
15

Incremental Cluster-Based Retrieval Using
Compressed Cluster-Skipping Inverted Files

ISMAIL SENGOR ALTINGOVDE, ENGIN DEMIR, FAZLI CAN,

and ÖZGÜR ULUSOY

Bilkent University

We propose a unique cluster-based retrieval (CBR) strategy using a new cluster-skipping inverted
file for improving query processing efficiency. The new inverted file incorporates cluster member-
ship and centroid information along with the usual document information into a single structure.
In our incremental-CBR strategy, during query evaluation, both best(-matching) clusters and the
best(-matching) documents of such clusters are computed together with a single posting-list ac-
cess per query term. As we switch from term to term, the best clusters are recomputed and can
dynamically change. During query-document matching, only relevant portions of the posting lists
corresponding to the best clusters are considered and the rest are skipped. The proposed approach is
essentially tailored for environments where inverted files are compressed, and provides substantial
efficiency improvement while yielding comparable, or sometimes better, effectiveness figures. Our
experiments with various collections show that the incremental-CBR strategy using a compressed
cluster-skipping inverted file significantly improves CPU time efficiency, regardless of query length.
The new compressed inverted file imposes an acceptable storage overhead in comparison to a typical
inverted file. We also show that our approach scales well with the collection size.

Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory—Data com-
paction and compression; H.3.2 [Information Storage and Retrieval]: Information Storage—
File organization; H.3.3 [Information Storage and Retrieval]: Information Search and Re-
trieval—Clustering, search process

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Best match, cluster-based retrieval (CBR), cluster-skipping
inverted index structure (CS-IIS), full search (FS), index compression, inverted index structure
(IIS), query processing

ACM Reference Format:

Altingovde, I. S., Demir, E., Can, F., and Ulusoy, Ö. 2008. Incremental cluster-based retrieval using
compressed cluster-skipping inverted files. ACM Trans. Inform. Syst. 26, 3, Article 15 (June 2008),
36 pages. DOI = 10.1145/1361684.1361688 http://doi.acm.org/10.1145/ 1361684.1361688.

This research is supported by The Scientific and Technical Research Council of Turkey (TÜBITAK)
under the grant no. 105E024.
Authors’ addresses: I. S. Altingovde, E. Demir, F. Can, and Ö. Ulusoy, Computer Engineer-
ing Department, Bilkent University, Ankara, 06800, Turkey; email: {ismaila, endemir, canf,
oulusoy}@cs.bilkent.edu.tr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1046-8188/2008/06-ART15 $5.00 DOI 10.1145/1361684.1361688 http://doi.acm.org/
10.1145/1361684.1361688

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:2 • I. S. Altingovde et al.

1. INTRODUCTION

In an information retrieval (IR) system the ranking-queries, or Web-like
queries, are based on a list of terms that describe the user’s information need.
Search engines provide a ranked document list according to potential relevance
of documents to user queries. In ranking-queries, each document is assigned a
matching score according to its similarity to the query using the vector space
model [Salton 1989]. In this model, the documents in the collection and queries
are represented by vectors whose dimensions correspond to terms in the vocab-
ulary of the collection. The value of a vector entry can be determined by one
of the several term weighting methods proposed in the literature [Salton and
Buckley 1988]. During query evaluation, query vectors are matched with doc-
ument vectors by using a similarity function. The documents in the collection
are then ranked in decreasing order of their similarity to the query and the
ones with highest scores are returned. Note that Web search engines exploit
the hyperlink structure of the Web or the popularity of a page for improved
results [Brin and Page 1998; Long and Suel 2003].

However, exploiting the fact that document vectors are usually very sparse,
an inverted index file can be employed instead of full vector comparison during
the ranking-query evaluation. Using an inverted index, the similarities of those
documents that have at least one term in common with the query are computed.
In this article, a ranking-query evaluation with an inverted index is referred
to as full search (FS). Many state-of-the-art large-scale IR systems such as
Web search engines employ inverted files and highly optimized strategies for
ranking-query evaluation [Zobel and Moffat 2006].

An alternative method of document retrieval is first clustering the documents
in the collection into groups according to their similarity to each other. Clusters
are represented with centroids which can include all or some of the terms that
appear in the cluster members. During query processing, only those clusters
that are most similar to the query are considered for further comparisons with
cluster members, that is, documents. This strategy, so-called cluster-based re-
trieval (CBR), is intended to improve both the efficiency and effectiveness of
document retrieval systems [Jardin and Van Rijsbergen 1971; Salton 1975;
Salton and McGill 1983; Voorhees 1986b]. CBR can improve efficiency, as the
query-document matches are computed for only those documents that are in
clusters most similar to the query. Furthermore, it may enhance effectiveness,
according to the well-known cluster hypothesis [van Rijsbergen 1979; Voorhees
1985]. Note that the resulting ranking returned by CBR can be different from
that of FS, as the former considers only those documents in promising clusters.

Surprisingly, despite these premises of CBR for improving effectiveness and
efficiency, the information retrieval community has witnessed contradictory
results in terms of both of these aspects in the last few decades [Salton 1989;
Voorhees 1986b; Liu and Croft 2004]. This inconsistency has reduced interest
in CBR and its consideration as an alternative retrieval method to full search.
On the other hand, the growth of the Web as an enormous digital repository of
every kind of media, and essentially of text, also creates new opportunities for
the use of clustering and CBR. For example, Web directories (e.g., DMOZ, Yahoo,

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:3

etc.), a major competitor of search engines, allow users to browse through the
categories and assign a query on a particular one. This is a kind of CBR, except
that clusters are browsed manually. Furthermore, there exist several large-
scale text repositories that are available on Web or on proprietary networks,
again with manual and/or automatic classification/clustering of the content.
Clearly, CBR as a model of information retrieval perfectly fits the requirements
of such environments, provided that the suspected obstacles to its effectiveness
and efficiency are remedied. A recent attempt at addressing the effectiveness
front is by Liu and Croft [2004], which shows that by using language models,
CBR effectiveness can be significantly better than assumed in the literature.
The efficiency of CBR is investigated in this article.

For any given IR system involving document clusters (or categories), created
either automatically or manually, for legacy data or Web documents and in a
flat or hierarchical structure, the best-match CBR strategy has two stages:
(i) best(-matching) cluster selection, where those clusters most similar to
the submitted query are determined by using cluster centroids; and (ii)
best(-matching) document selection, wherein the documents from these best-
matching clusters are matched with the query to obtain the final query result. In
the early days of IR, once best clusters are obtained, it was presumed a reason-
able strategy to compare the query with the document vectors of the members
of those clusters (exhaustive search). This may be a valid and efficient strategy
if the clusters are rather small and queries rather long. However, state-of-the-
art applications for CBR, such as Web directories or digital libraries, involve
collections with large numbers of documents with respect to the number of
clusters (i.e., categories) and attempt to respond to a very high load of typically
short queries. Indeed, the inefficiency of the exhaustive strategy has been long
recognized [Salton 1989; Voorhees 1986b]. As a remedy, the use of inverted in-
dex files for both stages of CBR (i.e., comparison with centroids and documents)
has been proposed [Can 1994] (see Section 2.2.2 for a more detailed discussion).
More specifically, once the best clusters are obtained, a full search is conducted
over the entire collection to find those documents that have nonzero similarity
to the query, that is, the candidates to be the best documents. Next, from among
these documents, only those from the best clusters are filtered to be presented
to the user. This is a practical approach that is also applied in current-day sys-
tems [Cacheda et al. 2003; Cacheda and Baeza-Yates 2004]. In this article, we
refer to this strategy as typical CBR.

However, typical CBR still involves some significant redundancy. At the best-
document selection stage, the inverted index is used to find “all” documents
that have nonzero similarity to the query (note this is nothing but FS). Since
only documents from the best clusters are returned, the computations (decod-
ing postings, computing partial similarities, updating accumulators, inserting
into and extracting from the heap for the final output, etc.) for the eliminated
documents are all wasted. Furthermore, there is the cost of computing best
clusters. If the index files are kept on disk (a relaxable assumption, considering
the advances in the hardware, as we discuss later), accessing these structures
requires two direct (random) disk accesses per query term: one for the centroid
and another for document posting lists. These issues imply that typical CBR as

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:4 • I. S. Altingovde et al.

defined here cannot be a competitor of FS in terms of efficiency, as it already
involves the cost of FS in addition to the aforementioned costs specific to the
best-cluster selection stage.

Note the several recent approaches to optimize the basic FS strategy by
applying dynamic pruning techniques [Persin 1994; Persin et al. 1996; Anh and
Moffat 2006, 2005b, 2001; Lester et al. 2005]. These may equivalently improve
the second stage of typical CBR as well. However, none of these approaches
exploits specific information based on clustering, and thus the additional costs
explained in the previous paragraph still remain. In this article, we attempt to
optimize both stages of typical CBR so that almost no redundant work is done.
On top of this, it still may be possible to apply other optimizations, which we
briefly discuss later.

In this article, our goal is to design a CBR strategy that can overcome the
efficiency weaknesses of typical CBR and be as efficient as FS, while provid-
ing comparable effectiveness to FS and typical CBR. We introduce a cluster-
skipping inverted index structure (CS-IIS) and, based on this structure, a
unique cluster-based retrieval strategy. In the CS-IIS file, cluster membership-
and within-cluster term frequency information are embedded into the inverted
index, extending an approach in earlier works [Can et al. 2004; Altingovde
et al. 2007] which were inspired from Moffat and Zobel [1996]. Different from
previous studies, centroids are now stored in the original term posting-lists
and used for document matching. This enhanced inverted file eliminates the
need for accessing separate posting lists for centroid terms. In the new CBR
method, the computations required for selecting the best-matching clusters and
as well as for the best-matching documents of such clusters are performed to-
gether in incremental and interleaved fashion. The query terms are processed
in a discrete manner in nonincreasing term-weight order. In other words, we
envision a term-at-a-time query processing mode in this article, whereas an-
other highly efficient alternative, document-at-a-time, is out of scope [Anh and
Moffat 2006]. As we switch from the current query term to the next, the set
of best clusters is recomputed and can dynamically change. In the document
matching stage of CBR, only those portions of the current query-term posting
list that correspond to the latest best-matching cluster set are considered. The
rest are skipped, hence not involved in document matching. During document
ranking, only those members of the most recent best-matching clusters with a
nonzero similarity to the query are considered.

In the literature, it is observed that the size of an inverted index file can
be very large [Witten et al. 1994]. As a remedy, several efficient compression
techniques are proposed that significantly reduce the file size. In this study,
without loss of generality, we concentrate on the IR strategies with compres-
sion where the performance gains of our approach become more emphasized.
Indeed, our incremental-CBR strategy with the new inverted file is tailored
to be most beneficial in such a compressed environment. In other words, skip-
ping irrelevant portions of the posting lists during query processing eliminates
the substantial decompression overhead (as in Moffat and Zobel [1996]) and
provides further improvement in efficiency. In compression, we exploit the use
of multiple posting-list compression parameters and reassign document ids of

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:5

individual cluster-members to increase the compression rate, as recently pro-
posed in the literature [Blanford and Blelloch 2002; Silvestri et al. 2004].

The proposed approach promises significant efficiency improvements: If
memory is scarce (e.g., for digital libraries and proprietary organizations) and
index files have to be kept on disk, the incremental-CBR algorithm with CS-IIS
allows the queries to be processed by only one direct disk access per query term.
Furthermore, even if the centroid and/or document index is stored in memory,
which is probable with the recent advances in hardware (see Strohman and
Croft [2007] as an example), the CS-IIS saves decoding and processing those
document postings that are not from best clusters, a nontrivial cost. We show
that the most important overhead of CS-IIS, namely, longer posting lists, is
reduced to an affordable overhead by our compression heuristics and that even
with a moderate disk, the gains in efficiency can compensate for slightly longer
disk-transfer times (given that number of clusters tends to be much smaller
than that of documents).

Our comparative efficiency experiments cover various query lengths and both
storage size- and execution-time issues in a compressed environment. The re-
sults, even with lengthy queries, demonstrate the robustness of our approach.
We show that our approach scales well with the collection size. In the exper-
iments, we use multiple query sets and three datasets of sizes 564MB, 3GB,
and 27GB, corresponding to 210,158 and 1,033,461, and 4,293,638 documents,
respectively.

1.1 Motivation

The huge amount of digitally available text implies new opportunities for the
use of clustering and CBR. For instance, hierarchic taxonomies, in the form of
Web directories or in digital libraries, allow users to browse through categories
or to issue queries that are restricted to a certain subset of these categories
[Cacheda et al. 2003; Cacheda and Baeza-Yates 2004], in addition to the usual
keyword searches over the entire collection. Such directories, though first cre-
ated manually (e.g., DMOZ), have potential for further growth by using ma-
chine learning methods. Also, clustering can be employed for less constrained
collections, either in association with or independently from supervised catego-
rization. All these environments call for efficient methods for processing queries
restricted to a certain cluster(s), which may be determined automatically (as
we assume here) or browsed by the user. This is clearly a sort of CBR, as we
mean in this article.

CBR may also prove beneficial for presenting query results. Assuming re-
sults are presented based on their clusters, it is possible for the user to browse
a cluster and thereby discover some other similar and potentially relevant docu-
ments which do not capture any of the query words, and which are unreachable
otherwise. Furthermore, the user can pose a refined query in a cluster that (s)he
presumes relevant, which may improve user satisfaction and system efficiency.
Again, such clustered environments would require efficient methods of conduct-
ing CBR. The existence of such methods would accelerate the motivation for
clustering and/or categorizing the content for user access.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:6 • I. S. Altingovde et al.

In this article, we envision that CBR is a worthwhile strategy in certain
domains such as those described earlier, provided that it can be competitive
with FS in terms of both effectiveness and efficiency. Given the recent promising
findings on effectiveness [Liu and Croft 2004], we focus on the latter and thus
aim to show that efficient CBR is an attainable goal as well.

1.2 Contributions

The contributions of this study consist of the following.

—Introducing a Pioneering CBR Strategy. We introduce an original CBR
method using a new cluster-skipping inverted index structure and refer to
it as incremental CBR. The proposed strategy interleaves query-cluster- and
query-document matching stages of best-match CBR for the first time in the
literature.

—Embedding the Centroid Information in Document Inverted Indexes. For
memory-scarce environments (e.g., private networks, digital libraries, etc.)
where the index files should be kept on disk, we eliminate the disk accesses
needed for centroid inverted index posting-lists by embedding the centroid
information in document posting-lists. This embedded information enables
best-cluster selection by only accessing the document inverted index. In this
way, during query processing, each query term requires only one direct disk
access rather than separate disk accesses for centroid- and document posting-
lists. The new data structure, cluster-skipping IIS (CS-IIS), is inspired from
Can et al. [2004] and Moffat and Zobel [1996], but enriched as discussed later
in the article.

—Outperforming Full Search (FS) Efficiency. We show that for large datasets,
incremental CBR outperforms FS (as well as typical CBR, which actually in-
volves FS during its best-document selection stage) in efficiency while yield-
ing comparable (or sometimes better) effectiveness figures. We also show the
efficiency of our approach to scale well with collection size. The proposed ap-
proach is also superior to the FS version that employs the “continue” pruning
strategy accompanied with a skipping IIS, as described in Moffat and Zobel
[1996].

—Adapting the Compression Concepts to a CBR Environment. We adapt mul-
tiple posting-list compression parameters and specify a cluster-based docu-
ment id reassignment technique that best fits the features of CS-IIS.

—CBR Experiments Using a Realistic Corpus Size with No User Behavior
Assumption Performing. We use the largest corpora reported in the CBR
literature, assume no user interaction, and perform all decisions in an au-
tomatic manner. Only a few studies on CBR use collections as large as ours
(e.g., Can et al. [2004], Liu and Croft [2004]).

The rest of the article is organized as follows. We start with reviewing the
two traditional IR strategies, FS and typical CBR, which serve as the baseline
cases for comparison with our incremental-CBR strategy. In Section 3, we intro-
duce the incremental-CBR strategy using the cluster-skipping inverted index

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:7

structure (CS-IIS). In Section 4, we discuss compression of the CS-IIS, with
an emphasis on the benefits of document id reassignment in our framework.
In Section 5, we describe the experimental environment and in Section 6, the
proposed strategy is extensively evaluated and compared to an efficient FS im-
plementation based on dynamic pruning and skips [Moffat and Zobel 1996].
Related work in the literature is reviewed in Section 7. Finally, we conclude
and provide future research pointers in Section 8.

2. TRADITIONAL STRATEGIES FOR IR

In the following, we first review the two basic IR strategies, namely FS and
typical CBR, as well as their implementations employing an IIS for ranking-
queries. Finally, we briefly discuss compression techniques for the inverted
files.

2.1 Full Search Using Inverted Index Structure

In an IR system, typically two basic types of queries are provided: Boolean
and ranking-queries. In the former case, query terms are logically connected
by the operators AND, OR, and NOT and those documents that make this
logical expression true (i.e., satisfy the query) are retrieved. In ranking-queries,
each document is assigned a matching score according to its similarity to the
query, using the vector space model [Salton and McGill 1983]. In this work,
we concentrate on the ranking queries, which are more frequently used in Web
search engines (such as Google) and IR systems. However, our approach as
proposed in this article can be applicable to Boolean queries, as well.

In the vector space model, the documents of a collection are represented by
vectors. For a document collection including T distinct terms, each document
is represented by a T -dimensional vector. For those terms that do not appear
in the document, the corresponding vector entries are zero. On the other hand,
the entries for those terms that appear in the document can be determined
by one of several term weighting methods described in the literature [Salton
and Buckley 1988]. The goal of these methods is to assign higher weights to
those terms that can potentially discern one document among others, and vice
versa. In this study, the document-term weights are assigned using the term
frequency (tf) × inverse document frequency (idf) formulation. While comput-
ing the weight of term t in document d , denoted as wd ,t , term frequency is
computed as the number of occurrences of t in d , and idf is ln(number of all
documents/number of documents containing t) + 1. During query processing, a
term’s weight is computed by using the tf-idf formula and then normalized by
using the document lengths. Document lengths are computed with the formula√∑T

t=1
(wd ,t)2. (see Witten et al. [1994]) for further details).

The term weights for query terms (wq,t) are calculated in a similar fashion to
document-term weights. In this case, for computing the term frequency com-
ponent, we use an augmented normalized frequency formula defined as (0.5 +
0.5 x tf/max-tf). Here max-tf denotes the maximum number of times that any

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:8 • I. S. Altingovde et al.

term appears in the query vector. The idf component is obtained in exactly the
same manner as with the document terms. No normalization is done for query
terms, since it does not affect document ranking.

After obtaining weighted document- (d) and query (q) vectors in a T -
dimensional vector space, the query-document matching is performed using
the following formula [Salton and McGill 1983].

similarity(q, d) =
T∑

t=1

wq,t × wd ,t

It is possible to evaluate ranking-queries very efficiently by using an inverted
index of document vectors. In this case, the query vector is not matched against
all document vectors (most of which would probably yield no similarity at all),
but only to those that have at least one term in common with the query. An
inverted file has a header part, including a list of terms in the collection, and
pointers to the posting lists for each term. Along with each term, ft , namely
the number of documents in which this term appears, is kept. A posting list
for a term consists of those documents that include the term and is usually an
ordered list of <document id d , within-document term frequency fd ,t> pairs
(see Zobel and Moffat [2006] for other organizations).

During ranking-query evaluation, an accumulator array with as many en-
tries as the collection size is kept in memory (note that variations are possible
[Harman 1992]). The weighted query vector is constructed as described before.
For each term t in the query vector q, a direct access is made to the disk to lo-
cate t ’s posting list by using the pointer stored in the IIS header. Once located,
the posting list associated with this term t is read sequentially (assuming it is
stored on contiguous disk blocks) and brought to main memory. For each doc-
ument d in the posting list, first wd ,t is computed by using the tf-idf formula.
Note that the tf component corresponds to the fd ,t values that are stored, along
with the document ids, in the posting lists. The idf component can be easily
computed using the term frequency ft , stored in the IIS header. Next, using
a similarity function, the partial similarity of query to document is computed
(i.e., wd ,t · wq,t for the cosine function [Witten et al. 1994]) for this particular
term, and the resulting value is added to the accumulator entry for this doc-
ument. After all query terms are processed in the same manner, the entries
of the accumulator are normalized, that is, divided by the precomputed docu-
ment lengths. Finally, the accumulators (documents) are sorted in descending
similarity order and returned as the query output. If only the top-k documents
are required and k is much smaller than the collection size (which is the com-
mon case, as in the Web), using a heap data structure significantly reduces the
query processing time. Details of ranking-query processing are discussed ex-
tensively in Cambazoglu [2006], Cambazoglu and Aykanat [2006], and Witten
et al. [1994].

In this article, a ranking-query evaluation as described in the preceding
discussion is referred to as full search. It is “full” in the sense that it returns
exactly the same results as the sequential collection scan and uses all terms in
the documents (except for stop-words, as we mention in the experimental setup).

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:9

2.2 Cluster-Based Retrieval (CBR)

Document clustering can produce a hierarchic or flat structure (see the beautiful
book by Jain and Dubes [1988] for a review of clustering algorithms). Most
research in the literature focuses on the hierarchic methods (see, e.g., Willett
[1988]). Cluster-based retrieval is intended to improve both the efficiency and
effectiveness of retrieval systems [Jardin and van Rijsbergen 1971; Salton 1975;
Voorhees 1986b]. In this study, we focus on the partitioning clustering- and
best-match CBR. In the following subsections, we first review several centroid
construction techniques for representing clusters and then we discuss typical
CBR with IIS.

2.2.1 Cluster Centroids and Centroid Weighting. A classical problem of
cluster-based retrieval is selecting the terms in the cluster centroids and deter-
mining the maximum centroid length as well as centroid-term weights. Mur-
ray [1972] states that the effectiveness of retrieval does not increase linearly
with maximum centroid length. Thus, in the literature, typically a limited
number of terms selected by various methods are used as cluster centroids.
For instance, in the hierarchical clustering experiments described by Voorhees
[1986a, 1986b], the sum of within-document frequency of each term in a cluster
is computed and the terms are sorted by decreasing frequency. Next, top-k terms
are selected to comprise the cluster centroid, where an appropriate value of k
is experimentally determined [Voorhees 1986a]. Note that, based on Murray’s
centroid definition [1972], Voorhees attempted to find those shortest centroid
vectors that cause minimal deterioration of effectiveness. However, the results
reported in that work show variability in drawing a conclusion on the relation-
ship between centroid length and effectiveness for several hierarchical CBR
techniques. In a recent work, several methods for centroid generation have
been reviewed and it is concluded that the need for an extensive investigation
of centroid influence on CBR effectiveness still exists [Tombros 2002].

In the rest of this article, we assume the use of three centroid-term weighting
schemes: CW1, CW2, and CW3; in all of them the weight of a centroid term is
computed by the formula tf × idf. In CW1, while tf is taken as 1, while in CW2
and CW3 it is taken as the number of occurrences of a term in the cluster,
that is, as the within-cluster term frequency. In CW1 and CW2, idf is taken
as ln(number of clusters/number of centroids including the term) + 1, and in
CW3 it is taken as ln(sum of occurrence numbers in the centroids/number of
occurrence in the cluster) + 1. During the best-cluster selection stage of query
processing, weights are normalized by using the precomputed cluster lengths.
In Table I, the three centroid-term weighting schemes are summarized.

2.2.2 Typical CBR Using Inverted Index Structure. In partitioning clus-
tering, a flat clustering of the documents is produced and the search is typically
achieved by the best-match strategy. The best-match CBR search strategy has
two stages: (i) selection of ns, the number of best-matching clusters using cen-
troids; and (ii) selection of ds, the number of best-matching documents of the
selected best-matching clusters. For item (i) we have two file structure possi-
bilities: centroid vectors, and an IIS of centroids. For item (ii) we again have

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:10 • I. S. Altingovde et al.

Table I. Term Weighting Schemes for Centroids

Weighting Scheme Term Frequency (tf) Inverse Document Frequency (idf)

CW1 1 ln number of clusters
number of centroids including the term + 1

CW2 within-cluster term
frequency

ln number of clusters
number of centroids including the term + 1

CW3 within-cluster term
frequency

ln sum of occurence numbers in the clusters
number of occurence in the cluster + 1

two possibilities: document vectors, and an IIS of all documents. One remaining
possibility for (ii), namely, a separate inverted index for the members of each
cluster, is not considered due to its excessive cost in terms of disk accesses (for
a query with k number of terms, it would involve k direct disk accesses for each
selected cluster) and maintenance overheads. Hence, possible combinations of
(i) and (ii) determine four different implementation alternatives.

In Can [1994] the efficiency of the aforesaid alternatives is measured in
terms of CPU time, disk accesses, and storage requirements in the simulated
environment defined in Voorhees [1986b]. It is observed that the version em-
ploying an IIS for both centroids and documents (separately) is significantly
better than the others. Notice that the query processing in this case is quite
similar to the ranking-query evaluation for FS discussed in Section 2.1 and re-
peats that procedure twice, using centroid IIS and document IIS, respectively.
A final stage is also required for filtering documents retrieved by the second
stage (i.e., FS using the document index) but not belonging to the best clusters.
A similar approach is typically used for processing queries that are restricted to
certain categories on Web directories (with the only distinction being that best
cluster(s) are explicitly specified by the user instead of by an automatic compu-
tation) [Cacheda et al. 2003; Cacheda and Baeza-Yates 2004]. Throughout the
article, we consider this particular implementation as the baseline best-match
CBR method and refer to it as typical CBR.

In Figure 1, we illustrate the centroid- and document IIS files for this strat-
egy; the example provided in the figure is for a document-by-term D matrix
with three clusters C1, C2, and C3. In the D matrix, rows and columns respec-
tively indicate documents and terms. The matrix shows that document 2 (d2)
contains term 1 (t1) once and t2 three times. We assume for simplicity that all
terms appearing in the member documents of a cluster are used in the centroid
and that the centroid inverted index is created accordingly. For instance, term
t1 appears in two documents, d1 and d2, once in each. Since both documents
are in C1, the posting element for C1 in the list of t1 stores the value 2 as the
within-cluster term frequency.

In Can [1994], it is further stated that typical CBR is inferior to FS in terms
of query evaluation efficiency. This is an expected result, as the best-document
selection stage of typical CBR is actually nothing but a full search on the entire
collection. Furthermore, selecting the best clusters as well as the final result
filtering would also incur additional costs. In Altingovde et al. [2006], efficiency
tradeoffs for typical CBR are discussed, but those arguments are essentially

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:11

1d21d1

3d21d1

1d21d1 1d4 1d7

1d2 d3 3 7d4

2d3 d5 1 1d71d6

d1 1 1d3 4d65d5 1d7

4

4

7

10

8

11

t2

t1

t4

t3

t5

t6

C1 2

C1 4

C1 2 C3

C1 1

C2 2

C3 10C1 1

1

1

2

3

2

3

t2

t1

t4

t3

t5

t6

C2 1

C2 10

C3 3

C2 1

1

C1 = {d1, d2}

C2 = {d3, d4}

C3 = {d5, d6, d7}

D =

t1 t2 t3 t4 t5 t6

d2

d3

d4

d5

d7

d6

d11 1 0 0 1
1 3 1 1 0 0
0 0 0 3 2 1
0 0 1 7 0 0
0 0 0 0 1 5
0 0 0 0 1 4
0 0 1 0 1 1

1

Fig. 1. Centroid and document IIS for typical CBR.

for uncompressed environments and the findings not directly applicable to our
framework here.

In Can et al. [2004], we have proposed a method to improve typical-CBR per-
formance by using a skipping, inverted index. In this structure, cluster member-
ship information is also blended into the inverted index, and those posting-list
entries that are not from best clusters are skipped during query processing.

In this article, we propose a new IIS file that accommodates centroid- and
document posting lists in a fully combined manner, and an incremental-CBR
strategy to access this IIS file efficiently. This article differs from our earlier
work [Can et al. 2004] in the following ways.

—The cluster-skipping IIS file is enhanced to allow both centroid-query match-
ing and document-query matching at once.

—A new incremental query processing strategy is introduced to be used with
this index file.

—Efficiency results are provided for both in-memory- and disk-access times
during query processing.

—The method is essentially proposed for and adapted to environments with
compression.

2.3 Compression of IIS

There are several works regarding the compression of inverted indexes, and in
this section we briefly summarize them based on the discussion in Witten et al.
[1994]. The key point for compressing posting lists is storing the document ids
in list elements as a sequence of d-gaps. For instance, assume that the posting
list for a term t includes the following documents: 3, 7, 11, 14, 21, 24; using

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:12 • I. S. Altingovde et al.

d-gaps these can be stored as 3, 4, 4, 3, 7, 3. In this representation, the first
document id is stored as-is, whereas all others are represented with a d-gap
(id difference) from the previous document id in the list. The expectation is
that d-gaps are much smaller than the actual ids. Among many possibilities,
variable-length encoding schemes are usually preferred to encode d-gaps and
term frequencies, as they allow representing smaller integers in less space.
There are several bitwise encoding schemes. In this study we will focus on the
Elias-γ - and Golomb codes, following the approach implemented in Moffat and
Zobel [1996] and Witten et al. [1994]. More recently, Anh and Moffat [2005a]
proposed a more efficient compression scheme which could also be applicable
in our framework.

In the literature, a particular choice for encoding typical posting-list elements
(i.e., <d , fd ,t> pairs) is using the Golomb- and Elias-γ schemes for d-gaps and
term frequency values, respectively [Witten et al. 1994]. Elias-γ code is a non-
parameterized technique that allows easy encoding and decoding. Golomb code
is a parameterized technique which, for some parameter b, encodes a nonzero
integer x in two parts. For inverted index compression, the parameter b can
be determined by using a global Bernoulli process that models the probabilis-
tic distribution of document id occurrences in posting lists. Golomb code can be
further specialized by using a local Bernoulli model for each posting list. In this
case, the d-gaps for frequent terms (with longer posting lists) are coded with
small values of b, whereas d-gaps for less frequent terms are coded with larger
ones. During encoding and decoding, the b value is determined for a particular
posting list It by the formula

b = 0.69 × N
ft

. (1)

In this equation, N is the number of documents, and ft is the frequency of term
t in the collection (i.e., the length of the posting list It). In Witten et al. [1994, pp.
94–95], it is reported that “for most applications . . . the local Bernoulli model,
coded using the Golomb code, is the method of choice.” In Section 4, we discuss
in detail how the Golomb code with a local Bernoulli model can be adapted to
cluster-skipping IIS.

3. INCREMENTAL CBR WITH CLUSTER-SKIPPING INVERTED

INDEX STRUCTURE

3.1 Cluster-Skipping Inverted Index Structure with Embedded Centroids

A cluster-skipping inverted index structure (CS-IIS) differs from a typical IIS,
since in posting lists it adjacently stores the documents of each cluster in a
group. It contains a skip element preceding each such group to store the id of
that cluster to which the following document group belongs, and a pointer to the
address where the next skip-element can be accessed in the posting list. It is
shown that cluster skipping in query processing improves the query processing
time [Can et al. 2004]. Furthermore, since cluster membership information is
embedded into the IIS, it needs no separate cluster membership test, as required
in typical-CBR methods.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:13

C1 1d21d1

C1 3d21d1

C1 1d21d1 C2 C31d4 1d7

C1 C21d2 d3 3 7d4

C2 C32d3 d5 1 1d71d6

d1 1 1d3C2 C3 4d65d5 1d7C1

t1

t3

1t2

1

t5

2t4

3

2

3t6

4

4

7

10

8

11

2 1

2 2

2 1

1 1

1 2

1 1

1 1

2 5

3 1

1 1

1 1

3 3

C1 = {d1, d2}

C2 = {d3, d4}

C3 = {d5, d6, d7}

D =

t1 t2 t3 t4 t5 t6

d2

d3

d4

d5

d7

d6

d11 1 0 0 1
1 3 1 1 0 0
0 0 0 3 2 1
0 0 1 7 0 0
0 0 0 0 1 5
0 0 0 0 1 4
0 0 1 0 1 1

1

Fig. 2. Cluster-skipping inverted index structure (CS-IIS) example (embedded skip- and centroid
elements are shown as shaded).

In this article, we introduce a new cluster-skipping IIS which contains an ad-
ditional centroid element for each cluster in a given posting list (see Figure 2).
In this illustration, we use the same D matrix shown in Figure 1 and repeat
it here for convenience. Note that in both Figures 1 and 2, the same D matrix
and clusters of Can et al. [2004] are used to emphasize similarities and differ-
ences between the two skip approaches. The new centroid-element stores: (i) the
number of documents (i.e., subposting-list length, explained later), and (ii) av-
erage within-cluster term frequency for the term in the corresponding cluster.
These fields are used during cluster-query similarity computation, and in fact
represent those centroids used for the selection of the best-matching clusters.
Therefore, in our approach the centroid information is stored with or embedded
into document posting lists. In the figure each posting-list header contains the
associated term, the number of posting-list elements (pairs) associated with
that term, number of clusters containing the term, and the posting-list pointer
(disk address). The posting-list elements are of three types: the cluster id, which
is the position of the next cluster, the number of documents in the subposting
list, that is, the average within-cluster term frequency, the and document id,
namely the term frequency. Note that while the latter is a typical posting-list
element, the first two are called the skip element and centroid element, respec-
tively. In a posting list, the skip- and centroid element, along with succeeding
typical elements (until the next skip-element), are collectively called a subpost-
ing list.

In Figure 2, the posting list for t6 includes documents from three clusters.
For the first two clusters, the centroid elements simply store <1, 1> (since the
number of documents in cluster C1 (C2) is 1), as well as the average within-
cluster term frequency. For the last cluster in this posting list, the centroid
element is <3, 3>, since there are three documents in cluster (d5, d6, d7) and

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:14 • I. S. Altingovde et al.

Fig. 3. Evaluation of a ranking-query by incremental CBR with embedded centroids, using cluster-
skipping IIS.

the average within-cluster term frequency (as an integer) in the cluster is (5 +
4 + 1)/3 = 3.

An immediate benefit of this new inverted index structure is that there is no
need for a separate centroid index, and subsequently no need for an additional
direct disk-access time per query term for fetching the centroid IIS posting list
(assuming that the latter would reside on disk). By embedding cluster infor-
mation into the posting lists, any term in a cluster (or all of the terms) can
be chosen as a centroid term and during the query processing its weight can
be computed by using the methods described in Section 2.2.1. For simplicity,
assume all terms that appear in a cluster are used in the cluster centroids.
In this case, the within-cluster term frequency of the term is required to com-
pute the tf component of the term weighting schemes (e.g., CW2 and CW3 of
Table I). This value is approximately computed as the product of the values
stored in the centroid element in a subposting list (i.e., subposting-list length ×
average within-cluster term frequency), as shown in step 2(b)-(ii) of Figure 3.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:15

Note that instead of storing the actual within-cluster term frequency in the
centroid element, we prefer to store the average frequency value and obtain
the actual value by a multiplication. This is for the benefit of the compression
process (discussed in the next section), as smaller integers occupy less space
during compression. We expect that using an approximate value, instead of the
actual within-cluster term frequency in a cluster, does not affect overall system
effectiveness, which is justified by the experimental results. For the idf compo-
nent of weighting schemes, the number of clusters including a term is required.
Notice that this information is captured in the IIS header (see Figure 2).

Note that we assume the cluster lengths (i.e., centroid normalization factors
used in matching [Salton and Buckley 1988]) to be precomputed and stored just
like document lengths, for whichever term weighting scheme is used. During
query processing, centroid-term weights are normalized by using the precom-
puted cluster lengths.

3.2 Incremental Cluster-Based Retrieval

In incremental CBR, we determine the best clusters by only accessing the
cluster-skipping IIS. The basic heuristic is that instead of determining the final
best clusters before ranking the documents in these clusters (as in the case of
typical CBR), we carry out both processes in incremental fashion. In this new
strategy, the query terms are processed in decreasing order according to their
weight. For a given query, the posting list for the most important query term
is brought to memory. In the first pass over its posting list, the best-clusters-so-
far are determined using an appropriate centroid-term weighting scheme (see
Section 2.2.1) and similarity measure. Notice that the information required for
these schemes is available in the skip- and centroid elements (as mentioned
in the previous section), so during the first pass it is sufficient to access only
those elements of each subposting list. In the second pass, only those docu-
ments whose clusters fall into the best-clusters-so-far are considered, while the
system skips those documents from the nonbest-matching clusters, as before.
The same is repeated for the next term in order (see Figure 3). Remarkably,
during query processing, only necessary elements of the CS-IIS are accessed
in each pass. This is especially important for reducing the number of decoding
operations in a compressed environment.

For instance, assume a query containing the terms {t4, t6} and that the num-
ber of best clusters (ns) and number of best documents (ds) to be selected are
2. Further, assume that t4 has a higher term weight than t6 for this query (see
Figure 4). Then, first the posting list of t4 is fetched. In the first pass, the query
processor reaches only the skip- and centroid elements in the posting list and
updates the cluster accumulator entries for C1 and C2. Let us assume that their
similarity scores are (partially) computed as 0.65 and 0.75, respectively. Then,
since the number of best clusters to be selected is 2, these two clusters will be
in the best-clusters-so-far, and in the second pass the document accumulator
entries for the documents in these clusters (i.e., documents d2, d3, d4), will be
updated (say, as 0.1, 0.3, 0.7, respectively). Next, the posting list of t6 is fetched.
Let us assume that this updates the cluster accumulator entries for clusters C1,

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:16 • I. S. Altingovde et al.

q = <t4, t6>, w(t4) > w(t6), ns = 2, ds = 2

First pass using t4

Second pass using t4

First pass using t6

Second pass using t6

0.300.100 000.70 0

d1 d2 d3 d4 d5 d6 d7

DAcc

0.750.65 0

C1 C2 C3

CAcc

C1 C21d2 d3 3 7d4t4 1 1 2 5

C1 C21d2 d3 3 7d4t4 1 1 2 5

d1 1 1d3C2 C3C1t6 1 1 1 1 3 3 4d65d5 1d7

0.900.85

C1 C2 C3

CAcc 0.80

d1 1 1d3C2 C3C1t6 1 1 1 1 3 3 4d65d5 1d7

0.300.100.10 0.400.500.70 0.10

d1 d2 d3 d4 d5 d6 d7

DAcc

Fig. 4. Example query processing using an incremental-CBR strategy (accessed and decompressed
list elements are shown with light gray, best documents and clusters are shown with dark gray).

C2, and C3 with the additional values 0.20, 0.05, and 0.90, respectively. Now, the
best-clusters-so-far set includes C1 and C3 with scores 0.85 and 0.90, whereas
C2 with score 0.80 is out; thus, the documents from the former two clusters are
considered, but the subposting list for C2 is skipped during the second pass. In
other words, the documents d1, d5, d6, and d7 will be updated (say, as 0.1, 0.5,
0.4, and 0.1, respectively). The highest-ranking two documents, d4 and d5, are
returned as the query output.

In summary, using the proposed incremental-CBR strategy with the CS-IIS
file has two major advantages: First, both embedding the cluster information
into the IIS and using the incremental query evaluation method eliminates
the need for a separate centroid IIS, and hence the disk-access time to retrieve
its posting lists. This means that in a memory-scarce environment where the
index files are kept on disk, incremental CBR achieves half the number of direct
disk accesses as required by typical CBR, and the same number as required by
FS. Second, cluster skipping and thereby decoding only relevant portions of the
CS-IIS during both stages of query processing saves significant decompression
overhead. This means improved in-memory query processing performance with
respect to typical CBR and FS. In the next section, we discuss how we handle

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:17

the only overhead of CS-IIS, that is, the storage consumption due to newly
added skip- and centroid elements, by adapting the compression techniques in
the literature.

4. COMPRESSION AND DOCUMENT ID REASSIGNMENT

FOR CLUSTER-SKIPPING IIS

4.1 Compressing Cluster-Skipping IIS

As discussed before, cluster-skipping IIS includes three types of elements in
posting lists: (i) the skip elements in the form of cluster id (position of the next
cluster); (ii) the centroid elements in the form of subposting-list length (average
within-cluster term frequency); and (iii) the typical elements of the type called
document id (term frequency). For the compression of such a posting list, we
consider three types of gaps: c-gaps between the cluster ids of two successive
subposting lists, a-gaps between address fields (i.e., following the approach
taken in Moffat and Zobel [1996]), and the typical d-gaps for document ids.

Example. Let’s consider the posting-list entry for t3 of Figure 2, in which
skip- and centroid elements are shown in bold.

<1, add2> <2, 1> <1, 1> <2, 1> <2, add3> <1, 1> <4, 1> <3, EOL> <1, 1> <7, 1>

The list to be compressed will be represented as follows.

<1, add2> <2, 1> <1, 1> <1, 1> <1, add3-add2> <1, 1> <4, 1> <1, EOL> <1, 1> <7, 1>

Note that the underlined fields are represented as gaps. End of list (EOL) is
represented by the smallest possible integer that can be compressed, namely, 1.

There are two subtle issues regarding the aforesaid representation. Assume
that d-gaps are encoded by using the Golomb code with the local Bernoulli
model, which is a common practice in the literature [Witten et al. 1994]. In
this case an appropriate way of computing the Golomb parameter b is required,
since the original formulation does not consider that documents in our CS-IIS
are grouped together according to their clusters (i.e., into subposting lists) and
that the document id distribution probability must be revised to reflect this
modification as well. As a simple solution, for posting list It for term t, we
revise the formula as follows, assuming that the documents with term t are
uniformly distributed among those clusters that appear in It . The value “no.
of clusters” is assumed to be stored with the wordlist (header) of the IIS (see
Figure 2).

b = 0.69 × N
ft

/
no. of clusters in It

(2)

The second important observation for the aforesaid representation is that, for
the cluster-skipping IIS, the first document id in each subposting list per cluster
(e.g., d1, d4, and d7 in the earlier example) should be encoded as-is, which may
significantly diminish the compression ratio. In the next section, we propose a
remedy for this problem.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:18 • I. S. Altingovde et al.

4.2 Document ID Reassignment

Document id reassignment is an emerging research topic that attempts to make
the document ids in a posting list as closely aligned as possible, so that the fre-
quency of small d-gaps improves compression rates [Silvestri et al. 2004]. In the
cited work, it is also reported that some other techniques (as in Blanford and
Blelloch [2002]) can provide better compression rates (i.e., up to 10% smaller)
with respect to a cluster-based scheme as described in the following. However,
we prefer to use the cluster-based reassignment method, which can be amor-
tized by and computed during the clustering process.

Here, we apply an apparently natural document id reassignment method: Es-
sentially, documents in the same cluster are assigned consecutive ids, and the
order among clusters is determined according to their creation order by the clus-
tering algorithm. Similarly, the order of documents in a cluster is determined
by their order of entrance into the cluster. Notice that a similar approach us-
ing a k-means clustering algorithm is reported in Silvestri et al. [2004], among
many other techniques.

For CS-IIS, the expected benefit of document id reassignment is twofold:
(i) In each subposting list per cluster, the d-gaps between successive documents’
ids are reduced; and (ii) more importantly, the id of the first document (which
must be encoded as-is) in each subposting list can be reassigned a smaller value.
Indeed, with a little main-memory consumption, it is possible to amplify the
benefit mentioned in item (ii) significantly. In each cluster, documents are as-
signed a real id which is determined as described before, and a virtual id which
starts from 1 and increments by 1, to be used just for compression purposes.
During compression, virtual ids are compressed such that each subposting list
will start with a considerably smaller id than the original. During query pro-
cessing, an array is kept in main memory to store the prefix sum of cluster sizes,
the so-called size-sum array. Whenever a document id field is decoded, the de-
coded virtual id is added to the prefix sum value stored for this document’s
cluster (which is already known, since decoding starts from the skip element
per subposting list) in the size-sum array to obtain the real id. Subsequently,
the corresponding correct document accumulator is updated for this real id.

Example. Assume that cluster C1 includes two documents and cluster C2

includes three. The documents from C1 and C2 will be assigned to real ids 1, 2,
and 3, 4, 5, respectively. The virtual ids are also 1 and 2 for C1, but 1, 2, and 3
for C2. The size-sum array will store 0 for C1, 0 + size of (C1) = 0+2 = 2 for C2.
During query processing, if a document id in C2’s subposting list is decoded as
2, it will be added to the size-sum array value for C2, which is also 2, to obtain
the real id as 4.

Note that the number of clusters would be smaller than the number of docu-
ments in orders of magnitudes, so that storing the size-sum array in memory is
not a major problem. Furthermore, the array can be kept in the shared mem-
ory and accessed by several query processing threads at the same time, that
is, it is query invariant. Finally, if the Golomb code is employed for encoding
d-gaps, the b parameter should be further revised. In particular, we refine it
as in Eq. (3), since the virtual documents’ ids in each subposting list can range

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:19

Table II. Characteristics of the Datasets

No. of <doc
No. of No. of No. of id, term Avg. no. of

Dataset Size on Disk Documents (N) Terms (n) Clusters Freq.> Pairs Docs/Clusters
FT 564MB (text) 210,158 229,748 1,640 29,545,234 128
AQUAINT 3GB (text) 1,033,461 776,820 5,163 170,004,786 200
WEBBASE 140GB (HTML) 4,293,638 4,290,816 13,742 790,291,775 312

from 1 to “average cluster size” on the average.

b = 0.69 × average cluster size
ft

/
no. of clusters in It

(3)

As another alternative, we can define a dedicated b value to compress each
subposting list separately; see Eq. (4). Note that the cluster size Ci can be easily
computed from the size-sum array as the difference in array entries for i+1 and
i, without requiring an extra data structure. The number of occurrences of t (ft)
in Ci is captured in the centroid element of ISi (i.e., subposting-list length) and
will be decoded immediately before the decoding of d-gaps starts. In Section 6,
we evaluate and compare the storage figures for various compression schemes
and parameters.

b = 0.69 × size(Ci)
ft in Ci

(4)

5. EXPERIMENTAL ENVIRONMENT

5.1 Datasets and Clustering Structure

In the experiments, three datasets are used. The Financial Times collection
(1991–1994) of TREC [TREC 2006] Disk 4, referred to as the FT dataset, and the
AQUAINT corpus of English News text, referred to as the AQUAINT dataset,
have been used in previous TREC conferences and include the actual data,
query topics, and relevance judgments. As a third dataset, we obtained the
crawl data from the Stanford WebBase Project Repository [Stanford University
2007]. This latter dataset, referred to as WEBBASE, includes pages collected
from U.S. government Web sites during the first quarter of 2007. As there are
neither query topics nor relevance judgments for this dataset, it is solely used
for evaluating query processing efficiency. During the indexing stage, we elim-
inate English stop-words and index the remaining words, and no stemming is
used. For the WEBBASE dataset, words that appear in only one document are
also removed, as the Web pages include a high number of mistyped words. In
Table II, we provide statistics for the datasets and the indexing results. Notice
that the original WEBBASE dataset spans more than 140GB on disk in HTML.
After preprocessing and removing all HTML tags, scripts, white spaces, etc.,
the pure text on disk (tagged in TREC style) takes 27GB.

The datasets are clustered using the C3M algorithm [Can and Ozkarahan
1990] in partitioning mode, which yields 1,640 and 5,163 and 13,742 clusters
for the FT, AQUAINT, and WEBBASE datasets, respectively. An important
parameter for CBR is the number of best-matching clusters. In earlier works it

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:20 • I. S. Altingovde et al.

Table III. Query Sets Summary Information

Avg. no. of Average Min Max
Dataset & No. of relevant Query no. of no. of no. of
Query Sets Queries Documents Type Terms Terms Terms

FT, Qset1 47 31.8
Qshort 2.5 1 4
Qmedium 10.8 4 30

FT, Qset2 49 38.1
Qshort 2.4 1 3
Qmedium 8.2 2 19
Qlong 190.0 13 612

FT, Qset3 49 33.4
Qshort 2.4 1 3
Qmedium 7.3 3 19

AQUAINT, Qset1 50 131.2
Qshort 2.5 1 4
Qmedium 9.4 4 20

WEBBASE, Qset1 50,000 N/A Qshort 2.3 1 9

has been reported that the effectiveness increases up to a certain ns value and
that after this (saturation) point, the retrieval effectiveness remains the same or
improves very slowly for increasing ns values [Can et al. 2004]. This saturation
point is found to be around 10–20% in the literature [Can and Ozkarahan
1990; Salton 1975, p. 376]. Therefore, in the retrieval experiments reported in
Section 6, we use 10% of the total number of clusters as the number of best
clusters to be selected (i.e., ns is 164 and 516 and 1374 for the corresponding
datasets). In this article, we provide results for retrieving top-1000 documents;
that is, the number of best documents to be selected, ds, is 1000.

The clustering of the largest dataset (WEBBASE) takes around 12 hrs. using
a rather out-dated implementation of the C3M algorithm. Once the clustering is
completed, creating the typical IIS and CS-IIS takes almost equal time, which is
around 6 hrs. for this dataset, by again using an unoptimized implementation.
Nevertheless, any partitioning-type clustering algorithm could be used in our
setup, provided it can provide reasonable effectiveness by accessing a relatively
small percentage of all clusters.

5.2 Query Sets and Query Matching

For the FT dataset, we used three different query sets, along with their rele-
vance judgments that were obtained from the TREC Web site [TREC 2006]. The
three query sets, referred to as Qset1, Qset2, and Qset3, include TREC queries
300–350, 351–400, and 401–450, respectively. Note that the relevance judg-
ments for some of the queries in these sets refer to documents from datasets
other than the ones used in this article. Such irrelevant judgments were elim-
inated, and for each query set we produced a relevance judgment file which
includes only documents from the FT dataset. A few of the queries do not
have any relevant documents, and they were discarded from the query sets.
Table III shows the remaining number of queries for each query set of FT. For
the AQUAINT dataset, we used the topics and judgments used for the TREC
2005 robust track. Finally, for the WEBBASE dataset, the efficiency task topics
of the TREC 2005 terabyte track were employed. Note that this query set was
used on top of the TREC GOV2 dataset, which also includes Web data from the
“gov” domain. Since the WEBBASE collection also captures the same domain,

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:21

we presume this query set to be a reasonable choice for efficiency evaluation
with WEBBASE.

In the experiments, we used two different types of queries, namely Qshort
and Qmedium, that are obtained from the query sets discussed previously.
Qshort queries include TREC query titles, and Qmedium queries include both
titles and descriptions. For one of the FT query sets (FT-Qset2), we also formed a
third query type called Qlong, which is created from the top retrieved document
of each Qmedium query in this query set. Our query sets cover a wide spectrum
from very short Web-style queries (the Qshort case) to extremely long ones (the
Qlong case). Notice that the latter type of queries can capture the case where
a user likes to retrieve documents similar to a particular document and where
the document itself serves as a query. This provides insight on the behavior of
the retrieval system at extreme conditions. Table III provides the query sets’
summary information.

In the following experiments, the document-term weights are assigned using
the tf × idf formula. The cosine function is employed for both query-cluster-
and query-document matching. Please refer to Section 2.1 for further details.

5.3 Cluster Centroids and Centroid-Term Weighting

For the cluster centroids, we take a simplistic approach and use all cluster
member documents’ terms as centroid terms. One reason for this choice is that
our experiments in an earlier work [Can et al. 2004] with the FT dataset and
FT-Qset2 have shown the effectiveness not to vary significantly for centroid
lengths 250, 500, and 1000, whereas using all cluster terms in the centroid
yields slightly better performance. Another reason is that by using all cluster
terms in centroids, we avoid making an arbitrary decision to determine the
centroid length. This choice of centroids also enables our being independent
of a particular centroid-term selection method. Nevertheless, it is possible to
apply other centroid-term selection schemes in our framework as well.

The experiments employ the three centroid weighting schemes described in
Section 2.2.1. Recall that the information stored in the CS-IIS file is adequate
to compute all three schemes, as mentioned in Section 3. As for the documents,
we assume that during query processing the weights are normalized by using
the precomputed cluster lengths.

6. EXPERIMENTAL RESULTS

The experiments are conducted on a Pentium Core2 Duo 3.0 GHz PC with
2GB memory and 64-bit Linux operating system. All IR strategies are imple-
mented using the C programming language and source-codes are available on
our Web site.1 Implementations of the IR strategies are tuned to optimize the
query processing phase for which we measure the efficiency in the following
experiments. In particular, a min heap is used to select best clusters and best
documents from the corresponding accumulators, as recommended in previous
work [Witten et al. 1994]. Unless stated otherwise, we assume that the posting
list per query term is read into main memory, processed, and then discarded;

1http://www.cs.bilkent.edu.tr/∼ismaila/incrementalCBR.htm

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:22 • I. S. Altingovde et al.

that is, one term’s posting list is not memory resident simultaneously with
another. The document- and cluster-lengths are precomputed.

In what follows, we first compare the effectiveness figures of the incremental-
CBR strategy with those of FS and typical CBR, to demonstrate that the new
strategy does not deteriorate the quality of query results. Next, we focus on the
efficiency of the proposed strategy and show incremental CBR to be better than
FS in total query processing performance (involving in-memory evaluation and
disk accesses), with a reasonable overhead in storage requirements. Finally, we
show that incremental CBR is superior to not only a basic implementation of
FS, but also to a faster approach that employs the “continue” pruning strategy
along with a skip-embedded IIS, as described in Moffat and Zobel [1996].

6.1 Effectiveness Experiments

To evaluate the effectiveness of the proposed strategy: the top-1000 (i.e.,
ds = 1000) documents are retrieved for each of the query sets. The effective-
ness results are presented by using a single mean average precision (MAP)
value (i.e., average of the precision values observed when a relevant document
is retrieved) [Buckley and Voorhees 2000] for each of the experiments. All MAP
scores are computed using the “trec eval” software [TREC 2006] and the result-
ing files corresponding to the previous table are available at our Web site (see
Footnote 1).

In this section, we compare three IR strategies. FS, typical CBR, and incre-
mental CBR with CS-IIS. For both CBR techniques, all terms in clusters serve
as centroid terms. We experiment with three centroid-term weighting schemes
(CW1, CW2, and CW3) as described in Section 2.2.1.

The effectiveness results obtained for FS experiments are compared to those
obtained when using the publicly available search engine Zettair [2007] so as
to verify the validity of our findings and robustness of our implementation. The
indexing and querying stages with Zettair are achieved under almost the same
conditions as in our own implementations. During indexing, no stemming is
used. In query processing, the same stop-word list as we use in our system
is provided to Zettair and the cosine similarity measure is chosen. For each
dataset, Qshort- and Qmedium query types are evaluated by retrieving top-
1000 results. We found that in almost all experiments our MAP values are
slightly better than those of Zettair, which validates our implementation. The
details of the experimental procedure and evaluation files are also available at
our Web site (refer to Footnote 1).

The first observation that can be deduced by a quick glance over Table IV is
that for each query set and type, all MAP values are very close to each other (the
best ones are shown in bold). Thus, it is hard to claim that one single strategy
totally outperforms the others. Still, the results demonstrate that CBR is a
worthwhile alternative to FS for accessing large document collections.

From the aforementioned results it is clear that the proposed strategy has no
adverse effect on CBR effectiveness and, in particular cases, can even improve
it. In particular, Table IV reveals the incremental-CBR strategy to be better
than typical CBR for the majority of the cases, although the absolute MAP

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:23

Table IV. MAP Values for Retrieval Strategies

Typical-CBR Incremental-CBR
Dataset & Query Sets Query Type FS CW1 CW2 CW3 CW1 CW2 CW3

FT, Qset 1
Qshort 0.161 0.162 0.168 0.154 0.163 0.167 0.166
Qmedium 0.152 0.173 0.148 0.143 0.158 0.153 0.155

FT, Qset 2
Qshort 0.107 0.126 0.109 0.102 0.131 0.110 0.110
Qmedium 0.122 0.134 0.121 0.113 0.137 0.120 0.120
Qlong 0.124 0.113 0.114 0.109 0.119 0.120 0.119

FT, Qset 3
Qshort 0.154 0.142 0.144 0.131 0.134 0.150 0.147
Qmedium 0.170 0.150 0.166 0.123 0.159 0.161 0.142

AQUAINT, Qset 1
Qshort 0.091 0.046 0.081 0.071 0.047 0.081 0.077
Qmedium 0.100 0.048 0.089 0.074 0.057 0.090 0.081

Here, ns = 164 for FT, ns = 516 for AQUAINT, ds = 1000.

improvement is rather marginal. For Qshort and Qmedium query types of Qset2
on the FT dataset, the incremental CBR strategy yields the best effectiveness
figures, outperforming both FS and typical CBR. Another interesting obser-
vation is that for the CBR strategies, CW1 and CW2 are the most promising
centroid-term weighting schemes.

We conduct a series of matched pair t-tests to determine whether
incremental- and typical-CBR strategies with CW1, CW2, and CW3 are as ef-
fective as FS. The null hypotheses in this case would be that the effectiveness
of each of these methods is as good as FS, and the alternative is that they are
not. For this purpose, we examine the performance differences of these two ap-
proaches as provided in Table IV. Note that we are performing one-sided t-tests
so we would divide the two-sided p-value by 2. Since we are also performing
six hypothesis tests, we perform a Bonferonni correction by multiplying each
p-value by 6. Thus, combining the two adjustments, we end up multiplying each
two-sided p-value by 3; hence, a significant result would be a p-value of less than
0.05/3 = 0.016. Each difference is the average of the CBR method subtracted
from the full search (FS) for each query type. Since the average differences are
negative, on average, FS outperforms each cluster method in terms of precision.
However, the only significant difference (based on p-values) is in CW3 between
typical CBR and FS (p < 0.01). In this case, FS significantly outperforms typical
CBR. However, in the other tests there is a lack of evidence that FS significantly
outperforms CBR. Since CBR with both CW1 and CW2 outperforms both FS
for some query types, CBR has the potential of being as effective as FS.

Finally, it should be emphasized that the incremental-CBR strategy with
CS-IIS is not at all intended to improve the effectiveness of CBR, but aims
to improve efficiency without deteriorating the effectiveness of typical CBR
while providing compatible effectiveness with FS. Recall the recent proposals
to improve CBR effectiveness [Liu and Croft 2004] that can obviously be applied
in our framework as well.

6.2 Efficiency Experiments

In the following experiments typical CBR is omitted, since by definition (see
Section 2.2.2) it already involves FS in the best-document selection stage.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:24 • I. S. Altingovde et al.

Table V. IIS File Sizes (in MBs) for FS and Incremental CBR

FS Incremental-CBR (CW2-3)
Uncomp. Golomb (LB) Elias-γ Uncomp. CS- Golomb (LB) Elias-γ

Dataset IIS file size OrgID ReID OrgID ReID IIS file size OrgID ReID OrgID ReID
FT 225 34 33 44 43 343 84 45 105 50 (14% > FS)

AQUAINT 1,360 211 209 236 216 1,900 520 254 602 250 (16% > FS)

WEBBASE 6,322 1,076 1,079 767 770 7,362 2,315 968 1,745 844 (10% > FS)

Here, LB: local Bernoulli model; OrgID: original document ids; ReID: reassigned document ids.

Subsequently, FS serves as a lower bound for the cost of typical CBR. For the ef-
ficiency experiments, we report the results obtained by using all three datasets
and corresponding query sets, as shown in Table II. However, to save space, for
the FT dataset we only use Qset2, for which the effectiveness of incremental
CBR also peaks.

6.2.1 Storage Efficiency. In Table V, we provide compressed file sizes for
the evaluated IR strategies. In particular, the term frequency values in typical
IIS and in both fields of the skip- and centroid elements in CS-IIS are encoded
with Elias-γ code. The values’ d-gaps are encoded by using Elias-γ and Golomb
codes in separate experiments. This is due to the observation that one of the
schemes, namely the Golomb code, appears unaffected by the document id re-
assignment methods for typical IIS.

Table V reveals that for FT and AQUAINT datasets, when the original doc-
uments’ ids in the collections are used, the best compression rates for typical
index files are achieved by using the Golomb code with LB (using Eq. (1)).
For the WEBBASE dataset, however, Elias-γ performs better (i.e., 767- versus
1,076MB). We attribute this fact to the observation that in the latter dataset,
which is yielded by a crawling session, the original document ids are sorted in
URL order that exhibits strong locality [Silvestri 2007]. On the other hand, the
Golomb code is rather insensitive to such locality and performs best on ran-
dom distributions [Blandford and Blelloch 2002]. This phenomenon is strongly
emphasized by the experiments with reassigned document ids and further dis-
cussed next. Nevertheless, for the WEBBASE dataset, the typical IIS size drops
from 6,322MB to 1,076MB (17%) and 767MB (13%) with Elias-γ and Golomb
(with the LB model using Eq. (2)) schemes, respectively. The compressed IIS
sizes also correspond to only 4% and 3% of the uncompressed text document
collection (27GB) for the respective cases. This conforms to the results reported
in other works in the literature [Witten et al. 1994]. On the other hand, it can
be seen that the compression gains on CS-IIS by using original document ids
are not as good, and for the WEBBASE dataset the compressed file sizes are
31% and 24% of the uncompressed index using the two compression schemes.
However, at this point the potential of document id reassignment, which is
naturally applicable for CS-IIS, has not yet been exploited.

Next, we applied the document id reassignment method mentioned in
Section 4.2, such that the documents in each cluster have consecutive ids. For
this experiment, we first discuss the results when the Golomb code is used to
encode d-gaps. Note that the b parameter for LB is set as in Eq. (1) for typical
IIS, whereas the enhanced formula derived in Section 4.2 is (Eq. (4)) employed

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:25

for CS-IIS, so as to reflect the distribution of subposting lists as accurately as
possible. Remarkably, the Golomb code with LB provides almost no improve-
ment for the typical IIS, whereas CS-IIS highly benefits from the reassignment.
For instance, the size of CS-IIS file for the WEBBASE dataset drops from 2,315-
to 968MB, a reduction of more than 50%. This is even less than the compressed
size of typical IIS (1,079MB) for the corresponding case. As mentioned before,
the insensitivity of typical IIS for reassigned ids is caused by characteristics of
the Golomb code which cannot exploit the locality (i.e., Golomb code should still
use the same b parameter for LB after reassignment). In particular, for FT and
AQUAINT datasets the reductions in compressed index sizes are at most 3%,
hardly an improvement. For WEBBASE there is even a slight increase (0.3%)
in index size. On the other hand, after reassignment the CS-IIS allows to use an
enhanced b parameter (Eq. (4)) and benefits from the reassignment procedure,
even when Golomb code is used.

For the sake of fairness, we repeated the experiments with reassigned ids
and by encoding d-gaps with the Elias-γ method. In this case, as Table V demon-
strates, the typical IIS also obtains some gains from document id reassignment,
but these gains are still not very impressive in comparison to CS-IIS. Notice-
ably, the storage space used for the compressed index files of FT and AQUAINT
drops by 2% and 9%, respectively. For WEBBASE there is no improvement in
index size, but again a slight increase is observed. This is due to the fact that
the original URL-ordering ids for this dataset provides quite strong locality,
and the reassignment based on clustering does not further improve the com-
pression rate (a result also shown in Silvestri [2007]). To validate this claim, we
assigned random ids to documents in the WEBBASE dataset and repeated the
compression experiments. In this case, the compressed index sizes are 1,132-
and 1,473MB for the Golomb and Elias-γ methods, respectively. These results
support our claims in that: (i) If the original document ids are not sorted in
URL order, the Golomb code with LB provides better compression rates (as in
the cases of FT and AQUAINT) with respect to Elias-γ ; (ii) the Golomb code
is rather insensitive to any locality in that the file sizes for random and URL-
sorted experiments are very close (1,132- and 1,076MB, respectively), whereas
Elias-γ is just the reverse (i.e., the index size drops from 1,473- to 776MB); and
(iii) sorting by URL order provides a very good d-gap distribution, as shown
by the results of Elias-γ , and the typical IIS size cannot be reduced by further
reassignment. In contrast, CS-IIS still significantly benefits from id reassign-
ment (i.e., yielding reductions of more than 50% in size). For instance, by using
the Elias-γ encoding method, the CS-IIS file for WEBBASE only takes 844MB
on disk, which is only 10% larger than the typical IIS for the corresponding
case (770MB). This is a striking result for the space utilization of CS-IIS that
is obtained by using a cluster-based document id reassignment technique, and
is a natural advantage of our framework.

Recall that the document reassignment method for CS-IIS employs virtual
ids instead of real ids in the subposting lists, so as to encode the first document
of each subposting list more efficiently (see Section 4.2). We devised a separate
experiment to evaluate the performance of this heuristic. For the WEBBASE
dataset, we simply reassigned document ids. In this case, the first document

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:26 • I. S. Altingovde et al.

Fig. 5. Contribution of CS-IIS posting-list elements to compressed file sizes for the three datasets.

id of each posting list, which should be compressed as-is, takes 330MB and
232MB of the resulting CS-IIS file for the Elias-γ and Golomb code with LB
(using Eq. (1)), respectively. Next, we applied the optimization of Section 4.2
(i.e., virtual ids are assigned within each cluster to reduce the actual value of
the first document ids in subposting lists). In this case, only 100 MB and 76
MB of CS-IIS is devoted to first ids, again for the Elias-γ and Golomb code
with LB, respectively. For the latter scheme, the b parameter for Golomb is
now set as in Eq. (4), which is a unique opportunity allowed by CS-IIS. Notice
that for both compression schemes, our optimization reduces the space used for
first ids to almost one-third of the original space. Moreover, our formulation for
the b parameter allows the Golomb code to provide a much better compression
ratio with respect to Elias-γ , leading to a further 24% reduction in size. This
experiment shows that efficient compression of the first document id in each
subposting list of CS-IIS is important for the overall compression efficiency,
and the heuristic outlined in this article provides significant gains. Therefore,
in all reassigned id experiments for CS-IIS (as reported in Table V), the first
document ids are always encoded with Golomb code, regardless of the schemes
the remaining d-gaps are compressed. Note that in this heuristic, the size-sum
array (of size number of clusters) takes only a few KBs of in-memory space,
even for WEBBASE, which is a negligible cost.

In summary, by using a cluster-based id reassignment approach, both
Golomb coding with the LB model and the Elias-γ scheme prove quite suc-
cessful for compressing CS-IIS. Remarkably, by using the Elias-γ scheme, the
additional cost of storing CS-IIS, with respect to typical IIS, is at most 16% (see
the last column of Table V). In the remaining experiments, we use the com-
pressed typical IIS and CS-IIS files obtained by the id reassignment and the
Elias-γ encoding for d-gaps (i.e., those shown in bold in Table V).

In Figure 5, we provide the percentage of bits used to encode each field in the
compressed CS-IIS file (for the file sizes in the last column of Table V). Consid-
ering the figure, we realize that for WEBBASE, 70% of the file is used to store

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:27

Table VI. Efficiency Comparison of FS and Incremental CBR (times in msec.)

Execution
Time & No.

Data and of Decode Op. Incremental-CBR Imp. over FS (%)
Query Set Query Type (averages) FS CW1 CW2 CW1 CW2

FT, Qset2

Qshort
Exe. time 5 3 4 40 20
Decode op. 19,524 8,212 11,614 58 41

Qmedium
Exe. time 16 7 9 56 44
Decode op. 98,832 36,701 51,772 63 48

Qlong
Exe. time 389 144 222 63 43
Decode op. 3,627,468 1,091,212 2,079,408 70 43

AQUAINT, Qset1
Qshort

Exe. time 27 15 19 44 30
Decode op. 162,824 37,860 73,249 77 55

Qmedium
Exe. time 95 34 48 64 49
Decode op. 802,740 172,415 313,291 79 61

WEBBASE, Qset1 Qshort
Exe. time 66 36 57 45 14
Decode op. 432,238 87,289 318,431 80 26

actual <document id, tf> pairs, whereas 15% is used for the skip elements (i.e.,
in the form of <cluster id, next address>) and 5% for centroid elements (i.e., in
the form of <sub- posting list length, avg. tf>). Since each subposting list encodes
its first document as-is, a considerable fraction of the file (around 10%) is used
for this purpose. Notice that while our extra posting-list elements cause 30% of
the overall cost in CS-ISS, they also allow the document id reassignment to be
more efficient, and thus the overall size remains within an acceptable margin
of typical IIS. Figure 5 also shows that the percentage of additional storage in
CS-ISS reduces as the dataset gets larger, that is, 50%, 45%, and 30% for FT,
AQUAINT, and WEBBASE, respectively. Remarkably, these percentages are
not necessarily reflected to CS-IIS file size as increments, as discussed before.

Finally, note that the compression process takes the same time for corre-
sponding cases by using our own implementations, ranging from a few mins.
(for FT) to an hr. (for WEBBASE).

6.2.2 Query Processing Time Efficiency. In Table VI, we report average
CPU (in-memory) processing times per query, as well as the average number of
decode operations (i.e., total number of Elias-γ - and Golomb decode operations).
The experimental results are provided for CW1 and CW2; the CW3 case is
omitted since its efficiency figures are similar to those of CW1.

The results reveal that incremental CBR decompresses a significantly
smaller number of elements compared to FS. This is because the former de-
compresses only relevant portions of a posting list, whereas FS, of course, must
decode the entire posting list for a query term (in Section 6.3 we also discuss
a skipping-based pruning technique for FS, as discussed in Moffat and Zobel
[1996]). For CW1, the savings of incremental CBR in terms of number of de-
code operations is more emphasized, ranging from 58% to 80% of the decode
operations by FS. For CW2, incremental CBR decodes more elements, but the
number of decoded elements is still almost half that of the FS case. These sav-
ings are reflected to time figures rather conservatively, especially for shorter
queries. Time savings improve as queries become longer (e.g., for AQUAINT

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:28 • I. S. Altingovde et al.

Fig. 6. (a) Effects of the selected best cluster number on processing time and decode operation
number; (b) effectiveness (for Qmedium using CW1 on AQUAINT dataset).

the savings are 44% (30%) and 64% (49%) for Qshort and Qmedium using CW1
(CW2), respectively). If we assume that posting lists are kept in the main mem-
ory (due to OS caching and large memories), then these savings become final
execution-time improvements.

Note that savings in time are not directly proportional to saving in the num-
ber of decode operations because the incremental-CBR strategy with CS-IIS
has also some overheads, such as jumping to the next bit position to be decom-
pressed and selecting the best clusters from the cluster accumulators for each
query term.

In Figure 6(a) we plot the number of best clusters selected versus average
number of decode operations (shown on the left y-axis) and average CPU
query processing time (shown on right y-axis) for FS and incremental CBR,
for Qmedium using the CW1 centroid weighting scheme and the AQUAINT
dataset. At the extreme, all clusters are selected and incremental CBR
degenerates into FS. The number of decode operations realized by incremental
CBR as well as the execution time are lower than those of FS until more than
50% of clusters (i.e., greater than 2,580) are selected. Nevertheless, in practical
CBR systems, the number of best clusters to be selected comprises a relatively
small percentage of the total number of clusters [Can and Ozkarahan 1990;
Salton 1975].

In Figure 6(b), we plot the variation in number of best clusters selected versus
effectiveness. Note that after 30% of the clusters are selected as best, the MAP
figures change slightly. Thus, for the AQUAINT dataset it is possible to set
best clusters as 30% of all clusters (i.e., 1,548). Note that even for this case,
both the number of decompression operations and the execution time are still
significantly less than those for FS, see Figure 6(a). For sake of uniformity, we
keep the best clusters as 10% throughout the experiments.

In Table VII we provide the average size of posting lists fetched from the
disk during query processing. Both FS and incremental CBR make only one
direct access per query term. As expected, incremental CBR fetches slightly
longer posting lists with respect to FS (due to the storage overhead of skip- and
centroid elements). Note that the increase in posting sizes remains marginal
and does not exceed 20%.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:29

Table VII. Avg. Size of Fetched Posting Lists per Query (all in KBs)

Data and Query Set Query Type FS Incr.-CBR Overhead over FS (%)

FT, Qset2
Qshort 10.54 12.56 19
Qmedium 51.09 60.78 19
Qlong 1670.77 1962.12 17

AQUAINT, Qset1
Qshort 73.48 83.55 14
Qmedium 345.64 391.26 13

WEBBASE, Qset1 Qshort 147.96 157.75 7

We expect that the cost of these longer sequential accesses would be compen-
sated by the in-memory improvements in decoding times. For instance, assume
a (rather slow) disk with the transfer rate 10MB/sec. In this case, the addi-
tional sequential-read time cost of CS-IIS with respect to FS for processing
a query in the Qshort set of WEBBASE would be only around ≈1 msec. (i.e.,
(157.75–147.96KB /10MB/sec.). For this latter case, FS takes 66 msec. in CPU,
whereas incremental CBR takes 36 and 57 msec. for the CW1 and CW2 cases,
respectively (see Table VI). Clearly, even with a slow disk, in-memory time im-
provements are far greater than the disk read overhead (i.e., 30 msec. (for CW1)
and 9 msec. (for CW2) versus 1 msec.). Thus, as long as the number of clusters is
significantly less than the number of documents, which is a reasonable assump-
tion, our approach would be feasible. Furthermore, assuming that posting lists
are kept in the main memory, which is the case for some Web search engines
(e.g., Google), our significant performance gains obtained during in-memory
query processing show conclusively the improvement.

6.3 Experiments with FS Using the Continue Strategy and Skipping IIS

Although we aim to improve CBR as an alternative access method to large
document collections, but not as a preprocessing or pruning stage for FS, we also
compare our method with a more efficient FS approach using another pruning
technique in the literature. In particular, since our approach is inspired from an
earlier work that enriches the typical inverted index with skip elements [Moffat
and Zobel 1996], it seems to be a natural choice to implement and compare it
with our incremental-CBR approach.

In Moffat and Zobel [1996], a posting list has a number of skip elements,
each followed by a constant-sized block of typical elements. A skip element
has two components: the smallest document id in the following block and the
pointer to the next skip-element (and block). This was shown very efficient
for conjunctive Boolean queries in a compressed environment. In particular,
after the first posting list is processed, a candidate set of document ids are
obtained, which are looked for in the other lists. Obviously, when searching to
see whether a document is in a particular block, skip elements are very useful:
If the document id at-hand is greater than the current skip-element and less
than the next, this block is decompressed; otherwise search process jumps to the
next skip-element without redundantly decompressing the block. Note that this
technique is impossible to be used as-is with the ranking-queries, since there
is no set of candidate documents (as in the Boolean case). Therefore, quit- and
continue pruning strategies are accompanied with ranking-query evaluation to

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:30 • I. S. Altingovde et al.

Fig. 7. (a) Effectiveness of skipping FS vs. no. of accumulators; (b) query processing time of IR
strategies.

allow use of the skipping inverted index. Since the effectiveness figures of the
continue method are quite close to those of FS without any pruning (referred
to as typical FS in the following), we prefer to use the continue strategy in this
article.

In the continue strategy, the query processor is to allowed to update only a
limited number k of accumulators. Until this limit is reached, it decodes the
entire posting list for each query term, just like typical FS. After this limit is
reached, those nonzero accumulators that have been updated up to this time
serve as the candidate document ids in the Boolean case, and are the only accu-
mulators that can be updated. Thus, it is possible to use skip elements and avoid
decompressing blocks that do not include any documents with corresponding
nonzero accumulators. We refer to this strategy as skipping FS.

In Moffat and Zobel [1996], each posting list can have a different number
of skip elements, according to the size of posting list and candidate document
set [Moffat and Zobel 1996, p. 363]. It is also stated that the continue strategy
can achieve comparable (or better) effectiveness figures, even when 1% of the
total accumulators are allowed for update. A good choice while constructing
the skipping inverted index is assuming that the same k value represents the
number of candidate documents for the queries.

In this section we use AQUAINT, the largest dataset with relevance judg-
ments, for the experiments. Since this collection includes approximately 1M
documents, k is set to 10,000 (i.e., 1% of the total document number). For the
same k value, a skipping IIS is constructed in exactly the same way as de-
scribed in Moffat and Zobel [1996]. The resulting index file takes 279MB, which
is 18% larger than the IIS with no skips (i.e., 236MB, as shown in Table V). In
Figure 7(a), the MAP figures using this IIS file and varying the number of ac-
cumulators (k) is shown. As expected, the effectiveness figures at k = 10K are
as good as the effectiveness score when all 1M accumulators are available, that
is, for typical FS.

In Figure 7(b), CPU execution times for the skipping-FS strategy with a
varying number of accumulators are reported (results for typical FS and in-
cremental CBR with CW1 and CW2 are also repeated from Table VI for easy

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:31

Table VIII. No. of Decompression Operations for Skipping FS (with varying number of
accumulators), Typical FS, and Incremental CBR

Skipping FS with Continue Strategy Incremental-CBR
Query Type k = 1K K = 10K k = 100K k = 1M FS CW1 CW2

Qshort 40,377 106,150 190,556 190,635 162,824 37,860 73,249
Qmedium 123,777 408,601 886,858 930,714 802,740 172,415 313,291

comparison). Clearly, skipping FS improves the time performance of typical FS,
of up to 41% for Qshort and 63% for Qmedium when k = 1K. However, for this
case, MAP scores also decrease. For the k = 10K case, the improvements of skip-
ping FS are 7% and 19% for Qshort and Qmedium, respectively. Nevertheless,
the performance of incremental CBR (with both CW1 and CW2) remains supe-
rior. In Table VIII, we report the number of decompression operations for the
corresponding cases. Again, skipping FS improves over typical FS, but cannot
match incremental CBR, for the k = 10K case.

Finally, note that dynamic pruning techniques such as the one described
earlier can also be applied to both typical- and incremental CBR. For instance,
during the best-document selection stage of typical CBR, it is possible to embed
the skipping-FS approach. Similarly, the skipping strategy in this section can
also be embedded into the subposting lists of CS-IIS (i.e., to provide another
level of skipping in our approach). Indeed, many of the pruning techniques
(as discussed in the next section) that can improve FS can also improve CBR
strategies. However, our focus in this article is on conducting CBR efficiently
by exploiting that information inherently relevant to the clustering framework
itself. Integrating additional pruning techniques to typical- and incremental
CBR are beyond the scope of this study and left as future work.

7. RELATED WORK

7.1 Optimization Techniques for FS

There are various optimization techniques used for inverted index searches
[Brown 1995; Buckley and Lewit 1985; Moffat and Zobel 1996; Persin 1994;
Persin et al. 1996; Anh and Moffat 2005b, 2006, 2001; Lester et al. 2005]. These
techniques aim to use only the most promising parts of posting lists and try
to increase the efficiency of query processing without deteriorating retrieval
effectiveness. For instance, quit- and continue techniques enforce a limit on the
number of accumulator entries that can be updated during query evaluation.
In this case, memory consumption is reduced, as the accumulators for storing
partial similarities can be implemented by dynamic data structures instead
of a collection-size array. Furthermore, these two strategies coupled with a
skipping index are shown to improve Boolean- and ranking-query efficiency
[Moffat and Zobel 1996]. Persin et al. propose to use frequency-sorted indexes
to avoid reading entire posting lists from the disk [Persin et al. 1996]. More
recently, Anh et al. introduced impact-sorted lists to improve the efficiency of
FS [Anh and Moffat 2006, 2001].

Using skip elements in an inverted file to improve query evaluation efficiency
in a nonclustering environment was first proposed in Moffat and Zobel [1996]

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:32 • I. S. Altingovde et al.

(as discussed in depth in the previous section). Our cluster-skipping inverted
file proposed in this article is inspired by this former work, but extends it in
various ways. Essentially, it is introduced for use in a new CBR strategy by
embedding cluster membership and centroid information into the posting lists.

7.2 Other CBR Strategies

In a hierarchical clustering setup [Voorhees 1986a, 1986b] a CBR system re-
quires several files: the representation of the cluster hierarchy, the centroid
vectors, and document vectors. In this setup, a top-down search begins by plac-
ing the root of the cluster hierarchy into a max heap [Witten et al. 1994]. Dur-
ing the search, the top element of the heap (which has the highest similarity
to the query) is extracted. If it is a document, it is added to the output set.
If the extracted element is a cluster, then its children (which may be other clus-
ters or documents) are inserted into the heap according to their similarity to
the query (only those with nonzero similarity are considered). The top-down
search ends when the heap is empty or a predefined number of documents is
retrieved. Notice that the centroid and document vectors are employed during
query-cluster- and query-document similarity computations. This is different
from our approach, as we employ an inverted index for query processing. Al-
though that earlier work also interleaves query-cluster- and query-document
matching, it cannot be called “incremental” in the way we define in this article.
In our incremental-CBR strategy, the best clusters are revised after each query
term is processed, and the partial similarities of the documents only in these
best clusters are updated. The final score of a document depends on whether it
has ever been contained in a best-cluster set during the search. The documents
in the query output are not determined until all terms are processed.

A bottom-up search strategy, again for hierarchical environments, starts with
the top-ranking document(s) (that are at the bottom of the cluster tree) and goes
up looking for proper clusters. This approach needs the top-ranking document(s)
information, which can only be obtained by a full search (the study also intro-
duces another method which uses the centroids of bottom-most clusters) [Croft
1980]. The search may switch back and forth between documents and clusters.
In our case, the set of best-matching clusters is obtained incrementally and the
search is always from clusters to documents.

8. CONCLUSIONS AND FUTURE WORK

Cluster-based retrieval (CBR) is a long-studied research area for improving ef-
ficiency and effectiveness of document retrieval. Although no conclusive results
could be obtained in the past, several researchers reported promising findings
for CBR performance in terms of effectiveness and efficiency. Recently, very
large document clusters (categorizations) that are obtained either automati-
cally or manually, such as Web directories or digital libraries, have begun to
emerge on the Web. This calls for devising efficient CBR techniques.

We introduce an incremental-CBR strategy and a new cluster-skipping in-
verted index structure for ranking-queries. The new file organization incor-
porates cluster membership and centroid information along with the usual

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:33

document information into a single inverted index. In the incremental-CBR
strategy, for each query term, the computations required for selecting the best-
matching clusters, as well as the best-matching documents of such clusters,
are performed in an interleaved manner. The proposed strategy is essentially
introduced for providing efficient CBR in compressed environments. We adapt
multiple posting-list compression parameters and a cluster-based document id
reassignment technique that best fits the features of CS-IIS.

In the experiments, we use various collections and multiple TREC query sets.
These datasets constitute the largest collections used for document clustering
and CBR. The experiments show that the incremental-CBR strategy with CS-
IIS provides significant efficiency improvements while yielding comparable (or
sometimes better) effectiveness figures. Our CPU query-processing-time effi-
ciency gains with respect to FS are impressive: up to 45% for Web-style queries.
The increment in the size of compressed posting lists is marginal. This overhead
can be well compensated for, by the speed of a typical disk, if the index files have
to be kept on the secondary storage. In this case our approach leads to another
significant advantage: For the first time in the literature, CBR achieves the
same number of direct disk accesses as FS, namely, only one access per query
term. Furthermore, if we assume that posting lists are kept in the main mem-
ory, which is the case for some Web search engines, the reported in-memory
gains reflect overall improvements. The experimental results demonstrate the
scalability and robustness of our approach.

The future research possibilities, among others, include the following. In
this article we concentrated on a term-at-a-time query processing mode. It is
also possible to use another efficient alternative, document-at-a-time processing
mode, along with the proposed strategy. The proposed skip structure provides
interesting data fusion [Nuray and Can 2006] opportunities (i.e., merging FS
and CBR results), since both of these processes can be carried out at the same
time. Another interesting direction can be that of making the proposed sys-
tem adaptive to query characteristics; during query evaluation, the number
of best clusters to be selected and the centroid-term weighting schemes can
be determined according to query length or the weight distributions of query
terms. Clearly, updating our data structure is an interesting challenge. We can
apply a “distributed free space” technique for future additions to posting lists.
Then, given an incremental clustering algorithm (e.g., the incremental version
of C3M [Can 1993]), the complexity of updating CS-IIS is not much higher than
that of a typical IIS update. Yet another possible direction for improving stor-
age and efficiency can be using skips only in longer lists, and not in lists of
only a few words. Finally, the caching of posting lists constitutes another topic
that currently demands serious attention [Baeza-Yates et al. 2007] and can be
investigated in our framework, as well.

ACKNOWLEDGMENTS

We thank J. M. Patton for his help in our statistical tests and O. Caki for
implementing the compression algorithms. We also thank anonymous referees
for their comments.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:34 • I. S. Altingovde et al.

REFERENCES

ALTINGOVDE, I. S., CAN, F., AND ULUSOY, Ö. 2006. Algorithms for within-cluster searches using
inverted files. In Proceedings of the International Symposium on Computer and Information
Sciences (ISCIS). 707–716.

ALTINGOVDE, I. S., ÖZCAN, R., ÖCALAN, H. C., CAN, F., AND ULUSOY, Ö. 2007. Large-Scale cluster-based
retrieval experiments on Turkish texts. In Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retreival. ACM Press, 891–892.

ANH, N. V., KRETSER, O. DE, AND MOFFAT, A. 2001. Vector-Space ranking with effective early ter-
mination. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research
and Development in Information Retreival. ACM Press, 35–42

ANH, V. N. AND MOFFAT, A. 2005a. Inverted index compression using word-aligned binary codes.
Inf. Retr. 8, 1, 151–166.

ANH, V. N. AND MOFFAT, A. 2005b. Simplified similarity scoring using term ranks. In Proceed-
ings of the 28th Annual International ACM SIGIR Conference on Research and Development in
Information Retreival. ACM Press, 226–233.

ANH, V. N. AND MOFFAT, A. 2006. Pruned query evaluation using pre-computed impacts. In Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on Research and Development
in Information Retreival. Seattle, WA. ACM Press, 372–379.

BAEZA-YATES, R., GIONIS, A., JUNQUEIRA, F., MURDOCK, V., PLACHOURAS, V., AND SILVESTRI, F. 2007.
The impact of caching on search engines. In Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retreival. ACM Press, 183–
190.

BLANDFORD, D. AND BLELLOCH, G. 2002. Index compression through document reordering. In Pro-
ceedings of the Data Compression Conference. IEEE, 342–351.

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. 30, 1–7, 107–117.

BROWN, E. W. 1995. Fast evaluation of structured queries for information retrieval. In Proceed-
ings of the 18th Annual International ACM SIGIR Conference on Research and Development in
Information Retreival. ACM Press, New York, 30–38.

BUCKLEY, C. AND LEWIT, A. F. 1985. Optimization of inverted vector searches. In Proceedings of the
8th Annual International ACM SIGIR Conference on Research and Development in Information
Retreival. ACM Press, New York, 97–110.

BUCKLEY C. AND VOORHEES E. M. 2000. Evaluating evaluation measure stability. In Proceedings
of the 23rd Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retreival. ACM Press, New York, 33–40.

CACHEDA, F. AND BAEZA-YATES, R. 2004. An optimistic model for searching Web directories. In
Proceedings of the 26th European Conference on IR Research (ECIR). 364–377.

CACHEDA, F., CARNEIRO, V., GUERRERO, C., AND VIÑA, Á. 2003. Optimization of restricted searches
in Web directories using hybrid data structures. In Proceedings of the 25th European Conference
on IR Research (ECIR). 436–451.

CAMBAZOGLU, B. B. 2006. Models and algorithms for parallel text retrieval. Ph.D. thesis, Bilkent
University, Ankara, Turkey.

CAMBAZOGLU, B. B. AND AYKANAT, C. 2006. Performance of query processing implementations in
ranking-based text retrieval systems using inverted indices. Inf. Process. Manage. 42, 4, 875–
898.

CAN, F. 1993. Incremental clustering for dynamic information processing. ACM Trans. Inf. Syst.
11, 2, 143–164.

CAN, F. 1994. On the efficiency of best-match cluster searches. Inf. Process. Manage. 30, 3, 343–
361.

CAN, F., ALTINGOVDE, I. S., AND DEMIR, E. 2004. Efficiency and effectiveness of query processing in
cluster-based retrieval. Inf. Syst. 29, 8, 697–717.

CAN, F. AND OZKARAHAN, E. A. 1990. Concepts and effectiveness of the cover-coefficient-based
clustering methodology for text databases. ACM Trans. Database Syst. 15, 4, 483–517.

CROFT, W. B. 1980. A model of cluster searching based on classification. Inf. Syst. 5, 3, 189–
195.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

Incremental Cluster-Based Retrieval • 15:35

HARMAN, D. 1992. Ranking algorithms. In Information Retrieval: Data Structures and
Algorithms, W. B. Frakes and R. Baeza-Yates, eds. Prentice Hall, Englewood Cliffs, NJ, (Chapter
14), 363–392.

JAıN, A. K. AND DUBES, R. C. 1988. Algorithms for Clustering Data. Prentice-Hall, Englewood
Cliffs, NJ.

JARDINE, N. AND VAN RIJSBERGEN, C. J. 1971. The use of hierarchical clustering in information
retrieval. Inf. Storage Retr. 7, 217–240.

LESTER, N., MOFFAT, A., WEBBER, W., AND ZOBEL, J. 2005. Space-Limited ranked query evaluation
using adaptive pruning. In Proceedings of the 6th International Conference on Web Information
Systems Engineering, New York, 470–477.

LIU, X. AND CROFT, W. B. 2004. Cluster-Based retrieval using language models. In Proceedings of
the 27th Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. ACM Press, 186–193.

LONG, X. AND SUEL, T. 2003. Optimized query execution in large search engines with global page
ordering. In Proceedings of the 29th International Conference on Very Large Data Bases (VLDB).
129–140.

MOFFAT, A. AND ZOBEL, J. 1996. Self-Indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14, 4, 349–379.

MURRAY, D. M. 1972. Document retrieval based on clustered files. Ph.D. thesis, Cornell University.
Also Rep. ISR-20. National Science Foundation, National Library of Medicine.

NURAY, R. AND CAN, F. 2006. Automatic ranking of information retrieval systems using data fusion.
Inf. Process. Manage. 42, 3, 595–614.

PERSIN, M. 1994. Document filtering for fast ranking. In Proceedings of the 17th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval, ACM
Press, 339–348.

PERSIN, M., ZOBEL, J., AND SACKS-DAVIS, R. 1996. Filtered document retrieval with frequency-sorted
indexes. J. Amer. Soc. Inf. Sci. 47, 10, 749–764.

SALTON, G. 1975. Dynamic Information and Library Processing. Prentice-Hall, Englewood Cliffs,
NJ.

SALTON, G. 1989. Automatic Text Processing: The Transformation, Analysis, and Retrieval of In-
formation by Computer. Addison-Wesley, Reading, MA.

SALTON, G. AND BUCKLEY, C. 1988. Term weighting approaches in automatic text retrieval. Inf.
Process. Manage. 24, 5, 513-523.

SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval. McGraw Hill,
New York.

SILVESTRI, F., ORLANDO, S., AND PEREGO, R. 2004. Assigning identifiers to documents to enhance
the clustering property of fulltext indexes. In Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, ACM Press, 305–
312.

SILVESTRI, F. 2007. Sorting out the document identifier assignment problem. In Proceedings of
the 29th European Conference on IR Research (ECIR). 101–112.

STANFORD UNIVERSITY. 2007. Webbase project Web site. www-diglib.stanford.edu/∼testbed/
doc2/WebBase.

STROHMAN, T. AND CROFT, W. B. 2007. Efficient document retrieval in main memory. In Proceed-
ings of the 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM Press, 175–182.

TREC 2006. Trec. Web site. http://trec.nist.gov.
TOMBROS, A. 2002. The effectiveness of query-based hierarchic clustering of documents for in-

formation retrieval. Ph.D. thesis, University of Glasgow, Glasgow, UK.
VAN RIJSBERGEN, C. J. 1979. Information Retrieval, 2nd ed. Butterworths, London.
VOORHEES, E. M. 1985. Cluster hypothesis revisited. In Proceedings of the 8th Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval. ACM
Press, 188–196.

VOORHEES, E. M. 1986a. The effectiveness and efficiency of agglomerative hierarchical clustering
in document retrieval. Ph.D. thesis, Cornell University, Ithaca, NY.

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

15:36 • I. S. Altingovde et al.

VOORHEES, E. M. 1986b. The efficiency of inverted index and cluster searches. In Proceedings of the
9th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM Press, New York. 164–174.

WILLETT, P. 1988. Recent trends in hierarchical document clustering: A critical review. Inf. Pro-
cess. Manage. 24, 5, 577–597.

WITTEN, I. H., MOFFAT, A., AND BELL, T. C. 1994. Managing Gigabytes Compressing and Indexing
Documents and Images. Van Nostrand Reinhold, New York.

ZETTAıR 2007. The Zettair search engine. http://www.seg.rmit.edu.au/zettair/.
ZOBEL, J. AND MOFFAT, A. 2006. Inverted files for text search engines. ACM Comput. Surv. 38, 2,

1–56.

Received February 2006; revised November 2007; accepted December 2007

ACM Transactions on Information Systems, Vol. 26, No. 3, Article 15, Publication Date: June 2008.

