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Abstract
Recent advances in mobile computing and mobile

communication technology have led to the emergence of
many innovative mobile-computing applications. Some of
them require providing support to location-dependent
continuous queries ( LDCQs) on moving objects. The result of
a location dependent query depends on the current locations
of the moving objects. When the query is specified as
continuous, the requesting client can get continuously
changing result. In order to provide correct and timely
results to requesting clients, the locations of moving objects
have to be closely monitored. In this paper, we propose an
adaptive monitoring method (AMM) for managing the
locations of moving objects to maintain the correctness of the
results of query evaluation without significantly increasing
the wireless bandwidth requirements. Extensive simulation
experiments have been conducted to investigate the
performance of the proposed method as compared to  the
plain dead-reckoning (pdr).
Keywords: Mobile computing, moving object database,
location management, update generation and data similarity

1 Introduction
Various innovative mobile computing applications are

emerging as a result of the advances in mobile
communication and portable computing devices. Many of
these applications require to manage the locations of moving
objects and to support the so-called location-dependent
queries (LDQs)  on moving objects [DK98]. The evaluation
result of a LDQ depends on the location of the originating
mobile client1. An example of LDQ submitted by the driver
of an ambulance might be: “identify all other ambulances,
which are within 5 km of my current position”. The result of
the query depends on the current location of the ambulance.

A LDQ can become much more complex to process if it
is submitted as a continuous query (CQ)  which is a query that
exists in the system for a period of time [GU00]. Within the
specified period, a CQ is evaluated continuously and the
query results are transmitted to the originating mobile client
from time to time. Submitting a query as a continuous query
can be an efficient way to monitor the status of the interested

                                                                
1 A mobile client is a moving object. When we refer to it as a mobile
client, it means that it can generate queries.

objects such that once they meet the condition of the query,
the requesting client will be informed immediately.

The traditional database technology is not sufficient for
processing of location-dependent continuous queries
(LDCQs)  [AFZ97, SWCD97]. In order to process LDCQs
efficiently, a data model called Moving Objects Spatio-
Temporal (MOST)  was proposed [SWCD97, SWCD98]. In
the model, a location prediction function is defined as a
dynamic attribute of a moving object to predict the future
locations. With the MOST data model, the result of the
evaluation of a LDCQ is a set of tuples <object, begin time,
end time>, where begin time  and end time define the time
bounds when the object satisfies the condition of the query.
The end time is greater than the current time.

It is clear that in order to provide correct and timely
results to mobile clients, one of the most important issues is
to monitor the locations of all the moving objects including
those which generate LDCQs frequently. Since the objects
are moving, the values of the data items, which record the
current locations, can be highly dynamic [SWCD97, GU00,
WXCJ98, WCDJ97]. It is obvious that this would impose a
serious performance overhead to the wireless bandwidth. On
the other hand, if generations of updates are not frequent
enough, the uncertainty of the locations of the moving objects
will be high and the correctness of the results of a LDCQ
returned to the requesting mobile client cannot be guaranteed.
In [SWCD98, WSCY99, WCDJ97], some efficient dead-
reckoning methods were proposed for generating updates
with the objectives to better utilize the limited wireless
bandwidth and to bounding the degree of uncertainty.

After processing a query, in order to reduce the data
transmission overhead, the entire set of objects corresponding
to the query result at different times may be sent immediately
to the requesting client. However, it comes the problem of
data re-transmission if the position of any of the objects in the
result set changes after it has been sent to the mobile client.
In [GU00], various methods for query result transmission
were investigated for the systems using the MOST data
model with the objective of minimizing data transmission
cost. However, up to now, it is completely lack of an
integrated study on the performance relationships between
the methods used for update generation and query result
transmission although these two issues are closely related to
each other.



In this paper, we present a detailed simulation model with
which both the update generation and query result
transmission issues can be investigated. Based on the dead-
reckoning approaches, we have designed a new method to
monitor the locations of moving objects so that the
“correctness” of the results returned to the requesting clients
can be maximized and at the same time minimizing the
update cost. We emphasis on providing timely and correct
results to LDCQs, instead of simply minimizing the message
cost or bounding the location uncertainty.

In Section 2, we review some of the important research
findings on generation of updates for tracking the locations of
moving objects and the methods for transmitting results to the
originating clients. In Section 3, we define our system model.
In Section 4, we specify the correctness requirements of the
system. We introduce our update generation method in
Section 5. Section 6 is devoted to the performance evaluation
of the proposed method. Finally, the conclusions of our work
are provided in Section 7.

2 Related Work
A mobile network is characterized by frequent

disconnection, unreliable, low communication bandwidth and
fast changing locations of mobile clients. All such
characteristics make traditional techniques used for
distributed computing inadequate and raise new challenging
research problems, such as cached data management, data
dissemination to mobile clients, and location management.

In [SWCD97, SWCD98], the Moving Object Spatio-
Temporal (MOST) data model is proposed for managing the
locations of moving objects and for the prediction of their
future locations. According to the MOST model, the
attributes of a moving data item can be static or dynamic. A
static attribute changes only when an explicit update is
applied. In contrast, a dynamic attribute changes over time
according to a certain function. In the MOST data model, a
dynamic attribute A is represented by three sub-attributes:
A.value, A.updatetime  and A.function. A.function  is a function
of time (t) which has value 0 at t = 0. At time A.updatetime ,
the value of A is A.value . Thus, until the next update time, the
value of A at time A.time + t0 is given by A.value +
A.function(t0) . Under the MOST model, the results of an
evaluation of a query will be a set of tuples with each tuple
consisting of <object, begin time , end time>. The begin time
and end time  of a tuple indicate the duration when the object
satisfies the conditions of the query. The resulting tuples for a
query are ordered by the begin times  and sent to the
requesting mobile client, before their begin time.

Although the MOST data model can be used to predict
the future locations of a moving object, updates are still
required to track the actual current locations of the objects
and to re-define the functions for location predictions. Thus,
an important issue is when to generate updates for keeping
track of the current locations of moving objects. In
[WCDJ97], the plain dead-reckoning (pdr)  method is
proposed in which an update is generated to refresh the
location of an object and re-define its location function
whenever the deviation of its current location is greater than
the last update by a pre-defined threshold. In [SWCD97,
SWCD98], the adaptive dead-reckoning  (adr) is proposed by
extending pdr. In adr, the threshold is not fixed and a new
threshold is provided with each update. The new value is

computed based on the uncertainty cost, deviation cost, and
update cost. The objective is to minimize the total
information cost per time unit until the next update. In
[WSCY99], the methods are further extended to disconnected
detecting dead-reckoning (dtdr) to deal with the problem of
network disconnection. dtdr avoids the regular process of
checking for disconnection by trying to communicate with
the moving objects. Instead, in dtdr, the threshold
continuously decreases as the time interval since the last
location update increases.

In addition to update generation, another important issue
is transmission of results from a query evaluation to the
requesting mobile client. In [GU00], various methods, i.e.,
immediate transmission, delayed transmission, periodic
transmission, and adaptive transmission, are proposed and
studied for data transmission to mobile clients. In the
immediate transmission, the tuples are sent to the requesting
client once they are determined. In the delayed transmission,
each tuple is sent to the client just before its begin time. In the
periodic transmission, the transmission of the tuples is
periodic such that all the tuples which have begin time  within
that period are sent. The adaptive periodic transmission is an
optimization of the periodic transmission such that the
communication cost can be minimized. Besides the
communication overhead, the methods are also evaluated in
terms of the availability of tuples in the result set of a LDCQ
in case of disconnection of the requesting mobile client.

3 System Model
Figure 1 depicts the system architecture of a mobile

computing system that supports moving objects and location
dependent continuous queries (LDCQs). The system consists
of a database server and a number of moving objects. The
database server communicates with the moving objects using
a low bandwidth network. The server maintains a database,
which contains data items for recording the locations of the
moving objects. The data items for the moving objects are
defined based on the MOST data model described in the
preceding section.

Figure 1: System architecture of a mobile computing system.

Moving objects generate updates to report their current
locations to the database server. Each update is associated
with a time-stamp, which specifies the time when the current
value will become valid. Some moving objects may generate
location-dependent continuous queries with a start time and
an end time such as LDCQ(start_time , end_time). The
results, in the form of a set of tuples, are collected and
grouped by their begin times , each indicating the beginning
of the time period for which the object  satisfies the condition
of the query. Once the results are ready, the server may send
the selected tuples to the mobile client according to a query
result transmission approach adopted by the system.
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4 Correctness Requirements
The previous work on the design of methods for

generating location updates is aimed at bounding the location
uncertainty and minimizing the update overhead. However,
the issue on ensuring the correctness of the results returned to
the requesting clients has been ignored. Note that the main
purpose of submitting a query as a LDCQ is to closely
monitor the status of the moving objects in the system so that
once they have satisfied the conditions of the query, the
requesting client will be informed immediately.

In this paper, our main objective is to ensure the
correctness of the query results returned to the mobile clients
since they may make incorrect actions based on the received
incorrect results. Of course, the correctness of a query result
is affected by the uncertainty in locations of the objects
selected as the result of the query. However, for those objects
which are not selected by any query or for those objects
selected but have begin times much greater than the current
time, the uncertainty in their locations will not affect the
correctness of query results significantly.

Intuitively, a query result is incorrect if it provides false
information, either in begin/end times or in value, to a client.
Here, we define the correctness of a result based on its begin
time by assuming that correct results will always be generated
from the database server if the server is provided the most
current locations of the moving objects. Firstly, we define the
actual begin time  of an object as the time when a moving
object starts to satisfy the conditions of a query. Note that the
actual begin time of an object may be different from the
begin time  of the corresponding tuple for the same query
since the database may contain out-dated information about
the current location of a moving object. A mobile client
observes incorrect result if:

(1) the actual begin time of an object equals to the current
time and the corresponding tuple’s begin time  is greater
than the actual begin time (we call this problem missed
information); or

(2) the tuple’s begin time, which has been sent to a client,
is smaller than the corresponding object’s actual begin
time and the tuple’s begin time  is equal to the current
time (we call this problem false information).

For the first case, a mobile client is not able to identify
the moving object which has satisfied the condition of its
query before it becomes true. For the second case, a mobile
client is informed that an object has met the condition of its
query but actually it does not. It is obvious that the major
causes of these problems are the out-dated database state and
a late transmission (or re-transmission) of the selected tuples
to the requesting client. To overcome these problems,
location updates have to be continuously reported by moving
objects to the database server once the locations are
significantly different from their last reported values. Any
new results or changes in results have to be sent immediately
by the server to the clients which have generated the queries.

Due to the delay in data transmission and processing, it is
impossible to have an “instantaneous” location of a moving
object. In practical systems, it is usually accepted that the
recorded location of a moving object is considered to be the
“same” as its current location if the deviation is very small.
We call this bound a similarity bound  which is a system or
user specific parameter to specify the accuracy of query

result. In this paper, we assume that each query is associated
with a similarity bound. If the difference between the tuple’s
begin time  and the actual begin time is smaller than the
similarity bound, the result will be considered to be correct.

5 Update Generation Method
5.1 Overview

The main problem of the plain dead-reckoning (pdr)
method [SWCD98] is the difficulty in defining the right
update threshold value for each moving object. If the values
of update thresholds are small, the total update workload will
be very high. On the other hand, if large values are used, the
uncertainty will be high and correct results cannot be timely
reported to the requesting clients. In order to minimize the
probability of providing incorrect query results to mobile
clients, the update threshold of a moving object may be set
close to the similarity bound value of the queries. However,
this may result in a heavy update workload since the
similarity bound is usually quite small. Although the adaptive
dead-reckoning (adr)  method [SWCD98] adaptively changes
the update threshold, the optimization is aimed to minimize
the information cost and update cost. It ignores the cost for
providing incorrect query results to mobile clients. If a
mobile object is not involved in any queries, no information
cost needs to be paid for since no one is interested in the
location of the moving object. Therefore, it is not necessary
to bound the uncertainty for all the objects.

In order to overcome the problems of pdr and adr, in the
following sub-sections we propose a new method, called
adaptive monitoring method (AMM), for generation of
updates. The main objective of AMM is to closely monitor
the status of the moving object so as to provide timely and
correct result of a LDCQ to the requesting clients and at the
same to minimize the total update workload in the system.

5.2 Adaptive Monitor Method (AMM)
AMM consists of three parts: (1) division of the set of

moving objects into selected and unselected sets; (2)
determination of the update generation threshold for mobile
clients which have submitted LDCQs; (3) determination of
the update generation threshold for moving objects.

Similar to the dead-reckoning approaches, the generation
of updates for moving objects in AMM also depends on the
deviations of the locations of moving objects. An update
threshold is defined for each moving object. If the deviation
is greater than the update threshold, a location update is
generated. However, instead of defining a simple fixed
update threshold, we define threshold bounds, called upper
and lower threshold bounds, from which the actual update
threshold of an object is evaluated based on some relevant
characteristics of the object. The upper threshold bound  can
be a very loose (large) value and it is for objects whose
location uncertainty can be allowed to be large. If the update
generation follows the upper threshold bound, the total
update workload will be low and will not significantly affect
the system performance. The lower threshold bound  is a tight
(small) value and it is for objects which need close
monitoring. If the update generation follows the lower
threshold bound, every significant change in the location of
moving objects is monitored so that the probability of losing
track of their locations will be low.



5.2.1 Selected and Unselected Objects
In AMM, the set of moving objects in the system is

divided into two sub-sets for each query. A moving object is
in the selected object set  of a query if:

(1) it satisfies the condition of the query currently, or
(2) it will satisfy the condition in the future based on its

predicted path and the predicted path of the requesting
client. Both are determined by using the A.functions
(See Section 2).

Otherwise, an object is grouped into the unselected object
set of the query. For each selected object, a tuple is generated
and placed in the answer set of the query. If we are not
certain about the location of a moving object, we include it in
the selected set if it satisfies the condition of the query by
including the uncertainty into its location. For example, if the
query is:

SELECT moving objects within 5km of
location x.

In evaluating the query, the system will convert it to:
SELECT moving objects within (5km +

uncertainty) of location x.
The uncertainty can be determined based on the current

update thresholds defined for the moving object and the
requesting client. Note that the tuples in the selected set will
be re-evaluated after each update and a new uncertainty value
will be used in query evaluation if the objects’ update
thresholds have changed.

Although including the uncertainties in the locations of
the moving objects will increase the size of the selected
object set, the probability that an unselected object will
satisfy the query in a short period of time will be low.
Therefore, we do not need to monitor the unselected objects
closely and we can simply make their update thresholds equal
to the upper threshold bound. For those objects in the selected
set, we need to assign smaller update threshold values to
monitor their locations closely. The smallest possible value
that can be assigned is the lower threshold bound.

5.2.2 Update Generation Process of Mobile Clients
As we can see that an important factor that can affect the

correctness of query results is the mobility of the mobile
clients which have submitted LDCQs.  Whenever there is a
change, that over the prediction, in the location of such a
moving object, all the selected tuples of its query have to be
updated. Therefore, it is necessary to pay special attention to
defining the update generation process of the requesting
clients. We call a mobile client active  if it has submitted a
LDCQ and the query is still being processed. When a location
update of a requesting client arrives at the central database
server, the server may find out that the actual location of the
requesting client differs by δd from the predicted value
determined using its A.function .  For this case, all the begin
times of the selected tuples need to be adjusted by the
difference, δd. Some of the already selected objects may be
excluded from the selected object set, while some new
objects may be included in the set.

In order to minimize the impact of the mobility on the
correctness of query results, active mobile clients have to
generate updates more frequently, i.e., using the lower update
threshold bound, so that their locations can be closely
monitored and any change in the evaluation results can be
identified earlier.

5.2.3 Update Generation Process of Selected Objects
Once we have determined the objects in the selected

object set for a query, we need to determine their update
thresholds. Each member in the selected object set is a tuple
following the format, <object, begin time, end time>. In
AMM, an adaptive update generation approach is used in
which the update threshold of a moving object is set based on
the begin time  of its corresponding tuple for a LDCQ. The
principle is that if the begin time  of the object is close to the
current time, the update threshold is set to be smaller. The
aim is to monitor the movement of the objects closely if they
will soon satisfy the conditions of the LDCQ. For the moving
objects whose begin times are far in the future or are even not
currently satisfying the condition of the LDCQ, the update
thresholds are set to be close to the upper threshold bound for
reducing the update workload.

Assuming an exponential distribution, the update
threshold of an object is determined based on the begin time
of the object, by using the following formula:

Update threshold of object xi =  H – (H – L) × e- δt

H: Upper update threshold bound
L: Lower update threshold bound
δt  =  begin time  of object xi – current time

When a moving object is in the answer set of more than
one LDCQ, the update threshold of it is set to be the
minimum of all the thresholds calculated from all the related
LDCQs. If an object’s begin time  is already smaller than the
current time in the first evaluation, its update threshold is set
to be the lower update threshold bound.

As an example, suppose that a client x1 has submitted an
LDCQ, and in the first evaluation of the query at current time
12, the following tuples have been generated as the result of
the query:

<xi, 10, 20>,  <xj, 15, 18>,  <xk, 25, 30>
The update thresholds of objects, xi, xj and xk are

determined as shown in Figure 2. The computed update
thresholds are sent to the corresponding objects and the
generation of updates follows these threshold values.
Whenever the central database server receives an update from
the moving object or client which has generated the LDCQ,
the query is evaluated again and the new begin times and end
times  of the set of selected tuples are re-defined. Then, the
new update thresholds are calculated using the above formula
and sent to the corresponding moving objects.

Figure 2: Generation of update thresholds in AMM

Note that in the update threshold formula given above for
AMM, we assume an exponential distribution for illustration.
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Different systems can adapt different functions for generating
the threshold and the guideline would be the consideration of
the cost of missing the information as well as the update cost.
Similarly, the specification of the upper and lower threshold
bounds can also be based on these two cost factors.

5.2.4 Disconnection Operation
A typical characteristic of a mobile network is frequent

disconnection of the devices connected to it. A disconnection
may be voluntary or involuntary. A voluntary disconnection
aims to save the limited computer and network resources.
Involuntary disconnection is mainly due to poor network
services. Usually, the disconnection can be re-established by
retransmission, or after the mobile client moves to a new
location. In the following, we discuss how the AMM method
deals with the involuntary disconnection problem.

The major problem of network disconnection is that the
transmission of updates from disconnected moving objects to
the central database server would not be possible. Thus, it
would become more likely to issue missed and/or false
information to the clients. Since it is impossible to prevent
disconnection (which is a communication issue), the main
solution here is to inform the requesting clients and the
database server that a moving object is disconnected and the
deviation from its actual location may be greater than its
threshold bound. A query result involving the moving object
may not be reliable and the error in the result may be greater
than the uncertainty bound.

In AMM, communication between the central database
server and the moving objects already occurs for update
transmission and update threshold transmission. Therefore,
these messages can also be used for check disconnection. If
we assume that a moving object is travelling with a constant
speed, the duration of time between the successive updates,
called update period, will be proportional to the value of the
update threshold. Therefore, the next location update of a
moving object is done, either:
(1) when the deviation in location is greater than its update

threshold; or
(2) when the current time becomes equal to the last update

time + the current update period,
whichever is earlier.

The value of the current (say, ith) update period Pi of a
moving object is determined by the following formula: Pi =
Pi-1 × Ui/Ui-1, where Ui is the ith update threshold. The
calculation of Pi is performed at the same time as the
calculation of the update threshold Ui, and Pi and Ui are sent
together to the moving object so that the object will know
when it should generate the next update. If a server does not
receive an update from a moving object after the expiration
of its update generation time, this implies that the moving
object is disconnected from the network.

6 Performance Experiments
We have designed and implemented a detailed simulation

model to study the performance of the proposed method,
AMM, as compared to pdr when different query result
transmission strategies are employed. Our simulation model
is based on the performance models proposed in the previous
related work such as [GU00]. These models have been
extended to support modeling of processing LDCQs.

As shown in Figure 3, the simulation model consists of
three basic components:

• Mobile client model
• Communication Network
• Server model

Figure 3: The simulation model

6.1 Mobile Client Model
Each mobile client in our model consists of three

components: a resource manager, a continuous query
generator and an update generator. The resource manager
models the CPU at the client machine for processing queries
and presenting query results to the mobile user. It is assumed
that there are TotalMO mobile objects among which
NumMH can generate LDCQs. The continuous query
generator generates LDCQs which are sent to the server
model through the communication network. The results of a
query evaluation are returned to the requesting mobile client
from the server also through the communication network.
The lifetime of a LDCQ is chosen randomly between
MinCQLife and MaxCQLife. A mobile client generates a
new LDCQ after a think time following the completion of its
previous LDCQ.  The think time is exponentially distributed
with a mean of ThinkTime. No I/O time is modeled in the
resource manager module since we assume that the buffer
pools of mobile clients are large enough to hold all the tuples
received in response to an issued LDCQ.

In the system, each moving object is assigned a default
speed, S. Every time unit, the distance traveled by a moving
object is calculated by S± SF where SF is a random variable
uniformly distributed within a bound called speed bound
(SB). Whenever the deviation of the location of an object
becomes greater than the update threshold of the object, the
update generator will generate a location update to the
database server. When the database server receives a new
location of a moving object, it re-calculates the begin time  of
the tuples corresponding to the object. We assume that the
change in the begin time  of a tuple is inversely proportional
to the distance traveled by the corresponding object. To
simplify the parameter set, we further assume that the change
in the begin time equals to the difference between actual
distance traveled and the expected distance traveled.

6.2 Communication Network
All the messages passed between mobile clients and the

server must go through the communication network. Each
tuple needs TupleTime seconds to go through the network
and each control message needs Control-MessageTime
seconds. For each transfer, one control message is needed
before the tuples are sent. For example, if a mobile client
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transfers five tuples to the server as a whole, one control
message is needed. However, if it transfers the tuples one by
one, five control messages are needed for the transfer.

6.3 Server Model
The server model consists of a query processor and a

database. The query processor processes LDCQs and updates
received through the communication network. It also controls
the access to CPU and the database. No I/O time is modeled
in the server as we assume that it contains a fast accessed
secondary memory.

Once the query processor receives a LDCQ, it will
determine the size of the query in terms of the number of
tuples in the answer set. The maximum size of a query is
specified by the parameter CQSize. The result of a LDCQ is
a set of tuples <S, begin time, end time>. The tuples are sent
to the requesting mobile client in increasing order of their
begin times. Both delayed and periodic transmission [GU00]
of tuples to the clients are simulated. With the delayed
transmission approach, a tuple is transmitted to the mobile
client just before the begin  time (considering required
communication and processing delays). According to the
periodic transmission approach, at each w  time units, all the
tuples satisfying the condition t ≤ begin time < t + w  where t
is the current time, are transmitted to the mobile client which
has issued the LDCQ. w  is called the window size.

When a location update is received, the server first
determines whether the update is from an active client. If it is,
a minimum update threshold is set for the active client and all
the begin times of the associated objects for the client’s query
are adjusted. For a non-active client, the begin times of the
related tuples are also adjusted. After the adjustment, the new
update threshold is recalculated for the tuples and sent to the
corresponding mobile clients.

6.4 Model Parameters and Measures
The following table summarizes the model parameters

and the baseline settings. The baseline parameter settings are
determined based on the values used in [GU00]. To study the
performance of the proposed methods, we measure the
incorrect information rate (IIR) which is defined as the
number occurrences of false information and missed
information (as defined in Section 4) over the total number
tuples generated. IIR indicates the capability of the system in
providing correct information to the queries from the mobile
clients. In addition to IIR, we also measure the retransmission
rate (RR), control message overhead (CMO) and update
workload. As explained in Section 2, when a window based
method is used for transmitting the results of a tuple to its
requesting client, a tuple may need to be retransmitted due to
the changes in the result. RR is defined as the total number of
tuple re-transmissions over the total number of tuples
transmitted. CMO measures the total number of control
messages per unit time. It measures the communication
overhead between mobile clients and the server. It includes
both the control messages from mobile clients to the server
and server to mobile clients. It specifies the network loading.
Update workload measures the proportion of CPU utilization
for processing of location updates of the moving objects in
the system.

Mobile Client Parameters Baseline Value
Total number of moving objects
(TotalMO)

300

Number of moving objects which may
generate LDCQ (NumMH)

50

Number of objects satisfying a LDCQ
(CQsize)

10 – 20 objects

Minimum life of a LDCQ (MinCQLife) 240 sec
Maximum life of a LDCQ (MaxCQLife) 360 sec
Think time (ThinkTime) 1000 sec
Speed Bound (SB) 0–1

(for each time unit)
Communication Network Parameters Baseline Value
Time for sending a tuple (TupleTime) 0.1 – 0.2 sec (normal

distribution)
Time for sending a control message
(ControlMessageTime)

0.05 – 0.1sec
(normal distribution)

Server Parameters Baseline Value
Time for processing a tuple
(ComputeTime)

0.05 – 0.1sec
(normal distribution)

Threshold limits 5 – 30 sec
Window size for transmitting results 50 sec
Similarity bound 10 sec

6.5 Performance Results
The simulation program was implemented in CSIM-18

which is a simulation language based on the C programming
language. The length of each simulation run is 10 hours. This
value has been determined from a number of trial runs until
stable results have been obtained. We presented three sets of
experimental results to illustrate the performance of AMM
compared with pdr. In the first two sets of experiments, the
upper threshold bound of AMM is fixed at 30 seconds and
the lower threshold bound is varied from 2.5 to 30 seconds.
The first set of experiments compares the performance of
AMM with pdr under the delayed transmission method for
transmitting LDCQ results, while the second set of
experiments compares the performance of the two methods
using the periodic transmission method with a window size of
50s. In the last set of experiments, the performance of AMM
under different upper threshold bounds is investigated.

Figure 4 depicts the incorrect information rate (IIR) when
different values are used for the upper threshold bound for
AMM and the update threshold for pdr. The delayed
transmission method is used for transmitting query results to
mobile clients. It can be seen that the performance of AMM
is consistently much better than pdr, As expected, both curves
are in V-shape. The best performance is achieved when the
threshold value is around 12.5s. The poor performance with
small threshold values is due to heavy update workload as
can be observed in Figure 5 in which the update workload is
close to 70% for AMM and 95% for pdr. Thus, under such
settings, most of the system resources are devoted to process
the updates from mobile objects and the system will not be
able to generate timely responses to the continuous queries
from mobile clients. When a large threshold is used, the
degree of uncertainty of the location of a moving object will
be high. Thus, the probability of providing incorrect
information to mobile clients will also be high.

The better performance of AMM is due to the better
monitoring scheme used in generating location updates, i.e., a



smaller threshold is assigned to the moving object if its begin
time is closer to the current time. Although the total number
of updates generated is smaller under AMM than under pdr,
the locations of mobile clients can be closely monitored.
Even though determining the update thresholds in AMM
requires communication between moving objects and the
server, the total number of control messages required in
AMM is still smaller than that in pdr due to smaller number
of updates. The smaller control message overhead in AMM
can be observed in Figure 6.

In the second set of experiments, periodic transmission of
query results is used with a window size of 50 seconds. The
results are shown in Figures 7 to 10. Consistent to the results
in the previous figures, the performance of AMM is much
better than that of pdr. Comparing the results in Figure 7 with
Figure 4, we can see that the performance of both methods is
improved when the periodic transmission method is used.
Although under the periodic transmission re-transmissions
are required once a tuple result changes after it has been
transmitted to the requesting client, the total control message
overhead is still smaller than the case with delayed
transmission. The lower control message overhead can be
observed by comparing the results shown in Figure 10 with
Figure 6. As shown in Figure 9, the better performance of
AMM is also due to a smaller retransmission rate.

In the last set of experiments, we vary the upper threshold
bound of AMM. The results are shown in Figures 11 to 13.
The curves labeled ‘AMM-20’, ‘AMM-30’, ‘AMM-40’,
‘AMM-50’ and ‘AMM-75’ indicate the performance when
the upper update threshold is set to be 20, 30, 40, 50 and 75,
respectively. As shown in Figure 11, the best performance is
achieved when a medium upper threshold bound is chosen. If
a smaller upper threshold bound is used, the update workload
will be heavy as shown in Figure 12. When a large upper
threshold bound is used, the uncertainty in the locations of
the moving object will be larger although the update
overhead and the control message overhead will be lower (as
shown in Figure 12 and Figure 13). Increasing the upper
update threshold results in higher number of updates. The
graph displayed in Figure 11 for a large upper update
threshold bound is interesting. The smallest value of IIR
decreases and then increases when a larger upper threshold
bound is used. The thresholds of the objects become tight
when a smaller upper bound is used and IIR becomes greater,
even larger than that of pdr. It is obvious that when the
threshold is increased, the update frequency decreases. This
explains the increase in IIR with the increase in the upper
threshold bounds. However, the system performance with a
larger upper threshold bound is better at a small lower
threshold bound. With a small lower threshold bound, the
thresholds for mobile objects are small enough to keep an
effective update frequency. This explains the increase in
system performance with small lower threshold bounds.
These experiments also verify the results obtained with the
setting of 30 to the upper threshold bound in the first three
sets of experiments.

7 Conclusions
An important issue that should be considered in designing

a mobile computing system is to provide support for

processing of location-dependent continuous queries. Data
values used for maintaining the locations of moving objects
are highly dynamic and may possess real-time properties.
Location-dependent queries from mobile clients may also be
associated with timing constraints on their response times. In
this paper, we have analyzed the issues related to the
generation of location updates from mobile clients and the
transmission of results of location dependent continuous
queries from the server. A new method, called Adaptive
Monitor Method (AMM) has been proposed with the aim to
reduce the update workload and at the same time closely
monitor the locations of moving objects. The objects, which
are going to be included in query result soon, are monitored
more closely by the proposed method.  Extensive simulation
experiments have been performed to investigate the
effectiveness of the suggested method. The method makes
use of two threshold bounds to calculate an update threshold,
based on the begin time of query results, in generating
updates for the location of moving objects.
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Figure 4. The impact of Lower Threshold Limit on Incorrect
Information Rate under Delayed Transmit

Figure 5. The impact of Lower Threshold Limit on Update Workload
under Delayed Transmit

Figure 6. The impact of Lower Threshold Limit on Control Message
Overhead under Delayed Transmit

Figure 7. The impact of Lower Threshold Limit on Incorrect
Information Rate under Periodic Transmit with window size of 50s

Figure 8. The impact of Lower Threshold Limit on Update Workload
under Periodic Transmit with window size of 50s

Figure 9. The impact of Lower Threshold Limit on Retransmit Rate
of LDCQ results under Periodic Transmit with window size of 50s

Figure 10. The impact of Lower Threshold Limit on Control Message
Overhead under Periodic Transmit with window size of 50s

Figure 11. The impact of Upper Threshold Limit on Incorrect
Information Rate under Periodic Transmit with window size of 50s

Figure 12. The impact of Upper Threshold Limit on Update
Workload under Periodic Transmit with window size of 50s

Figure 13. The impact of Upper Threshold Limit on Control Message
Overhead under Periodic Transmit with window size of 50s
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