
Utilization of Navigational Queries for Result Presentation
and Caching in Search Engines

Rifat Ozcan, Ismail Sengor Altingovde, Özgür Ulusoy

Bilkent University, 06800, Bilkent, Ankara, Turkey
{rozcan, ismaila, oulusoy}@cs.bilkent.edu.tr

ABSTRACT
We propose result page models with varying granularities for
navigational queries and show that this approach provides a better
utilization of cache space and reduces bandwidth requirements.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – Performance evaluation (efficiency and effectiveness).

General Terms
Design, Experimentation, Performance.

Keywords
Navigational queries, search engine, static caching.

1. INTRODUCTION
Web users’ search goals are usually categorized as
“informational” or “navigational” [3]. A navigational query is
intended to find a particular Web site that a user has in mind.
Therefore, the search process will probably end up with one (or
two) click(s) for the Top-1 (or Top-2) results from the first page of
results. However, Web search engines (WSEs) usually cache and
return the results of queries in a standard form of 10 results per
page, regardless of the query type. For navigational queries, this
may cause wasting cache space and network bandwidth. In this
paper, we propose result page models with varying granularities
for navigational queries. This approach is shown to improve
bandwidth usage during result display in turn of a small increase
in the number of result pages inspected by the users. Furthermore,
a better space utilization is obtained for static result caching.

2. PAGE MODELS FOR RESULT DISPLAY
We first define some of the basic notions as follows.
Definition 1 (Result Page Model): A result page is an atomic item
for internal (e.g., result caching) and external (e.g., result display)
purposes of the WSE. A result page model describes how the
query results are placed into the pages, each of which may include
fixed or variable number of results.
Definition 2 (numSnippetsSend): This measures the number of
snippets sent by the WSE to the users. It shows the network
bandwidth cost incurred by the query result display.
Definition 3 (numResultPagesBrowsed): This indicates the total
number of the result pages that the user will browse in order to
reach the target document(s) for his/her query.

In the literature, it is reported that users rarely click on more than
the top-20 results [5], so we restrict our analysis to the result page
models for this most common case. Let’s consider a query
instance Q and the click requests C= {c1, c2, …, ck} of k clicks for
this query. Assume that click requests are at the ranks R= {r1, r2,
…, rk}, where rk ≤ 20. Then the result at rank rk is defined as the
lowest-ranked clicked document for this query session. For
simplicity, we assume that the user requested all the result pages
until the result page containing the result at rank rk and user will
not request more results after this rank. We also ignore query
sessions including no clicks. Based on these assumptions, we
collect all <query_instance, lowest_ranked_clicked_document>
pairs for top-20 clicks. Then, we end-up with a list A = {A1,…,
A10, A11,…, A20} where Ai denotes the number of query instances
for which the lowest-ranked clicked document is at rank i.

Assume we have a 2-page result model for top-20 as X_Y which
denotes that the first result page contains X results and the second
result page contains Y (or 20-X) results. We derive formulas for
the cost measures as follows. Note that, the cost formulations can
be generalized for top-K results and M pages in a straightforward
manner, as we also consider 3-page result models in experiments.

∑ ∑
= +=

+=
20

1

20

1

**
i Xi

iiX_Y AYAXsSendnumSnippet (1)

∑ ∑
= +=

+=
20

1

20

1i Xi
iiX_Y AAdagesBrowsenumResultP (2)

We normalize these expressions using the conventional result
model of 10-results-per-page schema (i.e., 10_10) as our baseline
model. The summation of these normalized values is used as an
overall measure for the evaluation of the result presentation
models in the experiments below.

Dataset. We use a subset of the AOL Query Log
(http://imdc.datcat.org/collection/1-003M-5). Our subset contains
4,276,944 query instances that have at least one click. Among
those queries, 2,315,435 of them are submitted in the first 6 weeks
and reserved as the train set. The train set is used to determine the
navigational queries and fill the static cache (discussed in the next
Section). The remaining 1,961,509 queries constitute the test set.

Identifying navigational queries. In this study, we adopt a
simple and effective approach from [3] and slightly extend it for
more flexibility. That is, if the click count for top-1 and top-2
results constitutes the 90% of all clicks for that query then it is
classified as a navigational query. Additionally, we define the
notion of confidence as in Equation 3 below:

)__(log_*)_2__(freqquerynormalizedclickstopofFreqC = (3)Copyright is held by the author/owner(s).
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
ACM 978-1-59593-991-3/08/10.

1499

2_18 4_16 6_14 8_12 10_10 12_8 14_6 16_4 18_2
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2
2,4
2,6
2,8
3,0

N
or

m
al

iz
ed

 c
os

t t
o

10
_1

0

Result page model for Top20

 numSnippetsSend
 numResultPages
 Overall

Figure 1. The costs of 2-page result presentation models.

In particular, we call those queries with top-2 click frequency
greater than 80% and confidence score greater than 0.2 as
navigational queries, as well. Finally, we exclude the queries
which have only one click in the dataset or which occurs only
once in the training log regardless of above considerations. In our
train log, we discovered that among the 1,220,246 distinct
queries, 89,442 of them are navigational queries.

Experiments. Figure 1 shows the graph for the normalized cost
of 2-page result presentation models ranging from 1_19 to 19_1
for only navigational query types and top-20 clicks. The overall
line in the graph shows that it is possible to improve the baseline
approach. In this case, the best result presentation model is 2_18,
which provides an overall improvement of 28.5%. We also
conduct experiments with 3-page result presentation models. For
only navigational queries, the best model is 2_8_10 which
achieves an overall improvement of 32.5%.

3. PAGE MODELS IN STATIC CACHING
In a static cache of query results, either document identifiers
(docID cache) or the actual HTML page (snippet cache, including
snippets, etc.) can be stored [2]. For both cases, we examine the
effect of using the result page model of 2_8_10, which is reported
to achieve the best overall improvement in Section 2, for
navigational queries. Typically, a static cache is populated with
the most frequent query results from a previous query log (See [4]
for other strategies). For the baseline case, query results consist of
result pages of size 10 results. The static cache is filled with most
frequent <query, result_page_no> items in the training log. In
contrast, for our result page model, the size of the cached items
must be taken into account in addition to frequency. The items are
ordered by the following score formula (adapted from [1]).

><

><
>< =

nopageresultquery

nopageresultquery
nopageresultquery SIZE

FREQ
S

__,

__,
__,

 (4)

Experiments. Since the result page sizes are not the same in our
caching approach and in the baseline, using cache hit rate would
not be a fair measure. Therefore, we use the absolute number of
the cache misses to measure the effectiveness of two caching
strategies. During the initial experiments we realized that for
some of the queries that are identified as navigational in the train
log and have all their clicks for the top-2 results, our scheme
would never cache the second result page (with results 3 to 10)
regardless of the cache size. That is, if all clicks are for the top-2
results, the frequency of second result page would be 0, and can
never be cached. This may reduce the utility of our approach
against the baseline for large cache sizes. To remedy this

problem, we use the confidence score used during the
identification of navigational queries also for a smoothing
operation. That is, for each query identified as a navigational
query, we multiply its frequency with (1- confidence)/c, where c
is an experimental constant, and add this score to the frequency of
the second result page. This creates a smoothing effect and allows
us to cache the second result page of a navigational query with
low confidence, even if it is never requested in the train log.

In Table 1, we report the experimental results with smoothing.
The cache size is given as the number of 10-results-per-page
cache size entries. The reduction percentages in the total miss
counts are shown in a separate column. The reductions are higher
in the snippet cache case since the space gain in that case is
higher than the case of a docID cache. On the other hand, as the
cache size increases, the improvements decrease since it causes
many of the second result page of the navigational queries to be
cached also. Anyway, the proposed result page model provides
reductions of 1-2% and 3-4% in absolute miss counts for the
docID and snippet caches, respectively. When compulsory misses
(i.e., queries that occur only in the test log) are excluded,
reductions are more emphasized, reaching up to 4% and 11.6%
for the docID and snippet caches, respectively.

Table 1. Static caching performances with smoothing

Cache
Size Baseline

DocID cache
(with 2_8_10)

%
red

Snippet
Cache

%
red

5K 1,948K 1,923K 1.28 1,876K 3.69

10K 1,876K 1,855K 1.13 1,818K 3.12

20K 1,799K 1,784K 0.85 1,759K 2.25

50K 1,697K 1,685K 0.75 1,663K 2.01

100K 1,626K 1,617K 0.55 1,599K 1.68

200K 1,570K 1,563K 0.42 1,554K 0.98

500K 1,518K ≈1,517K 0.04 ≈1,517K 0.07

1000K 1,465K ≈1,465K 0.03 ≈1,465K 0.04

4. ACKNOWLEDGMENTS
This work is supported by The Scientific and Technological
Research Council of Turkey (TÜBİTAK) by grant# 108E008 and
105E065.

5. REFERENCES
[1] Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V.,

Plachouras, V., and Silvestri, F. The impact of caching on
search engines. In Proc. of SIGIR '07, ACM, 2007, 183-190.

[2] Fagni, T., Perego, R., Silvestri, F., and Orlando, S. Boosting
the performance of Web search engines: Caching and
prefetching query results by exploiting historical usage data.
ACM TOIS 24, 1 (Jan. 2006), 51-78.

[3] Lee, U., Liu, Z., and Cho, J. Automatic identification of user
goals in Web search. In Proc. WWW '05, 2005, 391-400.

[4] Ozcan, R., Altingovde, I. S., and Ulusoy, Ö. Static query
result caching revisited. In WWW '08, 2008, 1169-1170.

[5] Silverstein, C., Marais, H., Henzinger, M., and Moricz, M.
Analysis of a very large web search engine query log. SIGIR
Forum 33, 1 (Sep. 1999), 6-12.

1500

