
Data & Knowledge Engineering 100 (2015) 133–147

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak
Efficient community identification and maintenance at multiple
resolutions on distributed datastores☆
Hidayet Aksu a,⁎, Mustafa Canimb, Yuan-Chi Chang b, Ibrahim Korpeoglu a, Özgür Ulusoy a

a Department of Computer Engineering, Bilkent University, Ankara, Turkey
b IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
a r t i c l e i n f o
☆ A preliminary version [1] of this paper was present
⁎ Corresponding author.

E-mail addresses: hidayetaksu@gmail.com (H. Aksu)
oulusoy@cs.bilkent.edu.tr (Ö. Ulusoy).

http://dx.doi.org/10.1016/j.datak.2015.06.001
0169-023X/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
Article history:
Received 16 September 2014
Received in revised form 6 May 2015
Accepted 2 June 2015
Available online 16 June 2015
The topic of network community identification at multiple resolutions is of great interest in
practice to learn high cohesive subnetworks about different subjects in a network. For
instance, one might examine the interconnections among web pages, blogs and social
content to identify pockets of influencers on subjects like ‘Big Data’, ‘smart phone’ or ‘global
warming’. With dynamic changes to its graph representation and content, the incremental
maintenance of a community poses significant challenges in computation. Moreover, the
intensity of community engagement can be distinguished at multiple levels, resulting in a
multi-resolution community representation that has to be maintained over time. In this
paper, we first formalize this problem using the k-core metric projected at multiple k-
values, so that multiple community resolutions are represented with multiple k-core graphs.
Recognizing that large graphs and their even larger attributed content cannot be stored
and managed by a single server, we then propose distributed algorithms to construct and
maintain a multi-k-core graph, implemented on the scalable Big Data platform Apache
HBase. Our experimental evaluation results demonstrate orders of magnitude speedup by
maintaining multi-k-core incrementally over complete reconstruction. Our algorithms thus
enable practitioners to create and maintain communities at multiple resolutions on multiple
subjects in rich network content simultaneously.

© 2015 Elsevier B.V. All rights reserved.
Keywords:
Mining methods and algorithms
Distributed databases
Community identification
Big Data analytics
k-Core
HBase
1. Introduction

Multi-resolution community identification and evolution in a complex network have applications spanning multiple disci-
plines ranging from social science to physics. In recent years, the rise of very large, rich content networks re-ignited interests
to the problem at the multi-k-core scale that poses computation challenges to early work with algorithm complexity greater
than O(n). A further distinction from the decade-old graph problem formulation is that multi-attributed content associated
with vertices and edges must be included in creating, managing, interpreting and maintaining results. Thus the problem of
community analysis is a hybrid of content and graph analysis on various subjects of interest. The problem is made even
more complex with the observation that interactions with a community happen not just at one but also at multiple levels of
intensity, which reflects in reality active to passive participants in a group. This results in multiple levels of resolution in
ed at the IEEE 2nd International Congress on Big Data, 2013 (BigData 2013).

, mustafa@us.ibm.com (M. Canim), yuanchi@us.ibm.com (Y.-C. Chang), korpe@cs.bilkent.edu.tr (I. Korpeoglu),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.datak.2015.06.001&domain=pdf
http://dx.doi.org/10.1016/j.datak.2015.06.001
mailto:hidayetaksu@gmail.com
mailto:mustafa@us.ibm.com
mailto:yuanchi@us.ibm.com
mailto:korpe@cs.bilkent.edu.tr
mailto:oulusoy@cs.bilkent.edu.tr
Journal logo
http://dx.doi.org/10.1016/j.datak.2015.06.001
Imprint logo
http://www.sciencedirect.com/science/journal/0169023X


134 H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
community identification. Tomake the solution practical, it is thus necessary to identify andmaintain communities at multiple
resolutions.

In this paper, we propose a set of algorithms built on the k-core metric to identify and maintain a content-projected commu-
nity at multiple resolutions on an open-source Big Data platform, Apache HBase. We formulate the community identification
problem by first projecting a subgraph by content topic of the social network interaction, such as a microblog or message,
and then locating the “dense” areas in the subgraph which represent higher inter-vertex connectivity (or interactions in the
case of a social network) at multiple resolutions. In the literature, there is a long list of subgraph density measures that may
be suited in different application contexts. Examples include cliques, quasi-cliques [2], k-core, and k-edge-connectivity [3].
Among these graph density measures, k-core stands out as the least computationally expensive one that still gives reasonable
results. An O(n) algorithm is known to compute k-core decomposition in a graph with n edges [4], where other measures
have complexity growing super-linear or NP-hard.

The set of our proposed algorithms identify k-core subgraphs at multiple, fixed k values and maintain the identified
subgraphs incrementally over dynamic changes. These distributed algorithms run on a multi-server cluster with shared
nothing partitioned graph data, managed by Apache HBase. The size of the social network graph and the rich content is
only limited by storage space and not by main memory. Furthermore, identified communities at multiresolution are also
retained and updated as changes come in. Our algorithms thus enable practitioners to monitor changes in communities on
different topics and resolutions in rich social network content simultaneously, whichmain-memory based algorithms cannot
achieve.

Previously, we studied the identification and maintenance of k-core subgraphs at a fixed k value [5]. We also proposed
algorithms to perform batch operations for maintenance purposes. The proposed approaches are quite effectivewhen a constant
k value is used. On the other hand, when subgraphs at multiple resolutions are needed, one has to run separate instances of the
algorithms for each k value. In order to cope with this limitation, we made significant design changes in these algorithms to
efficiently handle k-core subgraphs at multiple, fixed k values. The new study proposes integrated algorithms for k-core
construction, maintenance and the bulk processing of update operations. As we demonstrate in the experiments section, the
new algorithms yield orders of magnitude speed up compared to the base case k-core construction. Note that, we study how
k-core can be computed efficiently in distributed datastores such as Google BigTable, MegaStore, and Apache HBase which
are widely used by web companies. In other words, we target the k-core computation problem in a specific context, and we
acknowledge that k-core computation in specific setups, i.e. in-memory or topology-only centralized ones, might outperform
multi-purpose general distributed datastores or distributed parallel databases which are designed to address high availability,
fault-tolerance, scalability, and load balancing issues.

Our main contributions in this paper can be summarized as follows:

• We definedmultiresolution community identification in a network as a multi-k-core problem and developed a distributed construc-
tion algorithm that exploits parallelism on a Big Data platform.

• In order to keep the materialized multiresolution representation up to date with incremental updates, we developed a distributed
maintenance algorithm that also exploits parallelism.

• We further improved the maintenance algorithm with batch window refresh for practical applications with heavy updates. Batch
update maintenance allows more expensive graph traversal steps to be aggregated for computational efficiency.

• Wepresented a robust implementation of our algorithms on top of ApacheHBase, a horizontally scalingdistributed storage platform
through its coprocessor computing framework [6].

The remainder of the paper is organized as follows. We first provide a motivating example in Section 2, then we review
prior work on community identification and k-core algorithms in Section 3. Section 4 describes our distributed multi-k-
core construction algorithms in nave implementation and pruning techniques. Section 5 details our incremental maintenance
algorithms for edge insertions and deletions. Experimental results are reported and discussed in Section 7. Finally, Section 8
concludes the paper and discusses future work.

2. Motivating example

Consider the following scenario as an example of why the distributed multi-k-core construction and maintenance
algorithms we propose are needed in real life problems. Suppose that a data analytics company provides keyword based
analytics services to its customers based on the retweet graph of Twitter data. The customers subscribe to the service by
providing certain keywords along with the queries and the company provides a response whenever they want to get the
results. To keep up with the growing size of the data and to manage the query load on the system, the graph is horizontally
partitioned and stored on distributed computing nodes by the company. Moreover, to effectively respond to the computation
load, the results of user queries are materialized and updated as the retweet graph changes. Depending on customer needs,
both instant updates as well as batch updates are reflected to the maintained results.

The aforementioned scenario is quite realistic currently. As the popularity of social media sites increases, the demand for
performing analytics on these large graphs grows dramatically. In the last few years, many web companies, such as “Followerwonk”
[7], “SocialPing” [8], and “SimplyMeasured” [9], emerged to help customers make better marketing decisions based on the content of
social media tools such as Twitter and Google+. These web companies have to deal with very large graphs to perform analytics. To



135H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
keep upwith the scale, storage and maintenance of these datasets efficiently, companies are compelled to use distributed data archi-
tectures. Hence, previously used analytics, i.e., community identification algorithms, need to be redesigned to work in such new data man-
agement environments. We believe that the distributed algorithms presented in this paper can be leveraged on these large graph
datasets to perform better analytics.

3. Related work

A wide range of applications from social science to physics need to identify communities in complex networks that share
certain characteristics at various scales and resolutions [10–12]. Challenges remain, however, in addressing both the intensity
and dynamicity of communities on a large scale. We thus focus on metrics and algorithms whose complexity is no greater
than O(n). The notion of k-core is first introduced in [13] for measuring group cohesion in social networks. Subsequently,
Batagelj and Zaversnik (BZ) proposed a linear time algorithm to compute k-core [4]. The BZ algorithm first sorts the vertices
into the increasing order of degrees and starts deleting the vertices with degrees less than k. At each iteration, it needs to
sort the vertices list to keep it ordered. Due to the high number of random accesses to the graph, the algorithm can only run
efficiently when the entire graph can fit into the main memory of a single machine. Recently, k-core is preferred as a key metric
of measuring social interaction strength in many other studies [14–17].

On the other hand, to deal with the scalability concerns when data gets big, graph algorithms were implemented on
the MapReduce framework [18] and its open source implementation Apache Hadoop [19–21]. By formulating common graph
algorithms as iterations of matrix-vector multiplications, coupled with compression, [22] and [23] demonstrated significant
speedup and storage savings, although such a formulation would prevent the inclusion of metadata and content as part of the
analysis. The iterative nature of graph algorithms soon prompted many to realize that static data is needlessly shuffled between
MapReduce tasks [24,21,25]. Pregel [26] thus proposed a new parallel graph programming framework following the bulk
synchronous parallel (BSP) model and message passing constructs. In Pregel, vertices are assigned to distributed machines
and only messages about their states are passed back and forth. In our work, we achieved the same objective through coproces-
sors. Pregel did not elaborate, however, about how tomanage temporary data, if it is large, with amainmemory implementation
nor did it state if updates are allowed in its partitioned graph. Furthermore, by introducing a new framework, compatibility with
MapReduce-based analytics is lost.

Our work learned from the strength and limitation of these algorithms and platforms to make progress in the areas of distrib-
uted big graph data processing and incremental multi-resolution maintenance. We implemented, tested, and analyzed our
algorithms on the open-source Hadoop HBase Big Data processing framework. Therefore, before going into the details of our
proposed algorithms, readers are encouraged to read the preliminary version of our paper [1] or some other reference about
HBase to become familiar with the Hadoop Big Data programming framework where our distributed k-core algorithms are
implemented.

4. Distributed multi-k-core construction

In this section, we first describe a nave distributed algorithm that constructs a k-core subgraph, then we propose a novel
algorithm to compute a k-core graph for multiple k values simultaneously. Table 1 summarizes the notations used in our
pseudocode.

4.1. Base algorithm

The base algorithm is an adaptation of the BZ algorithm to distributed processing for a fixed k value. As described in Algorithms 1
and 2, the server side algorithm executes in parallel as HBase Coprocessors to scan partitioned graph data in the local regions
Table 1
Notations used in algorithms.

G Dynamic graph partitioned into regions stored in multiple server nodes
Gk k-Core materialized view graph of G
Gki Subgraph of Gk holding k-core for core value ki
k1 … n Target core values in ascending order
Ri i'th region of graph stored on and processed by node i
Ni i'th node storing region i
(X, Y) ← RCf(Ri, S) Remote call to function f on region i takes parameter S and returns values X, Y to client
{u, v} Graph edge from vertex u to vertex v
Ri(GA) Region of graph GA processed by node Ni

TA(CX, CY) Lookup table A with column CX and CY
dðuÞ; dGki

ðuÞ Degree of vertex u in G and Gki

qncki ðuÞ Qualified neighbor count for vertex u in Gki with respect to next core value ki + 1



136 H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
and delete those vertices with degrees less than k. The client side programmonitors the parallel execution and issues iterations until
the k-core is found. To compute the k-core graph for multiple k each k value separately.

Algorithm 1. Base k-core construction — client side.
Algorithm 2. Base k-core construction — node Ni side.
4.2. Multi-k-core construction

Our proposed algorithm computes k-core subgraphs for a list of distinct k values. As stated in the notation, k values are ordered and
ki is the i'th k value, e.g. k1 … 3 = {15, 20, 30}. In the degenerate case, k0 ¼ 0;Gk0 ¼ G. The algorithm starts with computing a k-core
graph for k1 and progressively moves up the index by reusing a previously found k-core subgraph.

The algorithms are described in Algorithms 3 and4 for the client and server side, respectively. Itfirst computes a k-core graph for k1
using the Base algorithm. Next, the client invokes distributed parallel processing Compute Core at the server side to compute core
values for vertices with a degree greater than or equal to ki and less than ki + 1. On the server side, it checks a vertex's degree count
and decrements its neighbors' if their degree counts are greater than ki + 1. Iterations continue until all the parallel execution reported
vertices in Gkiþ1

have been identified.

Algorithm 3. Multi k-core construction — client side.



Algorithm 4.Multi k-core construction — node Ni side.

137H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
5. Incremental multi-k-core maintenance

5.1. Edge insertion

With graph G={V, E} and itsmaterializedmulti-k-core subgraphGk ¼ ∪i¼1 ::nGki whereGki ¼ fVki ; Ekig, we give the following edge
insertion theorem.

Theorem 1. Given a graph G = {V, E} and its k-core subgraph Gk ¼ ∪i¼1 ::nGki , and an edge {u, v} is inserted to G,

• If both u; v ∈ Vkn , then Gkn stays the same.
• If u or v or both ∈ Vki and i is maximal, i.e. ∄ð j; kÞj j N i; k N i;u ∈ Vk j

and v ∈ Vkk , then the subgraph consisting of vertices
in fwjw ∈ Vki ;dGki

ðwÞ ≥ kiþ1; qncGki
ðwÞ ≥ kiþ1g, where every vertex is reachable from u or v, may need to be updated to include

additional vertices into Gkiþ1
.

The intuition behind the theorem is that an edge insertion can atmost increase the core number by one. And edge inserted into the
highest k-coreGkn does not change the subgraph. However, an edge inserted into vertices inGki may push some vertices toGkiþ1

but not
further up in the hierarchy. Fig. 1 depicts this scenario, where a new edge and its update is always sandwiched between two rings of
the k-core graph. Bounding by the two rings implies that our maintenance algorithm can exploit this property to minimize traversal.

To prove the theorem, we first prove the following lemma, a preliminary version of which is presented in [5].

Lemma 1. If vertex q is included in the kn-core after the edge {u, v} is inserted, then there exists at least one path originating from either u or
v connecting to q on which all vertices also have a core number greater than or equal to kn after the insertion of the new edge.
Fig. 1. Upon an edge {u, v} insertion where u or v resides in ki-core Gki , first tightly bounded Gcandidate graph is discovered exploiting maintained auxiliary information,
then it is processed to compute Gqualified subgraph qualifying for ki + 1-core.



138 H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
Proof. Since q was not in Vkn and is in ~Vkn after the edge insertion, its core number must have been increased from kn − 1 to kn. The
increase of q's core number is due to one or more of its neighboring vertices whose core numbers also increased to kn. The same logic
applies to those neighbors and leads one or more connected paths to the vertices u or v, where the graph topology is changed.

Using the above lemma, we now prove the edge insertion theorem by contradiction.

Proof. Case 1. If u; v ∈ Vkn , the new edge {u, v} is inserted into Ekn and there is no change to Vkn .
Case 2. We prove by contradiction that a vertex q in Gki , where i is maximal, cannot be in the ki + 1-core, unless
q ∈ fwjw ∈ Vki ;DGðwÞ≥kiþ1;N

kiþ1
G ðwÞ≥kiþ1g where all the vertices in the set are reachable by either u or v. Suppose q is in the ki-core

but q ∉ fwjw ∈ V ;DGðwÞ≥kiþ1;N
kiþ1
G ðwÞ≥kiþ1gwhere all the vertices in the set are reachable by either u or v. The above lemma states

that there exists at least one path originating from either u or v connecting to q on which all vertices also have a core number greater
than or equal to ki + 1. By definition of k-core, the vertices on the path must have DG ≥ ki + 1 andNkiþ1

G ≥kiþ1. Therefore, the vertices on
the path to q and including qmust also have DG ≥ ki + 1 and Nkiþ1

G ≥kiþ1. Therefore, qmust be in the subgraph expanded from u and v.

Algorithms 5, 6 and 7 present the algorithms in detail. Several auxiliary counts are maintained for all vertices, ∀ v ∈ V, its degree
dGki

ðvÞ and its qualifying neighbor count qncGki
ðvÞ for each maintained ki. For each insert, the algorithm first looks for the maximal

subgraphGki inwhichu or v is found. If any suchGki graph is found for i N 0, a newedge is inserted and auxiliary information is updated.
When i is equal to n, which means both vertices are in the inner most core graph, no update is required so the algorithm terminates.
If the qnc value for either vertex is no less than the next target ki + 1 value, then there is a possibility thatGkiþ1

will be updated because
of the new edge. In this case, the algorithm searches the graph and marks a tightly bounded subgraph of vertices which needs to
be updated. Find Candidate Graph subroutine in Algorithm 6 traverses the Gki subgraph and returns the Gcandidate subgraph which
covers the set of candidate edges that may be part of the ki + 1-core. The edges whose vertex w satisfy the condition d(w) ≥ ki + 1

and qnckiþ1
ðwÞ≥kiþ1 are considered as candidate edges for Gkiþ1

. Partial KCore in Algorithm 7 then processes the Gcandidate subgraph
and returns the graph qualified for ki + 1 core into Gqualified.
Algorithm 5. Edge insertion — node Ni side
5.2. Edge deletion

We begin with the following edge deletion theorem, which mirrors the edge insertion theorem.

Theorem 2. Given a graph G = {V, E} and its k-core subgraph Gk ¼ ∪i¼1 ::nGki , and an edge {u, v} is deleted from G,

• If fu; vg∉ Eki , then Gki does not change.
• If fu; vg∈ Eki and i is maximal, then the subgraph consisting of vertices in fwjw ∈ Vkig, where every vertex is reachable from u or v,
may need to be updated to maintain edge deletion from Gki .

The intuition behind this theorem is that an edge deletion can at most decrease the core number by one and thus an edge deleted
fromGki may push some vertices fromGki toGki−1

but not further down in the hierarchy. Again, our algorithm exploits the property to
minimize traversal.



139H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
Algorithm8 implements the theoremon the server side. Edge deletion logic is similar to the edge insertion case. Upon receiving an
edge deletion, it first finds out in which k-core graph this edge resides, say Gki . If it does not reside in any k-core, then the algorithm
terminates. Otherwise, theUpdate Coreness Cascaded algorithm in Algorithm9 startswith the vertexwithdGki

less than ki, andmoves it
to the lower k-core graph Gki−1

. Then it recursively traverses the neighbors whose degrees in Gki are now below ki. The algorithm
accelerates k-core re-computing by knowing, at each iteration, which vertices have changed their degrees. For the majority of cases
where an edge deletion impacts a small fraction of vertices in the k-core, we have found this improved algorithm to be very effective.
Algorithm 6. Find candidate graph.
Algorithm 7. Partial KCore.
Algorithm 8. Edge Deletion — node Ni side.



Algorithm 9. Update coreness cascaded.

140 H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
6. Batch multi-k-core maintenance

In an update-heavyworkload, k-core does not need to be kept in lock stepswith data updates and thus presents the opportunity to
periodically maintain k-core in batch windows. Accumulating data updates and refreshing k-core in a batch bundles up expensive
graph traversals and thus speeds up maintenance time, compared to maintaining each update incrementally.

In such a batch maintenance scenario, edge insertion and deletion incurs immediate updates to the auxiliary information, degree
and QNC, while updates to the k-core subgraph are deferred. The systemmaintains a list of updates andflushes them based on update
count or clockedwindow. In Algorithm 10, when the list is flushed, updates that cancel each other out are first removed from the list.
Edge deletions, which typically incur a shorter graph traversal, are then treated next followed by edge insertions, whichmay include
longer traversals. Regardless of the processing order, the net effect is the same.
Algorithm 10. Batch process— client side.
Algorithm 11 presents the batch edge deletions in more detail. Edges in the deletion list deleteList are grouped and sent to the
respective region's node, where each remote call returns a list of cascaded deletion requests. The client then regroups the requests.
Algorithm 11. Perform delete traversals — client side.



141H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
Algorithm12 describes the node side of edge deletions. The algorithmfirst receives the list deleteList, the list of edges to be deleted,
and the list downgradeList, the list of vertices to be updated into one lower k values in themaintained k-core list k1 … n. For each edge
{u, v} in the deleteList the edge is deleted first. To do that, all the outgoing edges of u are deleted and the incoming edges are returned to
the client as cascaded delete. We do not delete incoming edges in this remote call since those edges do not necessarily reside in the cur-
rent region (edges are stored according to source vertex). If the degree of u becomes smaller than the k value of the core in which it cur-
rently resides, this vertex should bedowngraded. Such vertices are added to the downgradeList. Each vertex in the downgradeList ismoved
from its current core value, let's say ki, to one lower core value ki − 1. When the vertex becomes lower than the minimummaintained k
value, it is deleted from thematerialized view and any cascaded delete is added to the cascadedDeletes list. After each core change, if any
direct neighbor also needs to be updated, it is added to the cascadedDowngrades list to be processed in the next iteration.
Algorithm 12. Handle delete — node Ni side.
Algorithm 13 presents batched edge insertion maintenance in detail. In essence, the independently launched graph traversal
in each incremental maintenance is now aggregated into a single parallel graph traversal launched simultaneously from all the
new edges. The algorithm first takes the list of edges insertList, and traverses them in parallel. All candidate edges discovered
Algorithm 13. Perform insert traversals — client side.



142 H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
during BFS traversals are kept in the client side in sets called Gcandidate1…n
for posttraversal computation. Firstly, the client

groups all vertices in the insertList according to their regions. A BFS operation is performed for each region by calling
the qualifyingListi ← RCPruned MultiTraversal(Ri, bucketi, k1 … n) remote call function. Each node handles the BFS iterations over
its associated region and then returns the selected edge list to the client. The list insertList is cleared after all remote calls
are made. An edge {u, v} returned from the remote call is skipped if it already exists in the set Gcandidate1…n

, which means it
has already been traversed previously. When the new edge {u, v} is not connected to the next inner k-core subgraph, v is
inserted into the list insertList to be traversed in the next iteration.

Once the parallel traversal is done, the candidate listsGcandidate1…n
will be processed by the Partial KCore algorithm to compute each

maintained k-core over the traversed graph.
The Pruned MultiTraversal algorithm described in Algorithm 6 runs on the node side and performs a single BFS iteration for the

vertices in the insertList list. It selects the edges to the vertices with a QNC value greater than the next maintained core value.
Algorithm 14. Pruned MultiTraversal — node Ni side.
7. Performance evaluation

We ran experiments to demonstrate the performance of our proposed multi-k-core construction algorithm and the performance
of our proposed k-coremaintenance algorithms on dynamic graphs.We show that recomputing the k-core subgraphs ismuch costlier
than incrementally maintaining them in dynamic graphs where the edges are inserted and deleted.

7.1. System setup and datasets

Graph data is stored in HBase and the algorithms are implemented as HBase Coprocessors where distributed parallelism is
applicable. Table 2 shows how notations in algorithms are interpreted in HBase implementation. Our cluster consists of one master
server and 13 slave servers, each of which is an Intel CPU based blade running Linux connected by a 10-gigabit Ethernet. We use a
vanilla HBase environment running Hadoop 1.0.3 and HBase 0.94 with data nodes and region servers co-located on the slave servers.
We configured HBase with a maximum 16 GB Java heap space and Hadoop with a 16 GB heap to avoid long garbage collection in the
Java virtual machine. The HDFS (Hadoop File System) replication factor is set at the default three replicas. There was no significant
interference from other workloads on the cluster during the experiments.

The datasetswe used in the experimentsweremade available byMislove et al. [27] and the StanfordNetwork Analysis Project [28].
We appreciate their generous offer to make the data openly available for research. For details, please see the references and we only
briefly recap the key characteristics of the data in Table 3.

7.2. Experiments

We use multiple k values to represent a community at multiple resolutions. For each social network dataset, we select three
distinct k values so that 4, 8 and 16% of the vertices in that dataset have a degree of at least k. The higher the k value, the stronger
or more tightly knit the communities are. Conversely, the lower the k value, the weaker or more loosely connected the communities
Table 2
Mapping of graph notations in Table 1 to implementation in HBase.

G HBase table holding graph edges partitioned into regions over multiple region servers
Gk HBase table holding k-core graph edges
Ri i'th region processed by coprocessor Ni

Ni i'th coprocessor running on region i
(X, Y) ← RCf(Ri, S) Coprocessor function f on region i takes parameter S and returns values X, Y to client
Ri(GA) Region of GA processed by coprocessor Ni

TA(CX, CY) Table A created on HBase with column CX and CY



Table 3
Key characteristics of datasets in the experiments.

Name Vertex Count Bidirectional Edge Count Ref

Orkut 3.1 M 234 M [27]
LiveJournal 5.2 M 144 M [27]
Flickr 1.8 M 44 M [27]
Patents 3.8 M 33 M [28]
Skitter 1.7 M 22.2 M [28]
BerkStan 685 K 13.2 M [28]
YouTube 1.1 M 9.8 M [27]
WikiTalk 2.4 M 9.3 M [28]
Dblp 317 K 2.10 M [28]

Table 4
k values used in the experiments and the ratio of vertices with degree at least k in the corresponding graphs.

Dataset — k values 4% 8% 16%

Orkut 263 183 123
LiveJournal 80 50 28
Flickr 65 24 9
Patents 28 21 15
Skitter 42 26 15
BerkStan 57 38 24
WikiTalk 5 3 2
YouTube 18 10 5
Dblp 25 16 10

143H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
are. Table 4 lists the chosen k values. We first run the Base k-core construction algorithm to measure the baseline k-core construction
time for each dataset and k value. Then we run the Multi-k-core construction algorithm, which is described in Algorithms 3 and 4,
for each dataset with all the chosen k values at once to measure the k-core construction for multiple k values. Fig. 2 shows the
construction times for both algorithms. The speedup achieved byMulti-k-core construction algorithm is upper bounded by the number
of distinct values which is 3 in this case. For larger datasets we observe that the algorithm achieved a higher speedup due to the
redundant computation saved.

To evaluate the performance of themaintenance Algorithms 5 and 6, we first construct andmaterialize a k-core graph for selected
multiple k values and under the three scenarios explained below we measure the average maintenance times.

1. In the Extending window scenario, a constant number of edges are continuously inserted into the original graph. We randomly
choose 1000 vertices from the graph and exclude a random edge of each vertex at the beginning. Later we construct the k-core
subgraph. Once the system is ready for changes we insert the excluded edges into the graph one by one while we maintain the
k-core subgraph.
Fig. 2. k-Core construction times for base andmulti k-core construction algorithms are shown for eachdatasetwith three chosen k values. Relative speedup achievement
of multialgorithm over Base algorithm is provided above each bar.



Fig. 3. k-Core maintenance algorithm speedup over construction algorithms for extending window scenario.

144 H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
2 In the Shrinking window scenario, a constant number of edges are continuously deleted from the original graph. We first
construct the k-core subgraph. Later, we randomly choose 1000 vertices from the graph to delete them one by one while
we maintain the k-core subgraph.

3 In the Moving window (Mix) scenario, a constant number of edges are both inserted and deleted continuously. We choose 1000
random vertices from the graph and exclude a random edge of each vertex at the beginning. We use them for insertion. Next
we construct the k-core subgraph. Once the system is ready for changes we keep inserting these edges while deleting a random
edge from the original graph. So, each insertion is followed by a random deletion from the graph. By doing so we insert 1000
edges into the graph and delete 1000 edges from the graph while maintaining the k-core subgraph.

We repeated these three scenarios with each dataset and measured their execution times. Figs. 3–5 plot the speedup through our
incremental maintenance algorithms over recomputing k-core from scratch, for 9 different datasets. The y-axis shows the speedup in
log-scale. For the extending, shrinking, andmovingwindow scenarios and each dataset, the figures give the speedup of the incremen-
tal update approach with respect to from-scratch construction using the multi-k-core construction algorithm. As the figures show,
three to five orders of magnitude speedup can be expected for the edge insertion workload. We observe different speedup values
for different datasets. When compared with Table 3 and Table 4, there is no direct relation between the k values, dataset size and
achieved speedup. The different datasets we used are from different networks, i.e., Com-dblp is a collaboration network, Orkut is a
friendship network, and Flickr is an image sharing network. Their internal connection structure causes different maintenance costs.
For instance homogenous and dense edge distributionwould cause longer traversals in Algorithm14 PrunedMultiTraversal, while het-
erogeneous and sparse edge distributionwould result in shorter traversals. Thus, the internal edge distribution structure, which is dif-
ferent in each network, causes different maintenance speedups. Similar speedup factors are also observed for mixed edge insertions
and deletions with a one-to-one ratio. A higher speedup of more than five orders of magnitude was achieved for the edge deletion
only workload.
Fig. 4. k-Core maintenance algorithm speedup over construction algorithms for shrinking window scenario.



Fig. 5. k-Core maintenance algorithm speedup over construction algorithms for moving window scenario.

145H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
7.3. Batch maintenance experiments

In order to investigate the speedup provided by our batch update approach for maintaining themulti-k-core subgraph, we ran ex-
periments on different datasets. To measure the performance improvement of the batch processing approach compared to individual
updates and full reconstruction, we set up experiments for each dataset and for each update scenario described in Section 7. For each
experiment, we used a 10 K batch size. Figs. 6–8 show batch processing speedup versus individual processing in k-core individual
Fig. 6. 10 K sized batch maintenance speedups for extending window scenario.

Fig. 7. 10 K sized batch maintenance speedups for shrinking window scenario.



Fig. 8. 10 K sized batch maintenance speedups for moving window scenario.

146 H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
maintenance and reconstruction for three different update scenarios and 9 different datasets. The speedup is shown in the y-axis in
the log-scale. Each figure illustrates the batch maintenance speedup versus both individual maintenance and reconstruction.

For the Extendingwindow scenario, in Fig. 6we get a greater performance improvement of four to five orders ofmagnitude speed-
up when compared with the reconstruction case. We get up to 2 orders of magnitude speedup compared to individual maintenance.
When compared with Fig. 3, we figured out that the batch window extending approach provides a more stable speedup ratio for
different datasets. For instance, the Cit-Patent dataset shows the largest speedup in the batchmaintenance case compared to individ-
ualmaintenance,while it provides the smallest speedup in the individualmaintenance case. In total, its speedup is close to the average
speedup of other datasets. For the shrinkingwindow scenario, the batch processing approach does not provide significant speedup, as
the deletion cost in individual processing is already minimal, i.e., close to the auxiliary maintenance cost plus the base HBase update
times. The moving window case provides speedups in between the extending and shrinking window cases, which is as expected
considering that it is a mixture of insertion and deletion operations. The experiment results show that batch processing provides
stable speedup for all scenarios and datasets with different sizes and topologies.

8. Conclusions

To the best of our knowledge this paper is the first to propose a horizontally scaling solution on the Big Data platform for
multi-resolution social network community identification and maintenance. By using k-core as the measure of community intensity,
we proposed multi-k-core construction and incremental maintenance algorithms and ran experiments to demonstrate orders of
magnitude speedup with the aggressive pruning and fairly lowmaintenance overhead in the majority of graph updates at relatively
high k-valued cores.We further extended algorithms to handle batchmaintenance of awindowof updates, which provides larger and
more stable speedup for multi-k-core maintenance.

For the simplicity of the presentation,we left out themetadata and content associatedwith graph vertices and edges. In practice, a
k-core subgraph is often associatedwith application context and semanticmeaning. Our efficientmaintenance algorithms nowenable
many practical applications to keep many k-core materialized views up-to-date and ready for user exploration.

We provided a distributed implementation of the algorithms on top of Apache HBase, leveraging its horizontal scaling, range-based
data partitioning, and the newly introduced coprocessor framework. Our implementation took full advantage of the distributed, parallel
processing of the HBase Coprocessors. Building the graph data store and processing on HBase also benefits from the robustness of the
platform and its future improvements.

Acknowledgments

This research was sponsored by DARPA under agreements no. W911NF-11-C-0200 and W911NF-12-C-0028. We thank TUBITAK
(The Scientific and Technological Research Council of Turkey) for supporting this work in part with project 113E274. The authors
would like to thank the anonymous reviewers for their helpful comments.

References

[1] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, O. Ulusoy, Multi-resolution social network community identification andmaintenance on big data platform, Big Data
(BigData Congress), 2013 IEEE International Congress on 2013, pp. 102–109, http://dx.doi.org/10.1109/BigData.Congress.2013.23 (doi:10.1109/
BigData.Congress.2013.23).

[2] Z. Zeng, J. Wang, L. Zhou, G. Karypis, http://doi.acm.org/10.1145/1242524.1242530Out-of-core coherent closed quasi-clique mining from large dense graph
databases, ACM Trans. Database Syst. 32 (2). http://dx.doi.org/10.1145/1242524.1242530 doi:10.1145/1242524.1242530. URL http://doi.acm.org/10.1145/
1242524.1242530

http://dx.doi.org/10.1109/BigData.Congress.2013.23


147H. Aksu et al. / Data & Knowledge Engineering 100 (2015) 133–147
[3] R. Zhou, C. Liu, J.X. Yu, W. Liang, B. Chen, J. Li, Findingmaximal k-edge-connected subgraphs from a large graph, Proceedings of the 15th International Conference
on Extending Database Technology, EDBT'12, ACM, New York, NY, USA 2012, pp. 480–491, http://dx.doi.org/10.1145/2247596.2247652 (http://dx.doi.org/
10.1145/2247596.2247652 doi:10.1145/2247596.2247652. URL http://doi.acm.org/10.1145/2247596.2247652).

[4] V. Batagelj, M. Zaversnik, An o(m) algorithm for cores decomposition of networks, CoRR cs.DS/0310049
[5] H. AKSU, M. Canim, Y. Chang, I. Korpeoglu, O. Ulusoy, Distributed k-core viewmaterialization and maintenance for large dynamic graphs, IEEE Trans. Knowl. Data

Eng. (99) (2014) 1, http://dx.doi.org/10.1109/TKDE.2013.2297918 (doi:10.1109/TKDE.2013.2297918.).
[6] hbase.apache.org.
[7] followerwonk.com.
[8] socialping.com.
[9] simplymeasured.com.

[10] A. Lancichinetti, S. Fortunato, Community detection algorithms: a comparative analysis, Phys. Rev. E. 80 (5) (2009) 056117.
[11] L. Danon, A. Daz-Guilera, J. Duch, A. Arenas, Comparing community structure identification, J. Stat. Mech: Theory Exp. 2005 (09) (2005) (P09008).
[12] C. Tantipathananandh, T. Berger-Wolf, D. Kempe, A framework for community identification in dynamic social networks, Proceedings of the 13th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD'07, ACM, New York, NY, USA 2007, pp. 717–726, http://dx.doi.org/10.1145/1281192.
1281269 (http://dx.doi.org/10.1145/1281192.1281269 doi:10.1145/1281192.1281269. URL http://doi.acm.org/10.1145/1281192.1281269).

[13] S.B. Seidman, Net work structure and minimum degreehttp://www.sciencedirect.com/science/article/pii/037887338390028X Soc. Networks 5 (3) (1983)
269–287, http://dx.doi.org/10.1016/0378-8733(83)90028-X (doi:10.1016/0378-8733(83)90028-X. URL http://www.sciencedirect.com/science/article/pii/
037887 338390028X.).

[14] X. Shi, M. Bonner, L. Adamic, A.C. Gilbert, The very small world of the well-connected, SIGWEB Newsl. (Winter) 4 (10) (2009) 1–4, http://dx.doi.org/10.1145/
1457507.1457511 http://dx.doi.org/10/1145/1457507.1457511 doi:10/1145/1457507.1457511. URL http://doi.acm.org/10/1145/1457507.1457511.

[15] F.D. Malliaros, M. Vazirgiannis, To stay or not to stay: modeling engagement dynamics in social graphs, Proceedings of the 22nd ACM International Conference on
Conference on Information & Knowledge Management, CIKM'13, ACM, New York, NY, USA 2013, pp. 469–478, http://dx.doi.org/10.1145/2505515.2505561
http://dx.doi.org/10.1145/2505515.2505561 doi:10.1145/2505515.2505561. URL http://doi.acm.org/10.1145/2505515.2505561.

[16] D. Garcia, P. Mavrodiev, F. Schweitzer, Social resilience in online communities: the autopsy of Friendster, Proceedings of the First ACM Conference on Online
Social Networks, COSN'13, ACM, New York, NY, USA 2013, pp. 39–50, http://dx.doi.org/10.1145/2512938.2512946 (http://dx.doi.org/10.1145/
2512938.2512946 doi:10.1145/2512938.2512946. URL http://doi.acm.org/10.1145/2512938.2512946).

[17] W. Cui, Y. Xiao, H. Wang,W.Wang, Local search of communities in large graphs, Proceedings of the 2014 ACM SIGMOD International Conference onManagement
of Data, SIGMOD'14, ACM, New York, NY, USA 2014, pp. 991–1002, http://dx.doi.org/10.1145/2588555.2612179 (http://dx.doi.org/10.1145/2588555.2612179
doi:10.1145/2588555.2612179. URL http://doi.acm.org/10.1145/2588555.2612179).

[18] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113, http://dx.doi.org/10.1145/1327452.
1327492 http://dx.doi.org/10.1145/1327452.1327492 doi:10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/1327452.1327492.

[19] hadoop.apache.org.
[20] J. Cohen, Graph twiddling in a mapreduce world, Comput. Sci. Eng. 11 (4) (2009) 29–41, http://dx.doi.org/10.1109/MCSE.2009.120.
[21] J. Lin, M. Schatz, Design patterns for efficient graph algorithms inmapreduce, Proceedings of the EighthWorkshop onMining and Learning with Graphs, MLG'10,

ACM, New York, NY, USA 2010, pp. 78–85, http://dx.doi.org/10.1145/1830252.1830263 (http://dx.doi.org/10.1145/1830252.1830263 doi:10.1145/
1830252.1830263. URL http://doi.acm.org/10.1145/1830252.1830263).

[22] U. Kang, C.E. Tsourakakis, C. Faloutsos, Pegasus: mining peta-scale graphs, Knowl. Inf. Syst. 27 (2) (2011) 303–325, http://dx.doi.org/10.1007/s10115-010-0305-0
(http://dx.doi.org/10.1007/s10115-010-0305-0 doi:10.1007/s10115-010-0305-0. URL http://dx.doi.org/10.1007/s10115-010-0305-0).

[23] U. Kang, H. Tong, J. Sun, C.-Y. Lin, C. Faloutsos, Gbase: a scalable and general graph management system, Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD'11, ACM, New York, NY, USA 2011, pp. 1091–1099, http://dx.doi.org/10.1145/2020408.2020580
(http://dx.doi.org/10.1145/2020408.2020580 doi:10.1145/2020408.2020580. URL http://doi.acm.org/10.1145/2020408.2020580).

[24] Y. Bu, B. Howe, M. Balazinska, M.D. Ernst, Haloop: efficient iterative data processing on large clustershttp://dl.acm.org/citation.cfm?id=1920841.1920881 Proc.
VLDB Endow 3 (1-2) (2010) 285–296 (URL http://dl.acm.org/citation.cfm?id=1920841.1920881).

[25] J. Huang, D. J. Abadi, K. Ren, Scalable sparql querying of large rdf graphs, Proc. VLDB Endow. 4 (11).
[26] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel: a system for large-scale graph processing, Proceedings of the 2010

International Conference on Management of Data, SIGMOD'10, ACM, New York, NY, USA 2010, pp. 135–146, http://dx.doi.org/10.1145/1807167.1807184
(http://dx.doi.org/10.1145/1807167.1807184 doi:10.1145/1807167.1807184. URL http://doi.acm.org/10.1145/1807167.1807184).

[27] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, Proceedings of the 5th ACM/Usenix
Internet Measurement Conference (IMC'07), San Diego, CA, 2007.

[28] snap.stanford.edu/.

http://dx.doi.org/10.1145/2247596.2247652
http://dx.doi.org/10.1109/TKDE.2013.2297918
http://hbase.apache.org
http://followerwonk.com
http://socialping.com
http://simplymeasured.com
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0045
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0050
http://dx.doi.org/10.1145/1281192.1281269
http://dx.doi.org/10.1145/1281192.1281269
http://dx.doi.org/10.1016/0378-8733(83)90028-X
http://dx.doi.org/10.1145/1457507.1457511
http://dx.doi.org/10.1145/1457507.1457511
http://dx.doi.org/10.1145/2505515.2505561
http://dx.doi.org/10.1145/2512938.2512946
http://dx.doi.org/10.1145/2588555.2612179
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://hadoop.apache.org
http://dx.doi.org/10.1109/MCSE.2009.120
http://dx.doi.org/10.1145/1830252.1830263
http://dx.doi.org/10.1007/s10115-010-0305-0
http://dx.doi.org/10.1145/2020408.2020580
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0115
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0115
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0115
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0115
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0115
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0115
http://dx.doi.org/10.1145/1807167.1807184
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0125
http://refhub.elsevier.com/S0169-023X(15)00034-8/rf0125
http://snap.stanford.edu/

	Efficient community identification and maintenance at multiple resolutions on distributed datastores
	1. Introduction
	2. Motivating example
	3. Related work
	4. Distributed multi-k-core construction
	4.1. Base algorithm
	4.2. Multi-k-core construction

	5. Incremental multi-k-core maintenance
	5.1. Edge insertion
	5.2. Edge deletion

	6. Batch multi-k-core maintenance
	7. Performance evaluation
	7.1. System setup and datasets
	7.2. Experiments
	7.3. Batch maintenance experiments

	8. Conclusions
	Acknowledgments
	References


