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ABSTRACT 
We propose result page models with varying granularities for 
navigational queries and show that this approach provides a better 
utilization of cache space and reduces bandwidth requirements. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 
Software – Performance evaluation (efficiency and effectiveness). 

General Terms 
Design, Experimentation, Performance. 
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Navigational queries, search engine, static caching. 

1. INTRODUCTION 
Web users’ search goals are usually categorized as 
“informational” or “navigational” [3]. A navigational query is 
intended to find a particular Web site that a user has in mind. 
Therefore, the search process will probably end up with one (or 
two) click(s) for the Top-1 (or Top-2) results from the first page of 
results. However, Web search engines (WSEs) usually cache and 
return the results of queries in a standard form of 10 results per 
page, regardless of the query type. For navigational queries, this 
may cause wasting cache space and network bandwidth. In this 
paper, we propose result page models with varying granularities 
for navigational queries. This approach is shown to improve 
bandwidth usage during result display in turn of a small increase 
in the number of result pages inspected by the users. Furthermore, 
a better space utilization is obtained for static result caching. 

2. PAGE MODELS FOR RESULT DISPLAY 
We first define some of the basic notions as follows.  
Definition 1 (Result Page Model): A result page is an atomic item 
for internal (e.g., result caching) and external (e.g., result display) 
purposes of the WSE. A result page model describes how the 
query results are placed into the pages, each of which may include 
fixed or variable number of results.  
Definition 2 (numSnippetsSend): This measures the number of 
snippets sent by the WSE to the users. It shows the network 
bandwidth cost incurred by the query result display.  
Definition 3 (numResultPagesBrowsed): This indicates the total 
number of the result pages that the user will browse in order to 
reach the target document(s) for his/her query.  

In the literature, it is reported that users rarely click on more than 
the top-20 results [5], so we restrict our analysis to the result page 
models for this most common case. Let’s consider a query 
instance Q and the click requests C= {c1, c2, …, ck} of k clicks for 
this query. Assume that click requests are at the ranks R= {r1, r2, 
…, rk}, where rk ≤ 20. Then the result at rank rk is defined as the 
lowest-ranked clicked document for this query session. For 
simplicity, we assume that the user requested all the result pages 
until the result page containing the result at rank rk and user will 
not request more results after this rank. We also ignore query 
sessions including no clicks. Based on these assumptions, we 
collect all <query_instance, lowest_ranked_clicked_document> 
pairs for top-20 clicks. Then, we end-up with a list A = {A1,…, 
A10, A11,…, A20} where Ai denotes the number of query instances 
for which the lowest-ranked clicked document is at rank i.  

Assume we have a 2-page result model for top-20 as X_Y which 
denotes that the first result page contains X results and the second 
result page contains Y (or 20-X) results. We derive formulas for 
the cost measures as follows. Note that, the cost formulations can 
be generalized for top-K results and M pages in a straightforward 
manner, as we also consider 3-page result models in experiments. 
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We normalize these expressions using the conventional result 
model of 10-results-per-page schema (i.e., 10_10) as our baseline 
model. The summation of these normalized values is used as an 
overall measure for the evaluation of the result presentation 
models in the experiments below. 

Dataset. We use a subset of the AOL Query Log 
(http://imdc.datcat.org/collection/1-003M-5). Our subset contains 
4,276,944 query instances that have at least one click. Among 
those queries, 2,315,435 of them are submitted in the first 6 weeks 
and reserved as the train set. The train set is used to determine the 
navigational queries and fill the static cache (discussed in the next 
Section). The remaining 1,961,509 queries constitute the test set. 

Identifying navigational queries. In this study, we adopt a 
simple and effective approach from [3] and slightly extend it for 
more flexibility. That is, if the click count for top-1 and top-2 
results constitutes the 90% of all clicks for that query then it is 
classified as a navigational query. Additionally, we define the 
notion of confidence as in Equation 3 below:  
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Figure 1. The costs of 2-page result presentation models. 

In particular, we call those queries with top-2 click frequency 
greater than 80% and confidence score greater than 0.2 as 
navigational queries, as well. Finally, we exclude the queries 
which have only one click in the dataset or which occurs only 
once in the training log regardless of above considerations. In our 
train log, we discovered that among the 1,220,246 distinct 
queries, 89,442 of them are navigational queries.  

Experiments. Figure 1 shows the graph for the normalized cost 
of 2-page result presentation models ranging from 1_19 to 19_1 
for only navigational query types and top-20 clicks. The overall 
line in the graph shows that it is possible to improve the baseline 
approach. In this case, the best result presentation model is 2_18, 
which provides an overall improvement of 28.5%. We also 
conduct experiments with 3-page result presentation models. For 
only navigational queries, the best model is 2_8_10 which 
achieves an overall improvement of 32.5%. 

3. PAGE MODELS IN STATIC CACHING 
In a static cache of query results, either document identifiers 
(docID cache) or the actual HTML page (snippet cache, including 
snippets, etc.) can be stored [2]. For both cases, we examine the 
effect of using the result page model of 2_8_10, which is reported 
to achieve the best overall improvement in Section 2, for 
navigational queries. Typically, a static cache is populated with 
the most frequent query results from a previous query log (See [4] 
for other strategies). For the baseline case, query results consist of 
result pages of size 10 results. The static cache is filled with most 
frequent <query, result_page_no> items in the training log. In 
contrast, for our result page model, the size of the cached items 
must be taken into account in addition to frequency. The items are 
ordered by the following score formula (adapted from [1]).  
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Experiments. Since the result page sizes are not the same in our 
caching approach and in the baseline, using cache hit rate would 
not be a fair measure. Therefore, we use the absolute number of 
the cache misses to measure the effectiveness of two caching 
strategies. During the initial experiments we realized that for 
some of the queries that are identified as navigational in the train 
log and have all their clicks for the top-2 results, our scheme 
would never cache the second result page (with results 3 to 10) 
regardless of the cache size. That is, if all clicks are for the top-2 
results, the frequency of second result page would be 0, and can 
never be cached. This may reduce the utility of our approach 
against the baseline for large cache sizes. To remedy this 

problem, we use the confidence score used during the 
identification of navigational queries also for a smoothing 
operation. That is, for each query identified as a navigational 
query, we multiply its frequency with (1- confidence)/c, where c 
is an experimental constant, and add this score to the frequency of 
the second result page. This creates a smoothing effect and allows 
us to cache the second result page of a navigational query with 
low confidence, even if it is never requested in the train log.  

In Table 1, we report the experimental results with smoothing. 
The cache size is given as the number of 10-results-per-page 
cache size entries. The reduction percentages in the total miss 
counts are shown in a separate column. The reductions are higher 
in the snippet cache case since the space gain in that case is 
higher than the case of a docID cache. On the other hand, as the 
cache size increases, the improvements decrease since it causes 
many of the second result page of the navigational queries to be 
cached also. Anyway, the proposed result page model provides 
reductions of 1-2% and 3-4% in absolute miss counts for the 
docID and snippet caches, respectively. When compulsory misses 
(i.e., queries that occur only in the test log) are excluded, 
reductions are more emphasized, reaching up to 4% and 11.6% 
for the docID and snippet caches, respectively. 

Table 1. Static caching performances with smoothing 

Cache 
Size Baseline 

DocID cache 
(with 2_8_10) 

% 
red 

Snippet 
Cache 

% 
red 

5K 1,948K 1,923K 1.28 1,876K 3.69 

10K 1,876K 1,855K 1.13 1,818K 3.12 

20K 1,799K 1,784K 0.85 1,759K 2.25 

50K 1,697K 1,685K 0.75 1,663K 2.01 

100K 1,626K 1,617K 0.55 1,599K 1.68 

200K 1,570K 1,563K 0.42 1,554K 0.98 

500K 1,518K ≈1,517K 0.04 ≈1,517K 0.07 

1000K 1,465K ≈1,465K 0.03 ≈1,465K 0.04 
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