
Strategies for Setting Time-to-Live Values in Result Caches

Fethi Burak Sazoglu
Bilkent University
Ankara, Turkey

fethi.sazoglu@bilkent.edu.tr

B. Barla Cambazoglu
Yahoo! Labs

Barcelona, Spain
barla@yahoo-inc.com

Rifat Ozcan
Turgut Ozal University

Ankara, Turkey
rozcan@turgutozal.edu.tr

Ismail Sengor Altingovde
Middle East Technical University

Ankara, Turkey
altingovde@ceng.metu.edu.tr

Özgür Ulusoy
Bilkent University
Ankara, Turkey

oulusoy@cs.bilkent.edu.tr

ABSTRACT
In web query result caching, staleness of queries are often
bounded via a time-to-live (TTL) mechanism, which expires
the validity of cached query results at some point in time.
In this work, we evaluate the performance of three alter-
native TTL mechanisms: time-based TTL, frequency-based
TTL, and click-based TTL. Moreover, we propose hybrid ap-
proaches obtained by pair-wise combination of these mecha-
nisms. Our results indicate that combining time-based TTL
with frequency-based TTL yields superior performance (i.e.,
lower stale query traffic and less redundant computation)
than using a particular mechanism in isolation.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Design, Performance, Experimentation

Keywords
Web search engines; result caching; time-to-live

1. INTRODUCTION
Query result caching is a commonly used technique in web

search engines [3]. In this technique, the results of previously
processed user queries are stored in a cache. The results for
the subsequent occurrences of a query are served by this
cache, eliminating the need to process the query and gener-
ate its results using the computational resources in the back-
end search system. This technique helps reducing the query
processing workload incurred on the search engine while re-
ducing the response time for queries whose results are served
by the cache.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2507886.

In practice, commercial web search engines deploy result
caches that are large enough to store practically all query re-
sults computed in the past by the search engine [8]. Having a
very large result cache renders basic caching techniques un-
necessary (e.g., admission of queries [4], eviction of old cache
entries [9], or prefetching of successive result pages [11]). In
case of very large result caches, the main problem is to pre-
serve the freshness of cached query results. This is because
commercial web search engine indexes are frequently up-
dated as more recent snapshots of the Web are crawled and
new pages are discovered. Eventually, the cached results
of a query may differ from its actual results that could be
obtained by evaluating the query on the current version of
the index. Queries whose cached results are not consistent
with those that would be provided by backend search sys-
tem are referred to as stale queries. Identifying such queries
and improving the overall freshness of a result cache is cru-
cial because presenting stale query results to the users may
have a negative effect on user satisfaction for certain types
of queries [2]. So far, two different lines of techniques ad-
dressed the freshness issue mentioned above: refreshing [8,
10] and invalidation [1, 5, 6, 7].

In the first set of techniques, cached query results that are
predicted to be stale are refreshed by evaluating the asso-
ciated queries at the search backend. The main motivation
behind these techniques is to use the idle cycles of the back-
end search system to recompute the results of a selected set
of supposedly stale queries. In general, the techniques based
on refreshing are easy to implement as they do not require
any interaction between the result cache and the backend
search system to decide which queries’ results to refresh.
On the other hand, identification of stale queries is a rather
difficult task and this leads to an increase in the volume of
queries whose results are unnecessarily recomputed with no
positive impact on the freshness of the cache.

In the second set of techniques, the result cache is in-
formed by the indexing system about the recent updates on
the index. This information is then exploited at the cache
side to identify cached query results that are potentially
stale. More specifically, upon an update on the index, an
invalidation module located in the backend system trans-
fers these changes to the result caching module. The result
caching module then decides, for each query in the cache, if
the received changes on the index may render the results of
the query stale. In this case, the query is marked as invalid,
i.e., its results are considered to be not cached.

1881

q q q qq q

t=0 t=1 t=2 t=3 Time

Expiration by
time-based
TTL (T=3)

Expiration by
frequency-based

TTL (F=3)

Expiration by
click-based
TTL (C=3)

q

q

An occurrence of the query (at least one result is clicked)

An occurrence of the query (no results are clicked)

Figure 1: The points at which the results of a query are
expired in different TTL approaches (the query results are
assumed to be cached at time t=0).

In all techniques mentioned above, the staleness decisions
are given via heuristics that do not yield perfect accuracy. In
particular, staleness of certain queries may not be identified
on time after their results were changed. Such queries may
remain in the cache for a long time with stale results. As
a remedy to this problem, all of the above-mentioned tech-
niques rely on a complementary mechanism known as time-
to-live (TTL). In this mechanism, the validity of selected
cache entries are expired based on a fixed criterion with the
aim of setting an upper-bound on the possible staleness of
a cache entry. In fact, in the absence of more sophisticated
refreshing or invalidation techniques, this simple mechanism
can provide freshness to a certain degree, just on its own.

The focus of this work is on mechanisms for setting the
TTL values of entries in result caches. We consider three al-
ternative approaches: time-based TTL [8], frequency-based
TTL [7], and click-based TTL. We evaluate the performance
of these alternatives in terms of attained cache freshness and
redundant query workload incurred to the backend. More-
over, we propose hybrid approaches that combine the above-
mentioned basic approaches. Our results indicate that the
best performance can be achieved when time-based TTL is
combined with frequency-based TTL.

The rest of the paper is organized as follows. In Section 2,
we present three basic TTL approaches and propose two hy-
brid approaches that combine these basic approaches. The
details of our experimental setup are presented in Section 3.
Section 4 provides the experimental results. We conclude
the paper in Section 5.

2. TTL APPROACHES

2.1 Basic Approaches
In this section, we present three different strategies for

expiring the results of a cached query: time-based TTL [2,
6, 8], frequency-based TTL [7], and click-based TTL. The
functioning of these three approaches is illustrated in Fig. 1.
We note that, throughout the paper, we assume that the
evaluated TTL approaches are not accompanied by more
sophisticated refreshing or invalidation mechanisms.

Time-based TTL. Time-based TTL is commonly used
in result caches in search engines [8] as well as other types
of caching systems. In this approach, every cached query
result is associated with a fixed lifetime T . Given a query
whose results are computed and cached at time t, the cached

results are expired at time point t+T . Hence, the expiration
point for the query results are known at the time of caching.
Beyond time point t+T , the results of the query are consid-
ered to be invalid (if the query results are not refreshed or
already invalidated before that time by some other mecha-
nism) and any request for the results leads to a cache miss.
The time-based TTL strategy is especially useful for bound-
ing the staleness of the results of infrequent (tail) queries. In
general, larger T values increases the fraction of stale queries
served by the cache while smaller values lead to a larger frac-
tion of queries whose results are unnecessarily recomputed.
In Fig. 1, the results of query q are expired T =3 time units
after the results were cached.

Frequency-based TTL. A recently proposed alternative
is the frequency-based TTL (or virtual TTL) approach [7].
In this approach, unlike the time-based TTL approach where
the expiration point (i.e., t+T) is fixed, the expiration point
for the results of a query is determined depending on the
number of recent occurrences of the query. In particular,
the results of a query are assumed to be expired if the query
was issued to the search engine F times since its results were
cached. The frequency-based TTL approach is effective in
bounding the staleness of very frequent (head) queries. In
Fig. 1, the results of query q are expired after the query was
issued to the search engine for F =3 times.

Click-based TTL. To the best of our knowledge, the
click-based TTL approach is not proposed before. This ap-
proach is somewhat similar to the frequency-based TTL ap-
proach in that it relies on the number of recent occurrences
of the query. In this approach, however, the expiration is
determined taking into account only the query occurrences
in which no search results are clicked by the user. In partic-
ular, the results of a query are expired after C occurrences
with no clicks (such occurrences do not have to be consec-
utive). The rationale here is to use the absence of clicks on
search results as an indication of the staleness. In a sense,
every occurrence of the query with no clicks on search re-
sults increases the confidence on that the query results are
not fresh. In Fig. 1, the results of query q are expired once
there were C=3 occurrences with no clicks.

2.2 Hybrid Approaches
In this section, we describe two hybrid approaches, where

the TTL is set based on a combination of the two or more of
the basic TTL approaches presented in the previous section.
We evaluate two different logical operators in the combina-
tions: conjunction and disjunction. We omit other operators
that we experimented with (e.g., multiplication) since they
did not provide superior performance.

Conjunction. In this approach, the cached results are
expired only if every basic approach in the combination
agrees. In a sense, this approach seeks for consensus to
make an expiration decision. For instance, in a combina-
tion involving the frequency- and time-based approaches,
the cached results of a query are expired once both the fre-
quency and age of the query reaches the specified threshold
values. In the example given in Fig. 1, the query results
would be expired at time point t=3.
Disjunction. This approach is more aggressive than the

conjunction approach in that the results are expired as soon
as one of the combined approaches raises a flag. Using the
same example before, the cached results would be expired
right after the frequency of the query has reached three.

1882

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Basic approaches - All queries

Time (T ∈ 3..51)

Freq. (F ∈ 2..50)

Click (C ∈ 2..8)

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Basic approaches - Head queries

Time (T ∈ 3..45)

Freq. (F ∈ 10..50)

Click (C ∈ 2..32)

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Basic approaches - Tail queries

Time (T ∈ 3..51)

Freq. (F ∈ 2, 10)

Click (C ∈ 2, 4)

(c)

Figure 2: Stale traffic and false positive ratios for the basic TTL approaches using a) all, b) head, and c) tail queries.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Conjunction - All queries

Time (T ∈ 3..51)

Time (T ∈ 3..51) AND Freq. (F = 2) AND Click(C = 2)

Time (T ∈ 3..51) AND Freq. (F = 2)

Time (T ∈ 3..51) AND Click(C = 2)

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Conjunction - Head queries

Freq. (F ∈ 10..50)

Time (T ∈ 0..33) AND Freq. (F = 2) AND Click(C = 2)

Time (T ∈ 3..45) AND Freq. (F = 10)

Time (T ∈ 0..33) AND Click (C = 2)

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Conjunction - Tail queries

Time (T ∈ 3..51)

Time (T ∈ 3..51) AND Freq. (F = 2) AND Click(C = 2)

Time (T ∈ 3..51) AND Freq. (F = 2)

Time (T ∈ 3..51) AND Click(C = 2)

(c)

Figure 3: Stale traffic and false positive ratios for the conjunction approach using a) all, b) head, and c) tail queries.

3. SETUP
Data. We use a sample of queries submitted to the

Spanish web search frontend of Yahoo!. The sample consti-
tutes 2,044,531 queries sorted in timestamp order. We use
the queries in the first half of the sample to warm up the
cache and those in the remaining half to evaluate the per-
formance. We also provide performance results for head and
tail queries. To this end, we sort all unique queries in our
query sample in decreasing order of their frequencies and la-
bel those in top 1% and bottom 90% as head and tail queries,
respectively. We then construct the corresponding head and
tail query samples that include only the labeled queries. As
before, we use the first half of queries for warming up the
cache and the second half for performance evaluation.

Simulation setup. We assume an infinitely large cache
so that we can evaluate the performance independent of vari-
ous parameters, such as cache capacity or eviction policy (as
in [2]). We assume that, for a given query-timestamp pair
(q, t), the corresponding top k (k≤ 10) URLs in the query
log serve as the ground truth result R∗t (i.e., the fresh answer
for q at time t is R∗t). During the simulations, when a query
is first encountered, say at time t, its result R∗t is cached.
In a subsequent submission of the same query at time t′,
if the TTL was not expired, we assume that the result of
the query is served by the cache. Otherwise, we replace the
cached result with the result in the query log (R∗t′). A result
R served by the cache at some time point t is said to be stale
if it differs from the result in the query log (R∗t). As in [1,
6], we consider two query results to be different if the same
URLs are not present in exactly the same order.

Evaluation metrics. We evaluate the basic and hybrid
TTL approaches in terms of the stale traffic (ST) ratio and
the false positive (FP) ratio (as in [1, 6]). The stale traffic
ratio is the percentage of queries for which the result served
from the cache turns out to be stale. The false positive ratio
is the percentage of redundant query executions, i.e., the
fraction of queries for which the refreshed result is found to
be the same as the cached result. We report the performance
only for the parameters and combinations that achieve the
largest reduction in the sum of ST and FP ratios.

4. RESULTS
Fig. 2a shows the performance results for the basic TTL

approaches using the entire query sample. According to the
figure, the time-based approach is superior to the frequency-
and click-based approaches since it yields reasonably low ST
ratios also with low FP ratios. In contrast, for head queries
(Fig. 2b), we observe that the time- and click-based ap-
proaches are comparable and the frequency-based approach
outperforms both. This is a somewhat intuitive finding.
Since head queries are extremely popular, using a fixed time
interval as the TTL results in lots of stale results in case
of a sudden change in query results. The frequency-based
approach, on the other hand, sets an upper bound on the
number of stale queries that can be served by the cache
(indeed, this is the underlying motivation in [7]). In case
of tail queries (Fig. 2c), we find that the frequency- and
click-based approaches both perform rather poorly. This is
mainly because of the fact that the frequency of tail queries
is very low, leading to long time periods before an expira-
tion decision can be made by the frequency- and click-based

1883

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Disjunction - All queries

Time (T ∈ 3..51)

Time (T ∈ 3..51) OR Freq. (F = 20) OR Click(C = 8)

Time (T ∈ 3..51) OR Freq. (F = 10)

Time (T ∈ 3..51) OR Click(C = 4)

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Disjunction - Head queries

Freq. (F ∈ 10..50)

Time (T ∈ 3..51) OR Freq. (F = 10) OR Click (C = 8)

Time (T ∈ 3..51) OR Freq. (F = 10)

Time (T ∈ 3..51) OR Click (C = 4)

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

Disjunction - Tail queries

Time (T ∈ 3..51)

Time (T ∈ 3..51) OR Freq. (F = 10) OR Click(C = 4)

Time (T ∈ 3..51) OR Freq. (F = 10)

Time (T ∈ 3..51) OR Click(C = 4)

(c)

Figure 4: Stale traffic and false positive ratios for the disjunction approach using a) all, b) head, and c) tail queries.

approaches, even for the smallest F and C values (see the
corresponding points where F and C are equal to two in
Fig. 2c). During this long time period, the underlying index
and query results are likely to be updated, resulting in very
high ST ratios on the cache side.

In order to evaluate the performance of hybrid TTL
approaches, we consider three combinations: (time-based,
frequency-based), (time-based, click-based), and (time-
based, frequency-based, click-based). We prefer to omit
the (frequency-based, click-based) combination since it was
found to be inferior to all other combinations. We evaluate
conjunction and disjunction, separately. In the plots, we dis-
play the best-performing basic TTL approach as a baseline.

In Figs. 3a, 3b, and 3c, we present the results for the con-
junction of the expiration decisions made by the basic TTL
approaches using all, head, and tail queries, respectively.
According to the figure, none of the hybrid TTL approaches
can outperform the best-performing basic TTL approach in
any of the query samples. This is potentially because seek-
ing a consensus among the basic TTL approaches delays
the expiration decisions, leading to a larger number of stale
queries in turn.

In case of combinations using the disjunction of individual
expiration decisions, the picture is different. Fig. 4a indi-
cates that the hybrid approaches can considerably outper-
form the baseline time-based TTL approach when all queries
are used. Figs. 4b and 4c demonstrate the reason behind
this. In Fig. 4b, we observe that all combinations are supe-
rior to the baseline in case of head queries, the best approach
(i.e., the one with the lowest ST ratios) being the (time-
based, frequency-based) combination. In the mean time,
the hybrid approach does not degrade the performance for
tail queries (Fig. 4c), and hence the improvement observed
for head queries is reflected to the entire query sample. In
other words, using the disjunction of the decisions made by
the time- and frequency-based TTL approaches, we combine
the best of the two worlds: we improve the performance for
head queries without any adverse effect on tail queries. Con-
sequently, we can achieve better overall performance.

5. CONCLUSIONS
We evaluated the performance of three basic time-to-

live (TTL) approaches for result caching: time-based TTL,
frequency-based TTL, and click-based TTL. We further pro-
posed hybrid TTL approaches that combine these basic ap-
proaches. We measured the attained stale query traffic ratio
and redundant computation overhead via simulations on a

real-life query log obtained from a commercial web search
engine. Our experimental results indicate that the best per-
formance is achieved when the time-based TTL approach is
combined with the frequency-based TTL approach using a
disjunction of the expiration decisions made by these two
approaches. We also found that combining the click-based
TTL approach with the other two approaches does not bring
further improvement.

6. REFERENCES
[1] S. Alici, I. S. Altingovde, R. Ozcan, B. B.

Cambazoglu, and O. Ulusoy. Timestamp-based result
cache invalidation for web search engines. In
SIGIR’11, pages 973–982, 2011.

[2] S. Alici, I. S. Altingovde, R. Ozcan, B. B.
Cambazoglu, and O. Ulusoy. Adaptive time-to-live
strategies for query result caching in web search
engines. In ECIR’12, pages 401–412, 2012.

[3] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The impact of caching
on search engines. In SIGIR’07, pages 183–190, 2007.

[4] R. Baeza-Yates, F. Junqueira, V. Plachouras, and
H. Witschel. Admission policies for caches of search
engine results. In SPIRE’07, LNCS, pages 74–85. 2007.

[5] X. Bai and F. P. Junqueira. Online result cache
invalidation for real-time web search. In SIGIR’12,
pages 641–650, 2012.

[6] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel,
L. Telloli, and H. Zaragoza. Caching search engine
results over incremental indices. In SIGIR’10, pages
82–89, 2010.

[7] E. Bortnikov, R. Lempel, and K. Vornovitsky. Caching
for realtime search. In ECIR’11, pages 104–116, 2011.

[8] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras,
S. Banachowski, B. Cui, S. Lim, and B. Bridge. A
refreshing perspective of search engine caching. In
WWW’10, pages 181–190, 2010.

[9] Q. Gan and T. Suel. Improved techniques for result
caching in web search engines. In WWW’09, pages
431–440, 2009.

[10] S. Jonassen, B. B. Cambazoglu, and F. Silvestri.
Prefetching query results and its impact on search
engines. In SIGIR’12, pages 631–640, 2012.

[11] R. Lempel and S. Moran. Predictive caching and
prefetching of query results in search engines. In
WWW’03, pages 19–28, 2003.

1884

