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Search engines and large-scale IR systems need to cache query results for efficiency and scalability purposes.
Static and dynamic caching techniques (as well as their combinations) are employed to effectively cache
query results. In this study, we propose cost-aware strategies for static and dynamic caching setups. Our
research is motivated by two key observations: (i) query processing costs may significantly vary among
different queries, and (ii) the processing cost of a query is not proportional to its popularity (i.e., frequency
in the previous logs). The first observation implies that cache misses have different, that is, nonuniform,
costs in this context. The latter observation implies that typical caching policies, solely based on query
popularity, can not always minimize the total cost. Therefore, we propose to explicitly incorporate the query
costs into the caching policies. Simulation results using two large Web crawl datasets and a real query
log reveal that the proposed approach improves overall system performance in terms of the average query
execution time.
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1. INTRODUCTION

Caching is one of the most crucial mechanisms employed in large-scale information
retrieval (IR) systems and Web search engines (SEs) for efficiency and scalability pur-
poses. Search engines essentially cache the query result pages and/or posting lists of
terms that appear in the queries. A large-scale search engine would probably cache
both types of information at different levels of its architecture (e.g., see Baeza-Yates
and Saint-Jean [2003]).

A search engine may employ a static or dynamic cache of such entries, or both [Fagni
et al. 2006]. In the static case, the cache is filled with entries as obtained from earlier
logs of the Web SE and its content remains intact until the next periodical update. In
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the dynamic case, the cache content changes dynamically with respect to the query
traffic, as new entries may be inserted and existing entries may be evicted. For both
cases, cache entries may be the query results and/or term lists.

In the context of Web SEs, the literature involves several proposals concerning what
and how to cache. However, especially for query result caching, the cost of a miss
is usually disregarded, and all queries are assumed to have the same cost. In this
article, we essentially concentrate on the caching of query results and propose cost-
aware strategies that explicitly make use of the query costs while determining the
cache contents.

Our research is motivated by the following observations: First, queries submitted
to a search engine have significantly varying costs in terms of several aspects (e.g.,
CPU processing time, disk access time, etc.). Thus, it is not realistic to assume that all
cache misses would incur the same cost. Second, the frequency of the query is not an
indicator of its cost. Thus, caching policies solely based on query popularity may not
always lead to optimum performance, and a cost-aware strategy may provide further
gains.

In this study, we start by investigating the validity of these observations for our
experimental setup. To this end, it is crucial to model the query cost in a realistic and
accurate manner. Here, we define query cost as the sum of the actual CPU execution
time and the disk access cost, which is computed under a number of different scenarios.
The former cost, CPU time, involves decompressing the posting lists, computing the
query-document similarities and determining the top-N document identifiers in the
final answer set. Obviously, CPU time is independent of the query submission order,
that is, can be measured in isolation per query. On the other hand, disk access cost
involves fetching the posting lists for query terms from the disk, and depends on the
current content of the posting list cache and the order of queries. In this article, we
compute the latter cost under three realistic scenarios, where either a quarter, half,
or full index is assumed to be cached in memory. The latter option, storing the entire
index in memory, is practiced by some industry-scale search engines (e.g., see Dean
[2009]). For this case, we only consider CPU time to represent the query cost, as
there is no disk access. The former option, caching a relatively smaller fraction of the
index, is more viable for medium-scale systems or memory-scarce environments. In
this study, we also consider disk access costs under such scenarios while computing
the total query processing cost. The other cost factors, namely, network latency and
snippet generation costs, are totally left out, assuming that these components would
be less dependent on query characteristics and would not be a determining factor in
the total cost.

Next, we introduce cost-aware strategies for the static, dynamic, and hybrid caching
of query results. For the static caching case, we combine query frequency information
with query cost in different ways to generate alternative strategies. For the dynamic
case, we again incorporate the cost notion into a typical frequency-based strategy
in addition to adapting some cost-aware policies from other domains. In the hybrid
caching environment, a number of cost-aware approaches developed for static and
dynamic cases are coupled. All these strategies are evaluated in a realistic experi-
mental framework that attempts to imitate the query processing of a search engine,
and are shown to improve the total query processing time over a number of test
query logs.

The contributions of this article are summarized as follows:

— First, we extend our preliminary work [Altingovde et al. 2009] that have introduced
a cost-aware strategy only for the static caching. To this end, we propose a cost-
aware counterpart of the static caching method that we have discussed in another
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work [Ozcan et al. 2008a]. The latter method takes into account the stability of
query frequency in time, and can outperform typical frequency-based caching.

— Second, we introduce two cost-aware caching policies for dynamic query result
caching. Furthermore, we adapt several cost-aware policies from other domains.

— Third, we also evaluate the performance of cost-aware methods in a hybrid caching
environment (as proposed in Fagni et al. [2006]), in which a certain part of the
cache is reserved for static caching and the remaining part is used for the dynamic
cache.

— Finally, we experimentally evaluate caching policies using two large Web crawl
datasets and real query logs. Our cost function, as discussed above, takes into ac-
count both actual CPU processing time that is measured in a realistic setup with list
decompression and dynamic pruning, and disk access time computed under several
list caching scenarios. Our findings reveal that the cost-aware strategies improve
overall system performance in terms of the total query processing time.

The rest of the article is organized as follows: In the next section, we briefly review
the related work in the literature. In Section 3, we provide the experimental setup
that includes the characteristics of our datasets, query logs and computing resources.
Section 4 is devoted to a cost analysis of query processing in a Web SE. The cost-
aware static, dynamic, and hybrid caching strategies are discussed in Section 5, and
evaluated in Section 6. The experimental results are summarized in Section 7. We
conclude and point to future research directions in Section 8.

2. RELATED WORK

Caching is a well-known technique applied in several domains, such as disk page
caching in operating systems (OSs) and Web page caching in proxies. Its main goal
is to exploit the temporal and spatial localities of the requests in the task at hand.
Operating systems attempt to fill the cache with frequently (and/or recently) used disk
pages and expect them to be again requested in the near future. The same idea applies
to caching in the context of Web SEs; query result pages and/or posting lists of terms
that appear in the queries are cached.

The availability of query logs from Web SEs enables research on query characteris-
tics and user behavior on result pages. Markatos [2001] analyzes the query log from
the EXCITE search engine and shows that query requests have a temporal locality
property, that is, a significant amount of queries submitted previously are submitted
again a short time later. This fact shows evidence for the caching potential of query
results. That work also compares static vs. dynamic caching approaches for varying
cache sizes. In static caching, previous query log history is used to find the most fre-
quent queries submitted and the cache is filled with the results of these queries. A
static cache is a read-only cache; that is, no replacement policy is applied. Since the
query frequency distribution information becomes obsolete as new queries are submit-
ted, the contents of the static cache must be refreshed at periodical intervals. On the
other hand, the dynamic caching strategy starts with an empty cache and fills its en-
tries as new queries arrive. If a cache miss occurs and the cache is full, a victim cache
entry is chosen for replacement. There are many cache replacement policies adapted
from the literature, such as Least Recently Used (LRU), Least Frequently Used (LFU),
etc. The analysis in Markatos [2001] reveals that the static caching strategy performs
better when the cache size is small, but dynamic caching becomes preferable when the
cache is relatively larger. In a more recent work, Ozcan et al. [2008a] proposes an al-
ternative query selection strategy, which is based on the stability of query frequencies
over time intervals instead of using an overall frequency value.
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Another recent work [Fagni et al. 2006] proposes a hybrid caching strategy, which
involves both static and dynamic caching. The authors divide the available cache space
into two parts: One part is reserved for static caching and the remaining part is used
for dynamic caching. Their motivation for this approach is based on the fact that
static caching exploits the query popularity that lasts for a long time interval and
dynamic caching handles the query popularity that arises for a shorter interval (e.g.,
queries for breaking news, etc.). Experiments with three query logs show that their
hybrid strategy, called Static-Dynamic Caching (SDC), achieves better performance
than either purely static caching or purely dynamic caching.

While the above works solely consider caching the query result pages, several other
works [Baeza-Yates and Saint-Jean 2003; Baeza-Yates et al. 2007a, 2008; Long and
Suel 2005; Saraiva et al. 2001] also consider the possibility of caching posting lists. To
the best of our knowledge, Saraiva et al.’s [2001] paper is the first work in the literature
that mentions a two-level caching idea to combine caching query results and inverted
lists. This work also uses index pruning techniques for list caching because the full
index contains lists that are too long for some popular or common words. Experiments
measure the performance of caching the query results and inverted lists separately,
as well as that of caching them together. The results show that two-level caching
achieves a 52% higher throughput than caching only inverted lists, and a 36% higher
throughput than caching only query results.

Baeza-Yates and Saint-Jean [2003] propose a three-level search index structure us-
ing query log distribution. The first level consists of precomputed answers (cached
query results) and the second level contains the posting lists of the most frequent
query terms in the main memory. The remaining posting lists need to be accessed
from the secondary memory, which constitutes the third level in the indexing struc-
ture. Since the main memory is shared by cached query results and posting lists, it
is important to find the optimal space allocation to achieve the best performance. The
authors provide a mathematical formulation of this optimization problem and propose
an optimal solution.

More recently, another three-level caching approach is proposed [Long and Suel
2005]. As in Baeza-Yates and Saint-Jean [2003], the first and second levels contain
the results and posting lists of the most frequent queries, respectively. The authors
propose a third level, namely, an intersection cache, containing common postings of
frequently occurring pairs of terms. The intersection cache resides in the secondary
memory. Their experimental results show significant performance gains using this
three-level caching strategy.

Finally, Baeza-Yates et al. [2007a] compare the two alternatives: caching query
results vs. posting lists. Their analysis shows that caching posting lists achieves better
hit rates [Baeza-Yates et al. 2007a]. The main reason for this result is that repetitions
of terms in queries are more frequent than repetitions of queries. Remarkably, this
work also makes use of query costs; however the costs are solely used for obtaining the
optimal split of the cache space for storing results and posting lists. In contrast, we
propose to employ miss costs in the actual caching policy; that is, while deciding what
to store in the cache.

In the literature, the idea of cost-aware caching is applied in some other areas where
miss costs are not always uniform [Jeong and Dubois 2003, 2006; Liang et al. 2007].
For instance, in the context of multiprocessor caches, there may be non-uniform miss
costs that can be measured in terms of latency, penalty, power, or bandwidth consump-
tion, etc. [Jeong and Dubois 2003, 2006]. Jeong and Dubois [2003] propose several
extensions of LRU to make the cache replacement policy cost sensitive. The initial
cost function assumes two static miss costs, that is, a low cost (simply 1) and a high
cost (experimented with varying values). This work also provides experiments with a
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more realistic cost function, which involves miss latency in the second-level cache of a
multiprocessor.

Web proxy caching is another area where a cost-aware caching strategy naturally
fits. In this case, the cost of a miss would depend on the size of the page missed
and its network cost, that is, the number of hops to be traveled to download it. The
work of Cao and Irani [1997] introduces GreedyDual-Size (GDS) algorithm, which is
a modified version of the Landlord algorithm proposed by Young [2002]. The GDS
strategy incorporates locality with cost and size concerns for Web proxy caches. A
detailed survey of Web cache replacement strategies involving some function-based
strategies is provided by Podlipnig and Böszörményi [2003].

We are aware of only two works in the literature that explicitly incorporate the
notion of costs into the caching policies of Web SEs. Garcia [2007] proposes a hetero-
geneous cache that can store all possible data structures (posting lists, accumulator
sets, query results, etc.) to process a query, with each of these entry types associated
with a cost function. However, the cost function in that work is solely based on disk
access times and must be recomputed for each cache entry after every modification of
the cache.

The second study [Gan and Suel 2009] that is simultaneous to our work also
proposes cache eviction policies that take the costs of queries into account. In this
work, the cost function essentially represents queries’ disk access costs and it is
estimated by computing the sum of the lengths of the posting lists for the query
terms. The authors also experiment with another option, that is, using the length
of the shortest list to represent the query cost, and report no major difference in the
trends. In our case, instead of predicting the cost, we prefer to use the actual CPU
processing time obtained the first time the query is executed, that is, when the query
result page is first generated. Our motivation is due to the fact that actual query
processing cost is affected by several mechanisms, such as dynamic pruning, list
caching, etc. [Baeza-Yates et al. 2007a]; and it may be preferable to use the actual
value when available. Furthermore, we use a more realistic simulation of the disk
access cost, which takes into account the contents of the list cache under several
scenarios.

Note that, there are other differences between our work and that of Gan and Suel
[2009]. In this study, we provide several interesting findings regarding the variance
of processing times among different queries, and the relationship between a query’s
processing time and its popularity. In light of our findings, we adapt our previous
cost-aware strategy for static caching [Altingovde et al. 2009] to dynamic and static-
dynamic caching cases. Gan and Suel’s work [2009] also considers some cost-aware
techniques for dynamic and hybrid caching. However, they further explore issues like
query burstiness and propose cache eviction policies that exploit features other than
the query cost.

Finally, a more recent research direction that is orthogonal to all of the above
works is investigating the cache freshness problem. In this case, the main concern
is not the capacity related problems (as in the eviction policies) but the freshness of
the query results that is stored in the cache. To this end, Cambazoglu et al. [2010]
proposes a blind cache refresh strategy: they assign a fixed time-to-live (TTL) value to
each query result in the cache and re-compute the expired queries without verifying
whether their result have actually changed or not. They also introduce an eager
approach that refreshes expired or about-to-expire queries during the idle times of
the search cluster. In contrast, Blanco et al. [2010a, 2010b] attempt to invalidate
only those cache items whose results have changed due to incremental index updates.
The issue of freshness is not in the scope of our work, and it is left for future
investigation.
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3. EXPERIMENTAL SETUP

Datasets. In this study, we use two datasets. For the first, we obtained the list of
URLs categorized at the Open Directory Project (ODP) Web directory (www.dmoz.org).
Among these links, we successfully crawled around 2.2 million pages, which take 37
GBs of disk space in uncompressed HTML format. For the second dataset, we cre-
ate a subset of the terabyte-order crawl collection provided by Stanford University’s
WebBase Project [WebBase 2007]. This subset includes approximately 4.3 million
pages collected from US government Web sites during the first quarter of 2007. These
two datasets will be referred to as “ODP” and “Webbase” datasets, respectively. The
datasets are indexed by the Zettair search engine [Zettair 2007] without stemming
and stopword removal. We obtained compressed index files of 2.2 GB and 7 GB on
disk (including the term offset information in the posting lists) for the first and second
datasets, respectively.

Query Log. We create a subset of the AOL Query Log [Pass et al. 2006], which con-
tains around 20 million queries of about 650K people for a period of three months. Our
subset contains around 700K queries from the first six weeks of the log. Queries sub-
mitted in the first three weeks constitute the training set (used to fill the static cache
and/or warm up the dynamic cache), whereas queries from the second three weeks are
reserved as the test set.

In this article, during both the training and testing stages, the requests for the
next page of the results for a query are considered as a single query request, as in
Baeza-Yates et al. [2007b]. Another alternative would be to interpret each log entry
as <query, result page number> pairs [Fagni et al. 2006]. Since our query log does
not contain the result page number information, the latter approach is left as a future
work. Accordingly, we presume that a fixed number of N results are cached per query.
Since N would be set to a small number in all practical settings, we presume that the
actual value of N would not significantly affect the findings in this article. Here, we
set N as 30, as earlier works on log analysis reveal that search engine users mostly
request only the first few result pages. For instance, Silverstein et al. [1999] report
that in 95.7% of queries, users requested up to only three result pages.

Experimental Platform. All experiments are conducted using a computer that includes
an Intel Core2 processor running at 2.13 GHz with 2GB RAM. The operating system
is Suse Linux.

4. AN ANALYSIS OF THE QUERY PROCESSING COST

4.1 The Setup for Cost Measurement

The underlying motivation for employing result caching in Web SEs (at the server
side) is to reduce the burden of query processing. In a typical broker-based distrib-
uted environment (e.g., see Cambazoglu [2006]), the cost of query processing would
involve several aspects, as shown in Figure 1. The central broker, after consulting
its result cache, sends the query to index nodes. Each index node should then fetch
the corresponding posting lists to the main memory (if they are not already in the list
cache) with the cost CDISK . Next, the postings are processed and partial results are
computed with the cost CCPU . More specifically, the CPU cost involves decompress-
ing the posting lists (as they are usually stored in a compressed form), computing
a similarity function between the query and the postings, and obtaining the top-N
documents as the partial result. Then, each node sends its partial results to the cen-
tral broker, with the cost CNET , where they are merged. Finally, the central broker
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Fig. 1. Query processing in a typical large-scale search engine.

generates the snippets for the query results, with the cost CSNIP, and sends the output
page to the user. Thus, the cost of query processing is the sum of all of these costs, that
is, CDISK + CCPU + CNET + CSNIP.

For the purposes of this article, we consider the sum of the CPU execution time and
disk access time (i.e., CDISK + CCPU) as the major representative of the overall cost of a
query. We justify leaving out the network communication and snippet generation costs
as follows: Regarding the issue of network costs, a recent work states that for a dis-
tributed system interconnected via a LAN, the network cost would only be a fraction of
the query processing cost (e.g., see Table III in Baeza-Yates et al. [2007a]). The snippet
generation cost is discarded because its efficiency is investigated in only a few previ-
ous studies (e.g., Turpin et al. [2007], Tsegay et al. [2009]), and none of these discusses
how the cost of snippet generation compares to other cost components. Furthermore,
we envision that the two costs, namely, network communication and snippet genera-
tion, are less likely to vary significantly among different queries and neither would be
a dominating factor in the query processing cost. This is because, regardless of the size
of the posting lists for query terms, only a small and fixed number of results with the
highest scores, (typically, top-10 document identifiers) would be transferred through
the network. Similarly, only that number of documents would be accessed for snippet
generation. Thus, in the rest of this article, we essentially use CCPU + CDISK as the
representative of the query processing cost in a search engine.

In this article, all distinct queries are processed using the Zettair search engine in
batch mode to obtain the isolated CPU execution time per query. That is, we measured
the time to decompress the lists, compute similarities and obtain the identifiers of
the top-N documents, where N is set to 30. Since Zettair is executed at a centralized
architecture, there is no network cost. To be more accurate, we describe the setup as
follows.

— We use Zettair by its default mode, which employs an early pruning strategy that
dynamically limits the number of accumulators used for a query. In particular,
this dynamic pruning strategy adaptively decides to discard some of the existing
accumulators or add new ones (up to a predefined target number of accumulators)
as each query term is processed (see Lester et al. [2005] for details). Following
the practice in Lester et al. [2005], we also set the target number of accumulators
to approximately 1% of the number of documents in the collection, namely, 20K.
Employing a dynamic pruning strategy is a crucial choice for the practicality of our
proposal, since no real Web SE would make a full evaluation and the CPU execution
time clearly depends on the partial evaluation strategy used in the system.
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Table I. Disk Parameters for
Simulating CDISK

Parameter Name Value
Seek time 8.5 ms
Rotational delay 4.17 ms
Block read time 4.883 μs
Block size 512 bytes

— All query terms in the log are converted to lower case. The queries are modified to
include an additional “AND” conjunct between each term, so that the search engine
runs in the “conjunctive” mode. This is the default search mode of the major search
engines [de Moura et al. 2005; Ntoulas and Cho 2007]. Stopwords are not eliminated
from the queries. No stemming algorithm is applied. Finally, all phrase queries are
discarded.

In contrast to CCPU, it is hard to associate a query with an isolated disk access cost,
because for a real-life system disk access time depends on the query stream and the
posting lists that are buffered and/or cached in the memory at the processing time.
Thus, instead of measuring the actual disk access time, we compute this value per
query under three different scenarios, where 25%, 50%, or 100% of the index is as-
sumed to be cached. As discussed in the related work section, it is now widely accepted
that any large-scale SE involves a reasonably large list cache that accompanies the re-
sult cache. Indeed, it is known that some major search engines store all posting lists in
the main memory, an approach totally eliminating the cost of disk access [Dean 2009;
Strohman and Croft 2007]. Therefore, our scenarios reflect realistic choices for the list
cache setup.

For each of these scenarios, query term frequencies are obtained from the training
logs and those terms with the highest ratio of term frequency to posting list length are
stored in the cache, as proposed in Baeza-Yates et al. [2007a]. That study also reports
that a static list cache filled in this manner yields a better hit rate than dynamic
approaches (see Figure 8 in Baeza-Yates et al. [2007a]); so our framework only includes
the static list cache. For each scenario, we first determine which terms of a given
query cause a cache miss, and compute the disk access cost of each such term as the
sum of seek time, rotational latency, and block transfer time, which is typical (e.g., see
Ramakrishnan and Gehrke [2003]). In this computation, we use the parameters of a
moderate disk, as listed in Table I.

To sum up, our framework realistically models the cost of processing a query in
terms of the CPU and disk access times. The cost of a query computed by this model
is independent of the query load on the system, as it only considers the isolated CPU
and disk access times. More specifically, disk access time in this setup depends on
the contents of the list cache (and, in some sense, previous queries), but not on the
query load.

Before discussing cost-aware result caching strategies, we investigate answers to
the following questions: (i) Do the costs of different queries really vary considerably?,
(ii) Is there a correlation between the frequency and the cost of the queries? We expect
the answer to the first question to be positive; that is, there should be a large variance
among query execution times. On the other hand, we expect the answer of the second
question to be negative; that is, frequency should not be a trustworthy indicator of
processing time, so that cost-aware strategies can further improve solely frequency-
based strategies. We explore the answers to these questions in the next section and
show that our expectations are justified.
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Table II. Characteristics of the Query Log Variants

Query log
Number of

distinct queries
Number of
all queries

Training Test Training Test
ODP query log 253,961 209,636 446,952 362,843
Webbase query log 211,854 175,557 386,179 313,884
Webbase semantically aligned query log 28,794 24,066 45,705 37,506

4.2 Experiments

After a few initial experiments with the datasets and the query log previously de-
scribed, it turns out that a nontrivial number of queries yields no answer for our
datasets. As an additional problem, some of the most frequent queries in the query log
appear much less frequently in the dataset, which might bias our experiments. Since
previous works in the literature emphasize that the dataset and query log should be
compatible to ensure a reliable experimental framework [Webber and Moffat 2005], we
first focus on resolving this issue.

The ODP dataset contains pages from a general Web directory that includes several
different categories and the AOL log is a general domain search engine log. That is, the
content of our dataset matches the query log to a certain extent, although the dataset
is, of course, much more restricted than the real AOL collection. Thus, for this case,
it would be adequate to simply discard all queries that have no answer in the ODP
dataset.

On the other hand, recall that the Webbase dataset includes pages crawled only
from the .gov domain. Thus, there seems to be a higher possibility of mismatch be-
tween the Webbase dataset and AOL query log. To avoid any bias that might be caused
by this situation, we decided to obtain a domain-restricted version of the query log for
the Webbase collection. In what follows, we describe the query logs corresponding to
the datasets as used in this study.

(1) ODP Query Log. We keep all queries in the log that yield non-empty results on the
ODP dataset.

(2) Webbase Query Log. We keep all queries in the log that yield non-empty results on
the Webbase dataset.

(3) Webbase Semantically Aligned Query Log. Following a similar approach discussed
in a recent work [Tsegay et al. 2007], we first submit all distinct queries in our
original query log to Yahoo! search engine’s “Web search” service [Yahoo! 2009]
to get the top-10 results. Next, we only keep those queries that yield at least one
result from the .gov domain.

In Table II, we report the number of the remaining queries in each query log. To
experimentally justify that these query logs and the corresponding datasets are com-
patible, we conduct an experiment as follows. We process randomly chosen 5K queries
from each of the three query logs in conjunctive mode on the corresponding collection,
and record the total number of results per query. Next, we submit the same queries
to Yahoo! (using its Web search API), again in conjunctive (default) processing mode.
For each case, we also store the number of results per query as returned by the search
engine API.

In Figure 2, we represent these 5K queries on a log-log scale plot, where the x-axis
is the ratio of the number of results retrieved in our corresponding collection to the
collection size, and the y-axis is the same ratio for Yahoo! collection. We assume that
the underlying collection of Yahoo! includes around 31.5 billion pages, which is the
reported number of results when searching for the term “a” on the Yahoo! Web site.
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Fig. 2. Correlation of “query result size/collection size” on Yahoo! and (a) ODP, (b) Webbase, and (c) Webbase
semantically aligned for the conjunctive processing mode.

The figure reveals that the ratio of the number of results per query in each collection
is positively correlated with the ratio in the Yahoo! search engine, that is, yielding
correlation coefficients of 0.80, 0.57, and 0.86 for the ODP, Webbase, and Webbase
semantically aligned logs, respectively. Thus, we conclude that our collections and
query sets are compatible, and experimental evaluations would provide meaningful
results.

Next, for each of the query logs in Table II, we obtain the CPU execution time of
all distinct queries using the setup described in the previous section. The experiments
are repeated four times and the results reveal that the computed CPU costs are stable
and can be used as the basis of the following discussions. For instance, for ODP log, we
find that the average standard deviation of query execution times is 2 ms. Considering
that the average query processing time is 93 ms for this case, we believe that the stan-
dard deviation figure (possibly due to system-dependent fluctuations) is reasonable
and justifies our claim of the stability of execution times.

In Figure 3, we provide the normalized log-log scatter plots that relate the query’s
frequency in the log and the CPU execution time1 for randomly selected 10K queries.
These plots reveal the answers to the questions raised at the end of the previous sec-
tion. First, we see that the query execution time covers a wide range, from a fraction

1Note that, this experiment considers the scenario where the entire index is assumed to be in the memory
and thus CDISK is discarded. The findings for other scenarios, that is, those involving CDISK , are similar
and not reported here for brevity.
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Fig. 3. Normalized log-log scatter plot of the query CPU execution time and query frequency in the (a) ODP,
(b) Webbase, and (c) Webbase semantically aligned query log.

of a millisecond to a few thousand milliseconds. Thus, it may be useful to devise cost-
aware strategies in the caching mechanisms. Second, we cannot derive a high positive
correlation between the query frequency and the processing times. That is, a very
frequent query may be cheaper than a less-frequent query. This can be explained by
the following arguments: In earlier works, it is stated that query terms and collection
terms may not be highly correlated (e.g., a correlation between Chilean crawl data and
the query log is found to be only 0.15 [Baeza-Yates and Saint-Jean 2003]), which means
that a highly frequent query may return fewer documents, and be cheaper to process.
Indeed, in a separate experiment reported below, we observe that this situation also
holds for the AOL query log using both the ODP dataset and the Yahoo! search engine.

In Figure 4, we show the normalized log-log scatter plots that relate the query fre-
quency in the log and result-set size, that is, the ratio of number of query results to
the size of ODP collection, for randomly selected 10K queries. As can be seen from
the figure, the correlation is very low; that is, the correlation coefficient is -0.01. In
order to show that the same trend also holds true for a real search engine, we provide
the same plot obtained for Yahoo! in Figure 5. Here, we obtain the number of results
returned for randomly selected 5K queries using the Yahoo! Web search API. Figure 5
again demonstrates that queries with the same frequency might have a very different
number of results, and that there is no positive correlation between query frequency
and query result frequency; that is, for this case, the correlation coefficient is only 0.03.
Similar findings are also observed for Webbase dataset and corresponding query logs,
but not reported here due to space considerations.
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Fig. 4. Normalized log-log scatter plot of the query result-set size and the query frequency in the ODP
query log for 10K queries.

Fig. 5. Normalized log-log scatter plot of the query result-set size in Yahoo! and the query frequency in the
query log for 5K queries.

Finally, note that, even for the cases where the above trend does not hold (i.e., the
frequent queries return a large number of result documents), the processing time does
not necessarily follow the proportion, due to the compression and early stopping (prun-
ing) techniques applied during query processing (see Figure 10 in Baeza-Yates et al.
[2007a], for example).

Our findings in this section are encouraging in the following ways: We observe
that the query processing costs, and accordingly, the miss costs, are nonuniform and
may vary considerably among different queries. Furthermore, this variation is not di-
rectly correlated to the query frequency, a feature already employed in current caching
strategies. These call for a cost-aware caching strategy, which we discuss next.

5. COST-AWARE STATIC AND DYNAMIC CACHING

In this section, we describe our cost-aware strategies for static, dynamic, and hybrid
result caching.
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5.1 Cost-Aware Caching Policies for a Static Result Cache

As discussed in the literature [Baeza-Yates et al. 2007a], filling a static cache with a
predefined capacity can be reduced to the well-known knapsack problem, where query
result pages are the items with certain sizes and values. In our case, we presume that
cache capacity is expressed in terms of the number of queries; that is, each query (and
its results) is allocated a unit space. Then, the question is how to fill the knapsack
with the items that are most valuable. Setting the value of a query to its frequency in
previous query logs, that is, filling the cache with the results of the most frequent past
queries, is a typical approach employed in SEs. However, as we discuss previously,
miss costs of queries are not uniform. Therefore, the improvement promises of such a
strategy evaluated in terms of, for example, hit rate, may not translate to actual im-
provements that can be measured in terms of query processing time or throughput. To
remedy this problem, we propose to directly embed miss costs into the static caching
policies. In what follows, we specify a number of cost-aware static caching approaches
in addition to the traditional frequency-based caching strategy, which serves as a base-
line. In these discussions, for a given query q, its cost and frequency are denoted as Cq
and Fq,respectively.

Most Frequent (MostFreq). This is the baseline method, which basically fills the static
cache with the results of the most frequent queries in the query log. Thus, the value of
a cache item is simply determined as follows:

Value(q) = Fq.

Frequency Then Cost (FreqThenCost). Previous studies show that query frequencies in
a log follow a power-law distribution; that is, there exist a few queries with high fre-
quencies and many queries with very low frequencies [Xie and O’Hallaron 2002]. This
means that for a reasonably large cache size, the MostFreq strategy should select
among a large number of queries with the same – relatively low – frequency value,
possibly breaking the ties at random. In the FreqThenCost strategy, we define the
value of a query with the pair (Fq, Cq) so that while filling the cache we first choose
the results of the queries with the highest frequencies, and from the queries with the
same frequency values we choose those with the highest cost. We anticipate that this
strategy would be more effective than MostFreq especially for caches with larger ca-
pacities, for which more queries with the same frequency value would be considered for
caching. In Section 6.1, we provide experimental results that justify our expectation.

Stability Then Cost (StabThenCost). In a recent study, we introduce another feature,
namely, query frequency stability (QFS), to determine the value of a query for caching
[Ozcan et al. 2008a]. This feature represents the change in a query’s popularity during
a time interval. The underlying intuition for this feature stems from the fact that in
order to be cached, queries should be frequent and remain frequent over a certain time
period. The QFS feature is defined as follows:

Assume that query q has the total frequency of f in a training query log that spans
a time period T. Consider that this time period is divided into n equal time intervals2

and query q has the following values of frequency: F = { f1, f2, . . . , fn}; one for each
T/n time units. Then, the stability of query q is defined by the following formula:

QFSq =
n∑

i=1

∣∣ fi − fμ
∣∣

fμ
,

where fμ = f/
n is the mean frequency of q during T.

2In this article, we assume one day as the time interval.
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In this previous study, it is shown that using the QFS feature for static caching
yields better hit rates than solely using the frequency feature. Here, we combine this
feature with the query cost and define the value of a query with the pair (QFSq, Cq).
That is, while filling the cache, queries are first selected based on their QFS value and
then their associated cost values.

Frequency and Cost (FC K). For a query q with cost Cq and frequency Fq, the ex-
pected value of the query q can be simply computed as the product of these two
figures, that is, Cq x Fq. That is, we expect that the query would be as frequent in
future as in past logs, and caching its result would provide the gain as expressed
by this formula. During the simulations reported in Section 6, we observe that this
expectation may not hold in a linearly proportional manner; that is, queries that
occur with some high frequency still tend to appear with a high frequency, whereas
the queries with a relatively lower frequency may appear even more sparsely, or
totally fade away, in future queries. A similar observation is also discussed in Gan
and Suel [2009]. For this reason, we use a slightly modified version of the formula
that is biased to emphasize higher frequency values and depreciate lower ones, as
shown:

Value(q) = CqxFK
q , where K> 1.

5.2 Cost-Aware Caching Policies for a Dynamic Result Cache

Although static caching is an effective approach for exploiting long-term popular
queries, it may miss short-term popular queries submitted to a Web SE during a short
time interval. Dynamic caching handles this case by updating its content as the query
stream changes. Different from static caching, a dynamic cache does not require a pre-
vious query log. It can start with an empty cache and it fills its entries as new queries
are submitted to a Web SE. If the result page for a submitted query is not found in the
cache, the query is executed and its result is stored in the cache. When the cache is
full, a victim cache entry is chosen based on the underlying cache replacement policy.
A notable number of cache replacement policies are proposed in the literature (e.g., see
Podlipnig and Böszörményi [2003] for Web caches). In the following, we first describe
two well-known strategies, namely, least recently used and least frequently used, to
serve as a baseline. Then, we introduce two cost-aware dynamic caching strategies
in addition to adapting two other approaches from the literature to the result caching
domain.

Least Recently Used (LRU). This well-known strategy chooses the least recently refer-
enced/used cache item as the victim for eviction.

Least Frequently Used (LFU). In this policy, each cached entry has a frequency value
that shows how many times this entry is requested. The cache item with the lowest
frequency value is replaced when the cache is full. This strategy is called “in-cache
LFU” in Podlipnig and Böszörményi [2003].

Least Costly Used (LCU). This is the most basic cost-aware replacement policy intro-
duced in this article. Each cached item has an associated cost, as described in Section
4.1. This method chooses the least costly cached query result as the victim.

Least Frequently and Costly Used (LFCU K). This policy is the dynamic version of the
static cost-aware policy that we previously propose [Altingovde et al. 2009]. We employ
the same formula specified for the FC K strategy in Section 5.1.
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Table III. Hybrid Cache Configurations

Hybrid Cache Configuration Static Cache Strategy Dynamic Cache Strategy
Non cost-aware MostFreq LRU
Only static cache is cost-aware FC K LRU

Both static and dynamic caches
are cost-aware

FC K LFCU K
FC K GDS
FC K GDSF K

Greedy Dual Size (GDS). This method maintains a so-called H-value for each cached
item [Cao and Irani 1997]. For a given query q with an associated cost Cq and result
page size Sq, the H-value is computed as follows:

H value(q) =
Cq

Sq
+ L

In this formula, L is an aging factor that is initialized to zero at the beginning. This
policy chooses the cache item with the smallest H-value. Then, the value of L is set
to the evicted item’s H-value. When a query result is requested again, its H-value
is recalculated since the value of L might have changed. The size component in the
formula can be ignored as all result pages are assumed to use the same amount of
space, as we discuss before.

Greedy Dual Size Frequency (GDSF K). This method is a slightly modified version of the
GDS replacement policy [Arlitt et al. 2000]. In this case, the frequency of cache items
is also taken into account. The corresponding H-value formula is presented below.

H value(q) = FK
q x

Cq

Sq
+ L

In this strategy, the frequency of the cache items are also kept and updated after each
request. As discussed in Section 5.1, again we favor the higher frequencies by adding
an exponent K (>1) to the frequency component. Note that with this extension, the
formula also resembles the generalized form of GDSF as proposed in Cherkasova
and Ciardo [2001]. However, that work proposes to add weighting parameters for
both frequency and size components while setting the cost component to 1. In our
case, we have to keep the cost, Cq, and apply weighting only for the frequency
values.

5.3 Cost-Aware Caching Policies for a Hybrid Result Cache

The hybrid result caching strategy proposed in Fagni et al. [2006] involves both static
and dynamic caching and it outperforms its purely static and purely dynamic coun-
terparts. We employ the hybrid caching framework in order to see the effect of cost-
awareness in such a state-of-the-art query result caching environment.

In this cache configuration, total cache size is divided into two parts, for static and
dynamic caches. The fractions of the cache space reserved for each kind of cache is
based on the underlying query log for the best performance. The static cache part is
filled based on a training query log. Then, the dynamic cache part is warmed up by
submitting the remaining training queries into this part of the cache. Later, cache
performance is evaluated using the disjoint test set. Table III shows the hybrid cache
configurations experimented with in this work. We essentially consider three types
of cache configurations, based on whether a cost-aware strategy is employed in each
cache part. The baseline case does not involve the notion of cost at all; the static and
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dynamic caches employ traditional MostFreq and LRU strategies, respectively [Fagni
et al. 2006]. In the second case, only the static portion of the hybrid cache can be
cost-aware; the static part employs the FC K strategy and the dynamic part is still
based on LRU. In the third configuration, both the static and dynamic portions might
be cost-aware. For this case, three different combinations are experimented with. All
three combinations use FC K for the static cache part, but they use three different
cost-aware dynamic caching policies, namely, LFCU K, GDS, and GDSF K.

6. EXPERIMENTS

In this section, we provide a simulation-based evaluation of the aforementioned cost-
aware policies for static, dynamic, and hybrid caching environments. As described in
Section 3, the query log is split into training and test sets, and the former is used to
fill the static caches and/or warm up the dynamic caches, whereas the latter is used
to evaluate the performance. Cache size is specified in terms of the number of the
queries. Remarkably, we don’t measure the cache hit rate (due to nonuniform miss
costs) but use the total query processing time for evaluation. For the cache hits, we
assume that the processing time is negligible; that is, the cost is 0. To simulate the
cache misses, we use the query processing cost, CCPU + CDISK , which is also employed
in the training stage. That is, for all distinct queries in the log, we store the actual
CPU execution time (CCPU) per query that is reported by the Zettair SE. As mentioned
before, CPU cost measurements are repeated four times and found to be stable; that
is, no fluctuations are observed. Furthermore, for each list cache scenario, namely,
caching 25%, 50%, and 100% of the index, we compute the simulated disk access time,
CDISK, per query. Whenever a cache miss occurs, the cost of this query is retrieved
as the sum of CCPU and CDISK for the given list cache scenario, and added to the total
query processing time.

6.1 Simulation Results for Static Caching

In this section, we essentially compare the four strategies, namely MostFreq,
FreqThenCost, StabThenCost, and FC K, for static caching. In Figures 6(a), 6(b), and
6(c), we provide the total query execution times using these strategies for the ODP
log when 25%, 50%, and 100% of the index is cached, respectively. For the sake of
brevity, the corresponding experimental results for the Webbase and Webbase seman-
tically aligned logs are given in Figure 7 only for the case where the entire index is
cached.

We also provide the potential gains for the optimal cost-aware static caching
strategy (OptimalCost), where the test queries are assumed to be known beforehand.
Since we know the future frequency of the training queries, we fill the cache with the
results of the queries that would yield the highest gain, that is, frequency times cost.
Clearly, this is only reported to illustrate how far the proposed strategies are away
from the optimal.

In all experiments, cost-aware strategies (FreqThenCost, StabThenCost and FC K)
reduce the overall execution time with respect to the baseline, that is, MostFreq. We
observe that the improvement gets higher as higher percentages of the index are
cached. This is important because large scale SEs tend to cache most of the index
in memory. The best-performing strategy, FC K (where K is set to 2.5 in light of the
findings reported in Altingovde et al. [2009]), yields up to a 3% reduction in total time
for varying cache sizes. It is also remarkable that the gains for the optimal cache
(denoted as OptimalCost) are much higher, which implies that it is possible to fur-
ther improve the value function employed in the cost-aware strategies. This is left for
future investigation.
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Fig. 6. Total query processing times (in seconds) obtained using different static caching strategies for the
ODP log when (a) 25%, (b) 50%, and (c) 100% of the index is cached.

Fig. 7. Total query processing times (in seconds) obtained using different static caching strategies for the
(a) Webbase and (b) Webbase semantically aligned logs when 100% of the index is cached.

6.2 Simulation Results for Dynamic Caching

In this section, we experiment with the dynamic caching approaches mentioned
in Section 5.2. Note that, LRU and LFU strategies do not use cost values in the
replacement policies, while all the other strategies are cost-aware. As a lower bound,
we also show the performance of the infinite-sized dynamic cache (INFINITE), for
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Fig. 8. Total query processing times (in seconds) obtained using different dynamic caching strategies for
the ODP log when (a) 25%, (b) 50%, and (c) 100% of the index is cached.

which no replacement policy is necessary. In Figure 8, we display the total query
execution times obtained using different dynamic caching strategies for the ODP
log when 25%, 50%, and 100% of the index is cached. The results of the same
experiment for the Webbase and Webbase semantically aligned logs are given in
Figure 9 only for the case where 100% of the index is cached. The other cases,
namely caching 25% and 50% of the index, yield similar results and are not reported
here.

In all experiments, the trends are very similar. As in the case of static caching, the
improvements are more emphasized as the percentage of index that is cached in the
memory increases. Therefore, in the following, we only discuss the case for the ODP
log when 100% of the index is cached. First, we see that the cost-aware version of
LFU, which is LFCU K(with K = 2, tuned by only using the training log), outperforms
LFU in all reported cache sizes. The reductions in total query processing times reach
up to 8.6%, 9.4%, and 7.4% for the ODP, Webbase, and Webbase semantically aligned
logs, respectively. Although LRU is slightly better than LFCU K for small cache sizes,
the cost-aware strategy performs better for medium and large cache sizes. It is seen
that the GDSF K policy (again with the best-performing value of K tuned by only
using the training log, namely, 2.5) is the best strategy among all policies for all cache
sizes and all three logs. We achieved up to 6.2%, 7%, and 5.9% reductions in total
query processing time compared to the LRU cache for the ODP, Webbase, and Webbase
semantically aligned logs, respectively.
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Fig. 9. Total query processing times (in seconds) obtained using different dynamic caching strategies for
the (a) Webbase and (b) Webbase semantically aligned logs when 100% of the index is cached.

6.3 Simulation Results for Hybrid Caching

In this section, we experimentally evaluate the hybrid caching approaches mentioned
in Section 5.3. In Figure 10, we provide the total query execution times using different
hybrid caching strategies for the ODP log when 25%, 50%, and 100% of the index is
cached. As before, we report the results for the Webbase and Webbase semantically
aligned logs only for the latter scenario, in Figures 11(a) and 11(b), respectively. The
fraction parameter for dividing the cache is tuned experimentally using the training
query log. We observe that using a split parameter of 50% yields the best performance
for the majority of the cases among the five different hybrid cache configurations given
in Table III. So, in all of the experiments reported in this article, we equally divide the
cache space between static and dynamic caches.

We see that cost-aware policies also improve performance in the hybrid caching
environment. For brevity, we discuss the reduction percentages for the ODP log for
the scenario where 100% of the index is cached. The other cases exhibit similar trends
with smaller gains.

To start with, we observe that it is possible to obtain improvements even when
only the static portion of the cache is cost-aware. In Figures 10 and 11, the sta-
tic FC K dynamic LRU case outperforms the baseline, especially for the larger cache
sizes. For this case, we achieve up to 2.6%, 3.5%, and 2.6% reductions in total query
processing time for the ODP, Webbase, and Webbase semantically aligned logs, respec-
tively. Furthermore, if the dynamic portion also employs a cost-aware cache eviction
policy, reductions in total query processing time are more emphasized, especially for
the GDSF K policy (i.e., up to 3.8%, 4.9%, and 3.5% reductions for the ODP, Webbase,
and Webbase semantically aligned logs, respectively).

In Figure 12, we compare the best performing strategies for static and dynamic
caching (namely, FC K, and GDSF K) to the hybrid caching that combines both strate-
gies. Our findings confirm previous observations that result caching significantly im-
proves system performance. For instance, even the smallest static cache configuration
(including only 5K queries) yields a 14% drop in total query processing time. We also
show that hybrid caching is superior to purely static and dynamic caching for smaller
cache sizes, whereas it provides comparable performance to dynamic caching for larger
cache sizes.

The performance of dynamic caching strategies may suffer from the use of concur-
rency control mechanisms in a parallel query processing environment. Fagni et al.
[2006] argue that such cache-access concurrency mechanisms can cause a relatively
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Fig. 10. Total query processing times (in seconds) obtained using different hybrid caching strategies for the
ODP log when (a) 25%, (b) 50%, and (c) 100% of the index is cached.

Fig. 11. Total query processing times (in seconds) obtained using different hybrid caching strategies for the
(a) Webbase and (b) Webbase semantically aligned logs when 100% of the index is cached.

higher overhead for fully dynamic caching strategies when compared to hybrid strate-
gies, which include a static (i.e., read-only) part. Note that, since the performance gap
between the static and dynamic/hybrid strategies is rather large (e.g., see Figure 12),
it is less probable that this access overhead would make any difference in relative per-
formance of these strategies. For the purposes of this article, we anticipate that the
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Fig. 12. Percentages of time reduction due to caching using best static, dynamic, and hybrid approaches for
the ODP log when 100% of the index is cached.

cost of cache-access mechanisms would not be that significant in comparison to other
query processing cost components, and so we do not explicitly consider cache-access
overhead in the experiments.

7. SUMMARY OF THE RESULTS AND ADDITIONAL EXPERIMENTS

In this article, we justify the necessity of cost-based caching strategies by demonstrat-
ing that query costs are not uniform and may considerably vary among the queries
submitted to a SE. Thus, cost-aware caching policies can further improve performance
in terms of the total query execution time for static, dynamic, or hybrid caching of the
query results.

The experimental results justify our expectations and reveal that it is possible
to achieve moderate but significant reductions in total query processing time by
employing cost-aware policies in each caching mode. In the static caching mode,
the reductions are up to around 3% (in comparison to the classical baseline, that is,
caching the most frequent queries). In the dynamic caching mode, the reductions
are more emphasized and reach up to around 6% in comparison to the traditional
LRU strategy. Finally, up to around 4% improvement is achieved in a hybrid, static-
dynamic, caching mode. Thus, for all cases, the cost-aware strategies improve the
state-of-the-art baselines.

Note that, in all simulation results reported in Section 6, we measure CPU execu-
tion times when the queries are processed in the conjunctive mode (i.e., “AND” mode,
as mentioned in Section 4.1). In a set of additional experiments, we also measure the
query execution times in the disjunctive (“OR”) mode. Figure 13 provides the simula-
tion result for dynamic caching with the ODP log when the entire index is assumed
to be cached. The other cache types and query logs are not discussed to save space.
Notably, the overall query processing times in Figure 13 are longer than those of the
corresponding case with the conjunctive processing, as expected (please compare with
the plot in Figure 8(c)). We also see that all trends are the same, except the LCU
strategy performs slightly better in the conjunctive mode.

As a final experiment, we analyze the average response time of queries under dif-
ferent query loads for several caching methods. In this simulation, we assume that
the time between each query submission follows an exponential distribution as shown
in previous works (e.g., Cacheda and Vina [2001]). In particular, we vary the mean
query inter-arrival time between 50 ms and 500 ms, corresponding to high- and low-
workload scenarios, respectively. We also assume that the search system involves two
processors. In Figure 14, we provide average response time figures for dynamic caching
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Fig. 13. Total query processing times (in seconds) obtained using different dynamic caching strategies for
the ODP log when queries are processed in the disjunctive processing mode.

Fig. 14. Average query response time obtained using different caching strategies for various query work-
loads (simulated by the different mean query inter-arrival times) of the ODP log.

strategies (namely LFU, LRU, LFCU K and GDSF K), and only for the case where all
index is stored in memory, for the sake of simplicity. Our findings reveal that cost-
aware strategies also improve the average response time under different load scenar-
ios. Note that, our results presented here are not conclusive, and we leave an in-depth
investigation of response time related issues as a future work.

8. CONCLUSION

In this article, we propose cost-aware caching strategies for the query result caching
in Web SEs, and evaluate it for static, dynamic, and hybrid caching cases. We observe
considerable reductions in total query processing time (i.e., sum of the CPU execu-
tion and disk access times) for all three caching modes. For static caching, we extend
our preliminary work [Altingovde et al. 2009] by incorporating cost-awareness into
the static caching policy introduced in Ozcan et al. [2008a]. For dynamic caching, we
propose two cost-aware policies, namely LCU and LFCU K, and show that especially
the latter strategy achieves better results than its non-cost-aware counterpart and the
traditional LRU strategy. We also show that cost-aware policies such as GDS and
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GDSF K, as employed in other domains, perform well in query result caching. Finally,
we analyze the performance of the cost-aware policies in a hybrid caching setup such
that one portion of the cache is reserved for static caching and the other portion for
dynamic caching. We experiment with several different alternatives in this setup and
show that if both static and dynamic portions of the cache follow a cost-aware caching
policy, performance improvement is highest.

As a future work, we plan to evaluate the cost-aware strategies in a more complex
architecture that may involve several other mechanisms, for example, an intersection
cache. We also envision that processing and caching requirements may differ for differ-
ent types of queries (e.g., navigational queries may have different requirements than
informational queries, as discussed in Ozcan et al. [2008b]). In our future studies, we
plan to extend the cost-aware strategies to take into account the characteristics of such
query types.
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