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Abstract. Search engines and large scale IR systems need to cache query re-
sults for efficiency and scalability purposes. In this study, we propose to explic-
itly incorporate the query costs in the static caching policy. To this end, a 
query’s cost is represented by its execution time, which involves CPU time to 
decompress the postings and compute the query-document similarities to obtain 
the final top-N answers. Simulation results using a large Web crawl data and a 
real query log reveal that the proposed strategy improves overall system per-
formance in terms of the total query execution time. 

1   Introduction 

Caching is one of the most crucial mechanisms that is employed in the large scale 
information retrieval (IR) systems and Web search engines (WSEs) for efficiency and 
scalability purposes. Search engines cache the query result pages and/or posting lists 
of the terms that appear in the queries. A search engine may employ a static or dy-
namic cache of such entries, or both [5]. In a static result cache, the cache is typically 
populated with the results of the most-frequent queries that are extracted from the 
previous logs of WSEs (see [10] for alternative strategies). The cache content remains 
intact until the next periodical update. In a dynamic cache, the content changes dy-
namically with respect to the query traffic.  

In the context of WSEs, the literature involves several proposals concerning what 
and how to cache. However, especially for the case of the query result caching, the 
cost of a “miss” is usually disregarded, and all queries are assumed to have the same 
cost. In this paper, we essentially concentrate on the static caching of the query results 
and propose a cost-aware strategy that explicitly makes use of the query costs while 
determining the cache contents.  

In the literature, non-uniform miss costs are exploited in the caching policies in 
several domains such as WWW proxies and memory systems [4, 7, 8]. For WSEs, we 
are aware of only one earlier study that uses the notion of costs in a similar manner to 
us. In that work [6], Garcia proposes to use a heterogeneous cache that can store all 
possible data structures (posting lists, accumulator sets, query results, etc.) to process 
a query and each of these entry types is associated with a cost function. However, the 
cost function in that work is essentially based on the disk access times and has to be 
recomputed for each cache entry after every modification of the cache. In contrast, 
our cost function is based on the actual query processing time and can be computed 
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for once. In the other studies, the notion of the cost is usually employed for some 
other purposes (e.g., for computing the optimal cache space split in [1]) but not to 
decide the actual contents of a results cache.  

Our research is motivated by the following hypotheses. First, the queries submitted to 
a search engine would have significantly varying costs in terms of several aspects (e.g., 
CPU processing time, network requirements, etc.). Thus, it is not realistic to assume that 
all cache misses would incur the same cost. Second, the frequency of the query may not 
always be an accurate indicator of its cost. Thus, using the popularity or recentness of a 
query alone (as in static and dynamic caching setups, respectively) may not always lead 
to the optimum performance, and a cost-aware strategy may provide further gains.  

In this study, we first verify the validity of these hypotheses for our experimental 
setup. Next, we introduce a cost-aware strategy for the static caching of the query 
results. In the preliminary simulation setup discussed here, we define the query cost in 
terms of the CPU execution time, which involves decompressing the postings, com-
puting the query-document similarities and determining the top-N document identifi-
ers in the final answer set. Our simulation results using a large Web crawl data and 
real query logs reveal that the cost-aware strategy improves overall system perform-
ance in terms of the total query processing time. 

The rest of the paper is organized as follows. In the next section, we describe the 
characteristics of our dataset and query log. Section 3 is devoted to the cost analysis 
of the queries in the log. The cost-aware static caching is discussed and evaluated in 
Section 4. We conclude and point to future research directions in Section 5.  

2   Data Characteristics  

Dataset. In this study, we use a subset of the terabyte-order crawl datasets provided 
by the Stanford University’s WebBase Project Repository [12]. Our dataset includes 
pages collected from US government Web sites during the first quarter of 2007. The 
dataset is indexed by the Zettair search engine (http://www.seg.rmit.edu.au/zettair/) 
without stemming and stopword removal. The dataset includes approximately 4.3 
million pages, yielding an index of 7 GBs on disk (including the term offset informa-
tion in the posting lists).  

Query log. We use a subset of the AOL Query Log (available at http://imdc.datcat. 
org/collection/1-003M-5) which contains around 20 million queries of about 650K 
people for a period of 3-months. Our subset contains around 1.1 million queries 
(700K of them are distinct) from the first six weeks of the log. Queries submitted in 
the first 3 weeks constitute the training set (to fill the static cache) whereas queries 
from the second three weeks are reserved as the test set.  

In this paper, the requests for the next result page of a query are considered as a 
single query request, as in [2]. Another alternative would be interpreting each log en-
try as <query, result page number> pairs [5], which has been left as a future work. 
Accordingly, we presume that, a fixed number of N results are cached per query. 
Since N would be set to a small number in all practical settings, we presume that the 
actual value of N would not significantly affect the findings in this paper. Here, we set 
N as 30, as earlier works [11] report that in 95.7% of queries, users requested up to 
only three result pages. 
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3   An Analysis of the Query Processing Cost 

3.1   The Setup for the Cost Measurement 

The underlying motivation for employing the result caching in WSEs (at the server 
side) is reducing the burden of query processing. In a typical distributed environment, 
the cost of query processing would involve several components. For a given query, 
the central broker first consults its result cache, and if a cache-miss occurs, sends the 
query to index nodes. Each index node should then fetch the corresponding posting 
lists to main memory (if they are not already fetched) with the cost CDISK. Next, the 
postings are processed and partial results are computed, with the cost CCPU. More spe-
cifically, the CPU cost involves the decompression of the posting lists (as they are 
usually stored in a compressed form), computation of a similarity function between 
the query and the postings, and finally obtaining the top-N documents as the  
partial result. Then, each node sends its partial results to the central broker, with the 
cost CNET, where they are merged. Finally, the central broker generates the snippets 
for the query results, with the cost CSNIP, and sends the output page to the user. Thus, 
the cost of query processing is the sum of all of these costs, i.e., CDISK + CCPU + CNET + 
CSNIP. 

For the purposes of this paper, we consider the CPU execution time (CCPU) as the 
representative of the overall cost of a query. At the first sight, this decision seems to 
leave out two other major components, disk access and network communication costs. 
However, index nodes in a distributed architecture would probably store a large 
amount of posting lists, if not all; in the main memory. Indeed, given the current ad-
vances in the hardware, it is possible to store all posting lists in the main memory, an 
approach totally eliminating the cost of disk access (e.g., see [13]). Furthermore, the 
time spent for disk access for a particular query depends on the execution order of the 
queries and the current contents of operating system buffers, which may be unpredict-
able and hard to measure in an objective manner.  For the issue of network costs, a 
recent work states that for a distributed system interconnected via a LAN, the network 
cost would only be a fraction of the query processing cost (see Table 2 in [1]). These 
factors make neglecting disk and network costs an acceptable choice at this stage of 
our work, though our research for incorporating these components to the cost model is 
already underway. Finally, the snippet generation cost is also left out, since the effi-
ciency of the snippet generation is investigated in only a few previous studies, and 
none of these discuss how the cost of snippet generation compares to other cost com-
ponents. This is another direction for future work.  

In our setup, all distinct queries are processed using the Zettair search engine in 
batch mode to obtain the CPU execution times. To be more accurate, we describe the 
setup as follows.  

• We use the Zettair in its default mode, which employs an early pruning strategy 
that dynamically limits the number of accumulators used for a query (see [9] for 
details). This is a crucial choice for the practicality of our proposal, since no real 
WSE would make a full evaluation and the CPU execution time clearly depends 
on the partial evaluation strategy employed in the system. 
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• All query terms in the log are converted to lower case. The queries are modified 
to include an additional “AND” conjunct between each term, so that the search 
engine runs in the “conjunctive” mode. This is the default search mode of the ma-
jor search engines. Stopwords are not eliminated from the queries. No stemming 
algorithm is applied. Finally, all phrase queries are discarded. 

3.2   Experiments 

In this section, our goal is to obtain and analyze the query processing costs using the 
log and document collection described in Section 2. However, our initial experiments 
revealed that an unusually large number of queries return no answer for our dataset. 
We attribute this situation mostly to the fact that our dataset is a Web crawl from the 
.gov domain in 2007, whereas query log includes requests from a general domain 
search engine in 2006 (see [15] for a related discussion on the “appropriateness” of a 
log for a dataset). An additional factor can be the conjunctive processing of the que-
ries. Nevertheless, we simply discarded all queries from our query log that return an 
empty answer. The remaining set, so called original query log, includes 700K query 
instances, 357K of which are distinct.  

A further observation from the preliminary experiments is that some of the most 
frequent queries in the query log appear much less frequently in the dataset. For in-
stance, “yahoo com” is in among the most frequent queries in the log, whereas there 
are relatively few documents with both words in our collection. To explore the possi-
ble affects of this situation on our experimental results, we obtained a more restricted 
subset, semantically aligned query log, from the original query log. In particular, fol-
lowing a similar approach discussed in a recent work [14], we first submitted all dis-
tinct queries in the original query log to Yahoo! search engine’s “Web search” service 
[16] to get the top-10 results. Next, we only kept those queries that yield at least one 
result from the .gov domain. In this latter set, there remain 83K queries and 48K of 
them are distinct. 

For each of these logs, we obtained the top-30 results and CPU execution time of 
all distinct queries using the setup described in the previous section. The experiments 
are repeated four times and the results revealed that the computed CPU costs are sta-
ble and can be used as the basis of the following discussions. 

In Figure 1, we show the normalized log-log scatter plots that relate the query’s fre-
quency in the log and result frequency in the collection. We can deduce that for both 
query logs, there is a low correlation between query frequency and result frequency. 
Interestingly, the plots for the two logs do not seem to differ a lot, implying that select-
ing only queries that are semantically more related to the data does not really change 
the distribution of the result frequency in our setup. This may be due to the conjunctive 
processing of the queries. Thus, we conclude that original query log does not have a 
bias in this sense and both query logs can be used for further experimentation.  

As mentioned before, our research is motivated by the hypotheses that the queries 
submitted to a search engine can have very different processing costs and the cost of a 
query may not be correlated with its frequency. In Figure 2, we provide the  
normalized log-log scatter plots that relate the query’s frequency in the log and query 
evaluation time, i.e., CCPU. These plots reveal adequate evidences to support the above 
hypotheses. First, we see that the query execution time covers a wide range from a 
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fraction of a millisecond to a few thousand milliseconds. The majority of the queries 
are uniformly distributed between 1 and 100 milliseconds, but still showing large 
variations. Thus, it may be useful to devise cost-aware strategies in the caching 
mechanisms. Second, we cannot derive a high positive correlation between the query 
frequency and the processing times.  That is, a very frequent query may be cheaper 
than a less-frequent query. This can be explained by the following arguments: in ear-
lier works, it is stated that the query terms and collection terms may not be highly 
correlated (e.g., correlation between Chilean crawl data and query log is found to be 
only 0.15 [3]), which means that a highly frequent query may occur in less number of 
documents, and be cheaper to process. Furthermore, even for the cases where the re-
verse is true (i.e., the frequent queries appear in more number of documents), the 
processing time does not necessarily follow the proportion, due to the compression 
and pruning techniques applied during the query processing (e.g., see Fig. 10 in [1]).  

 

      

                                   (a)                      (b) 

Fig. 1. Normalized log-log scatter plot of the query result frequency in the dataset and query 
frequency in the a) original, and b) semantically aligned, query logs 

   

                                  (a)                      (b) 

Fig. 2. Normalized log-log scatter plot of the query execution time and query frequency in the 
a) original, and b) semantically aligned, query logs 
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Our findings in this section are encouraging in the following ways. We observe 
that the query processing costs, and accordingly, miss costs are non-uniform and may 
vary a lot among different queries. Furthermore, this variation is not directly corre-
lated to the query frequency, a feature already employed in the current caching strate-
gies. These call for a cost-aware caching strategy, which we discuss next. 

4   Cost-Aware Static Caching 

4.1   Cost-Aware Caching (CAC) Policy 

Typically, a static cache is populated with the most frequent queries in the previous 
logs of a WSE. We call this the frequency-based strategy. However, since the miss 
costs of the queries are not uniform, the improvement promises of such a strategy 
evaluated in terms of say, hit-rate, may not really translate to actual improvements 
that may be measured in terms of the query processing time or throughput. To remedy 
this problem, we embed the miss costs into the static caching policy, as follows. Simi-
lar to the approach taken in [1], filling a static cache with a predefined capacity can be 
reduced to the well-known knapsack problem, where queries are the items with cer-
tain sizes and values. In our case, we presume that cache capacity is expressed in 
terms of the number of queries, i.e., each query (and its results) is allocated a unit 
space. Then, the question is how to fill the knapsack with the items that are most 
valuable, where the value of an item is the execution time saving obtained by select-
ing this item. Thus, we define the cost-aware caching (CAC) strategy as follows. 

For a query q with cost Cq and frequency Fq, the expected value of the query q can 
be simply computed as the product of these two figures, i.e., Cq x Fq. That is, we ex-
pect that the query would be as frequent in the future as in the past logs, and caching 
it would provide a gain as expressed by this formula. During the simulations reported 
below, we observed that this expectation may not hold in a linearly proportional man-
ner, i.e., queries that have occurred with some high frequency still tend to appear with 
a high frequency whereas the queries with relatively less frequency may appear even 
more sparsely, or totally fade away in the future. For this reason, we use a slightly 
modified version of the formula that is biased to emphasize the higher frequency val-
ues and depreciate the lower ones, as shown below. In the next section, we provide 
experimental results for the cases where k ≥ 1. 

k
qq xFCqValue =)(  

Given the above value function and a cache of size M, the cost-aware strategy adapts 
a greedy approach, i.e., locates the most valuable M queries in the cache. 

4.2   Simulation Results 

In this section, we compare two strategies for filling the static result cache of a WSE, 
namely the frequency-based and cost-aware strategies. As described in Section 2, the 
query log is split into training and test sets, and the former is used to fill the caches of 
varying sizes whereas the latter is used to evaluate the performance. The training set 
includes 211,854 and 28,794 distinct queries for the original and semantically aligned 
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logs, respectively. Cache size is in terms of the number of the queries. Remarkably, 
we don’t measure the cache hit rate due to non-uniform miss costs, but use the total 
query processing time for evaluation. For cache hits, we assume that the processing 
time is negligible, i.e., the cost is 0. To simulate the cache misses, we use the query 
processing costs computed by the search engine as described in Section 3. That is, we 
compute and record the CPU execution times (CCPU) of all distinct queries in batch 
mode. Whenever a cache miss occurs, the cost of this query is retrieved and added to 
the total query processing time.  

Table 1. Query processing times (in seconds) of different caching strategies for original query 
log. Percentage reductions for the CAC strategies are shown in the nearby columns. 

Cache 
Size  

Freq. 
Cache 

CAC 
(k=1) 

% 
red. 

CAC 
(k=2.5) 

% 
red. 

CAC 
(k=3) 

% 
red. 

Optimal 
CAC 

% 
red. 

1000 18,412 17,798 3.34 17,702 3.85 17,769 3.49 17,145 6.88 
5000 17,468 17,262 1.18 16,909 3.20 16,953 2.95 15,963 8.62 
10000 17,099 17,000 0.58 16,655 2.60 16,638 2.69 15,651 8.47 
30000 16,549 16,391 0.95 16,154 2.39 16,164 2.32 15,499 6.35 
50000 16,357 16,007 2.14 15,910 2.73 15,910 2.73 15,498 5.25 
70000 16,158 15,763 2.45 15,723 2.69 15,726 2.68 15,498 4.08 
90000 16,081 15,653 2.66 15,636 2.77 15,637 2.76 15,498 3.62 
150000 15,792 15,517 1.74 15,517 1.74 15,517 1.74 15,498 1.86 
211854 15,498 15,498 0.00 15,498 0.00 15,498 0.00 15,498 0.00 

Table 2. Query processing times (in seconds) of different caching strategies for semantically 
aligned log. Percentage reductions for the CAC strategies are shown in the nearby columns. 

Cache 
Size  

Freq. 
Cache 

CAC 
(k=1) 

% 
red. 

CAC 
(k=2.5) 

% 
red. 

CAC 
(k=3) 

% 
red. 

Optimal 
CAC 

% 
red. 

1000 3,149 3,152 -0.09 3,067 2.62 3,075 2.37 2,899 7.94 
2000 3,090 3,105 -0.50 3,034 1.80 3,031 1.90 2,846 7.88 
3000 3,056 3,063 -0.26 3,017 1.26 3,014 1.37 2,835 7.22 
4000 3,030 3,020 0.33 2,987 1.41 2,991 1.30 2,834 6.48 
5000 3,001 2,996 0.17 2,952 1.63 2,959 1.41 2,834 5.57 
10000 2,959 2,896 2.13 2,888 2.38 2,892 2.26 2,834 4.22 
15000 2,927 2,857 2.40 2,854 2.49 2,854 2.47 2,834 3.18 
20000 2,893 2,841 1.80 2,840 1.83 2,840 1.83 2,834 2.04 
28794 2,834 2,834 0.00 2,834 0.00 2,834 0.00 2,834 0.00 

 
In Tables 1 and 2, we provide the total query execution time using the frequency-

based and cost-aware caching strategies for each query log. We also experimented 
with different values of k for CAC strategies. Our results reveal that using k values 
greater than 1 reflects the query repetition patterns better, which conforms to our dis-
cussion in Section 4.1. The best results are obtained for k=2.5 and using higher values 
do not provide further improvements.  

We also provide the potential gains for the optimal cost-aware caching strategy, in 
which case the test queries are assumed to be known beforehand. Since we know the 
actual future frequencies of the training queries, we fill the cache with those queries 
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that would yield the highest C x F values. Clearly, this is only reported to demonstrate 
how far away the proposed strategy is from the optimal. 

In the experiments, cost-aware strategy decreases the overall execution time (up to 
3%) with respect to the frequency-based strategy. It is also remarkable that the gains 
for the optimal cache is much higher, which implies that a better function for the cost-
aware caching may provide higher improvements.  

Another important observation is that the optimal cache saturates very early as it 
stores all of the training queries that would ever be seen in the test set. As this early 
saturation also implies, the majority of the requests in the test set yield compulsory 
misses, i.e., misses for the queries that have never seen in the training set. We envi-
sion that, coupling the static cache with a dynamic cache would partially remedy this 
situation, as the further requests for some of those newly seen queries can be an-
swered from the dynamic cache. Thus, the gains of the cost-aware strategy would be 
more emphasized in a hybrid caching environment.  

5   Conclusion 

We propose a cost-aware caching strategy for the static caching of the query results in 
WSEs. Our experiments with a large crawl data and a real life query log reveal prom-
ising results and reduce the total query processing times up to 3%. The future work 
involves applying the cost-aware techniques for dynamic and hybrid caching. 
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