performance is expressed
in terms of the fraction of satisfied transaction deadlines. A comparison of several real-time concurrency control
protocols, which are based on different approaches in involving timing constraints of transactions in scheduling,
is also provided in performance experiments.

Keywords: Real-time database systems, data replication, transaction scheduling, concurrency control, perfor-
mance evaluation

1. I n t r o d u c t i o n

A real-time database system (RTDBS) is designed to provide real - t ime informat ion to

data- intensive applications. Each RTDB transaction is associated with a t iming constraint,

typical ly in the form of a deadline. It is difficult, in a RTDBS, to mee t all t iming constraints

due to the consis tency requirements of the under lying database. Concur rency control pro-

tocols proposed so far to preserve data consis tency in database systems are all based on

transaction b locking and transaction restart, which makes it vir tual ly imposs ib le to predict

computa t ion t imes and hence to provide schedules that guarantee deadlines. The pr imary

considerat ion in schedul ing R T D B S transactions is processing as many transactions as pos-

sible within their deadlines. A priority is assigned to each transaction based on its t iming

constraint to be used in ordering resource and data access requests of transactions. An

extens ive explorat ion o f the issues in R T D B S s is provided in [32].

The transaction schedul ing problem in R T D B S s has been addressed by a number of recent

studies. The first a t tempt to evaluate the per fo rmance of scheduling algor i thms in R T D B S s

was provided in [1, 2]. Abbot t and Garc ia -Mol ina descr ibed and evaluated through simula-
t ion a group of real - t ime schedul ing pol icies based on enforcing data consis tency by using

a two-phase locking concurrency control mechanism. An extended vers ion of their work

406 ULUSOY

appeared recently in [4]. In [3], they provided a study of various algorithms for scheduling
IO requests with deadlines. Carey et al. [11] and Chen et al. [13] also discussed some new
approaches to priority-based IO scheduling. In [35] and [36], Sha et al. presented a new
priority-based concurrency control protocol called priority ceiling (PC). The performance
of this protocol PC was examined in [37] by using simulations. In [23], Huang et al. devel-
oped and evaluated several real-time policies for handling CPU scheduling, concurrency
control, deadlock resolution, transaction wakeup, and transaction restart in RTDBSs. Later,
their work was extended to the optimistic concurrency control method [24]. In [25], they
proposed a new lock-based concurrency control protocol combining some existing schemes
to capitalize on the advantages of each of those schemes. Haritsa et al. studied, by simula-
tion, the relative performance of two well known classes of concurrency control algorithms
(locking protocols and optimistic techniques) in a RTDBS environment [19, 22]. They
presented and evaluated a new real-time optimistic concurrency control protocol through
simulations in [20]. Son and Chang [40] investigated methods to apply the priority-ceiling
protocol as a basis for real-time locking protocol in a distributed environment. Agrawal et
al. [5] proposed a new locking approach, referred to as ordered sharing, which attempts to
eliminate blocking of read and write operations in RTDBSs. In [42], Son et al. examined
a priority-driven locking protocol which decomposes the problem of concurrency control
into two subproblems, namely read-write synchronization and write-write synchronization,
and integrates the solutions to two subproblems considering transaction priorities. Kim
and Srivastava [26] proposed new multiversion concurrency control algorithms to increase
concurrency in RTDBSs. 6zsoyo~lu et al. [30] introduced new techniques to process
database queries within fixed time quotas. Different degrees of accuracy of the responses
to the queries can be achieved by using those techniques. In [43], we described several
distributed, lock-based, real-time concurrency control protocols, and reported the relative
performances of the protocols in a nonreplicated database environment.

Distributed databases fit more naturally in the decentralized structures of many RTDB
applications that are inherently distributed (e.g., stock market, banking, command and
control systems, and airline reservation systems). Distributed RTDBSs provide shared data
access capabilities to transactions; i.e., a transaction is allowed to access data items stored
at remote sites. While scheduling distributed RTDBS transactions, besides observing the
timing constraints, it must also be provided that the global consistency of the distributed
database is preserved as well as the local consistency at each data site. To achieve this
goal we require the exchange of messages carrying scheduling information between the
data sites where the transaction is being executed. The communication delay introduced by
message exchanges constitutes a substantial overhead for the response time of a distributed
transaction. Thus, guaranteeing the response times oftransactions (i.e., satisfying the timing
constraints), is more difficult in a distributed RTDBS than that in a single-site RTDBS.

In this paper, we focus our attention on the data replication aspect of distributed RTDBSs.
In a replicated database system copies of data can be stored redundantly at multiple sites.
The potential of data replication for high data availability and improved read performance
is crucial to RTDBSs. On the other hand, data replication introduces its own problems.
Access to a data item is no longer controlled exclusively by a single site, instead the access
control is distributed across the sites each storing a copy of the data item. It is necessary to

PROCESSING REAL-TIME TRANSACTIONS 407

ensure that mutual consistency of the replicated data is provided; in other words, replicated
copies must behave like a single copy. This is possible by preventing conflicting accesses on
the different copies of the same data item, and by making sure that all data sites eventually
receive all updates [18]. Multiple copy updates lead to a considerable overhead due to the
communication required among the data sites holding the copies.

We investigated, in this study, the impact of storing multiple copies of data on satisfying
the timing constraints of RTDBS transactions. A detailed performance model of a dis-
tributed RTDBS was employed in evaluating the effects of various workload parameters
and design alternatives on the system performance. Several real-time concurrency control
protocols were studied on a comparative basis. The locking-based protocols considered
were the priority-based conflict resolution protocol (PB), which aborts a low priority trans-
action when one of its locks is requested by a higher priority transaction [1], the priority
inheritance protocol (PI), which allows a low priority transaction to execute at the highest
priority of all the higher priority transactions it blocks [35], and the conditional priority
inheritance protocol (CP), which applies PB if a transaction holding a conflicting lock has
not accessed many data items yet, otherwise it uses priority inheritance [25]. The opti-
mistic wait-50 protocol (OPT) performs a validation check for each committing transaction
against the executing transactions. If half or more of the transactions conflicting with a
committing transaction are of higher priority, the transaction is made to wait for the high
priority transactions to complete; otherwise, it is allowed to commit while the conflicting
transactions are aborted [20].

Although most of the previous works involving distributed database models assumed
either no-replication [6, 28], or full-replication [15, 16, 31, 38, 39, 40, 41], some perfor-
mance evaluation studies of partially replicated database systems were also provided [7,
12, 14, 29]. The impact of the level of data replication on the performance of conventional
database systems was examined in those studies considering the average response time of
the transactions and the system throughput to be the basic performance measures. It was
found in those evaluations that increasing data replication usually leads to some perfor-
mance degradation due to the overhead introduced by the replication. To the best of our
knowledge, no performance evaluation work has appeared in the literature exploring data
replication in RTDBSs.

Our performance model captures the basic characteristics of a distributed database sys-
tem that processes transactions each associated with a timing constraint in the form of a
deadline and a criticalness factor representing the importance of the transaction. A unique
priority is assigned to each transaction based on its deadline and criticalness. The trans-
action scheduling decisions are basically affected by transaction priorities. The primary
performance issue considered in our work is the satisfaction of transaction deadlines; more
specifically, an answer to the following question is looked for: 'does replication of data
always aid in satisfying real-time constraints of transactions?'. Various experiments were
conducted to observe the performance characteristics of different applications as a function
of the level of replication. Each application is distinguished by the type and data access
distribution of the processed transactions. It was observed that replication is not attractive
for update-oriented real-time applications due to the overhead of synchronizing updates on
multiple copy data items. On the other hand, unless the majority of the transactions are

408 ULUSOY

update-oriented or the system load is high, it is preferable to store multiple copies (but not
too many) of data. Finally, the effects of site failures were studied to estimate how much
replication is needed to provide a reliable processing environment for real-time transactions
of different applications.

In the next section, the distributed transaction structure and distributed execution model
used in the simulations are presented. Section 3 describes our replicated database system
model. The protocols used to control the concurrent transaction accesses to replicated data
are described in Section 4. Section 5 provides the results of the performance evaluation
experiments. The last section summarizes the conclusions of our work.

2. Distributed transaction execution model

Each distributed transaction exists in the system in the form of a master process that executes
at the originating site of the transaction and a number of cohort processes that execute at
various sites where the the copies of required data items reside. The transaction can have at
most one cohort at each data site. The operations of a transaction are executed in a sequential
manner, one at a time. For each operation executed, a global data dictionary is referred to
find out the locations of the data item referenced by the operation. Each data site is assumed
to have a copy of the global data dictionary. After determining which data sites should be
accessed for the operation, a cohort process at each of those sites is initiated (if it does not
exist already) by the master process to perform the operation in the name of the transaction.
Previously created cohorts at those sites are just activated to perform the operation. After
the successful completion of an operation, the next operation in sequence is executed by
the appropriate cohort(s). When the last operation is completed, the transaction can be
committed. Each transaction is assigned a globally unique priority based on its real-time
constraints. This priority is carried by all of the cohorts of the transaction.

One-copy serializability in replicated database systems can be achieved by providing
both concurrency control for the processed transactions and mutual consistency for the
copies of a data item. In our replicated database system model, concurrency control is
provided by any of the concurrency control protocols presented in the following sections, and
mutual consistency of replicated data is achieved by using the read-one, write-all-available
scheme [8]. The reason for selecting this replica control scheme is that alternatives like
quorum-based approaches have the major drawback of turning read operations into multisite
operations, even for local data [9, 12] .2 Based on the read-one, write-all-available approach,
a read operation on a data item can be performed on any available copy of the data. On
the other hand, in order to execute a write operation of a transaction on a data item, each
transaction cohort executing at an operational data site storing a copy of the item is activated
to perform the update on that copy (Figure 1).

The effects of a distributed transaction on the data must be made visible at all sites in an
all or nothing fashion. The so called atomic commitment property can be provided by a
commit protocol which coordinates the cohorts such that either all of them or none of them
commit. In our model, atomic commitment of distributed transactions is provided by the
centralized two-phase commit protocol [9].

PROCESSING REAL-TIME TRANSACTIONS 409

operation_activation(op,T ,D) {
/* Operation op of transaction T will operate on data item D */
if (3 no operational site storing a copy of D)

block until one of ~those sites becomes operational;
if (op is a read)

if (3 a local copy of D)
if (T has a local cohort C)

submit op to C;
o therwise {

initiate a local cohort C;
submit op to C;

}
otherwise

if (3 cohort of T at any operational site that holds a copy of D) {
select a cohort C randomly among those cohorts;
submit op to C;

}
otherwise {

select a site randomly among operational remote sites storing a copy of D;
initiate a cohort C of T on that site;
submit op to C;

}
o t h e r w i s e / * op is a write */

for each operational site S storing a copy of D
if (T has a cohort C at S)

submit op to C;
o therwise {

initiate a cohort C of T at S;
submit op to C;

}

Figure 1. Operation activation procedure.

For the commitment of a transaction T, the master process of T is designated as coordi-
nator, and each cohort process executing T's operations acts as a participant if its site is
operational when the commit protocol is initiated. A periodical 'up-state' message broad-
casted by each site is used in determining the current state (i.e., whether it is operational
or failed) of that site. A site recovering from a failure executes an appropriate recovery
procedure 3 to restore its database to a consistent and up-to-date state.

Following the execution of the last operation of transaction T, the coordinator (i.e., the
master process of T) initiates Phase 1 of the commit protocol by sending a 'vote-request'
message to all participants (i.e., cohorts of T) and waiting for a reply from each of them. If
a participant is ready to commit, it votes for commitment, otherwise it votes for abort. An
abort decision terminates the commit protocol for the participant. After collecting the votes
of all participants, the coordinator initiates Phase 2 of the commit protocol. If all participants

410 ULUSOY

vote for commit, the coordinator broadcasts 'commit ' message to them; otherwise, if any
participant's decision is abort, it broadcasts an 'abort ' message to the participants that voted
for commit. The transaction is considered to have committed as soon as the coordinator
broadcasts the ' commit ' message to all participants. If a participant, waiting for a message
from the coordinator, receives a 'commit ' message, the execution of the cohort of T at that
site finishes successfully. Following the successful commit of T, each cohort can write its
updates (if any) into the local database of its site. An 'abort ' message from the coordinator
causes the cohort to be aborted. In that case the data updates performed by the cohort are
simply ignored.

The blocking delay of two-phase commit (i.e., the delay experienced at both the coordi-
nator site and each of the participant sites while waiting for messages from each other) is
explicitly simulated in conducting the performance experiments.

3. A dis t r ibuted RTDBS model

In the distributed system model, a number of data sites are interconnected by a local commu-
nication network. Each data site contains a transaction generator, a transaction manager, a
resource manager, a message server, a scheduler, a buffer manager, and a recovery manager.

The transaction generator is responsible for generating the workload for each data site.
The arrivals at a data site are assumed to be independent of the arrivals at the other sites.
Each transaction in the system is distinguished by a globally unique transaction id. The
id of a transaction is made up of two parts: a transaction number which is unique at the
originating site of the transaction, and the id of the originating site which is unique in
the system.

Each transaction is characterized by a criticalness and a deadline. The criticalness of a
transaction is an indication of its level of importance [10]. It is assumed that each transaction
is associated with one of m possible levels of criticalness (in this study, m = 3). The most
critical transactions are assigned the highest level. Assignment of criticalness to a new
transaction follows a uniform distribution; i.e., the criticalness of the transaction is chosen
randomly from the set { 1, 2 , . . . , m}. The deadline of a transaction specifies a certain time in
the future the transaction has to be completed before. The deadline assignment method used
in our RTDBS model is described later in this section. The transaction deadlines are soft;
i.e., each transaction is executed to completion even if it misses its deadline. Criticalness
and deadline are two independent characteristics of RTDB transactions [21, 23]. A close
deadline does not necessarily imply more criticalness. The transaction manager at the
originating site of a transaction T assigns a real-time priority to transaction T based on its
criticalness (CT), deadline (DT), and arrival time (AT). 4 The priority of transaction T is
determined by the following formula:

Cv
PT--

DT -- A T

The priority formula gives equal weight to criticalness and relative deadline. 5 If any two
transactions originating from the same site carry the same priority, any scheduling decision

PROCESSING R E A L - T I M E T R A N S A C T I O N S 411

between those transactions favors the more critical one; if the transactions are of the same
criticalness as well, the transaction with closer deadline is scheduled first. To guarantee the
global uniqueness of the priorities, the id of the originating site is appended to the priority
of each transaction.

The transaction manager is responsible for creating a master process for each new trans-
action and specifying the appropriate sites for the execution of the cohort processes of the
transaction. If there exist any local data in the access list of the transaction, one cohort will
be executed locally. The coordination of the execution of remote cohorts is provided by
the master process through communicating with the transaction manager of each cohort's
site. To initiate the execution of each cohort the master process sends an 'initiate cohort'
message to the relevant transaction manager. The initialization message contains the infor-
mation required for the execution of the cohort (i.e., the id of the cohort's transaction and
its priority). The transaction manager refers to this information to initiate the cohort. The
transaction manager also provides the activation of each operation of a cohort executing at
its site upon receiving an 'activate operation' message from the master process of the cohort.

There is no globally shared memory in the system, and all sites communicate via message
exchanges over the communication network. A message server at each site is responsible
for sending/receiving messages to/from other sites.

Access requests for data items are ordered by the scheduler on the basis of the concurrency
control protocol executed. An access request of a cohort may result in blocking or abort of
the cohort due to a data conflict with other cohorts executed concurrently. The scheduler
at each site is responsible for effecting aborts, when necessary, of the cohorts executing at
its site.

If the access request of a cohort is granted, but the data item does not reside in main
memory, the cohort waits until the buffer manager transfers the item from the disk into
main memory. A criticalness-based FIFO page replacement strategy is used if no free
memory space is available. The memory buffers allocated to transactions are organized
into different lists and each list contains the buffers held by the transactions of the same
criticalness. The buffer to replace is selected by FIFO rule from the buffer list of the lowest
criticalness level among all nonempty lists.

Following the access, the data item is processed. When a cohort completes its data access
and processing requirements, it waits for the master process to initiate two-phase commit.
The master process commits a transaction only if all the cohort processes of the transaction
run to completion successfully, otherwise it aborts and later restarts the transaction. A
restarted transaction accesses the same data items as before, and is executed with its original
priority. The cohorts of the transaction are reinitialized at relevant data sites.

IO and CPU services at each site are provided by the resource manager. IO service is
required for reading or updating data items, while CPU service is necessary for processing
data items and communication messages. Both CPU and IO queues are organized on the
basis of real-time priorities, and preemptive-resume priority scheduling is used by the CPUs
at each site. The CPU can be released by a cohort process either due to a preemption, or
when the process commits or it is blocked/aborted due to a data conflict, or when it needs
an IO or communication service. Communication messages are given higher priority at the
CPU than data processing requests.

412 ULUSOY

Table I. Distributed RTDBS model parameters.

n Number of data sites

local~lb_~ize
N
memorize
cpu_time
io_time
comm_delay
mes-proc_time
pri~assign_cost
lookup_cost
iat
tr_type_prob
tr_length
data_update_prob
slack_rate
mtbf
mttr

database size originated at each site
number of copies of each data item
main memory size at each site
CPU time to process a data item
I0 time to access a disk resident data item
delay of a communication message between any two data sites
CPU time to process a communication message
processing cost of priority assignment
processing cost of locating a data item
mean transaction interarrival time at a site
fraction of update type transactions
mean number of data items accessed by a transaction
fraction of updated data items by an update transaction
average slack-time/processing-time for a transaction
mean time between site failures
mean time to recover from a failure

The set of parameters described in Table 1 was used in specifying the configuration and

workload of the distributed RTDBS.

Some of the concurrency control protocols to be discussed in Section 4 employ blocking
in resolving data conflicts, thus, they are prone to blocking deadlocks. In those protocols,
local deadlocks are detected by maintaining a local Wait-For Graph (WFG) at each site.

WFGs contain the wait-for relationships among the transactions. Local deadlock detection
is performed by the scheduler each time an edge is added to the graph (i.e., when a cohort is

blocked). Assuming that a WFG is held in main memory, the processing cost of deadlock

detection is considered to be proportional to the current number of edges constructing
the WFG. 6

Global deadlock is also a possibility in distributed systems. Two or more transactions

can be in a deadlock chain waiting for each other to access the copies of the same data item
or the copies of different data items stored at different sites. For the detection of global
deadlocks a global WFG is used which is constructed by merging local WFGs. One of
the sites is employed for periodic detection 7 of global deadlocks. The calculation of the
processing cost of checking for a global deadlock is similar to that for local deadlocks;
however, in this case, the size of the global WFG is taken into account. In addition to
the processing cost of checking for a deadlock, the delay of communication messages
carrying the local WFG information and the processing cost of those messages (at both the
source and destination sites) are explicitly simulated by using parameters comm_delay and
mes_proc_time, respectively. A deadlock is recovered from by selecting the lowest priority
cohort in the deadlock cycle as a victim to be aborted. The master process of the victim
cohort is notified to abort and later restart the whole transaction.

PROCESSING REAL-TIME TRANSACTIONS 413

3.1. Data distribution model

We use a data distribution model which provides a partial replication of the distributed
database. The model enables us to execute the system at precisely specified levels s of
data replication. Each data item has exactly N copies in the distributed system, where
1 < N _< n. Each data site can have at most one copy of a data item. The remote copies of
a data item are uniformly distributed over the remote data sites; in other words, the remote
sites for the copies of a data item are chosen randomly. If the average database size at a site
is specified by db_size,

db~ize = N * localMb_size

where local_db_size represents the database size originated at each site. Note that N = 1
and N = n correspond to the no-replication and full-replication cases, respectively.

3.2. Deadline assignment

slack_rate is the parameter used in assigning deadlines to new transactions. The slack
time of a transaction is chosen randomly from an exponential distribution with a mean of
slack_rate times the estimated processing time of the transaction. While the transaction
generator uses the estimation of transaction processing times in assigning deadlines, we
assume that the system itself lacks the knowledge of processing time information. The
deadline of a transaction T is determined by the following formula:

DT = AT + P E T + ST

where

ST = expon(slack_rate • P E T)

AT, P E T , and ST denote the arrival time, processing time estimate, and slack time of
transaction T, respectively. The following formula provides the processing time estimate
of T in an unloaded system.

P E T = tl + t2 + t3 + t4 + t5 + t6 + t7

Each component of the formula is specified as follows.
tl : Priority assignment delay.

t l = pri_assign_cost

t2: Delay to locate the execution site(s) for the operations of T.

~2 = tr_length * lookup_cost

lookup_cost corresponds to the processing cost of locating a single data item.

414 ULUSOY

t3: Delay due to cohort initialization messages.

ta = nr_coh_sites(T) * mes_proc_time

nr_coh_sites(T) is the actual number of remote data sites on which T has cohorts to perform
its operations. A message is sent to each remote site to initialize the cohort of the transaction
at that site. Each message is processed before being sent, resulting in a total delay of
nr_coh_sites(T) • mes_proc_time units at its source.
t4: Delay due to 'activate operation' and 'operation complete' messages for the remote
operations.

t4 = 2 * rem_op(T) • (mes_proc_time + comm_delay ÷ mes_proc_time)

rem_op(T) is the actual number of remote operations to be performed by T. Each 'ac-
tivate operation' and 'operation complete' message has a communication overhead of
(mes_proc_time ÷ comm_delay ÷ mes_proc_time) time units.
ts: Processing delay of the operations of T.

t5 = tr_length * cpu_time

t6: IO delay of the operations.
For a read-only transaction T,

(mem_size~ , io_time ifdb-size > mem_size t6 = tr_length * .1 db_size }
0 otherwise

db-size is the average size of database stored at each site. As specified above, db~ize =
N * local_rib_size

For an update transaction T,

mem~ize~ io_time + w_items(T) * io_time tr_length * (1 db-size } *

t6 = if db_size > mem_size
w_items(T) * io_time

otherwise

w_items(T) refers to the actual number of data items updated by T.
tT: Commit protocol overhead.

t7 = [num_eoh_sites(T) * mes_proc_time ÷ comm_delay
÷ 2 * mes_proc_time ÷ comm_delay
+ num_coh_sites(T) * mes_proc3ime]
+ [num_coh_sites(T) • mes.proc_time]

The terms contained within the first and the second square brackets correspond to overheads
of Phase 1 and Phase 2 of the two-phase commit protocol, respectively. For Phase 1 of
the protocol, num_coh_sites(T) • mes_proc_time is the CPU time spent at the source of

PROCESSING REAL-TIME TRANSACTIONS 415

transaction to process the 'vote-request' messages before sending them to each of the
remote cohorts; comm_ffelay is the communication delay of the messages before arriving at
their destinations; 2 * mes_proc_time ÷ comm_delay is the delay due to processing the 'vote-
request' message and processing the reply message before sending it and the communication
delay of the replies sent to the master; and num_coh_sites(T) * mes_proc_time is the time
to read the reply messages from the remote cohorts. In determining the overhead of Phase
2, num_coh_sites(T) * mes_proc_time is the processing time for the final decision messages
before they are sent to remote cohorts.

3.3. Reliability issues

The distributed RTDBS model assumes that the data sites fail in accordance with an expo-
nential distribution of inter-failure times. After a failure, a site stays halted during a repair
period, again chosen from an exponential distribution. The means of the distributions are
determined by the parameters mtbf (mean time between failures) and mttr (mean time to
repair). The recovery manager at each site is responsible for handling site failures and
maintaining the necessary information for that purpose. The communication network, on
the other hand, is assumed to provide reliable message delivery and is free of partitions. It
is also assumed that the network has enough capacity to carry any number of messages at
a given time, and each message is delivered within a finite amount of time.

The following sections details the reliability issues considered in our distributed sys-
tem model.

3.3.1. Availability

Availability of a system specifies when transactions can be executed [17]. It is intimately
related to the replica control strategy used by the system. For the read-one, write-all-
available strategy, availability can be defined as the fraction of time (or probability) for
which at least one copy of a data item is available to be accessed by an operation [29]. This
strategy provides a high level of availability, since the system can continue to operate when
all but one site have failed. In our simulations, a read or write operation on a data item D
fails if no copy of D is available in the system. If N is the initial number of copies of D, a
read/write operation on D succeeds if as many as N - 1 of the copies are missing. If the last
copy also vanishes, both read and write operations on D will fail. A transaction that issues
an operation that fails is blocked until a copy of the requested data item becomes available. 9

One method to measure the availability of an executing system is to keep track of the
total number of attempted and failed operations experienced over a long period of time.
It is possible to calculate the read and write operation availabilities separately as in [29],
where the read (write) availability is defined and calculated as the total number of successful
reads (writes) divided by the total number of read (write) requests. We prefer to use a more
general calculation of system availability, which combines the read and write availabilities
together in one formula. Availability in our model is defined by the following formula:

416 ULUSOY

Availability =
Total number of successful (read and write) operations

Total number of (read and write) operation requests

This formula is a convenient one to use in RTDBSs since both read and write availabilities
are equally crucial to such systems, and thus they can be treated together.

3.3.2. Site failure

At a given time a site in our distributed system can be in any of three states: operating,
halted, or recovering. A site is in the halted state if it has ceased to function due to a hardware
or software failure. A site failure is modeled in a fail-stop manner; i.e., the site simply halts
when it fails [33]. Following its repair, the site is transformed from the halted state to the
recovering state and the recovery manager executes a predefined recovery procedure. A
site that is operational or has been repaired is said to be in the operating state. Data items
stored at a site are available only when the site is in the operating state.

A list of operating sites is maintained by the recovery manager at each site. The list is
kept current by 'up-state' messages received from remote sites. An 'up-state' message is
transmitted periodically by each operating site to all other sites. When the message has not
been received from a site for a certain timeout period, the site is assumed to be down.

Our definition of data availability includes the case that an operation could fail after
starting to execute. If a site processing a read operation of a transaction T fails before
returning the result of the operation, the operation is submitted to another site, one which is
in the operating state and storing a copy of the requested data item. If none of the operating
sites has that item, the read operation fails and transaction T is blocked until a copy becomes
available. A write operation of a transaction T is submitted to each operating site that stores
a copy of the item to be updated. If any of those sites fails before completing the operation
execution, the operation is just ignored at that site by the master process of T. If all the
data sites involved in the execution of the operation fail, the operation is said to fail and
transaction T is blocked.

3.3.3. Site recovery strategy

The recovery procedure at a site restores the database of that site to a consistent and up-
to-date state. Our work does not simulate the details of site recovery; instead, it includes a
simplified site recovery model which is sufficient for the purpose of estimating the impact
of site failures on system performance.

The recovery manager at each site S maintains a log Ls for recovery purposes, which
records the chronological sequence of write operations executed at S. Three types of records
can exist in the log:

• <S ta r t (T /)> /* Transaction T~ has started at this site 1° */

* <Ti, Dj, val>/* Transaction Ti has updated data item Dj; the new value of D j is
val */

PROCESSING REAL-TIME TRANSACTIONS 417

site_recovery(Si) {
/* Si is the recovering site */
Perform local recovery using Ls,;
Send a message to each site Sj requesting the log Lsj.;
Construct DS by using the logs of the sites in operating state;

/* DS is the set of data items stored at Si
that have been updated since Si failed */

for each data item D C DS
Update D using the log of any site that stores a copy of D;

Send an 'up-state ' message to each remote site;

Figure 2. Site recovery procedure.

• <Commi t (Td>/* Transaction Ti has committed */

Whenever a write operation is performed by a transaction, a log record for that write is
created before the database is modified. At the commit time of a transaction, a commit
record is written in the log at each participating data site. In the case of a transaction abort,
the log records stored for that transaction are simply discarded. The recovery manager of a
recovering site first performs local recovery by using the local log. Then, it obtains the logs
kept at operating sites to check whether any of its replicated data items were updated while
the site was in the halted state. It then refreshes the values of updated items using the current
values of the copies stored at operational sites. This recovery procedure is summarized in
Figure 2. Note that, if any data item stored at the recovering site has no other copies at
operating sites, its consistency is provided through local recovery. We should state here that
our recovery procedure is not able to eliminate completely the possibility of inconsistent
execution due to site failures. Providing a very detailed model of failure which considers
all possible cases that can lead to inconsistencies is beyond the scope of our work.

As discussed in [27], it is not necessary to write every log record to stable storage (disk)
as soon as it is created. The transfer of log records from main memory to stable storage
in blocks can safely be implemented. Each log record is written to the log tail (i.e., the
last block of the log) stored in main memory. The log tail is written to the stable storage
whenever it becomes full or right before the commit of a transaction (when the two-phase
commit protocol starts to execute for the transaction).

4. Concurrency control protocols

The first three of the concurrency control protocols described below are based on two-phase
locking. The management of locks for the data items stored at a site is provided by the
scheduler of that site. Each cohort process executing at a data site has to obtain a shared lock
on each data item it reads, and an exclusive lock on each data item it updates. In order to
provide global serializability, the locks held by the cohorts of a transaction are maintained

418 ULUSOY

until the transaction has been committed. The protocols are different in the way real-time
priorities of transactions are involved in scheduling the lock requests.

An optimistic concurrency control protocol was also included in the set of evaluated pro-
tocols. In an optimistic protocol, the execution of each transaction consists of three phases:
a read phase, a validation phase, and possibly a write phase. During the read phase, a
transaction performs all its read and write operations without being blocked by any other
transaction. The updates are performed on the local copies of data items and they are not
accessible to other transactions. The validation phase checks whether the transaction exe-
cution can cause any inconsistency in the database. If a possible inconsistency is detected,
the transaction is restarted. Otherwise, the transaction enters the write phase to reflect all
the updates it performed into the database.

4.1. Priority-based conflict resolution protocol (PB)

This protocol resolves data conflicts always in favor of high-priority transactions [1]. At the
time of a data lock conflict, if the lock-holding cohort has higher priority than the priority
of the cohort that is requesting the lock, the latter cohort is blocked. Otherwise, the lock-
holding cohort is aborted and the lock is granted to the high priority lock-requesting cohort.
Upon the abort of a cohort, a message is sent to the master process of the cohort to abort
and then restart the whole transaction.

If the lock on a data item is shared by a group of cohorts, a cohort C requesting an
exclusive lock on the data item is blocked if any cohort sharing the lock has higher priority
than the priority of C. Otherwise (if the priority of C is higher than the priorities of all lock
sharing cohorts), the transactions of all the cohorts in the lock share group are aborted.

Assuming that no two transactions have the same priority, this protocol is deadlock-free
since a high priority transaction is never blocked by a lower priority transaction.

4.2. Priority inheritance protocol (PI)

The priority inheritance method, proposed in [35], ensures that when a transaction blocks
higher priority transactions, it is executed at the highest priority of the blocked transactions;
in other words, it inherits the highest priority. The idea is to reduce the blocking times of
high priority transactions.

In our distributed system model, when a cohort is blocked by a lower priority cohort,
the latter inherits the priority of the former. Whenever a cohort of a transaction inherits a
priority, the scheduler at the cohort's site notifies the transaction's master process by sending
a priority inheritance message, which contains the inherited priority. The master process
then propagates this message to the sites of other cohorts belonging to the same transaction,
so that the priority of the cohorts can be adjusted.

Some other details related to the implementation of protocol PI in simulations are as
follows. When a transaction, which has inherited a priority, is aborted due to a deadlock,
it is restarted with its original priority. If the holder of a data lock is a group of cohorts
sharing the lock, and if a high priority cohort C is blocked due to a confict on that item,

PROCESSING REAL-TIME TRANSACTIONS 419

the cohorts which are in the shared lock group and have lower priority than C inherit the
priority of C.

4.3. Conditional priority inheritance protocol (CP)

This protocol, proposed in [25], combines protocols PI and PB. When a cohort C is blocked
by a lower priority cohort C , if the transaction of C ~ is near completion, it inherits the
priority of C; otherwise, cohort C t (and thus its transaction) is aborted. The protocol
assumes that the length of a transaction (i.e., the number of data items accessed by the
transaction) is known in advance. The protocol has a threshold parameter h. At the time
of a data conflict, if the remaining number of data items to be accessed by the transaction
of the lock-holding cohort is less than or equal to threshold h, then protocol PI is applied;
otherwise, protocol PB is used. The protocol is expected to reduce the blocking times with
respect to PI, and to reduce the abort rate with respect to PB.

4.4. Optimistic wait-5O protocol (OPT)

An optimistic concurrency control protocol incorporating real-time priorities was proposed
in [20]. The validation check for a committing transaction is performed against the executing
transactions and if the write-set of the validating transaction intersects with the read-set of
one of the executing transactions, the two transactions are said to be in conflict. This method
of validation is called broadcast commit. The proposed protocol uses a 50 percent rule as
follows: If half or more of the transactions conflicting with a committing transaction are of
higher priority, the transaction is made to wait for the high priority transactions to complete;
otherwise, it is allowed to commit while the conflicting transactions are aborted. While the
transaction is waiting, it is possible that it will be restarted due to the commit of one of
the conflicting transactions with higher priority. The validation check for a transaction is
performed at each data site where a cohort of the transaction has been executed.

5. Simulation experiments

The details of the replicated database system model and the transaction execution model
described in previous sections were captured in a simulation program. The program was
written in CSIM [34], which is a process-oriented simulation language based on the C
programming language.

Simulation experiments were driven by the parameter values determined with the CPU/IO
utilization formulas of the probabilistic model provided in [441. The probabilistic model
ensures that the parameter values are kept in appropriate ranges in obtaining a stable ex-
ecution environment. Table 2 presents the default parameter values used in each of the
experiments. All sites of the system were assumed identical and operating under the same
parameter values. It was assumed that one CPU and one disk unit exist at each data site.
Selection of the cpu_time and io_time parameter values aimed to obtain rather high and

420 ULUSOY

Table2. Distributed RTDBS modelparameter values.

n 10

local_rib_size 200
N 5
mem-size 500
cpu_time 8 msec (constant)
io_time 18 msec (constant)
comm_delay 5 msec (constant)
mes_proc_time 2 msec (constant)
pri_assign_cost 1 msec (constant)
lookup_cost 1 rnsec (constant)
iat 400 msec (exponential)
tr_type_prob .5
tr_length 6 (constant)
data_update 4~ rob .5
slack_rate 5 (exponential)
mtbf 18,000 sec (exponential)
mttr 720 sec (exponential)

almost identical CPU and IO utilizations at each site. Neither a CPU-bound nor an IO-
bound execution environment was intended to prevent the isolation of the effects of CPU
contention or IO contention on the performance of the system. The small value of database
size at each site 11 is to create a data contention environment which produces a high level
of data conflicts among the concurrent transactions. This small database can be considered
as the most frequently accessed fraction of a larger database.

Our expectation while choosing the values of the parameters mtb fand mttr was to obtain
a system with high data availability. The simulation results of the availability versus data
replication level experiment presented in [44] validated our expectations. For a nonrepli-
cated system (N = 1), less than 5 percent of the operations failed due to site failures.
With N = 2, the availability of data became more than 98 percent, and with N = 4, full
availability was obtained.

The time period between consecutive 'up-state' messages transmitted by a data site was
chosen as 100 seconds in our simulations. The log structure, used for recovery purposes,
was assigned a blocksize of 50 records.

Replication of data was simulated explicitly by using the array DataDict ionary, which
specifies the mapping of data items to sites. Each index of the array corresponds to a single
data item originating at any site. Considering the size of the database originating at each
site (i.e., local_db_size), and the number of sites in the system (i.e., n), the size of the array
is n * local~lb~ize . Array entry DataDictionary[i] contains the list of sites storing a copy
of the i ' th data item in the system (1 < i < n * local_db_size). The array entries are filled
at the beginning of each simulation by using the uniform data distribution assumption of
Section 3.1. The data items to be accessed by each transaction are chosen randomly among
the set of n * local~lb_size data items, and the data sites to execute the transaction operations
are selected by referring to DataDict ionary and using the operation execution procedure
presented in Figure 1.

PROCESSING REAL-TIME TRANSACTIONS 421

One possible performance metric that can be used in RTDB transaction scheduling is to
determine the fraction of transactions that make their deadlines. Since our system processes
transactions with different criticalness levels, we used a metric, success-ratio, that combines
the performance measurements of all criticalness levels, in terms of the fraction of satisfied
deadlines, using a specific weight for each level. This metric is defined as follows:

success-ratio = ~-~iml w i * success-ratioi
m ~--~i=1 W i

where
i: Criticalness level.
m: Total number of criticalness levels (m = 3 in our simulations).
w~: Weight of criticalness level i.
success-ratio~: Fraction of satisfied deadlines for the transactions of criticalness level i.

The determination of the weights of criticalness levels is highly dependent on the particular
application environment [10]. We used linearly increasing weights; i.e.,

w~ = i, (i = 1 , 2 , . . . , m)

For each experiment, the final results were evaluated as averages over 25 independent
runs. Each run continued until 1000 transactions were executed at each data site. 90%
confidence intervals were obtained for the performance results. The width of the confidence
interval of each data point is within 4% of the point estimate. The mean values of the
performance results were used as final estimates. The following sections discuss only
statistically significant performance results.

5.1. Evaluating concurrency control protocols

This experiment was conducted to evaluate the performance of the concurrency control
protocols under different levels of transaction load. Mean time between successive trans-
action arrivals at a site (i.e., iat) was varied from 300 to 460 msec in steps of 40. This range
of iat values corresponds to an expected CPU utilization of about .90 to .59 at each data
site [40]. IO utilization is almost the same as CPU utilization with the parameter values
chosen for the experiments. The performance results obtained with each protocol, in terms
of success-ratio, are presented in Figure 3.

Our simulation program captures the effects of both data contention and resource con-
tention. Data contention exists due to conflicting data access requests of transactions. Either
transaction blocking or transaction restart is used by each concurrency control protocol to
resolve a data conflict. Resource contention is due to the limited number of CPU/IO re-
sources in the system. It results in queuing delay at each of those resources. Both data
and resource contention at each data site are affected by the transaction load in the system.
The number of data access conflicts among the concurrent transactions and the average
length of CPU/IO queues increases as more transactions are processed at each site. De-
creasing the level of transaction load (increasing iat) thus results in better performance for
all concurrency control protocols tested in our performance experiments. As displayed in

422 ULUSOY

1.0

S 0.9
U
C
C 0.8
E
S
S 0.7

R
A 0.6
T
I
O 0.5-

0.4

.~ I r . s

J , / ~- - . . .o P I
" / : : P B

s"

,," o ~ O P T
/

/

l I I

300 340 380 420 460

IAT (msec)

Figure 3. success-ratio vs iat (average transaction interarrival time (msec)).

Figure 3, between locking protocols PI and PB, the performance of priority inheritance
protocol PI is somewhat better than that of priority-based conflict resolution protocol PB
for a wide range of mean interarrival time. Remember that protocol PB aborts low prior-
ity transactions whenever necessary to resolve data conflicts. The overhead of transaction
aborts in a replicated database system leads to the performance difference against protocol
PB. Aborting a transaction which has already performed some write operations causes a
considerable waste of IO/CPU resources at all the sites storing the copies of updated data.
The results presented in Figure 3 for protocol CR which combines protocols PI and PB, was
obtained by setting threshold h of the protocol to 4. Figure 4 displays the performances
of three locking protocols under different settings of threshold h. The performances of
protocols PI and PB are independent of h. CP performs the same as PB when h is equal to
0, and the same as PI when h is set to 6 (i.e., the value of tr_length). The results presented
in the figure were obtained with iat = 300 msec. Other possible settings of iat did not
change the performance pattern of CP relative to PI and PB. The best performance with CP,
under different levels of transaction load, was obtained for 3 < h < 5. This result indicates
that the strategy of protocol PB (i.e., aborting a low priority transaction if it is holding a
conflicting lock) only works well if the transaction has processed not more than a few data
items. It can be concluded that, in resolving a data conflict in a distributed RTDBS with
replicated data, blocking the high priority transaction and executing the low priority one
with the inherited high priority is preferable to aborting the low priority transaction unless
the low priority transaction is in the early stages of its execution.

The optimistic wait-50 protocol OPT exhibits better performance than the locking proto-
cols when the system is lightly loaded (i.e., for large iat values). No transaction is blocked
due to data conflicts until commit time. Since the number of conflicts is small under low load
levels, only a few transactions fail to be validated at commit time. On the other hand, when

PROCESSING REAL-TIME TRANSACTIONS 423

0.7

S
U
C
C
E
S
S

A
T
I
0

0.6-

0.5-

0.4

- - ÷ - - - ÷ -

>~-----x C P

o - - - ~ P I

"- = P B

I I I I I

0 1 2 3 4 5 6

h

Figure 4. success-ratio vs threshold h.

the transaction load is high, the performance of protocol OPT becomes worse compared
to the other protocols. As the number of data conflicts increases under heavier transaction
load, the number of transaction restarts experienced with protocol OPT becomes more than
that of the locking protocols.

Figure 5 presents the restart ratios (average number of restarts experienced by each trans-
action) under varying transaction loads for all four protocols. In protocol PI the only source
of restarts is deadlock, while protocols PB, CR and OPT may restart transactions to resolve
data conflicts. Only a few more restarts are obtained with protocol CP compared to protocol
PI, since CP applies priority inheritance in resolving most of the conflicts (as a result of
setting the threshold h of CP to 4).

Haritsa et al. introduce a notion called database access ratio to be used in comparing the
performances of concurrency control protocols [22]. The database access ratio is defined
to be the maximum number of data items that could be simultaneously accessed by all
the transactions in the system relative to the size of the database. This ratio was another
parameter used in our experiments to vary data contention in the system in evaluating the
concurrency control protocols. The number of distinct data items in our distributed database
system is 2000 (n • loca lx tb~ i ze) and 6 data items are accessed by each transaction. It was
shown in [44] that the total number of active transactions in the system does not exceed
50 even under the highest possible transaction load. Therefore, the highest database access
ratio (with the database size of 2000 and the transaction length of 6) is (50 * 6)/2000 = 0.15.
We evaluated the concurrency control protocols for different values of the database access
ratio by varying the value of parameter tr_length (i.e., the number of data items accessed by
each transaction). The mean interarrival time value (iat) was fixed at 400 msec and the same
value was assumed for the maximum transaction population (i.e., 50) with each tr_length

value considered. The range of tr_length values employed was [2,10], which corresponds

424 ULUSOY

R
E
S
T
A
R
T
R
A
T
I
O.

0"5i .
0.4 ""'-.

0.3

0.2 -

0.1

0.0

> e - - - r C P

o - - . -< , p I

= P B

o oo O p T

. . . . -o- - - _-_--
I L I

300 340 380 420 460

IAT (msec)

Figure 5. Average number of restarts per transaction vs iat.

to a database access ratio of 0.05 to 0.25. The results are displayed in Figure 6 for protocols
PI and OPT. The reaction of protocols PB and CP to the change in the database access ratio
was similar to that of protocol PI, thus, PI was selected as representative for the locking
protocols. As the database access ratio gets higher, both PI and OPT perform worse. At low
values of database access ratio (i.e, at low contention levels) OPT is observed to perform
a little bit better than PI; however, PI outperforms OPT at higher database access ratios.
This result is in agreement with our previous results provided above that were obtained by
using another parameter (i.e., iat) in varying the level of data contention. On the other hand,
it was shown by Haritsa et al. that optimistic protocols are superior to locking protocols
at high database access ratios [19, 22]. This result is different from what we obtained in
our experiments. However, the experiments of Haritsa et al. were performed in a RTDBS
that discards late transactions (i.e., the deadlines are firm) and most of their simulation
results were obtained under the assumption that the system has infinite resources. These
assumptions, most probably, are the source of the difference between their results and
ours; because, when they processed the transactions in a finite resource system, with soft
deadlines [19] (as in our model), they found that the locking protocol performs better than
the optimistic one, which confirms our findings.

The results provided so far were obtained by employing the one-at-a-time (sequential)
transaction execution model detailed in Section 2. Another execution model in which the
cohorts of a transaction act in parallel is discussed in [43]. In this model the master process
of a transaction spawns cohorts all together, and the cohorts are executed in parallel. The
master process sends to each remote site a message containing an (implicit) request to spawn
a cohort, and the list of all operations of the transaction to be executed at that site. The
assumption here is that the operations performed by one cohort are independent of the results
of the operations performed at the other sites. The sibling cohorts do not have to transfer

P R O C E S S I N G R E A L - T I M E T R A N S A C T I O N S 425

S
U
C
C
E
S
S

R
A
T
I
0

1.0

0.9-

0.8-

0.7-

0.6-

0.5-

0.4
0.05

~-- - -o P I

.o O p T

\
\

\
\

I I I

0.I0 0.15 0.20

DATABASE ACCESS RATIO

0.25

Figure 6. success-ratio vs database access ratio.

information to each other. A cohort is said to be completed at a site when it has performed
all its operations. A completed cohort informs the master process by sending a 'cohort
complete' message. The master process can start the two-phase commit protocol when it
has received 'cohort complete' messages from all the cohorts. Various experiments were
performed with the parallel execution model. It was observed that the real-time performance
is much better compared to the one-at-a-time model due to less communication delay and
shorter transaction life. However, the comparative performances of the concurrency control
protocols were not affected.

5.2. Impact o f level o f data replication

In this section, we evaluate how successful the transactions are in satisfying their dead-
lines under different levels of data replication. We consider four different application
environments in conducting data replication experiments. As summarized in Table 3 each
application environment is characterized by the fraction of update transactions processed,
and the distribution of accessed data items. The majority of transactions in the first two
applications are read-only (RO), while the last two applications are dominated by update
(UP) transactions. In the first and third applications most of the data items accessed by
transactions originate locally (LOC); on the other hand, for the other applications the orig-
inating sites of accessed data items are chosen from a uniform distribution, thus, accesses
to data items originating at remote (REM) sites dominate, since there exist more than two
sites in the system. Remember that in the experiments of Section 5.1, 50 percent of the
transactions were update type (as specified in Table 2) and data accesses of each transaction
were uniformly distributed over all sites.

426 ULUSOY

Table 3. Application environments considered in data replication experiments.

Application Update Transaction Data Access
Type Percentage Distribution

RO_LOC 25% 75% local origin
25% remote origin

RO_REM 25% uniform over
all database

UP_LOC 75% 75% local origin
25% remote origin

UP_REM 75% uniform over
all database

In evaluating the effects of level of data replication on system performance, the number of
replicas of each data item (N) was varied from 1 to n (n = 10). The mean interarrival time
value (iat) was fixed at 400 msec. Figure 7 presents the results obtained xent application
environments with concurrency control protocol PI.

With the first two application types, which represent an execution environment where
the majority of transactions are queries, the fraction of satisfied deadlines is at a high level
compared to the other application types. The number of conflicts among the transactions
increases when the fraction of update operations becomes higher, which results in a degra-
dation in the performance of the RTDBS.

With application type RO_REM, an improvement in the performance is possible up to
a certain point (7 replicas in this example) by increasing the data replication level. This
improvement can be explained by the increasing number of local read operations eliminating
the cost of inter-site communication. For more replicas, further improvement is not possible
since the performance advantage gained by the local read operations is outweighed by the
overhead of multiple copy updates. For application type RO_LOC, on the other hand, since
most of the transactions access locally originated data items, the increase in the number of
local read operations by providing more data replicas is not enough to affect the performance.
The success-ratio graph for N > 2 is almost flat. The performance level achieved for no-
replication case (N = 1) is not as high as that obtained with other values of N. The worse
performance obtained by maintaining a single copy of each data item can be explained by
the unavailability of data during down periods as a result of site failures. It was shown in
[44] that having a couple of data copies is effective in preventing the effects of site failures
on system performance for all application types.

Due to the local data accesses the success-ratio obtained with RO_LOC is better than
that with RO~EM, except under high levels of data replication where the same execution
conditions exist for both application types.

For application types UP_LOC and UP_REM, where the majority of transactions are of
update type, a considerable degradation in performance is observed if the level of data
replication is increased beyond 3. The overhead of update synchronization among the
multiple copies of updated data increases with each additional data copy. The difference
between the performance results of those two application types is due to accessing more
local data items with UPLOC. At full replication (N = 10), the same performance is

PROCESSING REAL-TIME TRANSACTIONS 427

1.0

S 0.9
U
C
C 0.8
E
S
S 0.7

A O.6
T
I
O O.5

0.4

/

"- "- R O . £ O C

'~ - " o R O . . R E M

. . . . -o - _ . .~ ~ o U P ..L O C

- " 0,. " { - - " - ' ~ P . . R E M
~'+- '-- '+'--- . ,+.. '"o. ,

I [I I I I I I

] 2 3 4 5 6 7 8 9 10

NUMBER OF REPLICAS

Figure 7. success-ratio vs N (number of data replicas) with different application types.

exhibited with both application types, since all read operations are performed on local
data copies.

We conclude that data replication can reduce the effects of site failures and provide faster
response to real-time queries; however, the primary factor determining the performance
is the overhead of update synchronization among data replicas. Except for the query-
dominant application environment where the transactions usually require remote access
(i.e., application type R O _ R E M) , the best results 12 in general were obtained when each data
item had 2 or 3 copies in the system. For application type R O _ R E M it is possible to improve
the performance by increasing the number of copies beyond 2 or 3.

When the experiment was repeated with the other concurrency control protocols, it was
observed that although the protocols generate somewhat different s u c c e s s - r a t i o results under
the same conditions, qualitatively the results are in agreement with those above. However,
the relative performances of the protocols show some differences under different levels
of data replication. With application type R O ~ O C , the performance results obtained by
protocols CP, PI, PB, and OPT were not distinguishable from each other. All the protocols
perform equally well under different levels of data replication when the system is dominated
by queries accessing only local data. Figure 8 presents the results obtained with protocols
CP, PI, PB, and OPT under application type R O _ R E M . All protocols behave similarly as the
level of replication changes; increasing the number of replicas results in better performance
up to a certain replication level. Comparing the results obtained for each protocol, one can
see that under low levels of replication, resolving data conflicts by using transaction restart
leads to better performance than employing transaction block. Protocol OPT exhibits the
best performance if the number of copies of each data item is not many. Since the system is
dominated by read-only transactions, the number of data conflicts is small; and, as discussed
in the preceding section, protocol OPT performs well when the level of data conflicts is

428 ULUSOY

1.00

S
U 0.95
C
C
E
S
S 0.90

R
A
T
I 0.85
O

0.80

/ / > * - - - x C P
/

/ o- - ~ P I

: : P B

o- ¢O P T

I I I I 1 I I [

1 2 3 4 5 6 7 8 9 10

NUMBER OF REPLICAS

Figure 8. success-ratio vs N (number of data replicas) with application type RO_REM.

low, The other restart-based protocol PB also provides better performance than protocol PI
unless data replication is high. The best performance with CP is obtained when threshold
h is assigned a very small value (i.e., when each lock conflict is resolved by applying
PB unless the low priority lock holding transaction is near completion). As shown in
the figure, where the results for CP were obtained by setting h to 2, CP provides a little
bit improvement in the performance of PB under low levels of replication. As the level
of replication increases, the performance of the protocols becomes closer, and near full
replication all the protocols behave similarly. The improvement in the performance of PI
at each extra data copy is greater than that of the other protocols. This result is due to the
fact that aborting a transaction becomes more expensive (with protocols PB, CR and OPT)
as the number of copies of the data items updated by the transaction increases.

The comparative performance results of the protocols obtained for different data repli-
cation levels with application types U P _ L O C and U P _ R E M are completely different from
those of R O ~ E M discussed above. The s u c c e s s - r a t i o results for the concurrency control
protocols with U P _ R E M are displayed in Figure 9. Protocol PI, in this case, provides better
performance than protocols PB and OPT for the entire N range explored. Protocol CP, with
a threshold h value of 4, can provide a slight improvement in the performance of PI. It can
be seen from the figure that for an application where the majority of transactions are update
type, having multiple copies of data items does not help transactions satisfy their timing
constraints. Increasing the level of data replication results in worse performance for all the
concurrency control protocols employed. However, the blocking-based protocol PI seems
to be the one that is affected least by that increase. It can be concluded that the overhead of
executing a blocking-based concurrency control protocol is less than that of a restart-based
one when update transactions dominate in the system. This result is similar to what we
observed in the experiment of Section 5.1 (where almost half of the transactions were update

PROCESSING REAL-TIME TRANSACTIONS 429

S
U
C
C
E
S
S

R
A
T
I
O

0.70

0.60

0.50 -

0.40 -

0.30 -

>+---xC P " " " , o .
o - - - o P I

= : P B " - - . .

o- oO P T

0.20 a I I I I I I ,
1 2 3 4 5 6 7 8 9 10

NUMBER OF REPLICAS

Figure 9. success-ratio vs N (number of data replicas) with application type UP_REM.

type) under high levels of transaction load. As the level of replication increases, the per-
formance difference becomes more between the protocol that uses blocking as the conflict
resolution strategy (i.e., PI) and the protocols that employ transaction restart in resolving
data conflicts (i.e., PB and OPT). Similar performance characteristics were obtained with
application type U P _ L O C .

A quorum-based replica control scheme was also employed in our simulations. In this
scheme, a read request on a data item is honored only when a read quorum of q~ copies
can be accessed. Similarly, to perform a write operation on a data item, a write quorum
of qw copies must be updated. The conditions 2q~, > N and qr ÷ qw > N ensure that
each write quorum of a data item has at least one copy in common with every read quorum
and every write quorum of the item. la A version number is maintained with each copy,
which is initially 0. Performing a write operation of a transaction requires each cohort
of the transaction executing on a copy of a write quorum to send the version number of
that copy to the master process. After collecting the version numbers of all copies, the
master process determines the maximum version number, increments it, and broadcasts
that version number to the relative sites to be assigned to each copy. A cohort performing a
read operation returns the version number of the data item copy along with the data value.
The master process selects the copy in the read quorum with the highest version number
which gives the most recent value of the data item. A read (write) operation on a data item
fails if q~ (qw) copies are not available when requested. The availability can be defined as
the fraction of time (or probability) for which we are able to form a quorum.

The experiment that evaluates the effects of level of data replication on system perfor-
mance was repeated by employing the quorum-based replica control scheme. Comparing
the results illustrated in Figure 10 to those obtained with the read-one, write-all-available
scheme (Figure 7), it can be seen that for query-dominant application environments (i.e.,

430 ULUSOY

S
U
C
C
E
S
S
tt
A
T
I
O

1.0

0.9-

0.8-

0.7-

0.6

0.5

0.4

/

" " R O . _ L O C

o - . e R O _ R E M

----G -~. o o U P . . L O C

.... ~ e - t - ' - ' h U P . _ R E M

~---&2:~.. _

I I I I I I I I

2 3 4 5 6 7 8 9 10

NUMBER OF REPLICAS

Figure 10. success-ratio vs N with a quorum-based replica control scheme.

R O _ L O C and R O _ R E M) the quorum-based scheme leads to noticeably worse performance
under high levels of replication. Even if there exists a local copy of the data item re-
quested for a read operation, some remote copies of the item must also be accessed to
build a read quorum. Thus, more communication overhead is incorporated in the quorum-
based scheme. Under update-oriented transaction execution environments (i.e., U P L O C

and U P _ . R E M) , although the quorum-based scheme was expected to perform much better
than the read-one, write-all-available scheme (because less number of copies is involved
in each write operation), there is very little additional gain in performance. One fact that
can lead to this result is the overhead experienced with the quorum-based scheme due to
the communication messages carrying the version numbers of data item copies that need to
be adjusted at each write operation. The relative performance of the concurrency control
protocols was not sensitive to the replica control scheme employed. The results discussed
lead to the general observation that the basic consideration in the selection of the replica
control scheme to implement should be the workload characteristics (i.e., read-write ratios)
of the underlying application.

Before closing this section, we want to make a point about the comparison of our results
to those obtained in some previous works of evaluating the effects of data replication on
the performance of conventional (non real-time) database systems. In terms of system
throughput and/or average response time of transactions, it was agreed in general that in-
creasing replication leads to some performance degradation due to the overhead of updating
data copies [7, 12, 14]. Taking the advantage of replication is possible o/lly under certain
conditions, like light transaction loads or few number of data updates. As stated before,
our evaluations in RTDBSs considered the fraction of satisfied transaction deadlines to be
the basic performance measure. It was observed in our work that data replication does not
always lead to poor performance in processing real-time transactions. Our results showed

PROCESSING REAL-TIME TRANSACTIONS 431

1.0

S
U 0.9
C
C
E
S
S 0.8

R
A
T
I 0.7
0

0.6

" ~ N = 3
- t - - - -+N = 5

I I I

0.02 0.04 0.06 0.08 0.10

mttr / mtb f

Figure 11. success-ratio vs mttr/mtl~f

that, unless the majority of the application transactions are update-oriented and/or most
data accesses are remote, having a few copies of data is preferable to not replicating it at
all. Another aspect of replication that has to be considered is the reliability provided in the
face of failures. Even if the performance gain obtained by replicating data might be small,
a reliable system is very crucial to RTDBSs. The issue of reliability is addressed in the
next section.

5.3. Performance under different reliability levels

Another interesting experiment was the evaluation of the performance under different values
of the failure parameter mtbf; in other words, under different system reliability levels. The
larger the value of mtbf, the more reliable is the system. This experiment was repeated
for different levels of data replication. Figure 11 illustrates the performance results for N
values of 1, 2, 3, and 5. PI is the concurrency control protocol employed in this experiment.
The range of values used for parameter mtbfwas [7200 sec, 36000 sec], which corresponds
to a mttr/mtbfratio of [. 10,.02]. The tr_type_prob value chosen for this experiment was 0.5,
and data accesses of each transaction were uniformly distributed over all sites. The value
of parameter iat was again fixed at 400 msec. It can easily be seen from the figure that
the effect of failure frequency on the performance of the system increases as the level of
data replication decreases. If the distributed database system is nonreplicated (N = 1),
success-ratio sharply decreases as the sites fail more often. Availability of data items is
increased by having multiple copies of the items at different sites. The performance, in
terms of success-ratio, is less affected by failures with each additional copy of the data
items; however, some degradation is still seen. The graph for N >_ 4 is relatively flat,

432 ULUSOY

because operation failures due to data unavailability were not observed for high levels of
replication even under the most frequent site failure case tested. The results for N = 5
were chosen as representative for this situation. The slight degradation in performance
as mttr/mtbf increases can be explained by the overhead of more frequent site recoveries,
and the fact that there is less useful work at each site due to increasing number of down
periods. It should also be noted that, as site failures become more frequent, it becomes
more desirable to have high levels of data replication to obtain better performance. If a
distributed RTDBS experiences site failures quite often, having a few copies of data items
at multiple sites helps a lot in improving the performance.

6. Conclusions

The primary performance consideration in a real-time database system (RTDBS) (i.e., a
database system that processes transactions with timing constraints) is to provide schedules
that maximize the number of satisfied timing constraints. Data replication is an important
concept that needs to be explored in studying the performance aspects of distributed RT-
DBSs. It may be desirable to replicate data because of certain advantages provided, such as
high data availability and potentially improved read performance. However, under certain
conditions, the overhead of synchronizing multiple copy updates can become a considerable
factor in determining performance. In this paper, we tried to identify the conditions under
which data replication can help real-time transactions satisfy their timing constraints.

A detailed model of a distributed RTDBS was employed in evaluating the impact of
data replication on the system performance. Each transaction processed in the system
was associated with a timing constraint in the form of a deadline and a criticalness factor
representing the importance of the transaction. A unique priority was assigned to each
transaction based on its criticalness and deadline. The performance of the system was
specified in terms of the fraction of satisfied transaction deadlines. The criticalness of
satisfied deadlines was also considered in determining performance. Four priority-based
concurrency control protocols, three locking-based and one optimistic, were employed in
performance evaluations. The protocols are different in the way real-time priorities of
transactions are involved in scheduling data access requests. The priority-based conflict
resolution protocol (PB) aborts a low priority transaction when one of its locks is requested
by a higher priority transaction. The priority inheritance protocol (PI) always blocks a lock-
requesting transaction and allows a low priority transaction to execute at the highest priority
of all the higher priority transactions it blocks. The conditional priority inheritance protocol
(CP) resolves a lock conflict by applying either one of protocols PB and PI, depending on
the age of the lock-holding transaction. The wait-50 optimistic protocol (OPT) performs a
conflict check at the commit time of a transaction, and in the case of a conflict if at least 50
percent of the conflicting transactions have higher priority than the committing transaction,
the transaction is blocked until the high priority transactions complete; otherwise, it is
allowed to commit while the conflicting transactions are aborted. Protocol PI employs
only transaction blocking in resolving data conflicts, while the other protocols use both
transaction blocking and transaction restart.

PROCESSING REAL-TIME TRANSACTIONS 433

Different application types were considered in evaluating the effects of level of data
replication on satisfying transaction deadlines. Each type considered is characterized by
the fraction of update transactions processed and the distribution of accessed data items
(local vs remote). In execution environments where queries predominate and the data items
at all sites are accessed uniformly, increasing the level of replication helped transactions
meet their deadlines. For the application types where the majority of processed transactions
are of update type, having many data copies was not attractive. This result was due to the
fact that the overhead of update synchronization among the multiple copies of updated
data increases with each additional data copy. Concurrency control protocols PB and
OPT, which employ restarts in scheduling, exhibited better performance than protocol PI
in query-based application environments when the level of data replication was low. Under
the same conditions, the execution of protocol CP proved that it is possible to improve the
performance of protocol PB if protocol PI is applied once the lock-holding transaction in a
conflict is near completion.

With update-oriented applications protocol PI outperformed protocols PB and OPT, lead-
ing to the result that the overhead of executing a blocking-based concurrency control pro-
tocol is less than that of a restart-based one when the update transactions dominate in
the system. Protocol PI becomes more preferable as the level of data replication increases,
since the performance of restart-based protocols is affected more negatively by the increased
overhead of multiple copy updates. Aborting a transaction becomes more expensive as the
number of copies of the data items updated by the transaction increases. By employing
protocol CP, it was shown that aborting a lock-holding transaction should be considered
only in the case that the transaction is at the early stages of its execution.

[44] provides an evaluation of some concurrency control protocols in a single-site RTDBS.
In that work, protocol PB was shown to perform better than protocol PI under various
conditions. However, as discussed above, in a distributed RTDBS PB can beat PI only
under query-based application environments and when the level of data replication is low.
These two observations lead to the conclusion that restart-based protocols (like PB) are
superior to blocking-based protocols (like PI) as long as the overhead of transaction aborts
is not high. As the data becomes more distributed and replicated, the increased overhead
of transaction aborts causes PB to perform worse than PI. Huang et al. also found that PB
performs better than PI in a single-site RTDBS [25]. Similar to our findings in this paper,
they showed that protocol CP can improve the performance of PB by applying PI for the
transactions near completion. The performance of protocol OPT in a single-site RTDBS
was found to be good only under light transaction loads [44]. This result agrees with our
findings for the performance of OPT in a replicated RTDBS.

We also studied the impact of site failures on system performance under different system
reliability levels. Investigating the effectiveness of data replication in preventing the effects
of site failures, we observed that replication turns out to be more desirable as site failures
become more frequent.

The results of our performance experiments led to the following general observation: the
optimum number of data replicas to provide the best performance in RTDBSs depends upon
the fraction of update operations required by the application, the distribution of accessed

434 ULUSO¥

data items, and the reliability of data sites. In general, as few as 2 or 3 copies appeared to
be a good choice under the parameter ranges explored.

Acknowledgment

I would like to thank Prof. Geneva G. Belford and Prof. Benjamin Wah of University of
Illinois, and the anonymous reviewers for their comments and suggestions on previous
versions of the paper.

Notes

1. This work was initiated while the author was at the Computer Science Department, University of Illinois at
Urbana-Champaign.

2. The results of the experiments performed with a quorum-based scheme are provided in Section 5.2.

3. The recovery procedure is detailed in Section 3.3.3.

4. A dynamic priority assignment policy, which evaluates the transaction priorities continuously, was not imple-
mented due to the considerable overhead incurred by calculation of the priorities whenever needed.

5. D T -- A T specifies the relative deadline of transaction T.

6. In simulations, the value of proportionality factor was taken as 0.1 msec [44]; i.e., (0.1 msec • the number of
edges in the WFG) is the CPU time spent by the scheduler checking for a deadlock.

7. The time period between consecutive global deadlock detection was chosen as 10 seconds in the simulations.

8. The level of replication corresponds to the number of copies that exist for each data item.

9. Aborting the failed transaction was another method considered in our simulations. It is provided by this
method that the transactions blocked by a failed transaction do not have to stay blocked until the data item
required by that transaction becomes available. However, the performance of the system was not affected
considerable by the change in the strategy handling failed transactions, because, as discussed in the Simulation
Experiments section, the number of failed operations due to unavailability of data was observed to be very few
in the experiments.

10. At the originating site of Ti, this record is placed in the local log upon the arrival of Ti. At a remote site, the
record is inserted in the log when a cohort of Ti is submitted to that site.

11. Average database size at each site is db_size = N * local_db-size ---- 1000 data items.

12. For the parameter ranges explored.

13. The values of qr and qw in our experiments were determined by using the following two equations:

q w = I - ~ l , q r + q w = N + 1

References

1. Abbott, R. and Garcia-Molina, H., "Scheduling Real-Time Transactions: A Performance Evaluation," 14th
International Conference on Very Large Data Bases, 1988, pp. 1-12.

2. Abbott, R. and Garcia-Molina, H., "Scheduling Real-Time Transactions with Disk Resident Data," 15th
International Conference on Very Large Data Bases, 1989, pp. 385-396.

3. Abbott, R. and Garcia-Molina, H., "Scheduling I/O Requests with Deadlines: A Performance Evaluation,"
l l th Real-Time Systems Symposium, 1990, pp. 113-124.

PROCESSING REAL-TIME TRANSACTIONS 435

4. Abb•tt• R. and Garcia-M••ina• H.• "Schedu•ing Rea•-Time Transacti•ns: A Perf•rmance Evaluati•n••• ACM
Transactions on Database Systems, vol. 17, pp. 513-560, 1992.

5. Agrawal, D., E1 Abbadi, A. and Jeffers, R., "Using Delayed Commitment in Locking Protocols for Real-Time
Databases," ACM S1GMOD Conference, 1992, pp. 104-113.

6. Baiter, R., Berard, P., and Decitre, P., "Why Control of Concurrency Level in Distributed Systems is More
Fundamental Than Deadlock Management," 1st ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, 1982, pp. 183-193.

7. Barbara, D. and Garcia-Molina, H., "How Expensive is Data Replication? An Example," 2nd International
Conference on Distributed Computing Systems, 1982, pp. 263-268.

8. Bernstein, P.A. and Goodman, N., "An Algorithm for Concurrency Control and Recovery in Replicated
Distributed Databases," ACM Transactions on Database Sy)~tems, vol. 9, pp. 596-615, 1984.

9. Bernstein, P.A., Hadzilacos, V., and Goodman, N., Concurrency Control and Recovery in Database Systems,
Addison-Wesley, 1987.

10. Biyabani, S.R., Stankovic, J.A., and Ramamritham, K., "The Integration of Deadline and Criticalness in
Hard Real-Time Scheduling," 9th Real-Time Systems Symposium, 1988, pp. 152-160.

11. Carey, M.J., Jauhari, R., and Livny, M., "Priority in DBMS Resource Scheduling," 15th International
Conference on Very Large Data Bases, 1989, pp. 397--410.

12. Carey, M.J. and Livny, M., "Conflict Detection Tradeoffs for Replicated Data," ACM Transactions on
Database Systems, vol. 16, pp. 703-746, 1991.

13. Chen, S., Stankovic, J.A., Kurose, J., and Townley, D., "Performance Evaluation of Two New Disk Scheduling
Algorithms for Real-Time Systems," Real-Time Systems Journal, vol. 3, pp. 307-336, 1991.

14. Ciciani, B., Dias, D.M:, and Yu, P.S., "Analysis of Replication in Distributed Database Systems," IEEE
Transactions on Knowledge and Data Engineering, vol. 2, pp. 247-261, 1990.

15. Galler, B.I. and Bos, L., "A Model of Transaction Blocking in Databases," Performance Evaluation, vol. 3,
pp. 95-122, 1983.

16. Garcia-Molina, H., "Reliability Issues for Fully Replicated Distributed Databases," IEEE Computer, vol. 15,
pp. 34~2, 1982.

17. Garcia-M••ina• H.• "The Future •f Data Rep•icati•n•'• 5th Symp•sium •n Reliable Distributed Systems• • 986•
pp. 13-19.

18. Garcia-Molina, H. and Abbott, R.K., "Reliable Distributed Database Management," Proceedings of the
1EEE, vol. 75, pp. 601-620, 1987.

19. Haritsa, J.R., Carey, M.J., and Livny, M., "On Being Optimistic About Real-Time Constraints," ACM
S1GACT-S1GMOD-SIGART, 1990, pp. 331-343.

20. Haritsa, J.R., Carey, MA., and Livny, M., "Dynamic Real-Time Optimistic Concurrency Control," l l th
Real-Time Systems Symposium, 1990, pp. 94-103.

21. Haritsa, J.R., Carey, MJ., and Livny, M., "Value-Based Scheduling in Real-Time Database Systems," Tech-
nical Report No. 1024, Dept. of Computer Science, University of Wisconsin-Madison, 1991.

22. Haritsa, J.R., Carey, M.J., and Livny, M., "Data Access Scheduling in Firm Real-Time Database Systems,"
Real-Time Systems, vol. 4, pp. 203-241, 1992.

23. Huang, J., Stankovic, J.A., Towsley, D., and Ramamritham, K., "Experimental Evaluation of Real-Time
Transaction Processing," lOth Real-Time Systems Symposium, 1989, pp. 144-153.

24. Huang, J., Stankovic, J.A., Ramamritham, K., and Towsley, D., "Experimental Evaluation of Real-Time
Optimistic Concurrency Control Schemes," 17th International Conference on Very Large Data Bases, 1991,
pp. 35M-6.

25. Huang, J., Stankovic, J.A., Ramamritham, K., and Towsley, D., "On Using Priority Inheritance In Real-Time
Databases," 12th Real-Time Systems Symposium, 1991, pp. 210-221.

26. Kim, W. and Srivastava, J., "Enhancing Real-Time DBMS Performance with Multiversion Data and Priority
Based Disk Scheduling," 12th Real-Time Systems Symposium, 1991, pp. 222-231.

27. Korth, H.E and Silberschatz, A., Database Systems Concepts, 2nd Edition, McGraw-Hill, 1991.
28. Lin, W. and Nolte, J., "Basic Timestamp, Multiple Version Timestamp, and Two-Phase Locking," 9th

International Conference on Very Large Data Bases, 1983, pp. 109-119.
29. Noe, J.D. and Andreassian, A., "Effectiveness of Replication in Distributed Computer Networks," 7th

International Conference on Distributed Computing Systems, 1987, pp. 508-513.
30. 13zsoyo~lu, G., Ozsoyo~lu, Z.M., and Hou, W.C., "Research in Time and Error-Constrained Database Query

Processing," 7th 1EEE Workshop on Real-Time Operating Systems and Software, 1990, pp. 32-38.

436 ULUSOY

31. Ozsu, M.T., "Performance Comparison of Distributed vs Centralized Locking Algorithms in Distributed
Database Systems," 5th International Conference on Distributed Computing Systems, 1985, pp. 254-261.

32. Ramamritham, K., "Real-Time Databases," to appear in International Journal of Distributed and Parallel
Databases, 1993.

33. Schlicting, R.D. and Schneider, EB., "Fail-Stop Processors: An Approach to Designing Fanlt-Tolerant
Computing Systems," ACM Transactions on Computer Systems, vol. 1, pp. 222-238, 1983.

34. Schwetman, H., "CSIM: A C-Based, Process-Oriented Simulation Language," Winter Simulation Confer-
ence, 1986, pp. 387-396.

35. Sha, L., Rajkumar, R., and Lehoczky, J., "Concurrency Control for Distributed Real-Time Databases," ACM
SIGMOD Record, vol. 17, no. 1, pp. 82-98, 1988.

36. Sha, L., Rajkumar, R., and Lehoczky, J., "Priority Inheritance Protocols: An Approach to Real-Time Syn-
chronization," IEEE Transactions on Computers, vol. 39, pp. 1175-I 185, 1990.

37. Sha, L., Rajkumar, R., Son, S.H., and Chang, C.H., "A Real-Time Locking Protocol," 1EEE Transactions
on Computers, vol. 40, pp. 793-800, 1991.

38. Singhal, M., "A Fully-Distributed Approach to Concurrency Control in Replicated Database Systems," I2th
International Computer Software and Applications Conference, 1988, pp. 353-360.

39. Singhal, M., "Update Transport: A New Technique for Update Synchronization in Replicated Database
Systems," IEEE Transactions on Software Engineering, vol. 16, pp. 1325-1336, 1990.

40. Son, S.H. and Chang, C.H., "Performance Evaluation of Real-Time Locking Protocols Using a Distributed
Software Prototyping Environment," lOth International Conference on Distributed Computing Systems,
1990, pp. 124-131.

41. Son, S.H. and Kouloumbis, S.,"Performance Evaluation of Replication Control Algorithms for Distributed
Database Systems," Technical Report, CS-TR-9-11, University of Virginia, 1991.

42. Son, S.H., Park, S., and Lin, Y., "An Integrated Real-Time Locking Protocol," 8th International Conference
on Data Engineering, 1992, pp. 527-534.

43. Ulusoy, 0. and Belford, G.G., "Real-Time Lock Based Concurrency Control in a Distributed Database
System," 12th International Conference on Distributed Computing Systems, 1992, pp. 136-143.

44. Ulusoy, 6 , "Concurrency Control in Real-Time Database Systems," Technical Report, UIUCDCS-R-92-
1762, University of Illinois at Urbana-Champaign, 1992.

