
The VLDB Journal
https://doi.org/10.1007/s00778-023-00809-w

REGULAR PAPER

xDBTagger: explainable natural language interface to databases using
keyword mappings and schema graph

Arif Usta1 · Akifhan Karakayali2 ·Özgür Ulusoy3

Received: 10 October 2022 / Revised: 26 April 2023 / Accepted: 31 July 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Recently, numerous studies have been proposed to attack the natural language interfaces to data-bases (NLIDB) problem by
researchers either as a conventional pipeline-based or an end-to-end deep-learning-based solution. Although each approach
has its own advantages and drawbacks, regardless of the approach preferred, both approaches exhibit black-box nature, which
makes it difficult for potential users to comprehend the rationale behind the decisions made by the intelligent system to
produce the translated SQL. Given that NLIDB targets users with little to no technical background, having interpretable and
explainable solutions becomes crucial, which has been overlooked in the recent studies. To this end, we propose xDBTagger,
an explainable hybrid translation pipeline that explains the decisionsmade along theway to the user both textually and visually.
We also evaluate xDBTagger quantitatively in three real-world relational databases. The evaluation results indicate that in
addition to being lightweight, fast, and fully explainable, xDBTagger is also competitive in terms of translation accuracy
compared to both pipeline-based and end-to-end deep learning approaches.

Keywords Natural language interface for databases · NLIDB · Text-to-SQL · Multi-task learning · Explainable artificial
intelligence · XAI

1 Introduction

SQL is used as a standard tool to extract data out of a
relational database. Although SQL is a powerfully expres-
sive language, even technically skilled users have difficulties
using SQL. Along with the syntax of SQL, one has to know
the schema underlying the database upon which the query is
issued, which further causes hurdles in using SQL. Conse-
quently, casual users find it even more challenging to express
their information needs, which makes SQL less desirable. To
remove this barrier, an ideal solution is to provide a search
engine-like interface in databases. The goal of NLIDB is to
break through these barriers to make it possible for casual

B Arif Usta
arif.usta@uwaterloo.ca

Akifhan Karakayali
akifhan.karakayali@tcmb.gov.tr

Özgür Ulusoy
oulusoy@cs.bilkent.edu.tr

1 University of Waterloo, Waterloo, ON, Canada

2 The Central Bank of the Republic of Türkiye, Ankara, Turkey

3 Bilkent University, Ankara, Turkey

users to employ their natural language to extract informa-
tion.

Recently, many works have been developed attacking
the NLIDB problem; such as conventional pipeline-based
approaches [3, 35, 43, 45, 53] or end-to-end deep-learning-
based approaches [19, 28, 36, 44, 50, 52, 57, 60]. Neural
network-based solutions seem promising in terms of trans-
lation accuracy and robustness, covering semantic variations
of queries. However, they struggle with queries requiring
translation of complex SQL queries, such as aggregation
and nested queries, especially if they include multiple tables.
They also have a huge drawback in that they need many
SQL-NL pairs for training to perform well, which makes
pipeline-based or hybrid solutions still an attractive alterna-
tive. [40].

Whether it is a pipeline-based or an end-to-end deep learn-
ing approach, existing solutions have black-box nature when
it comes to outputting translated SQL. Being a black-box
solution makes it difficult for users to understand how the
result SQL is produced along the way, which is a vital defec-
tiveness for any modern intelligent system that should aim to
gain the trust of the users [20]. This undesirable property of
NLIDB solutions becomes much more consequential in an

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00809-w&domain=pdf
http://orcid.org/0000-0001-6713-6621


A. Usta et al.

online scenario, especially for casual users (i.e., users with
little to no technical expertise in SQL), who are the primary
potential audience targeted by the problem of NLIDB.

In a recently published survey covering NLIDB, authors
asserted that translation is only one part of an ideal interface,
and hence researchers must complement these solutions with
other problems such as query explanation in order to effec-
tively serve all users with diverse technical background [30].
Although NLIDB is a well-studied problem in the literature,
the transparency and explainability of the proposed solu-
tions have been overlooked. An intelligent system such as an
NLIDB solution has to be transparent and self-explanatory
to the user so that they can comprehend the decisions made
by the system. As highlighted by many previous studies
[17, 18, 20, 41], having an explainable intelligent system
exhibits many benefits including but not limited to improv-
ing users’ trust in the system, helping users understand the
decisions made by the system, and showing the limitations of
the systems for certain use-cases, all of which can be instru-
mental towards developingmore user friendly and preferable
NLIDB systems.

Consider the below pair of NL query and SQL translation
from a movie database domain to understand better how an
explainable NLIDB solution would be handy and, in fact,
essential for users to reason with the results:

NL Query 1 Who is the director of the series House of Cards
produced by Netflix?

Translated SQL 1 Select * From
tv_series, copyright, company,
directed_by, director
Where (tv_series.msid = copyright.msid)
and (copyright.cid = company.cid)
and (tv_series.msid = directed_by.msid)
and (directed_by.did = director.did)
and (tv_series.title = "House of Cards")
and (company.name = "Netflix")

Although such a SQL query is easy to understand for an
expert user at a glance, it is difficult to interpret for casual
users, which are the ones targeted by the NLIDB problem.
In the above query, there are 2 keywords, House of Cards
and Netflix, found under the attributes title and name of their
respective entity tables tv_series and company. However, to
find the corresponding tuple(s) matching these two values
from different tables, SQL requires a join operation; in this
case, a 5-way join. The subsequent four lines after theWhere
clause in the above example represent conditions to ensure
the right join. More importantly, although one needs access
to 3 entity tables; 2 (tv_series and company) for utterances
found in the query and 1 (director) for the desired informa-
tion asked by the user, SQL requires two more intermediate
tables, copyright and directed_by, to complete the join. In

an ideal NLIDB, the story behind the translated SQL, such
as above, should be provided to the user to some extent. In
addition to the explanations needed for understanding SQL
structure, the NLIDB system should also ideally give expla-
nations for how itmatches schema elements (e.g., three tables
and two attributes for the above example) to the correspond-
ing utterances.

To address above-mentioned concerns, we propose an
explainable, end-to-end NLIDB solution, Explainable
DBTagger (xDBTagger), by extending our previous work
in [47]1. We embrace a holistic approach to propose a com-
plete solution which is efficient, scalable, and explainable
to serve all types of users regardless of their background in
addition to being competitively effective. xDBTagger is a
hybrid solution utilizing both deep learning and rule-based
approaches. To the best of our knowledge, xDBTagger is the
first study exercising explainable artificial intelligence (XAI)
paradigm in the NLIDB problem. In what follows, we list the
main contributions of our work:

– We use our previous work [47], which is a deep learn-
ing model specifically tailored for sequence tagging in
NLIDB, to extract keyword mappings given the NLQ.

– Wepropose anovelwrapper tailored for sequence tagging
problems around a state-of-the-artXAIwork, LIME [42],
to explain decisions made for keyword mappings output
for each token in NLQ.We provide explanations for each
keyword mapping corresponding to tokens in NLQ by
highlighting both the positive and negative contributions
of each surrounding token.

– We propose an effective and efficient SQL translation
algorithm suitable for explainability by utilizing keyword
mappings and schema graphs extending our previous
work in [47] by designing heuristics tailored to address
complex queries involving aggregates. We provide tex-
tual and visual explanations for the user to comprehend
how the translation algorithm works.

– We quantitatively evaluate the entire pipeline in three
publicly available datasets against both pipeline-based
and end-to-end deep learning approaches.

– We deploy xDBTagger in a user-friendly and inter-
pretable interface in which the user is presented the
translated SQL along with the explanations for the deci-
sions made throughout the pipeline.

The remainder of the paper is organized as follows. In the
next section, we give an overview of the system architecture
of xDBTagger. Section 3 presents the neural network struc-
ture we design for the keyword mapping step. We explain
how we modify LIME to produce explanations for keyword
mappings output by DBTagger in Sect. 4. We thoroughly

1 Available at https://github.com/arifusta/DBTagger

123

https://github.com/arifusta/DBTagger


xDBTagger: explainable natural language interface to databases using…

review themain components of the SQL extraction algorithm
in Sect. 5. In Sect. 6, we provide quantitative experimen-
tal results for both the keyword mapper and the entire SQL
translation pipeline (Sect. 6.2). In addition to quantitative
results, we illustrate the user interface and provide examples
of textual and visual explanations in the interface (Sect. 6.3).
We summarize the related work and conclude the paper in
Sects. 7 and 8, respectively.

2 System architecture

Figure 1 depicts an overview of the translation pipeline along
with explanation components to make the decision-making
throughout the pipeline interpretable. The workflow starts
with an inputNLQ from the user. The query first goes through
pre-processing, which removes special characters and punc-
tuations such as commas and quotes. After removing those
characters, the query is tokenized into words using spaces.
These tokens are then converted to 300-dimensional vector
representations using a pre-trained word embedding model.
In our implementation, we used a pre-trained fast-text [4]
model.

The output of the embeddingmodel X = [x1, x2, ..., xn] is
an array of 300-dimensional vectors where n is the length of
the query (i.e., the number of tokens in the NLQ). Each 300-
dimensional vector is a representation of each word in the
original query. Following that, X is fed as the input toDBTag-
ger model, which outputs corresponding keyword mappings
for each token in the query. DBTagger outputs 2 series of
outputs; 1 for type tags (i.e., schema element such as table,
attribute if the token is relevant for SQL translation or "O" if
irrelevant) and 1 for schema tags (i.e., deeper level tags such
as name of a table or an attribute) of the tokens in the NLQ.

We use LIME [42] to explain keyword mappings output
by DBTagger. LIME requires a black-box model which can
output prediction probabilities and raw input text for expla-
nation. To satisfy these conditions, we construct a DBTagger
Model Blackbox, which takes the raw text as input and gives
predictions with probabilities as output. Vanilla LIME tries
to explain a single classified output given a sequential input
text. However, it is not the case in our problem (i.e., sequence
tagging problem requiring a classification and, therefore,
an explanation for each token in the query). To alleviate
this issue, we implement a wrapper around LIME which is
explained in Sect. 4.1. This wrapper takes DBTagger Model
Blackbox, raw text input, and predicted output tags to pro-
duce an explanation for each token.

3 Keywordmapper—DBTagger

In this section, we first provide background information
about the neural network structure utilized for sequence tag-

ging problems such as Part-of-Speech (POS) tagging and
Name Entity Recognition (NER) in the NLP community.
Next, we explain the network structure of DBTagger, our
keyword mapper solution in the pipeline, by pointing out
modifications we introduce on top of the state-of-the-art
sequence tagging architecture to better capture characteris-
tics of the keywordmapping problem in the scope of NLIDB.
In particular,wedescribe howweutilize skip connections and
multi-task learning to exploit the observation we made that
POS tags are correlated to final mappings. Lastly, we dis-
cuss how we annotate three different class labels of tokens
to employ multi-task training.

3.1 Deep sequence tagger architecture

POS tagging and NER refer to sequence tagging problems
in NLP for a particular sentence to identify parts-of-speech
such as noun, verb, and adjective and locate any entity names
such as person and organization, respectively. Although both
problems are similar to each other in terms of being a classifi-
cation problem for eachword in a sentence, they differ in such
a way that for NER it is also vital to determine multi-word
boundaries for the classification, which is what we reduce
the keyword mapping problem to in NLIDB. Therefore, we
borrow the deep neural network architectures employed for
sequence tagging problems, such as NER, as a backbone in
our architecture.

Recurrent neural networks (RNN) are at the core of archi-
tectures utilized in the previous studies dealingwith sequence
tagging problems [27, 34, 37] since they are a family of net-
works that perform well on sequential data input such as a
sentence. In this particular problem, sequence tagging (key-
word mapping), RNNs are employed to output a sequence
of labels for the original sentence (the query), input as a
sequence of words.

In RNN networks, the basic goal is to carry past infor-
mation (previous words) to future time steps (future words)
to determine values of inner states and, consequently, the
final output, which makes them preferable architecture for
sequential data. Given xt as input at time step t , calculation
of hidden state ht at time step t is as follows:

ht = f (Uxt + Wht−1) (1)

U and W are constants representing weights that are
updated during training. In practice, however, RNN net-
works suffer from vanishing gradient problem; therefore,
the limitation was overcome by modifying the gated units of
RNNs; such as LSTM[24] andGRU [7]. Compared to vanilla
RNN, LSTM has forget gates and GRU comprises of reset
and update gates additionally. We experimented with both
structures and chose GRU for its better performance in our
experiments. InGRU,Update Gates decidewhat information

123



A. Usta et al.

Fig. 1 System architecture of xDBTagger

123



xDBTagger: explainable natural language interface to databases using…

to throw away and what new information to add, whereas
Reset Gate is utilized to decide how much past information
to forget. The calculation of GRU is as follows:

z = σ(Uz .xt + Wz .ht−1) (2)

r = σ(Ur .xt + Wr .ht−1) (3)

zt = tanh(Uz .xt + Ws .(ht−1 · r)) (4)

zt = σ(Uzxt + Wzht−1) (5)

In the sequence tagging problem, in addition to past infor-
mation, we also have future information at a given specific
time t . For a particular word wi , we know the preceding
words (past information) and succeedingwords (future infor-
mation), which can be further exploited in the particular
network architecture called, bi-directional RNN introduced
in [16]. Bi-directional RNN has two sets of networks with
different parameters called forward and backward. The con-
catenation of the two networks is then fed into the last layer,
where the output is determined. This process is demonstrated
in Fig. 2.

Sequence tagging is a supervised classification problem
where the model tries to predict the most probable label
from the output space. For that purpose, although conven-
tional softmax classification can be used, conditional random
field (CRF) [33] is preferred. Unlike independent classifica-
tion by softmax, CRF tries to predict labels sentence-wise
by considering labels of the neighboring words as well. This
feature of CRF is what makes it an attractive choice, espe-
cially in a problem like keyword mapping. This finding was
also reported in [34], where authors claim that CRF as the
output layer gives 1.79 more accuracy compared to the soft-
max layer in NER task. The final outlook of the architecture
of deep sequence tagger is depicted in Fig. 2.

3.2 DBTagger architecture

Formally, for a given NL query, input X becomes a series
of vectors [x1, x2, ...xn] where xi represents the i th word in
the query. Similarly, output vector Y becomes [y1, y2, ...yn]
where yi represents the label (actual tag) of the yth word in
the query. Input must be in numerical format, which implies
that a numerical representation of words is needed. For that
purpose, the word embedding approach is state-of-the-art in
various sequence tagging tasks in NLP [9] before feeding
into the network. So, the embedding matrix is extracted for
the given query, W ∈ Rnxd , where n is the number of words
in the query and d is the dimension of the embedding vector
for each word. For the pre-calculated embeddings, we used
fastText [4] due to it being one of the representation tech-
niques considering sub-word (character n-grams) as well to
deal with the out-of-vocabulary token problem better.

We consider G to be two-dimensional scores of output by
the uni-directional GRU with size n × k where k represents
the total number of tags. Gi, j refers to score of the j th tag
for the i th word. For a sequence Y and given input X , the last
CRF layer defines tag scores as;

s(X ,Y ) =
n∑

i=1

Ayi ,yi+1 +
n∑

i=1

Gi,yi (6)

where A is a transition matrix in which Ai, j represents
the score of a transition from the i th tag to the j th tag. After
finding scores, the probability of the sequence Y is calculated
as:

p(Y |X) = es(X ,Y )

∑
Ȳ∈Yx e

s(X ,Ȳ )
(7)

Fig. 2 Deep sequence tagger
network

123



A. Usta et al.

where Ȳ refers to any possible tag sequence. During
training, we maximize the log-probability of the correct tag
sequence, and for the inference, we simply select the tag
sequence with the maximum score.

In our architecture,we utilizeMulti-task learning by intro-
ducing two other related tasks; POS and type levels (shown
in Fig. 3). The reason we apply multi-task learning is to try
to exploit the observation that actual database tags of the
tokens in the query are related to POS tags. Besides, multi-
task learning helps to increase model accuracy and efficiency
by making more generalized models with the help of shared
representations between tasks [6]. As a multi-task training
paradigm, POS and Type tasks are trained together with
schema task to improve the accuracy of schema (final) tags.
The multi-task learning architecture is shown in Fig. 3. It
has mainly two components; a shared encoder producing a
common representation to be used in each task and a sepa-
rate but same CRF layer to classify tokens according to each
task. Therefore, we use the same loss function for each task

as described above. To combine the losses, we employed
a linear weighted sum technique, which is an intuitive and
common way to combine multiple tasks [6, 10, 29].

To further exploit the information carried for individ-
ual tasks into other tasks and eventually into our final task
(i.e., schema tags), we additionally utilize skip-connection
paradigm. Skip connection is used to introduce extra node
connections between different layers by skipping layers or
directly forwarding an output to another unit in the architec-
turewithout applying non-linear activation functions to allow
gradients to flow without exploding or vanishing. With skip
connections, the model provides an alternative for gradient
to back propagation, which eventually helps in convergence.
The technique has become compulsory component in many
neural architectures deployed in the computer vision com-
munity, such as the famous architectures ResNet [21] and
DenseNet [25]. In the architecture of DBTagger, for each
task except the first one (POS), we additionally feed the out-
put of the uni-directional GRU layer of the previous task into

Fig. 3 DBTagger network

123



xDBTagger: explainable natural language interface to databases using…

the CRF layer of the next task (i + 1th task). With these con-
nections, we further carry the information of previous tasks
to later tasks and eventually to the final task, schema tagging.

3.3 Annotation scheme

We tackle keyword mapping as a sequence tagging problem,
which is a supervised classification problem. In our problem
formulation, every token (i.e., words in the natural language
query) associates three different tags: part-of-speech (POS)
tag, type tag, and schema tag. In the following subsections,
we explain howwe extract or annotate each of them in detail.

3.3.1 POS tags

To obtain the POS tags of our natural language queries, we
used the toolkit of Stanford Natural Language Processing
Group named Stanford CoreNLP [38]. We use them as they
are output from the toolkit without doing any further pro-
cessing since the reported accuracy for POS Tagger (97%) is
sufficient enough.

3.3.2 Type tags

In each natural language query, there are keywords (words or
consecutivewords)which can bemapped to database schema
elements such as table, attribute, or value. We divide this
mapping into two levels; type tagging and schema tagging.
Type tags represent the type of the mapped schema element
to be used in the SQL query. In total, we have seven different
type tags;

Table 1 An exampleNLquerywith its tags corresponding to eachword
in two target levels

NLQ Type Tag Schema Tag

Who O O

is O O

the O O

director TABLE director

of O O

the O O

series TABLE tv_series

House VALUE tv_series.title

of VALUE tv_series.title

Cards VALUE tv_series.title

produced TABLEREF copyright

by O O

Netflix VALUE company.name

– TABLE: NLQs contain nouns that may inhibit direct
references to the tables in the schema, and we tag such
nouns with TABLE tag. In the example NL query given
in Table 1, noun director has a type tag as TABLE, which
also supports the intuition that schema labels and pos tags
are related.

– TABLEREF: Although the primary sources for table ref-
erences are nouns, some verbs contain references to the
tables, most of which are relation tables. TABLEREF
tag is used to identify such verbs. Revisiting the example
given in Table 1, the verb produced refers to the table
copyright, and therefore it is tagged with TABLEREF to
differentiate better the roles of POS tags in the query.

– ATTR: In SQL queries, attributes are mostly used in
SELECT, WHERE, and GROUP BY clauses. Natural
language queries may contain nouns that can be mapped
to those attributes. For instance, in the query “In what
year was Benedict Cumberbatch born?”, year has a noun
and ATTR labels for POS and type tags, respectively. We
use the ATTR tag for labeling such nouns in natural lan-
guage queries.

– ATTRREF: Like the TABLEREF tag, the ATTRREF
tag is used to tag the verbs in the natural language query
that can bemapped to the attributes in the SQL query. For
instance, in the query “List all the Sci-Fi movies released
in 2010?”, released has VDB (i.e., verb) as a label for
the POS tag, whereas it refers to release_year attribute
in the movie table.

– VALUE: In NLQs, there are many entity-like keywords
that need to be mapped to their corresponding database
values. These words are mostly tagged as Proper noun-
NNP such as the keywordHouse of Cards in the example
query. In addition to these tags, it is also likely for a
word to have a noun-NN POS tag with a Value tag corre-
sponding to schema level. In order to handle these cases
having different POS tags, we have Value type tags (e.g.,
House keyword in the example query is part of a keyword
that needs to be mapped as value to tv_series.title). Key-
words with Value tags can later be used in the translation
to determine "where" clauses in SQL.

– COND: After determining which keywords in the query
are to be mapped as values, it is also important to identify
the words that imply which type of conditions to be met
for the SQL query. For instance, there is no specific word
that has COND as a schema label for the given query in
Table 1, whereas for the query “List all the Sci-Fi movies
released in 2010?”, in indicates an equality predicate,
and hence COND as schema label. For that purpose, we
have the COND type tag.

– O (OTHER): This type of tag represents words in the
query that are not needed to be mapped to any schema
instrument related to the translation step.Most stopwords

123



A. Usta et al.

in the query (e.g., the) fall into this category. Example
words are shown in Table 1.

3.3.3 Schema tags

Schema tags of keywords represent the database mapping
that the keyword is referring to, the name of a table, or the
attribute. Tagging a keyword with a type tag is important yet
incomplete. To find the exact mapping the keyword refers to,
we define a second-level taggingwhere the output is the name
of the tables or attributes. For each entity table (e.g., movie
table in the shortest path component of Fig. 6) and for each
non-PK or non-FK attribute (attributes which have seman-
tics) we define a schema tag (e.g.,movie, people, movie.title,
etc., referring to Fig. 6). We complete possible schema tags
by carrying OTHER and COND from type tags. We use the
same schema tag for attributes and values (e.g., movie.title),
but differentiate them at the inference step by combining tags
from both type tags and schema tags. If a word is mapped
into Value type tag as a result of the model, its schema tag
refers to the attribute in which the value resides.

In order to annotate queries, we annotate each word in
the query for three different levels mentioned above. While
POS tags are extracted automatically, we manually annotate
the other two levels. Annotations were done by three gradu-
ate and three undergraduate computer science students who
are familiar with database subject. Although annotation time
varies depending on the person, on the average, it took aweek
to annotate tokens by a single person for two levels (type and
schema) for a query log with 150 NL questions, which we
believe is practical to apply in many domains.

4 Explanations for keywordmapper

In this section, we provide the details about the techniqueswe
employ to explain the decisions made by DBTagger, our key-
word mapper in the pipeline. First, we give a short overview
of the LIME [42] work and highlight its applicability and
limitation in the context of the sequence tagging problem.
Next, we explain how we tailor LIME to the sequence tag-
ging problem (i.e., classification problem for each item in the
sequence) to deploy in our pipeline.

4.1 LIME

LIME [42] is short for "Local Interpretable Model-Agnostic
Explanations", where each part in the name exhibits a desir-
able property a black-box explanation model must have.
"Local" implies that LIME is an outcome explanation model,
explaining the decision made on a particular instance, which
is in line with our goal. "Model-agnostic" refers that LIME
works with any type of input data (e.g., image, text) or a

black-box model (e.g, a linear classifier such as logistics
regression or a neural network based model), which is one of
the reasons why we use LIME in xDBTagger that includes
a neural network-based keyword mapper that we want to
explain to the user.

Interpretation and explanation are important terms often
used interchangeably in the context of XAI; however, they
have distinct meanings. The former is more involved in pro-
viding abstracts in a way humans canmake sense of, whereas
the latter revolves around highlighting important features that
play a role in decision-making for a given instance [15].
Analogously, the explanations that are not interpretable are
useless, which is addressed by LIME. LIME argues that
interpretable data representations differ from actual feature
representations by asserting that interpretable data represen-
tations, such as binary vectors stating the existence of a word,
are easily understood by humans. In contrast, actual feature
representations, such as word embedding vectors, are not
that straightforward and comprehensible. This distinctness
is crucial since explanations produced by LIME are based on
interpretable data representations.

In particular, LIME provides the importance of the fea-
tures for a given instance as explanations, and to make them
interpretable it follows a binary approach that highlights how
important certain parts of the input are when they are present
or absent. For a given input, LIME perturbs the input by ran-
domly removing parts of the input and tries to understand
how the model behavior changes. For instance, LIME cre-
ates a series of artificial sentences for a particular text input
as a sentence in which random tokens are removed. LIME
then tries to assign an importance score to each token for the
decision (e.g., a target label by a classifier) by weighing the
changes in model behavior. If the score is positive, the token
is helpful when deciding the outcome for a particular input,
whereas it is disadvantageous to the outcome when the score
is negative. The absolute value of the score implies the con-
tribution the token makes to the outcome, either positively or
negatively.

4.2 LIME wrapper

Due to its properties, LIME is applicable in classification
problems where the input is a sentence, and it is impor-
tant to explain the importance of each token in the sentence
in deciding a particular class. Also, note that the architec-
ture of DBTagger, our keyword mapper, also utilizes signals
from neighboring tokens when deciding the type and schema
classes of a particular token by using CRF (see Fig. 3) at the
last layer. This property of DBTagger aligns perfectly with
the applicability of LIME in a text classification problem,
as explained above. However, vanilla LIME is not directly
applicable where the model generates multiple outcomes for
a given sentence. In other words, vanilla LIME produces

123



xDBTagger: explainable natural language interface to databases using…

explanations for models that classify the whole text sequence
into one class (e.g., sequence classification such as sentiment
analysis), whereas in our case, there is a classification for
every token in a sentence, referred to as sequence tagging
problem in NLP. Hence, we make modifications and add a
wrapper around LIME to output explanations for each token
suitable for DBTagger.

In particular, the wrapper around LIME uses four groups
of information; theNLQ(i.e., the text input as a list of tokens),
DBTagger Model Black-box (i.e., the probabilities of target
classes for each token), predicted type and schema classes of
DBTagger Model, and output mask to perturb the sentence
suitable for keyword mapping problem. The main purpose
of this wrapper is to coordinate the communication between
LIME and the output mask.With the help of the output mask,
it becomes possible for LIME to produce an explanation for a
specific token; however, we still need to select the token that
will be explained. To achieve this, we only explain the tokens
with a predicted tag other than "O" (i.e., words labeled as
irrelevant, thus not worth explaining for) for time efficiency.
For each token that needs to be explained LIME wrapper
produces 10 perturbed sentences, which we feed into the
DBTaggermodel. The probabilities of the schema label given
each perturbed sentence is then used to calculate the impact
of surrounding words for the token to be explained. Since the
average length of NLQs in words is around 10, we did not
use a bigger number for the parameter of perturbed sentences
required by the LIME wrapper. Having more perturbed sen-
tences is redundant, which would slow down the explanation
step of the translation pipeline.

Once the token selection is made, the wrapper adjusts the
outputmask so that themodel gives the output for the selected
token. Therefore LIME can analyze the output and produce
an explanation for that token. This process is repeated for
every token that is selected for the explanation.

5 SQL translation algorithm

We use simple yet effective algorithms to construct the trans-
lated query given a set of type and schema tags output by the
keyword mapper, DBTagger. In particular, for the translation
algorithm, we have three channels of input (see Fig. 1); (i)
type tags (i.e., lists of tags indicating whether each word in
NLQ is a table, column or value) and (ii) schema tags (i.e.,
names of the schema elements found such as table or col-
umn names for each word having a valid type tag) output by
DBTagger, and (iii) the input query.

Utilizing the above-mentioned inputs, the SQL trans-
lation algorithm has 4 main components, which are (i)
Schema Graph Extraction, (ii) Join-Path Inference, (iii)
Where Clause Completion and (iv) Heuristics for Aggregate
Queries. Each component is explained in detail in the fol-
lowing subsections.

5.1 Schema graph extraction

As the first step of the translation algorithm, we construct a
schema graph out of the database upon which the NLQ is
issued. The schema graph is similar to Entity-Relationship
(ER) Diagram, which is a heavily used tool to illustrate con-
ceptual design of relational databases. In the schema graph,
we have only two types of nodes; (i) table and (ii) attribute.
Table nodes resemble Entity-Sets in ER, and attribute nodes
in the schema graph are similar to attributes depicted as
part of entity-sets. The main difference between the two
is that there is no relationship-set in a schema graph; table
nodes are connected directly through their shared attributes
(i.e., attributes exhibiting referential integrity, for instance,
movie node is connected to 5 other table nodes through
msid) attribute, which is the primary key (PK) of the movie
table.

Each connection between a pair of nodes in the schema
graph is an undirected edge, connecting table and attribute
nodes to represent their has-A relations. An edge in the
schema graph can only be between two different types of
nodes (i.e., between a table and an attribute). Furthermore,
we assumed that all foreign keys (FK) have the same name as
their PK, and in the graph, there is only one node represent-
ing them. This simplification does not create any problem for
database schemas that do not have self-references or mul-
tiple FKs referencing the same PK. This assumption can
be relaxed by adding edges between FKs and PKs if the
given database schema contains tables with different name
PK-FK pairs, multiple FKs referencing the same PK, or self-
references.Anexample schemagraph extracted from the type
and schema tags output by DBTagger for the example NLQ
given in Sect. 1 is depicted in Fig. 4.

Fig. 4 An example schema graph consisting of tables, columns and
their relations

123



A. Usta et al.

5.2 Join-path inference

Themain reason whywe extract schema graphs is to produce
correct join conditions required for SQL queries touching
multiple tables. After constructing the schema graph, we
find the shortest path between the table nodes to complete
the necessary join conditions. Revisiting the example query
given in the Introduction “Who is the director of the series
House of Cards produced by Netflix?”, the keyword mapper
detects three tables in the query which are director, tv_series,
and company. As it can be seen in the corresponding schema
graph depicted in Fig. 4, such tables are not connected to
each other directly because they do not have direct relation
through PK-FK attribute pairs. In order to translate the NLQ
into SQL, we need to combine these tables, which is done by
finding intermediate tables required to connect them together,
such as copyright (e.g., linking tv_series and company) and
directed_by (e.g., linking tv_series and director) to complete
the join. Therefore, it becomes a problem of finding a possi-
ble path between the set of nodes in a fully connected graph
and, while doing that, avoiding redundant paths for which
shortest-path algorithms can be utilized. In our translation
pipeline, we employed Dijkstra’s algorithm to find the mini-
mal path between table nodes detected in the NLQ. We used
intermediate table nodes to construct the correct join condi-
tions in the translated SQL.

The entire algorithm is given in Algorithm 1. Using the
type and schema tags output byDBTagger, a set of tables T is
created containing all the related tables for the given NLQ. T
is composed of found tables (i.e., name of the tables for those
words that haveTABLE orTABLEREF as type tag), and tables
of found attributes (i.e., name of the columns for those words
that have ATTR or ATTRREF or VALUE as type tag). After
that, T is given as an input to Algorithm 1 with the schema
graph, and the shortest paths that contain and join the tables in
T are found. An example join-path found for the given NLQ
is depicted in Fig. 4. In the path, each consecutive nodes
connected through an attribute node exhibits a join condition
(e.g., director and directed_by tables require a join through
attribute did).

5.3 Where clause completion

The next step is to construct WHERE conditions of SQL.
The process starts with gathering the outputs of type and
schema tags from DBTagger. A two-dimensional array M is
created where Mi,1 contains the i th query token, Mi,2 con-
tains type tag of the i th token, and Mi,3 contains the schema
tag of the i th token. Following that, a pre-processing step
is applied on the array M to smooth out consecutive tokens
that have the same mapping information by merging them
together. In particular, the tokens that have VALUE as a type
tag inhibit WHERE conditions to focus. For each list of con-

ExtractJoinRelation (G, T )
Input : Database Graph G and list of tables T
Output: Graph paths that contains SQL join information
joinPath ← ∅;
candidate ← null;
foreach table ti ∈ T do

foreach table t j ∈ T do
if ti �= t j then

paths ← f indShortest Paths(G, ti , t j ) foreach
path p ∈ paths do

if T ⊆ p then
returnPaths.append(p);
return returnPaths;

else
missingTables ← T \ p;
if candidate == null then

candidate ← (p,missingTables);
else

if length(missingTables) <

length(candidate1) then
candidate ←
(p,missingTables);

end
end

end
returnPaths.append(candidate0);
foreach table t ∈ candidate1 do

paths ← f indShortest Paths(G, candidate00, t);
foreach path ∈ paths do

list Reduced ← False;
foreach table t2 ∈ candidate1 do

if t2 �= t ∧ t2 ∈ path then
candidate1.remove(t2);
list Reduced ← True;

end
if list Reduced then

returnPaths.append(path);
end

end
return returnPaths;

Algorithm 1: Inferring Shortest Join-Path

secutive tokens with VALUE mapping, a pair of the query
token (e.g., House of Cards) and column name of the respec-
tive table (e.g., title column of the tv_series table) is created
and added to where conditions of SQL. Algorithm 2 shows
howWHERE conditions are extracted from the given list M .

5.4 Heuristics for aggregate queries

Finally, we used a simple and effective technique to detect
potential aggregate operations for the constructed SQL.
There are some specific keywords—such as total, many,
count etc.—that imply certain aggregate operations. Using
these keywords, we define keyword sets for each aggregate
operation and perform a search in the NLQ for poten-
tial aggregate keywords. Algorithm 3 shows the outline of
the performed search. After retrieving the mapping output
from DBTagger, we select the words that have TABLE,

123



xDBTagger: explainable natural language interface to databases using…

ExtractWhereConditions (M)
Input : Two dimensional array M , containing the NLQ and

keyword mapping information
Output: SQL WHERE conditions whereConditions
whereConditions ← ∅;
M ← mergeConsecutiveMappings(M) ; // Merges
multi-word entities to a single mapping
e.g: Brad Pitt
foreach token k1i , k2i , k3i ∈ M1, M2, M3 do

if k2i is VALUE then
whereConditions.add(k1i , k3i ) ; // k1i and k3i
contains the keyword and column
information of that keyword
respectively

end
return whereConditions;

Algorithm 2: Extraction of SQL WHERE Conditions

ExtractAggregateClause (M, prevWindow)
Input : Two dimensional list M containing natural language

query and keyword mapping information,
prevWindow, the length of the sliding window, for
finding aggregate keywords in NLQ

Output: SQL AGGREGATE Clause
SUMKeywords ← get SUMKeywords();
COUNT Keywords ← getCOUNT Keywords();
AVGKeywords ← get AVGKeywords(); foreach token
k1i , k2i , k3i ∈ M1, M2, M3 do

if
k2i ∈ [T ABLE, T ABLEREF, AT T R, AT T RREF]
then

foreach token k1 j ∈ [M1i−prevWindow, ..., M1i ] do
if k1 j ∈ SUMKeywords then

return (SUM, k1i , k2i , k3i );
if k1 j ∈ COUNT Keywords then

return (COUNT , k1i , k2i , k3i );
if k1 j ∈ AVGKeywords then

return (AVG, k1i , k2i , k3i );
end

end
return None

Algorithm 3: Extraction of SQL AGGREGATE Clause

TABLEREF, ATTR, or ATTRREF as the type tag as our
candidates for aggregation. For each keyword set, we search
the words that appear before our candidates. If we find a
matchingkeyword,we return the candidate keyword, itsmap-
ping information, and thematching aggregate operation. If no
matching is found, the algorithm returns None, implying that
no aggregation should be applied. For searching the previous
words of the token ki , we define awindowsize prevWindow
and perform the keyword search for the words that are inside
this window, namely [ki−prevWindow, ..., ki−2, ki−1].

Table 2 Statistics of the databases used

Database
Properties (#) imdb mas yelp

entity tables 6 7 2

relation tables 11 5 5

total tables 17 12 7

total attributes 55 28 38

nonPK-FK attributes 14 7 16

total tags 31 19 20

queries 131 599 128

tokens in queries 1250 4483 1234

6 Experimental setup

6.1 Datasets

In our experiments we used yelp, imdb [53], and mas [35]
datasets which are heavily used in many NLIDB related
works by the database community [2, 35, 43, 45, 53].

The statistics about each dataset for which annotation is
done are shown in Table 2. In Table 2 (referring to Fig. 4),
entity tables refer to main tables (e.g., Movie), relation tables
refer to hub tables that store connections between entity
tables (e.g., cast, written_by), nonPK-FK attributes refer to
attributes in any table that is neither PK nor FK (e.g., gender
inPeople table), andfinally total tags refer to a unique number
of taggings extracted from that particular schema depending
on the above-mentioned values. Final schema tags of a par-
ticular database are determined by composing table names
and names of the nonPK-FK attributes in addition to COND
and OTHER. In the last two rows of Table 2, we show the
number of annotated NL questions, referred to as queries,
and the number of total words inside these queries, referred
to as tokens.

6.2 Quantitative evaluation of xDBTagger

6.2.1 Keyword mapping evaluation

In order to train DBTagger, the keyword mapper for the
pipeline, we first split the datasets into train-validation sets
with a 5 − 1 ratio, respectively, to be used for tuning task
weights. For models trained on multiple tasks, we used
0.1−0.2−0.7 as tuned weights for POS, Type, and Schema
tasks, respectively.

123



A. Usta et al.

We train our deep neural models using the backprop-
agation algorithm with two different optimizers; namely
Adadelta [59] and Nadam [14]. We start the training with
Adadelta and continue with Nadam. We found that using
two different optimizers resulted better in our problem. For
both shared and unshared bi-directional GRUs, we use 100
units and apply dropout [23] with the value of 0.5, including
recurrent inner states as well. For training, the batch size is
set to 32 for all datasets. Parameter values chosen are similar
to that reported in the study [34] (the state-of-the-art NER
solution utilizing deep neural networks), such as the dropout
and batch size values. We measure the performance of each
neural model by applying cross-validation with sixfold. All
the results reported are the average test scores of sixfold.
During inference, we discard POS and Type task results and
use only Schema (final) tasks to measure scores.

We implemented three different unsupervised approaches
utilized in the state-of-the-art NLIDBworks for the keyword
mapping task as baselines to compare with DBTagger. We
implemented sql querying over database column approaches
(regex and full-text search), which is preferred in NALIR
[35]. We implemented a well-known tf-idf baseline for exact
matching by constructing an inverted index over unique
database values present, as in the work ATHENA [43]. We
also implemented a semantic similaritymatching approach in
which pre-defined word embeddings are used. This approach
is exercised by Sqlizer [53]. In addition to these conven-
tional unsupervised solutions, we also implemented TaBERT
[55], a pre-trained language model utilizing transformer
architecture to compare with our proposed solution. For all
the baselines, there is a component employing similarity
matching which requires a manually crafted threshold, τ ,
to determine how much similarity is sufficient to map to a
particular schema element, which makes it difficult to tune
for different databases. For instance, when one chooses a
lower similarity threshold, it becomes more likely to iden-
tify a true positive (i.e., higher recall) mappings; however,
the solution becomes prone to generate false positives (i.e.,
lower precision) as a result for keywords that are not related
to database elements such as stop words, sql specific words
(i.e., return, find, minimum, etc.) For better comparison, we
experimented with different thresholds for each baseline in
each dataset and chose the one that resulted in the higher
overall precision. We categorize the keyword mapping task
as relation matching and non-relation matching. The former
mapping refers to matching for table or column names, and
the latter refers to matching for database values.

– tf-idf: Similar to ATHENA [43], for each unique value
present in the database, we first create an exact matching
index and then perform tf-idf for tokens in the NLQ. In
case of matches tomultiple columns, the columnwith the
biggest tf value is chosen as matching. To handle multi-

word keywords, we use n-grams of tokens up to n = 3.
For relation matching, we used lexical similarity based
on the Edit Distance algorithm.

– NALIR:NALIR [35] usesWordNet, a lexical database in
which synonyms are stored for relation matching. They
calculate similarity for tokens present in the NLQ over
WordNet, and determine a matching if the similarity
is bigger than a manually defined threshold. For non-
relation matching, for each token present in the NLQ,
it utilizes regex or full-text search queries over each
database columnwhose type is text. In case of matches to
multiple columns, the column which returns more rows,
as a result, is chosen as matching. For fast retrieval, we
limit the number of rows returned from the query to 2000,
as in the implementation of NALIR.

– word2vec: For each unique value present in the data-
base, cosine similarity over tokens in the NLQ is applied
to find mappings using pre-defined word2vec embed-
dings. The matching with the highest similarity over a
certain threshold is chosen.

– TaBERT: TaBert [55] is a transformer-based encoder
which generates dynamic word representations (unlike
word2vec) using database content. The approach also
generates column encodings for a given table, which
makes it an applicable keyword mapper for non-relation
matching by performing cosine similarity over both
encodings. For a particular token,matchingwith themax-
imum similarity over a certain threshold is chosen.

Effectiveness comparison
For a fair comparison, we do not apply any pre- or post-
processing over the NL queries or use an external source of
knowledge, such as a keyword parser or metadata extractor.
Results are shown in Table 3. Each pair of scores represents
token-wise accuracy for relation and non-relation match-
ing. For TaBERT, we only report for non-relation matching,
because the approach is not applicable to relation matching.

DBTagger outperforms unsupervised baselines in each
dataset significantly, by up to 31% and 65% compared to best
counterpart for relation and non-relation matching, respec-
tively. For relation matching, the results of all approaches

Table 3 Accuracy scores of keyword mappers for relation and non-
relation matching

Database
Baseline imdb mas yelp

tf-idf 0.594–0.051 0.734–0.084 0.659–0.557

NALIR 0.574–0.103 0.742-0.476 0.661–0.188

word2vec 0.625–0.093 0.275–0.379 0.677–0.269

TaBERT NA–0.251 NA–0.094 NA–0.114

DBTagger 0.908–0.861 0.964–0.950 0.947–0.923

123



xDBTagger: explainable natural language interface to databases using…

are similar to each other except the word2vec method for the
mas dataset. The main reason for such poor performance is
that the mas dataset has column names such as venueName
for which word2vec cannot produce word representations,
which radically reduces the chances of semantic matching.

tf-idf gives promising results on the yelp dataset, whereas
it fails on the imdb and mas datasets for non-relation match-
ing. This behavior is due to the presence of ambiguous values
(the same database value in multiple columns) and not being
able to find a match for values having more than three words.
For the imdb dataset, none of the baselines performs well
for non-relation matching. The imdb dataset has entity-like
values that are comprised of multiple words, such as movie
names, which makes it impossible for semantic matching
approaches to generate meaningful representations to per-
form similarity. NALIR’s approach of querying over the
database has difficulties for the imdb and yelp datasets since
the approach does not solve ambiguities without user inter-
action.

TaBERT performs poorly for all datasets for the non-
relation matching task, which we believe is due to two
reasons. Firstly, TaBERT has its own tokenizer, which relies
on BERT base. The tokenizer tries to deal with out-of-
vocabulary tokens by breaking the token into sub-words that
have representations. This approach might be useful for a
language model; however, it is problematic in the keyword
mapping setup since the values present in the databases are
domain-specific, which are likely to not occur in the general
corpus data used to train such transformers. Also, databases
such as imdb, have many entity-like values such as Eternal
Sunshine of the Spotless Mind which is comprised of sev-
eral words. Such keywords appearing in the natural language
query are therefore divided by the tokenizer into pieces,
which eventually leads to unrelatedword representations and,
thus, non-predictive similarity calculation. The other limita-
tion of TaBERT is its requirement of using cosine similarity.
Such an approach requires a manually defined threshold
which is not easy to come up with. When a smaller simi-
larity threshold is picked, chances of finding a true positive
increases; however, the model becomes prone to generate
false positives as well for keywords that are not related to
database elements such as stop words and sql specific words
(e.g., the, return, find, minimum).

We argue that unsupervised baselines may perform rea-
sonably for relation-matching,whereas they fail to answer the
challenges yielded by non-relation matching. This is due to
the ambiguity present in the databases, such as having values
that occur in multiple tables (e.g., "Matt Damon" may appear
in both actor and director tables) and domain-specific values
that are not covered in word embeddings (e.g., word2vec and
TaBERT) trained on general corpus data.

Importantly, the effectiveness of a keyword mapping
approach is critical in any NLIDB solution trying to translate

NLQ into SQL because the final accuracy is upper bound
to the correct keyword mappings. Such mappings play an
important role, particularly in where clauses, or from clauses
that are required to perform query along with the intermedi-
ate tables required for joins, which are more than likely for
enterprise-level databases.

Efficiency comparison
Efficiency is one of the most important properties of a good
keywordmapper to have to be deployable in online interfaces.
Therefore, we also evaluated the run-time performance and
memory consumption of keyword mapping baselines men-
tioned in the previous section.

– NALIR: We analyze both querying over database col-
umn approaches used in NALIR [35], named as q_regex
and q_ftext, which use like and match against opera-
tors respectively. NALIR [35] uses q_regex approach for
tables having less than 2000 rows and q_ftext for tables
having more rows.

– tf-idf : Similar to the indexing strategy exercised in AT-
HENA [43], we implemented an exact matching strategy,
using an inverted index named as inv_index, before-
hand to avoid querying over the database. The inverted
index stores each unique value present in the database
alongwith its frequency in each candidate collection (i.e.,
database columns).

– word2vec: Many works such as Sqlizer [53] make use
of pre-trained word embeddings to find mappings, which
requires keeping the model in the memory to perform the
task using cosine similarity.

– tabert_on: TaBERT [55] requires database content
(referred to as content snapshot in the paper) to generate
encodings for both NL tokens and columns. We call this
setup tabert online, where the model generates the con-
tent snapshot on the fly, hence online, to performmapping
when the query comes.

– tabert_off : We also use TaBERT in offline setup. For
each table, database content is generated beforehand to
perform encodings. In this setup, we keep the content in
the memory to serve the query faster.

Wemeasured the time elapsed for a single query to extract
tags and the memory consumption needed to perform map-
ping for each approach. We also run each experiment with
a different number of row values to capture the impact of
the database size. Figure 5 presents run time and memory
usage analysis of keyword mappers. DBTagger outputs the
tags faster than any other baseline, and it is scalable to much
bigger databases. However, q_regex, q_ftext, tabert_on, and
word2vec do not seem applicable for bigger tables having
more than 10000 rows. The tf-idf technique has a nice bal-
ance between run-time and memory usage, but it is limited

123



A. Usta et al.

Fig. 5 Run Time and Memory Usage of state-of-the-art keyword mapping approaches

in terms of effectiveness (Table 3). Tabert-off performs the
tagging in a reasonable time, yet it requires huge memory
consumption, especially for bigger tables, and its effective-
ness as a candidate keyword mapper is not sufficient.

DBTagger is agnostic to database sizes in terms of effi-
ciency since the memory required to perform the inference
step is always the same, which only relies on the complex-
ity of the deep learning model (i.e., the number of layers
and parameters). The running time of an inference step of
a query also relies on the length of the query in terms of
words; however, the difference will be negligible since the
actual cost is in 0.01 seconds. The other approach agnos-
tic to database size in terms of memory consumption is
tabert_on; however, as it can be seen from Fig. 5a, it is not
practical to be deployed in real-world applications since it is
not scalable to larger databases. For mappings, Tabert first
has to generate content encodings (i.e., semantic represen-
tations of columns), processing rows of the tables entirely,
which is a time-consuming process. If one wants to gener-
ate encodings offline, as in the case for tabert_off approach,
the process becomes faster; however, this time, the memory
space required to perform mappings gets bigger depend-
ing on the size of the tables. Note that Tabert generates
encodings for each table in the database, indicating that sim-
ilarity calculation will be performed not once but as many
times as the number of tables. Another major bottleneck of
these similarity-based approaches is the need for a sliding
window technique (i.e., n-gram) to perform mapping, espe-
cially for multi-word entities (e.g., movie titles). N-grams of
words of length between 3 and 6 are utilized, which conse-
quently increases the number of times similarity calculation
is performed, which automatically increases time complex-
ity. Although query over database approaches (e.g., q_regex
and g_ftext) preferred in NALIR do not occupy memory

space, they fail to perform schema mapping in a reasonable
time, especially when the number of rows in the tables gets
bigger than 1000. That is why NALIR utilizes only g_ftext
for tables with more than 2000 rows, which is still slow in a
typical online setup.

6.2.2 Query translation results

We compared xDBTaggeer with two different types of
baselines; firstwe compared our solution against its true com-
petitors, pipeline-based approaches [2, 35] in binary accuracy
metric. Next, we compared xDBTagger against one of the
recent deep learning based solutions, Lgesql [5] in partial
exact match accuracy to evaluate how effective our solution
is while requiring less resource.

The numbers of the queries for the three datasets we used
in our experiments are provided in Table 2. Also, recall that,
we applied sixfold cross-validation (i.e., leaving 1 fold out for
test andusing the other fivefold for training themodel) to train
our keyword mapper. In order to evaluate query translation
results, we performed the translation pipeline for each test
fold left out from the training model for yelp and imdb. We
used only 1 test fold formas dataset to make the final number
of test queries to be similar to each other.

Comparison with pipeline-based approaches
In this setup we manually evaluated the translated SQL
queries, counting as correct if and only if the translated query
is the same as the ground truth in terms of SQL semantics
and correct in SQL syntax; and incorrect otherwise. Hence,
we report binary accuracy results of xDBTagger.

In order to evaluate the comparative performance of
xDBTagger, we used two different pipeline-based solutions;
namely NALIR [35] and TEMPLAR [2] (an enhanced ver-

123



xDBTagger: explainable natural language interface to databases using…

Table 4 Overall SQL query translation results against pipeline-based
studies

Accuracy (%)
xDBTagger NALIR+ NALIR

imdb 61.83 50.00 38.30

scholar 58.96 40.20 33.00

yelp 69.53 52.80 47.20

sion of the NALIR, referred as NALIR+, utilizing query logs
to detect keyword mappings of the tokens in NLQ). The rea-
son why we choose these two baselines is threefold. Firstly,
both studies reported accuracy results of their translation
pipeline for the same set of three datasets we used in our
work. Secondly, both are pipeline-based solutions; that is,
they are comprised of sub-solutions for each step in the trans-
lation pipeline similar to xDBTagger. Lastly, TEMPLAR [2]
tries to enhance the translation pipeline of an existingNLIDB
solution (e.g., NALIR) by solely focusing on keyword map-
pings. Similarly, xDBTagger utilizes the keyword mappings
output by DBTagger [47] in the translation pipeline.

The overall translation accuracy results for xDBTagger,
along with the two baselines explained above, are provided
in Table 4. Accuracy results of the baselines are taken from
theTEMPLARstudy [2]. xDBTagger outperformsboth base-
lines in all three datasets, up to 78% and 46% compared to
NALIR and NALIR+, respectively. Considering efficiency
(see Fig. 5 for reference) of the keyword mapper utilized in
xDBTagger, simplicity of the translation algorithm explained
in Sect. 5 and having fully explainable end-to-end translation
pipeline, the accuracy of xDBTagger stands out even more
compared to their counterparts.

In order to further show the efficacy of xDBTagger for
other types of queries, we categorized the queries reflecting
their difficulty in terms of translation and report accuracy for
each category. The results are presented in Table 5. The num-
bers in parenthesis represent the number of queries falling
under that particular category. The category Nested repre-
sents the number of queries xDBTagger could not translate
due to the translation requiring a nested SQL query. Most
of the queries fall under the category Select-Join with Multi-
ple Tables, where xDBTagger performs most competitively
across all categories. Accuracy results in Table 5 also indi-
cate that heuristics for aggregation queries are effective at
translating more than half of the queries under that category
on the average.

We further manually evaluated WHERE conditions of
the queries having aggregate operations and reported accu-
racies in Table 6. As it can be seen, xDBTagger is able to
extract WHERE conditions fairly well with 90% average
accuracy for imdb and scholar, and 76% accuracy for yelp.
Although xDBTagger performs the worst for queries having

aggregate operations in terms of full translations (Table 5), it
still extracts correctWHERE conditions for both utterances
found in the NLQ and the join-path, which is reported to be
the most challenging part of the translation in [52]. Results
show that extracting correct WHERE conditions for the
translation is one of the main strengths of xDBTagger.

One of the limitations of the translation pipeline of xDB-
Tagger is that it fails to translate certain types of queries
correctly. xDBTagger is not able to translate theNLQs requir-
ing nested SQL and group by queries. The biggest challenge
for nested SQL queries is first to identify how many sub-
queries are required and then combine them together to
produce both semantically and syntactically correct SQL
queries. We argue that a rule-based approach similar to
ours is insufficient to generalize to unseen NLQs requiring
nested SQL. Therefore, we opted not to address those types
of queries. However, note that such queries correspond to
NLQs often exhibiting complex information needs, which
constitutes a relatively minor percentage of queries issued by
non-technical userswho are the primary audience targeted by
NLIDB. The results provided in Table 4 include those queries
aswell; hence less accuracy is observed overall. Another lim-
itation is that queries requiring aggregate operations on top of
grouping are difficult to translate (i.e., prone to a mistransla-
tion) for xDBTagger. The strength of our translation pipeline
comes from its keyword mapper, which is also evident by the
results shown in Table 6, yet most of the queries with aggre-
gation need not only mapping correct schema elements but
also identifying possible grouping and/or the correct aggre-
gation operation, which is rather difficult to generalize with
a rule-based translation pipeline. Although we implemented
heuristics (see Sect. 5.4) to address queries involving aggre-
gates without group by and consequently translate more than
half of them correctly (see Table 5), most of the incorrectly
translated queries fall under this category.

Comparison with end-to-end neural network based
approach
In this experimental setup, we compared xDBTagger against
one of the state-of-the-art, end-to-end neural network-based
approach, which is lgesql [5]. In order to fairly compare
against them, we used partial exact match accuracy met-
ric, since in lgesql database content is not utilized to predict
database values (e.g., a specific movie title such as “House of
Cards”). Therefore, final translated SQL queries have value
as a placeholder. However, correctly predicting schemamap-
pings for database values is regarded as the most challenging
step (i.e., bottleneck) of the translation pipeline [54], which
is also the strength of our solution. Therefore, we performed
the comparison in exact match accuracy on 2 particular parts
where each solution can be evaluated fairly. These are where
and sql keywords. Note that as we explained above, our trans-

123



A. Usta et al.

Table 5 Translation accuracy
results of xDBTagger according
to categorization of the queries

Non-nested Nested
Select-Join (No-Aggregation) Having aggregation Overall
Single Table Multiple Table Overall

imdb 88.89 (9) 68.60 (86) 70.53 (95) 63.64 (22) 69.23 (117) 14

scholar 100.00 (2) 86.96 (69) 87.32 (71) 43.59 (39) 71.81 (110) 24

yelp 60.00 (5) 83.61 (61) 81.81 (66) 63.64 (55) 73.55 (121) 7

Table 6 Accuracy of WHERE
conditions of the queries with
aggregate operations

Aggregate queries with group by Aggregate queries without group by Overall

imdb 100.00 (6) 87.50 (16) 91.27 (22)

scholar 88.89 (18) 90.48 (21) 89.53 (39)

yelp 63.64 (11) 79.55 (44) 76.80 (55)

Table 7 Overall SQL query
translation results against Lgesql
in partial exact match accuracy

Partial exact match (%)
imdb scholar yelp
Where Keywords Where Keywords Where Keywords

lgesqlglove 45.4 90.0 90.4 87.4 36.4 91.9

lgesqlbert 61.5 95.4 90.5 91.6 37.3 91.9

lgesqlelectra 78.5 94.5 88.4 87.4 56.5 91.9

xDBTagger 69.7 92.4 84.5 72.6 53.8 88.9

lation pipeline does not handle group by queries, therefore
we did not include it in the evaluations.

The comparison in partial exact match results is provided
in Table 7. Note that where represents correct predicates in
where clause by only considering left-hand side and the con-
dition operation ignoring the database value. For instance,
given the Example query “Who is the director of the series
House of Cards produced by Netflix?”, the predicate of
company.name = "value" in the translated SQL out of
lgesql is considered correct. However, our solution predicts
the database value as well.

It can be seen from Table 7 that lgesql performs better
compared to xDBTagger in both metrics, especially when
augmented with Electra [8], a more complex pre-trained lan-
guage model. However, XDBTagger performs competitively
across all datasets, even surpassing the performance of lgesql
when it is augmented with less complex contextual embed-
dings such as glove and bert for imdb and yelp datasets.

We also provide efficiency comparison of xDBTagger and
lgesql with regards to different metrics in Table 8. Run times
include pre-processing steps required to perform the trans-
lation. Not suprisingly, lgesql is 700 times more complex in
terms of number of parameters in the model, requiring much
more space to be stored (approximately 2000 times) and out-
puts the translation results slower than xDBTagger. On top
of that, lgesql still requires a post-processing step, which we
did not include in this experiment, to fill-in the value place-
holders so that it can produce correct translations, which is
another overhead. Typical post-processing step is based on an

Table 8 Efficiency comparison of xDBTagger with Lgeseql

xDBTagger lgeseqlelectra

Total # parameters 500K 350M

Size of model file 2.13mb 4.0gb

Run time per query (seconds) 1.93 3.10

exact matching scheme [54] of query n-grams over database
values, which we used as a baseline for keyword mapping
under the name inv_index in Sect. 6.2.1 (see Table 3) and we
reported that it is not effective for database value matching
in imdb and scholar datasets. These results in Tables 7 and 8
indicate that xDBTagger is much more efficient compared to
lgesql while not compromising effectiveness.

6.3 Explainable user interface of xDBTagger

We constructed a simple, single-page web application where
users can input a natural language query into our NLIDB
pipeline and retrieve the translated SQL. This web applica-
tion is developedusingflaskmicro-framework and javascript.
Figure 6 depicts interface components through the different
stages of the translation pipeline. The pipeline has the follow-
ing three main steps that we explain to the user separately;

1. Finding type and schema mappings of the tokens in the
NLQ using DBTagger. As discussed in Sect. 3, DBTag-
ger is a sequence-tagging deep learning model, which

123



xDBTagger: explainable natural language interface to databases using…

Fig. 6 Interface components of xDBTagger; a NLQ input panel, b
schema graph panel on which required join path is drawn, c predictions
panel for keyword mapper, d result panel containing the translated SQL
query along with its explanations, e, f explanation pop-ups for each

token in NLQ. Components b, c, d, e and f contain visual and/or textual
explanations for the algorithms utilized through the translation pipeline

behaves as a black-box mechanism, i.e., it only classi-
fies the tokens in the NLQ to the most probable class
among the possible candidates based on probabilities it
derives, yet it does not provide why it makes a particular
decision. Therefore, we need to explain how DBTagger
maps tokens in the NLQ to the schema elements in the
database. To this end, we provide two different inter-
face components. First, we list all the type and schema

mappings output by DBTagger for each token in a table
(6c) to make the decisions made by DBTagger transpar-
ent. Second, we visually explain why DBTagger came up
with a particular pair of type and schema mapping for a
token in a pop-up (6e,f) using LIME wrapper (explained
in Sect. 4) to make it easier for the user to comprehend
the decisions made by DBTagger.

123



A. Usta et al.

2. Extracting the join path necessary to access tables that
include utterances found in the previous step. We first
visually draw the schema graph on the panel (depicted in
Fig. 6b) so that the user can better understand the schema
underlying the database and the relational connections it
inherits. Moreover, we also highlight the nodes and the
edges visited along the path on the graph to construct the
JOIN clause to explain how certain tables that are not
present in predictions panel (6c) (i.e., intermediate tables
completing the join) appear in the final SQL translation.

3. Constructing the SQL by forming the WHERE clauses
and applying post-processing heuristics to handle certain
group of queries. After finalizing the SQL translation, we
part-by-part explain how the translated SQL is composed
in the result panel, shown in 6d. In particular, we explain
why we include each table in the FROM clause and each
logical expression in the WHERE clause.

NLQ input panel (Fig. 6a) allows the user to select a
database schema from a dropdown list and input a query
to the NLIDB pipeline for the selected schema. After select-
ing the schema over which the query is to be issued, the
schema graph panel displays the extracted graph (i.e., the
graph without the highlighted nodes and edges, depicted in
Fig. 4), as explained in Sect. 5.1. When a query is processed
in the pipeline and a SQL is generated for the translation, we
highlight the nodes and edges of the graph in blue color, as
shown in Fig. 6b, that are used in any part of the generated
SQL; (i) tables and their attributes required for the WHERE
clauses and (ii) tables required for the correct join operation
along with their attributes making the PK-FK connections.

In the predictions panel shown in Fig. 6c, we present the
type and schema mapping outputs of our keyword mapper
inside a table so that the user can visually see how his/her
query is predicted by the keyword mapper. Furthermore, we
used pop-ups to display LIME explanations of each word of
the query that is not tagged as ’O’ to make it easier for the
user to comprehend the decision-making behind the keyword
mappermodel.When the user clicks on a particular rowof the
table in Fig. 6c, a pop-up (e.g., Fig. 6e) is displayed contain-
ing the explanation for the word visually by highlighting the
neighboring words that contribute the most, either positively
or negatively, when predicting the output.

For example, for the query shown in the input panel
Fig. 6a, we provided the explanation pop-ups for tokens
"House" and "Netflix" inFig. 6e and f, respectively. InFig. 6e,
there are two labels named ’NOT TV_SERIES.TITLE’ and
’TV_SERIES.TITLE’, which correspond to categories of
tokens contributing to the label of ’tv_series.title’ negatively
and positively, respectively. Below both labels, on each side,
there are tokens from the NLQ with a contribution score
associated with them. A positive contribution means that the
token increases the prediction probability of the explained

token for the given class (i.e., TV_SERIES.TITLE), and a
negative contribution decreases that probability.

For the token in Fig. 6e, we can see that the word ’series’
in the NLQ has the highest positive contribution marginally
compared to other tokens. This means that the word ’series’
is the most influential neighboring word when determining
the mapping classification of the token ’House’. Similarly,
Fig. 6f gives the explanation for the word ’Netflix’ in the
given NLQ. The explanation shows that the word itself has
the highest positive contribution, which is expected since the
entity is self-expressive and should infer the name attribute
of a particular entry in the company table.

The result panel, shown in Fig. 6d, presents the generated
SQL query and the explanation of how it is composed for the
givenNLQ.Wedivide the generatedSQLstatement into parts
and explainwhywe include each part in the final statement so
that users with a less technical background in SQL can better
comprehend how the final SQL is composed. In particular,
we explain why we include tables and logical expressions in
the FROM and WHERE clauses, respectively. For instance,
for the exampleNLQgiven in Fig. 6a, there are three different
explanations for why a certain table is included in the FROM
clause. ’tv_series’ table is included because there are tokens
whose schema mappings are title attribute of the ’tv_series’
table (8-10th rows in the prediction table shown in Fig. 6c).
Director and copyright tables appear thanks to the predictions
of DBTagger, whereas ’directed_by’ is present because it is
a required table to connect ’tv_series’ and ’director’ through
join.

For each logical expression we put in the finalized SQL
statement, we provide an explanation as well. Broadly, we
divide the explanations into two categories. If a logical
expression is to provide a connection between tables in the
schema graph, we say it is required for the join condition. If
we detect a type mapping of VALUE (e.g., 8–10th and 13rd
rows in the prediction table shown in Fig. 6c), we state that a
value is detected by DBTagger as shown in the last two rows
in the explanation table in Fig. 6d.

7 Related work

Although the very first effort [22] of providing natural lan-
guage interface in databases dates back to multiple decades
ago, the popularity of the problem has increased due to some
recent pipeline-based systems proposed by the database com-
munity, such as SODA [3], NALIR [35], ATHENA [43] and
SQLizer [53].

However,with the recent advancements in deepneural net-
works, the problem of NLIDB has also attracted researchers
from theNLP community. [60] provided a dataset calledWik-
iSql to the research community working on NLIDB problem
for evaluation. WikiSql is comprised of 26, 531 tables and

123



xDBTagger: explainable natural language interface to databases using…

80, 654 pairs which can be used for input for the transla-
tion problem. Consequently, many works [26, 46, 52, 54,
56, 60] utilizing encoder-decoder abstraction have been pro-
posed to evaluate their translation solutions on the WikiSql
dataset. However, the dataset only includes schemas with a
single table, limiting detailed evaluation of the solutions due
to simplicity.

To remediate this limitation, Spider dataset is provided in
the work [58] to the community. Many studies utilizing the
pioneerworkBERT [13], a pre-trained languagemodel based
on the transformer [48] architecture, have evaluated their
solutions on Spider [58] dataset. Some works [19, 36] focus
on the schema linking process to enrich the input NLQ for
better leveraging the schema information. In IRNet [19], the
authors first query n-grams of the NLQ over the database ele-
ments to find candidates and then feed these found candidates
to the additional schema encoder, whereas Lin et al. [36] inte-
grate these found candidates into the input as a serialization
technique before encoding. Rat-SQL [49] proposes a modi-
fied transformer layer to leverage schema information better
by introducing bias towards the schema for the attention
mechanism. In addition to these studies, language represen-
tation techniques utilizing BERT such as TaBERT [55] and
Grappa [11] have been introduced to leverage tabular data
specific representations in related downstream tasks such as
NLIDBproblem. For a comprehensive survey covering exist-
ing solutions in NLIDB, the reader can refer to [1, 31].

To the best of our knowledge, there is no hybrid solution
utilizing both neural network- and rule-based techniques,
proposed similar to xDBTagger. Nonetheless, some of the
earlier works [19, 36, 54, 56] embracing end-to-end neural
network approaches focused more on enriching the input by
trying to map tokens in the NLQ to database values similar to
our keyword mapper, DBTagger. However, as shown in the
work [47], such solutions proposing ad-hoc querying over
database tables to find candidate mappings are not efficient
and not scalable to bigger databases unlike xDBTagger.

There have been previous studies [12, 32, 39, 51] proposed
in line with interpretable interfaces to databases. However,
such solutions rather focus on providing additional informa-
tion for the SQL query results in the form of summarized
texts or snippets exploiting signals of the tuples returned by
the result SQL. In this work, our goal is not to explain query
results but to explain the decisions that lead to the result SQL
for each step in the translation pipeline. To our knowledge,
xDBTagger is the first NLIDB system exercising XAI prin-
ciples to explain how the translation is performed.

8 Conclusion

In this work, we presented xDBTagger, the first end-to-end
explainable NLIDB solution to translate NLQs into their

counterpart SQLs. xDBTagger is a hybrid solution taking
advantage of both deep learning- and rule-based approaches.
First, we detect keyword mappings of the tokens in the input
NLQ using a novel deep learning model trained in a multi-
task learning setup. Next, we explain the decisions for the
keyword mappings using a modified version of a state-of-
the-art XAI solution LIME [42]. We visually illustrate the
importance of each surrounding word for each mapping by
highlighting their contributions which can be either positive
or negative. In addition, we draw the schema graph to visual-
ize better the database schema over which the query is issued.
We also color the nodes representing tables and attributes in
the graph to explain how the required join conditions in the
result SQL are extracted. Finally, we explain each part of the
result SQL to the user by providing the reason why we need
that particular part given the input NLQ. Our quantitative
experimental results indicate that in addition to being fully
explainable, xDBTagger is effective in terms of translation
accuracy and more preferable compared to other pipeline-
based solutions in terms of efficiency.

Acknowledgements This research is supported by The Scientific and
TechnologicalResearchCouncil ofTürkiye (TÜBİTAK)under the grant
no 118E724.

References

1. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey
of recent natural language interfaces for databases. VLDB J. 28(5),
793–819 (2019)

2. Baik, C., Jagadish, H.V., Li, Y.: Bridging the semantic gap with
SQL query logs in natural language interfaces to databases. In:
2019 IEEE 35th International Conference on Data Engineering
(ICDE), pp. 374–385 (2019)

3. Blunschi, L., Jossen, C., Kossmann, D., Mori, M., Stockinger, K.:
Soda: generating SQL for business users. Proc. VLDB Endow.
5(10), 932–943 (2012)

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word
vectorswith subword information.Trans.Assoc.Comput. Linguist.
5, 135–146 (2017)

5. Cao, R., Chen, L., Chen, Z., Zhao, Y., Zhu, S., Yu, K.: LGESQL:
Line graph enhanced text-to-SQL model with mixed local and
non-local relations. In: Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 2541–2555. Association for Com-
putational Linguistics, Online. https://doi.org/10.18653/v1/2021.
acl-long.198, https://aclanthology.org/2021.acl-long.198 (2021)

6. Caruana, R.: Multitask learning.Mach. Learn. 28(1), 41–75 (1997)
7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Gated feedback recur-

rent neural networks. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning,
JMLR.org, ICML’15, vol. 37, pp. 2067–2075 (2015)

8. Clark, K., Luong, M., Le, Q.V., Manning, C.D.: ELECTRA: pre-
training text encoders as discriminators rather than generators.
arXiv:2003.10555 (2020)

9. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K., Kuksa, P.: Natural language processing (almost) from scratch.
J. Mach. Learn. Res. 12(null), 2493–2537 (2011)

123

https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://aclanthology.org/2021.acl-long.198
http://arxiv.org/abs/2003.10555


A. Usta et al.

10. Crawshaw, M.: Multi-task learning with deep neural networks: a
survey. CoRR abs arXiv:2009.09796 (2020)

11. Deng, X., Awadallah, A.H., Meek, C., Polozov, O., Sun, H.,
Richardson, M.: Structure-grounded pretraining for text-to-SQL.
In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1337–1350. Association for Compu-
tational Linguistics, Online (2021)

12. Deutch, D., Frost, N., Gilad, A.: Explaining natural language query
results. VLDB J. 29(1), 485–508 (2020)

13. Devlin, J., Chang, M. W., Lee, K., Toutanova, K.: BERT: Pre-
training of deep bidirectional transformers for language under-
standing. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguis-
tics, Minneapolis (2019)

14. Dozat, T.: Incorporating nesterov momentum into adam. In: ICLR
Workshop, JMLR.org (2016)

15. Došilović, F.K., Brcic, M., Hlupic, N.: Explainable artificial intel-
ligence: a survey. In: 2018 41st International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 0210–0215 (2018)

16. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with
deep recurrent neural networks. In: 2013 IEEE International
Conference onAcoustics, Speech and Signal Processing, pp. 6645–
6649 (2013)

17. Gregor, S., Benbasat, I.: Explanations from intelligent systems:
theoretical foundations and implications for practice. MIS Q. 23,
497–530 (1999)

18. Gunning, D., Aha, D.: DARPA’s explainable artificial intelligence
(XAI) program. AI Mag. 40(2), 44–58 (2019)

19. Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J.G., Liu, T., Zhang,
D.: Towards Complex Text-to-SQL in Cross-domain Database
with Intermediate Representation, pp. 4524–4535. Association for
Computational Linguistics, Florence, Italy (2019)

20. Hayes-Roth, F., Jacobstein, N.: The state of knowledge-based sys-
tems. Commun. ACM 37(3), 26–39 (1994)

21. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778 (2016)

22. Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J.: Devel-
oping a natural language interface to complex data. ACM Trans.
Database Syst. 3(2), 105–147 (1978)

23. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R.: Improving neural networks by preventing co-
adaptation of feature detectors. ArXiv abs arXiv:1207.0580 (2012)

24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9, 1735–80 (1997)

25. Huang,G., Liu, Z.,VanDerMaaten, L.,Weinberger,K.Q.:Densely
connected convolutional networks. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269
(2017)

26. Huang, P.S., Wang, C., Singh, R., Yih, W., He, X.: Natural Lan-
guage to Structured Query Generation via Meta-learning, pp.
732–738. Association for Computational Linguistics, NewOrleans
(2018)

27. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for
sequence tagging. arXiv:1508.01991 (2015)

28. Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., Zettlemoyer,
L.: Learning a neural semantic parser from user feedback. In:
Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 963–973
. Association for Computational Linguistics, Vancouver (2017)

29. Jou, B., Chang, S.F.: Deep cross residual learning for multitask
visual recognition. In: Proceedings of the 24th ACM International

Conference on Multimedia, Association for Computing Machin-
ery, New York, MM ’16, pp. 998–1007. https://doi.org/10.1145/
2964284.2964309 (2016)

30. Katsogiannis-Meimarakis, G., Koutrika, G.: A survey on deep
learning approaches for text-to-SQL. VLDB J. 32(4), 905–936
(2023). https://doi.org/10.1007/s00778-022-00776-8

31. Kim, H., So, B.H., Han, W.S., Lee, H.: Natural language to SQL:
Where are we today? Proc. VLDB Endow. 13(10), 1737–1750
(2020)

32. Koutrika, G., Simitsis, A., Ioannidis, Y.E.: Explaining structured
queries in natural language. In: 2010 IEEE 26th International Con-
ference on Data Engineering (ICDE 2010), pp. 333–344. https://
doi.org/10.1109/ICDE.2010.5447824 (2010)

33. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random
fields: probabilistic models for segmenting and labeling sequence
data. In: Proceedings of the Eighteenth International Conference on
Machine Learning, Morgan Kaufmann Publishers Inc., San Fran-
cisco, ICML ’01, pp. 282–289 (2001)

34. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K.,
Dyer,C.:Neural architectures for named entity recognition. In: Pro-
ceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, pp. 260–270. Association for Computational Lin-
guistics, San Diego (2016)

35. Li, F., Jagadish, H.V.: Constructing an interactive natural language
interface for relational databases. Proc. VLDB Endow. 8(1), 73–84
(2014)

36. Lin, X. V., Socher, R., Xiong, C.: Bridging textual and tabular
data for cross-domain text-to-SQL semantic parsing. In: Findings
of the Association for Computational Linguistics: EMNLP 2020,
pp. 4870–4888. Association for Computational Linguistics, Online
(2020)

37. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1064–1074. Association for Computational Linguis-
tics, Berlin (2016)

38. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J.,
McClosky, D.: The stanford CoreNLP natural language process-
ing toolkit. In: Association for Computational Linguistics (ACL)
System Demonstrations, pp. 55–60 (2014)

39. Müller, T., Grust, T.: Provenance for SQL through abstract inter-
pretation: value-less, but worthwhile. Proc. VLDB Endow. 8(12),
1872–1875 (2015)

40. Özcan, F., Quamar, A., Sen, J., Lei, C., Efthymiou, V.: State of the
art and open challenges in natural language interfaces to data. In:
Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, Association for Computing Machinery,
New York, NY, USA, SIGMOD ’20, pp. 2629–2636 (2020)

41. Poulin,B., Eisner,R., Szafron,D., Lu, P.,Greiner,R.,Wishart,D.S.,
Fyshe, A., Pearcy, B., MacDonell, C., Anvik, J.: Visual explana-
tion of evidence with additive classifiers. In: Proceedings of the
National Conference on Artificial Intelligence, Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, vol. 21,
p. 1822 (2006)

42. Ribeiro, M. T., Singh, S., Guestrin, C.: "why should I trust you?":
explaining the predictions of any classifier. In: Proceedings of the
22ndACMSIGKDD International Conference onKnowledge Dis-
covery and Data Mining, San Francisco, CA, USA, August 13–17,
2016, pp. 1135–1144 (2016)

43. Saha, D., Floratou, A., Sankaranarayanan, K.,Minhas, U.F.,Mittal,
A.R., Özcan, F.: ATHENA: an ontology-driven system for natural
language querying over relational data stores. Proc. VLDB Endow.
9(12), 1209–1220 (2016)

44. Scholak, T., Schucher, N., Bahdanau, D.: PICARD: parsing incre-
mentally for constrained auto-regressive decoding from language

123

http://arxiv.org/abs/2009.09796
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1508.01991
https://doi.org/10.1145/2964284.2964309
https://doi.org/10.1145/2964284.2964309
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1109/ICDE.2010.5447824
https://doi.org/10.1109/ICDE.2010.5447824


xDBTagger: explainable natural language interface to databases using…

models. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 9895–9901. Asso-
ciation for Computational Linguistics, Online and Punta Cana,
Dominican Republic (2021)

45. Sen, J., Lei, C., Quamar, A., Özcan, F., Efthymiou, V., Dalmia,
A., Stager, G., Mittal, A., Saha, D., Sankaranarayanan, K.:
ATHENA++: natural language querying for complex nested SQL
queries. Proc. VLDB Endow. 13(12), 2747–2759 (2020)

46. Sheinin, V., Khorashani, E., Yeo, H., Xu, K., Vo, N.P.A., Popescu,
O.: Quest: a natural language interface to relational databases. In:
Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018) (2018)

47. Usta, A., Karakayali, A., Ulusoy, O.: DBTagger: multi-task learn-
ing for keyword mapping in NLIDBs using bi-directional recurrent
neural networks. Proc. VLDB Endow. 14(5), 813–821 (2021)

48. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need.
In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems, vol. 30. Curran Associates Inc, NewYork
(2017)

49. Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.: RAT-
SQL: relation-aware schema encoding and linking for text-to-SQL
parsers. In: Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 7567–7578. Association
for Computational Linguistics, Online (2020)

50. Weir, N., Utama, P., Galakatos, A., Crotty, A., Ilkhechi, A.,
Ramaswamy, S., Bhushan, R., Geisler, N., Hättasch, B., Eger, S.,
Cetintemel, U., Binnig, C.: DBPal: a Fully Pluggable NL2SQL
training pipeline. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, Association for
Computing Machinery, New York, NY, USA, SIGMOD ’20, pp.
2347–2361 (2020)

51. Wen, Y., Zhu, X., Roy, S., Yang, J.: Interactive summarization and
exploration of top aggregate query answers. Proc. VLDB Endow.
11(13), 2196–2208 (2018)

52. Xu, X., Liu, C., Song, D.: SQLNet: generating structured queries
from natural language without reinforcement learning. arXiv
preprint arXiv:1711.04436 (2017)

53. Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: SQLizer: query
synthesis from natural language. Proc. ACM Program. Lang.
1(OOPSLA), 63:1-63:26 (2017)

54. Yavuz, S., Gur, I., Su, Y., Yan, X.: What it takes to achieve 100%
condition accuracy onWikiSQL. In: Proceedings of the 2018 Con-
ference on EmpiricalMethods inNatural Language Processing, pp.
1702–1711. Association for Computational Linguistics, Brussels
(2018)

55. Yin, P., Neubig, G., Yih, Wt., Riedel, S.: TaBERT: pretraining for
joint understanding of textual and tabular data. In: Proceedings of
the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 8413–8426. Association for Computational Lin-
guistics, Online (2020)

56. Yu, T., Li, Z., Zhang, Z., Zhang, R., Radev, D.: TypeSQL:
Knowledge-based Type-aware Neural Text-to-SQL Generation,
pp. 588–594. Association for Computational Linguistics, New
Orleans (2018)

57. Yu, T., Yasunaga,M., Yang, K., Zhang, R.,Wang, D., Li, Z., Radev,
D.: SyntaxSQLNet: syntax tree networks for complex and cross-
domain text-to-SQL task. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 1653–
1663. Association for Computational Linguistics, Brussels (2018)

58. Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z.,
Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., Radev, D.: Spider:
A Large-scale Human-Labeled Dataset for Complex and Cross-
domain Semantic Parsing and Text-to-SQL Task, pp. 3911–3921.
Association for Computational Linguistics, Brussels (2018)

59. Zeiler, M. D.: ADADELTA: an adaptive learning rate method.
arXiv:1212.5701 (2012)

60. Zhong, V., Xiong, C., Socher, R.: Seq2SQL: generating structured
queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1709.00103

	xDBTagger: explainable natural language interface to databases using keyword mappings and schema graph
	Abstract
	1 Introduction
	2 System architecture
	3 Keyword mapper—DBTagger
	3.1 Deep sequence tagger architecture
	3.2 DBTagger architecture
	3.3 Annotation scheme
	3.3.1 POS tags
	3.3.2 Type tags
	3.3.3 Schema tags


	4 Explanations for keyword mapper
	4.1 LIME
	4.2 LIME wrapper

	5 SQL translation algorithm
	5.1 Schema graph extraction
	5.2 Join-path inference
	5.3 Where clause completion
	5.4 Heuristics for aggregate queries

	6 Experimental setup
	6.1 Datasets
	6.2 Quantitative evaluation of xDBTagger
	6.2.1 Keyword mapping evaluation
	6.2.2 Query translation results

	6.3 Explainable user interface of xDBTagger

	7 Related work
	8 Conclusion
	Acknowledgements
	References


