
M. Boughanem et al. (Eds.): ECIR 2009, LNCS 5478, pp. 628–636, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Cost-Aware Strategy for Query Result Caching in
Web Search Engines

Ismail Sengor Altingovde, Rifat Ozcan, and Özgür Ulusoy

Department of Computer Engineering, Bilkent University, Ankara, Turkey
{ismaila,rozcan,oulusoy}@cs.bilkent.edu.tr

Abstract. Search engines and large scale IR systems need to cache query re-
sults for efficiency and scalability purposes. In this study, we propose to explic-
itly incorporate the query costs in the static caching policy. To this end, a
query’s cost is represented by its execution time, which involves CPU time to
decompress the postings and compute the query-document similarities to obtain
the final top-N answers. Simulation results using a large Web crawl data and a
real query log reveal that the proposed strategy improves overall system per-
formance in terms of the total query execution time.

1 Introduction

Caching is one of the most crucial mechanisms that is employed in the large scale
information retrieval (IR) systems and Web search engines (WSEs) for efficiency and
scalability purposes. Search engines cache the query result pages and/or posting lists
of the terms that appear in the queries. A search engine may employ a static or dy-
namic cache of such entries, or both [5]. In a static result cache, the cache is typically
populated with the results of the most-frequent queries that are extracted from the
previous logs of WSEs (see [10] for alternative strategies). The cache content remains
intact until the next periodical update. In a dynamic cache, the content changes dy-
namically with respect to the query traffic.

In the context of WSEs, the literature involves several proposals concerning what
and how to cache. However, especially for the case of the query result caching, the
cost of a “miss” is usually disregarded, and all queries are assumed to have the same
cost. In this paper, we essentially concentrate on the static caching of the query results
and propose a cost-aware strategy that explicitly makes use of the query costs while
determining the cache contents.

In the literature, non-uniform miss costs are exploited in the caching policies in
several domains such as WWW proxies and memory systems [4, 7, 8]. For WSEs, we
are aware of only one earlier study that uses the notion of costs in a similar manner to
us. In that work [6], Garcia proposes to use a heterogeneous cache that can store all
possible data structures (posting lists, accumulator sets, query results, etc.) to process
a query and each of these entry types is associated with a cost function. However, the
cost function in that work is essentially based on the disk access times and has to be
recomputed for each cache entry after every modification of the cache. In contrast,
our cost function is based on the actual query processing time and can be computed

 A Cost-Aware Strategy for Query Result Caching in Web Search Engines 629

for once. In the other studies, the notion of the cost is usually employed for some
other purposes (e.g., for computing the optimal cache space split in [1]) but not to
decide the actual contents of a results cache.

Our research is motivated by the following hypotheses. First, the queries submitted to
a search engine would have significantly varying costs in terms of several aspects (e.g.,
CPU processing time, network requirements, etc.). Thus, it is not realistic to assume that
all cache misses would incur the same cost. Second, the frequency of the query may not
always be an accurate indicator of its cost. Thus, using the popularity or recentness of a
query alone (as in static and dynamic caching setups, respectively) may not always lead
to the optimum performance, and a cost-aware strategy may provide further gains.

In this study, we first verify the validity of these hypotheses for our experimental
setup. Next, we introduce a cost-aware strategy for the static caching of the query
results. In the preliminary simulation setup discussed here, we define the query cost in
terms of the CPU execution time, which involves decompressing the postings, com-
puting the query-document similarities and determining the top-N document identifi-
ers in the final answer set. Our simulation results using a large Web crawl data and
real query logs reveal that the cost-aware strategy improves overall system perform-
ance in terms of the total query processing time.

The rest of the paper is organized as follows. In the next section, we describe the
characteristics of our dataset and query log. Section 3 is devoted to the cost analysis
of the queries in the log. The cost-aware static caching is discussed and evaluated in
Section 4. We conclude and point to future research directions in Section 5.

2 Data Characteristics

Dataset. In this study, we use a subset of the terabyte-order crawl datasets provided
by the Stanford University’s WebBase Project Repository [12]. Our dataset includes
pages collected from US government Web sites during the first quarter of 2007. The
dataset is indexed by the Zettair search engine (http://www.seg.rmit.edu.au/zettair/)
without stemming and stopword removal. The dataset includes approximately 4.3
million pages, yielding an index of 7 GBs on disk (including the term offset informa-
tion in the posting lists).

Query log. We use a subset of the AOL Query Log (available at http://imdc.datcat.
org/collection/1-003M-5) which contains around 20 million queries of about 650K
people for a period of 3-months. Our subset contains around 1.1 million queries
(700K of them are distinct) from the first six weeks of the log. Queries submitted in
the first 3 weeks constitute the training set (to fill the static cache) whereas queries
from the second three weeks are reserved as the test set.

In this paper, the requests for the next result page of a query are considered as a
single query request, as in [2]. Another alternative would be interpreting each log en-
try as <query, result page number> pairs [5], which has been left as a future work.
Accordingly, we presume that, a fixed number of N results are cached per query.
Since N would be set to a small number in all practical settings, we presume that the
actual value of N would not significantly affect the findings in this paper. Here, we set
N as 30, as earlier works [11] report that in 95.7% of queries, users requested up to
only three result pages.

630 I.S. Altingovde, R. Ozcan, and Ö. Ulusoy

3 An Analysis of the Query Processing Cost

3.1 The Setup for the Cost Measurement

The underlying motivation for employing the result caching in WSEs (at the server
side) is reducing the burden of query processing. In a typical distributed environment,
the cost of query processing would involve several components. For a given query,
the central broker first consults its result cache, and if a cache-miss occurs, sends the
query to index nodes. Each index node should then fetch the corresponding posting
lists to main memory (if they are not already fetched) with the cost CDISK. Next, the
postings are processed and partial results are computed, with the cost CCPU. More spe-
cifically, the CPU cost involves the decompression of the posting lists (as they are
usually stored in a compressed form), computation of a similarity function between
the query and the postings, and finally obtaining the top-N documents as the
partial result. Then, each node sends its partial results to the central broker, with the
cost CNET, where they are merged. Finally, the central broker generates the snippets
for the query results, with the cost CSNIP, and sends the output page to the user. Thus,
the cost of query processing is the sum of all of these costs, i.e., CDISK + CCPU + CNET +
CSNIP.

For the purposes of this paper, we consider the CPU execution time (CCPU) as the
representative of the overall cost of a query. At the first sight, this decision seems to
leave out two other major components, disk access and network communication costs.
However, index nodes in a distributed architecture would probably store a large
amount of posting lists, if not all; in the main memory. Indeed, given the current ad-
vances in the hardware, it is possible to store all posting lists in the main memory, an
approach totally eliminating the cost of disk access (e.g., see [13]). Furthermore, the
time spent for disk access for a particular query depends on the execution order of the
queries and the current contents of operating system buffers, which may be unpredict-
able and hard to measure in an objective manner. For the issue of network costs, a
recent work states that for a distributed system interconnected via a LAN, the network
cost would only be a fraction of the query processing cost (see Table 2 in [1]). These
factors make neglecting disk and network costs an acceptable choice at this stage of
our work, though our research for incorporating these components to the cost model is
already underway. Finally, the snippet generation cost is also left out, since the effi-
ciency of the snippet generation is investigated in only a few previous studies, and
none of these discuss how the cost of snippet generation compares to other cost com-
ponents. This is another direction for future work.

In our setup, all distinct queries are processed using the Zettair search engine in
batch mode to obtain the CPU execution times. To be more accurate, we describe the
setup as follows.

• We use the Zettair in its default mode, which employs an early pruning strategy
that dynamically limits the number of accumulators used for a query (see [9] for
details). This is a crucial choice for the practicality of our proposal, since no real
WSE would make a full evaluation and the CPU execution time clearly depends
on the partial evaluation strategy employed in the system.

 A Cost-Aware Strategy for Query Result Caching in Web Search Engines 631

• All query terms in the log are converted to lower case. The queries are modified
to include an additional “AND” conjunct between each term, so that the search
engine runs in the “conjunctive” mode. This is the default search mode of the ma-
jor search engines. Stopwords are not eliminated from the queries. No stemming
algorithm is applied. Finally, all phrase queries are discarded.

3.2 Experiments

In this section, our goal is to obtain and analyze the query processing costs using the
log and document collection described in Section 2. However, our initial experiments
revealed that an unusually large number of queries return no answer for our dataset.
We attribute this situation mostly to the fact that our dataset is a Web crawl from the
.gov domain in 2007, whereas query log includes requests from a general domain
search engine in 2006 (see [15] for a related discussion on the “appropriateness” of a
log for a dataset). An additional factor can be the conjunctive processing of the que-
ries. Nevertheless, we simply discarded all queries from our query log that return an
empty answer. The remaining set, so called original query log, includes 700K query
instances, 357K of which are distinct.

A further observation from the preliminary experiments is that some of the most
frequent queries in the query log appear much less frequently in the dataset. For in-
stance, “yahoo com” is in among the most frequent queries in the log, whereas there
are relatively few documents with both words in our collection. To explore the possi-
ble affects of this situation on our experimental results, we obtained a more restricted
subset, semantically aligned query log, from the original query log. In particular, fol-
lowing a similar approach discussed in a recent work [14], we first submitted all dis-
tinct queries in the original query log to Yahoo! search engine’s “Web search” service
[16] to get the top-10 results. Next, we only kept those queries that yield at least one
result from the .gov domain. In this latter set, there remain 83K queries and 48K of
them are distinct.

For each of these logs, we obtained the top-30 results and CPU execution time of
all distinct queries using the setup described in the previous section. The experiments
are repeated four times and the results revealed that the computed CPU costs are sta-
ble and can be used as the basis of the following discussions.

In Figure 1, we show the normalized log-log scatter plots that relate the query’s fre-
quency in the log and result frequency in the collection. We can deduce that for both
query logs, there is a low correlation between query frequency and result frequency.
Interestingly, the plots for the two logs do not seem to differ a lot, implying that select-
ing only queries that are semantically more related to the data does not really change
the distribution of the result frequency in our setup. This may be due to the conjunctive
processing of the queries. Thus, we conclude that original query log does not have a
bias in this sense and both query logs can be used for further experimentation.

As mentioned before, our research is motivated by the hypotheses that the queries
submitted to a search engine can have very different processing costs and the cost of a
query may not be correlated with its frequency. In Figure 2, we provide the
normalized log-log scatter plots that relate the query’s frequency in the log and query
evaluation time, i.e., CCPU. These plots reveal adequate evidences to support the above
hypotheses. First, we see that the query execution time covers a wide range from a

632 I.S. Altingovde, R. Ozcan, and Ö. Ulusoy

fraction of a millisecond to a few thousand milliseconds. The majority of the queries
are uniformly distributed between 1 and 100 milliseconds, but still showing large
variations. Thus, it may be useful to devise cost-aware strategies in the caching
mechanisms. Second, we cannot derive a high positive correlation between the query
frequency and the processing times. That is, a very frequent query may be cheaper
than a less-frequent query. This can be explained by the following arguments: in ear-
lier works, it is stated that the query terms and collection terms may not be highly
correlated (e.g., correlation between Chilean crawl data and query log is found to be
only 0.15 [3]), which means that a highly frequent query may occur in less number of
documents, and be cheaper to process. Furthermore, even for the cases where the re-
verse is true (i.e., the frequent queries appear in more number of documents), the
processing time does not necessarily follow the proportion, due to the compression
and pruning techniques applied during the query processing (e.g., see Fig. 10 in [1]).

 (a) (b)

Fig. 1. Normalized log-log scatter plot of the query result frequency in the dataset and query
frequency in the a) original, and b) semantically aligned, query logs

 (a) (b)

Fig. 2. Normalized log-log scatter plot of the query execution time and query frequency in the
a) original, and b) semantically aligned, query logs

 A Cost-Aware Strategy for Query Result Caching in Web Search Engines 633

Our findings in this section are encouraging in the following ways. We observe
that the query processing costs, and accordingly, miss costs are non-uniform and may
vary a lot among different queries. Furthermore, this variation is not directly corre-
lated to the query frequency, a feature already employed in the current caching strate-
gies. These call for a cost-aware caching strategy, which we discuss next.

4 Cost-Aware Static Caching

4.1 Cost-Aware Caching (CAC) Policy

Typically, a static cache is populated with the most frequent queries in the previous
logs of a WSE. We call this the frequency-based strategy. However, since the miss
costs of the queries are not uniform, the improvement promises of such a strategy
evaluated in terms of say, hit-rate, may not really translate to actual improvements
that may be measured in terms of the query processing time or throughput. To remedy
this problem, we embed the miss costs into the static caching policy, as follows. Simi-
lar to the approach taken in [1], filling a static cache with a predefined capacity can be
reduced to the well-known knapsack problem, where queries are the items with cer-
tain sizes and values. In our case, we presume that cache capacity is expressed in
terms of the number of queries, i.e., each query (and its results) is allocated a unit
space. Then, the question is how to fill the knapsack with the items that are most
valuable, where the value of an item is the execution time saving obtained by select-
ing this item. Thus, we define the cost-aware caching (CAC) strategy as follows.

For a query q with cost Cq and frequency Fq, the expected value of the query q can
be simply computed as the product of these two figures, i.e., Cq x Fq. That is, we ex-
pect that the query would be as frequent in the future as in the past logs, and caching
it would provide a gain as expressed by this formula. During the simulations reported
below, we observed that this expectation may not hold in a linearly proportional man-
ner, i.e., queries that have occurred with some high frequency still tend to appear with
a high frequency whereas the queries with relatively less frequency may appear even
more sparsely, or totally fade away in the future. For this reason, we use a slightly
modified version of the formula that is biased to emphasize the higher frequency val-
ues and depreciate the lower ones, as shown below. In the next section, we provide
experimental results for the cases where k ≥ 1.

k
qq xFCqValue =)(

Given the above value function and a cache of size M, the cost-aware strategy adapts
a greedy approach, i.e., locates the most valuable M queries in the cache.

4.2 Simulation Results

In this section, we compare two strategies for filling the static result cache of a WSE,
namely the frequency-based and cost-aware strategies. As described in Section 2, the
query log is split into training and test sets, and the former is used to fill the caches of
varying sizes whereas the latter is used to evaluate the performance. The training set
includes 211,854 and 28,794 distinct queries for the original and semantically aligned

634 I.S. Altingovde, R. Ozcan, and Ö. Ulusoy

logs, respectively. Cache size is in terms of the number of the queries. Remarkably,
we don’t measure the cache hit rate due to non-uniform miss costs, but use the total
query processing time for evaluation. For cache hits, we assume that the processing
time is negligible, i.e., the cost is 0. To simulate the cache misses, we use the query
processing costs computed by the search engine as described in Section 3. That is, we
compute and record the CPU execution times (CCPU) of all distinct queries in batch
mode. Whenever a cache miss occurs, the cost of this query is retrieved and added to
the total query processing time.

Table 1. Query processing times (in seconds) of different caching strategies for original query
log. Percentage reductions for the CAC strategies are shown in the nearby columns.

Cache
Size

Freq.
Cache

CAC
(k=1)

%
red.

CAC
(k=2.5)

%
red.

CAC
(k=3)

%
red.

Optimal
CAC

%
red.

1000 18,412 17,798 3.34 17,702 3.85 17,769 3.49 17,145 6.88
5000 17,468 17,262 1.18 16,909 3.20 16,953 2.95 15,963 8.62
10000 17,099 17,000 0.58 16,655 2.60 16,638 2.69 15,651 8.47
30000 16,549 16,391 0.95 16,154 2.39 16,164 2.32 15,499 6.35
50000 16,357 16,007 2.14 15,910 2.73 15,910 2.73 15,498 5.25
70000 16,158 15,763 2.45 15,723 2.69 15,726 2.68 15,498 4.08
90000 16,081 15,653 2.66 15,636 2.77 15,637 2.76 15,498 3.62
150000 15,792 15,517 1.74 15,517 1.74 15,517 1.74 15,498 1.86
211854 15,498 15,498 0.00 15,498 0.00 15,498 0.00 15,498 0.00

Table 2. Query processing times (in seconds) of different caching strategies for semantically
aligned log. Percentage reductions for the CAC strategies are shown in the nearby columns.

Cache
Size

Freq.
Cache

CAC
(k=1)

%
red.

CAC
(k=2.5)

%
red.

CAC
(k=3)

%
red.

Optimal
CAC

%
red.

1000 3,149 3,152 -0.09 3,067 2.62 3,075 2.37 2,899 7.94
2000 3,090 3,105 -0.50 3,034 1.80 3,031 1.90 2,846 7.88
3000 3,056 3,063 -0.26 3,017 1.26 3,014 1.37 2,835 7.22
4000 3,030 3,020 0.33 2,987 1.41 2,991 1.30 2,834 6.48
5000 3,001 2,996 0.17 2,952 1.63 2,959 1.41 2,834 5.57
10000 2,959 2,896 2.13 2,888 2.38 2,892 2.26 2,834 4.22
15000 2,927 2,857 2.40 2,854 2.49 2,854 2.47 2,834 3.18
20000 2,893 2,841 1.80 2,840 1.83 2,840 1.83 2,834 2.04
28794 2,834 2,834 0.00 2,834 0.00 2,834 0.00 2,834 0.00

In Tables 1 and 2, we provide the total query execution time using the frequency-

based and cost-aware caching strategies for each query log. We also experimented
with different values of k for CAC strategies. Our results reveal that using k values
greater than 1 reflects the query repetition patterns better, which conforms to our dis-
cussion in Section 4.1. The best results are obtained for k=2.5 and using higher values
do not provide further improvements.

We also provide the potential gains for the optimal cost-aware caching strategy, in
which case the test queries are assumed to be known beforehand. Since we know the
actual future frequencies of the training queries, we fill the cache with those queries

 A Cost-Aware Strategy for Query Result Caching in Web Search Engines 635

that would yield the highest C x F values. Clearly, this is only reported to demonstrate
how far away the proposed strategy is from the optimal.

In the experiments, cost-aware strategy decreases the overall execution time (up to
3%) with respect to the frequency-based strategy. It is also remarkable that the gains
for the optimal cache is much higher, which implies that a better function for the cost-
aware caching may provide higher improvements.

Another important observation is that the optimal cache saturates very early as it
stores all of the training queries that would ever be seen in the test set. As this early
saturation also implies, the majority of the requests in the test set yield compulsory
misses, i.e., misses for the queries that have never seen in the training set. We envi-
sion that, coupling the static cache with a dynamic cache would partially remedy this
situation, as the further requests for some of those newly seen queries can be an-
swered from the dynamic cache. Thus, the gains of the cost-aware strategy would be
more emphasized in a hybrid caching environment.

5 Conclusion

We propose a cost-aware caching strategy for the static caching of the query results in
WSEs. Our experiments with a large crawl data and a real life query log reveal prom-
ising results and reduce the total query processing times up to 3%. The future work
involves applying the cost-aware techniques for dynamic and hybrid caching.

Acknowledgments. This work is supported by The Scientific and Technological Re-
search Council of Turkey (TÜBİTAK) by the grant number 108E008.

References

1. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri, F.: The
impact of caching on search engines. In: Proc. of SIGIR 2007, Netherlands, pp. 183–190
(2007)

2. Baeza-Yates, R., Junqueira, F., Plachouras, V., Witschel, H.F.: Admission policies for
caches of search engine results. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS,
vol. 4726, pp. 74–85. Springer, Heidelberg (2007)

3. Baeza-Yates, R., Saint-Jean, F.: A three level search engine index based in query log dis-
tribution. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS,
vol. 2857, pp. 56–65. Springer, Heidelberg (2003)

4. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In: Proc. of the USENIX
Symposium on Internet Technologies and Systems, Monterey, California (1997)

5. Fagni, T., Perego, R., Silvestri, F., Orlando, S.: Boosting the performance of Web search
engines: Caching and prefetching query results by exploiting historical usage data. ACM
TOIS 24(1), 51–78 (2006)

6. Garcia, S.: Search Engine Optimisation Using Past Queries. Ph.D thesis, RMIT (2007)
7. Jeong, J., Dubois, M.: Cache Replacement Algorithms with Nonuniform Miss Costs. IEEE

Transactions on Computers 55(4), 353–365 (2006)

636 I.S. Altingovde, R. Ozcan, and Ö. Ulusoy

8. Liang, S., Chen, K., Jiang, S., Zhang, X.: Cost-Aware Caching Algorithms for Distributed
Storage Servers. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 373–387. Springer,
Heidelberg (2007)

9. Lester, N., Moffat, A., Webber, W., Zobel, J.: Space-Limited Ranked Query Evaluation
Using Adaptive Pruning. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y.,
Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 470–477. Springer, Heidelberg
(2005)

10. Ozcan, R., Altingovde, I.S., Ulusoy, Ö.: Static query result caching revisited. In: Proc. of
WWW 2008, Beijing, China, pp. 1169–1170 (2008)

11. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web
search engine query log. SIGIR Forum 33(1), 6–12 (1999)

12. Stanford University WebBase Project,
 http://www-diglib.stanford.edu/~testbed/doc2/WebBase

13. Strohman, T., Croft, W.B.: Efficient document retrieval in main memory. In: Proc. of
SIGIR 2007, Netherlands, pp. 175–182 (2007)

14. Tsegay, Y., Turpin, A., Zobel, J.: Dynamic index pruning for effective caching. In: Proc.
of CIKM 2007, Lisbon, Portugal, pp. 987–990 (2007)

15. Webber, W., Moffat, A.: In Search of Reliable Retrieval Experiments. In: Proceedings of
the Tenth Australasian Document Computing Symposium, ADCS, pp. 26–33 (2005)

16. Yahoo! “Web search” Web service (2008),
 http://developer.yahoo.com/search/web/V1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

