

C. Gurrin et al. (Eds.): ECIR 2010, LNCS 5993, pp. 306–318, 2010.
© Springer-Verlag Berlin Heidelberg 2010

XML Retrieval Using Pruned Element-Index Files

Ismail Sengor Altingovde, Duygu Atilgan, and Özgür Ulusoy

Department of Computer Engineering, Bilkent University, Ankara, Turkey
{ismaila,atilgan,oulusoy}@cs.bilkent.edu.tr

Abstract. An element-index is a crucial mechanism for supporting content-only
(CO) queries over XML collections. A full element-index that indexes each
element along with the content of its descendants involves a high redundancy
and reduces query processing efficiency. A direct index, on the other hand, only
indexes the content that is directly under each element and disregards the
descendants. This results in a smaller index, but possibly in return to some re-
duction in system effectiveness. In this paper, we propose using static index
pruning techniques for obtaining more compact index files that can still result in
comparable retrieval performance to that of a full index. We also compare the
retrieval performance of these pruning based approaches to some other strate-
gies that make use of a direct element-index. Our experiments conducted along
with the lines of INEX evaluation framework reveal that pruned index files
yield comparable to or even better retrieval performance than the full index and
direct index, for several tasks in the ad hoc track.

1 Introduction

Classical information retrieval (IR) is the quest for identifying the documents in a
collection that are most relevant to a user’s information need, usually expressed as a
keyword query. Although there have been efforts for passage retrieval, most of the
previous works in the IR field presume a document as the typical unit of retrieval. In
contrary, XML documents, which started to emerge since late 90s, have a logical
structure and may allow finer-grain retrieval, i.e., at the level of elements. Given that
XML is used for the representation of lengthy documents, such as e-books, manuals,
legal transcripts, etc., the “focused” retrieval is expected to provide further gains for
the end users in locating the specific relevant information [16].

In the last decade, especially under the INitiative for the Evaluation of XML re-
trieval (INEX) [13] campaigns, several indexing, ranking and presentation strategies
for XML collections have been proposed and evaluated. Given the freshness of this
area, there exists a number of issues that are still under debate. One such fundamental
problem is indexing the XML documents. As mentioned above, the focused retrieval
aims to identify the most relevant parts of an XML document to a query, rather than
retrieving the entire document. This requires constructing an index at a lower granu-
larity, say, at the level of elements, which is not a trivial issue given the nested struc-
ture of XML documents.

In this paper, we essentially focus on the strategies for constructing space-efficient
element-index files to support content-only (CO) queries. In the literature, the most

 XML Retrieval Using Pruned Element-Index Files 307

straight-forward element-indexing method considers each XML element as a separate
document, which is formed of the text directly contained in it and the textual content
of all of its descendants. We call this structure a full element-index. Clearly, this ap-
proach yields significant redundancy in terms of the index size, as elements in the
XML documents are highly nested. To remedy this, a number of approaches, as re-
viewed in detail in the next section, are proposed in the literature. One such method is
restricting the set of elements indexed, based on the size or type of the elements [18].
Such an approach may still involve redundancy for the elements that are selected to
be indexed. Furthermore, determining what elements to index would be collection and
scenario dependent. There are also other indexing strategies that can fully eliminate
the redundancy. For instance, a direct element-index is constructed by only consider-
ing the text that is directly contained under an element (i.e., disregarding the content
of the element’s descendents). In the literature, propagation based mechanisms, in
which the score of each element is propagated upwards in the XML structure, are
coupled with the direct index for effective retrieval (e.g., [11]). In this case, the re-
dundancy in the index is somewhat minimized, but query processing efficiency would
be degraded.

For an IR system, it is crucial to optimize the underlying inverted index size for the
efficiency purposes. A lossless method for reducing the index size is using compression
methods (see [22] for an exhaustive survey). On the other hand, many lossy static index
pruning methods are also proposed in the last decade. All of these methods aim to re-
duce the storage space for the index and, subsequently, query execution time, while
keeping the quality of the search results unaffected. While it is straight-forward to apply
index compression methods to (most of) the indexing methods proposed for XML, it is
still unexplored how those pruning techniques serve for XML collections, and how they
compare to the XML-specific indexing methods proposed in the literature.

In this paper, we propose to employ static index pruning techniques for XML in-
dexing. We envision that these techniques may serve as a compromise between a full
element-index and a direct element-index. In particular, we first model each element
as the concatenation of the textual content in its descendants, as typical in a full index.
Then, the redundancy in the index is eliminated by pruning this initial index. In this
way, an element is allowed to contain some terms, say, the most important ones, be-
longing to its descendants; and this decision is given based on the full content of the
element in an adaptive manner.

For the purposes of index pruning, we apply two major methods from the IR litera-
ture, namely, term-centric [5] and document-centric pruning [4] to prune the full ele-
ment-index. We evaluate the performance for various retrieval tasks as described in
the latest INEX campaigns. More specifically, we show that retrieval using pruned
index files is comparable or even superior to that of the full index up to very high lev-
els of pruning. Furthermore, we compare these pruning-based approaches to a re-
trieval strategy coupled with a direct index (as in [11]) and show that pruning-based
approaches are also superior to that strategy. As another advantage, the pruning-based
approaches are more flexible and can reduce an index to a required size.

In the next section, we first review a number of indexing strategies for XML col-
lections as well as the associated retrieval techniques to support content-only queries.
Next, we summarize some of the static index pruning strategies that are proposed for
large-scale IR systems and search engines. In Section 3, we describe the pruning

308 I.S. Altingovde, D. Atilgan, and Ö. Ulusoy

techniques that are adapted for reducing the size of a full element-index. Section 4 is
devoted to the experimental evaluations. Finally, we conclude and point to future
work directions in Section 5.

2 Related Work

2.1 Indexing Techniques for XML Retrieval

In the literature, several techniques are proposed for indexing the XML collections
and for query processing on top of these indexes. In a recent study, Lalmas [16] pro-
vides an exhaustive survey of indexing techniques—essentially from the perspective
of IR discipline—that we briefly summarize in the rest of this section.

The most straight-forward approach for XML indexing is creating a “full” element-
index, in which each element is considered along with the content of its descendants.
In this case, how to compute inverse document frequency (IDF), a major component
used in many similarity metrics, is an open question. Basically, IDF can be computed
across all elements, which also happens to be the approach taken in our work. As a
more crucial problem [16], a full element-index is highly redundant because the terms
are repeated for each nested element and the number of elements is typically far larger
than the number of documents.

To cope with the latter problem, an indexing strategy can only consider the direct
textual content of each element, so that redundancy due to nesting of the elements
would be totally removed. In [9, 10], only leaf nodes are indexed, and the scores of
the leaf elements are propagated upwards to contribute to the scores of the interior
(ancestor) elements. In a follow-up work [11], the direct content of each element (ei-
ther leaf or interior) is indexed, and again a similar propagation mechanism is em-
ployed. Another alternative is propagating the representations of elements, e.g., term
statistics, instead of the scores. However, the propagation stage, which has to be exe-
cuted during the query processing time, can degrade the overall system efficiency.

In the database field, where XML is essentially considered from a data-centric
rather than a document-centric point of view, a number of labeling schemes are
proposed especially to support structural queries (see [20] for a survey). In XRANK
system [12], postings are again created only for the textual content directly under an
element; however document identifiers are encoded using the Dewey ids so that the
scores for the ancestor elements can also be computed without a propagation mecha-
nism. This indexing strategy allows computing the same scores as a full index while
the size of the index can be in the order of a direct index. However, this scheme may
suffer from other problems, such as the excessive Dewey id length for very deeply
located elements. We provide a further discussion of this strategy in Section 4.

An in-between approach to remedy the redundancy in a full element-index is in-
dexing only certain elements of the documents in the collection. Element selection
can be based upon several heuristics (see [16] for details). For instance, shorter ele-
ments (i.e., with only few terms) can be discarded. Another possibility is selecting
elements based on their popularity of being assessed as relevant in INEX framework.
The semantics of the elements can also be considered while deciding which elements
to index by a system designer. Yet another indexing technique that is also related is

 XML Retrieval Using Pruned Element-Index Files 309

distributed indexing, which proposes to create separate indexes for each element type,
possibly selected with one of the heuristics discussed above. This latter technique may
be especially useful for computing the term statistics in a specific manner to each
element type.

In this paper, our main concern is reducing the index size to essentially support
content-only queries. Thus, we attempt to make an estimation of how the index sizes
for the above approaches can be ordered. Of course, Ifull, i.e., full element-index,
would have the largest size. Selective (and/or distributed) index, denoted as Isel, would
possibly be smaller; but it can still involve some degree of redundancy for those ele-
ments that are selected for indexing. Thus, a direct index (Idirect) that indexes only the
text under each element would be smaller than the former. Finally, the lower bound
for the index size can be obtained by discarding all the structuring in an XML docu-
ment and creating an index only on the document basis (i.e., Idoc). Thus, a rough
ordering can be like size(Ifull)≥ size(Isel) ≥ size(Idirect) ≥ size(Idoc). In this paper, we em-
ploy some pruning methods that can yield indexes of sizes comparable to size(Idirect)
or size(Isel). We envision that such methods can prune an index up to a given level in a
robust and adaptive way, without requiring a priori knowledge on the collection (e.g.,
semantics or popularity of elements). Furthermore, the redundancy that remains in the
index can even help improving the retrieval performance. These index pruning meth-
ods are reviewed in the next section.

2.2 Static Pruning Strategies for Inverted Indexes

In the last decade, a number of different approaches are proposed for the static index
pruning. The underlying goal of static index pruning is to reduce the file size and
query processing time, while keeping the search result quality and subsequently, the
effectiveness of the system unaffected, or only slightly affected. In this paper, as in
[4], we use the expressions term-centric and document-centric to indicate whether the
pruning process iterates over the terms (or, equivalently, the posting lists) or the
documents at the first place, respectively.

In one of the earliest works in this field, Carmel et al. proposed term-centric ap-
proaches with uniform and adaptive versions [5]. Roughly, adaptive top-k algorithm
sorts the posting list of each term according to some scoring function (Smart’s TF-
IDF in [5]) and removes those postings that have scores under a threshold determined
for that particular term. The algorithm is reported to provide substantial pruning of the
index and exhibit excellent performance at keeping the top-ranked results intact in
comparison to the original index. In our study, this algorithm (which is referred to as
TCP strategy hereafter) is employed for pruning full element-index files, and it is fur-
ther discussed in Section 3.

As an alternative to term-centric pruning, Büttcher et al. proposed a document-
centric pruning (referred to as DCP hereafter) approach with uniform and adaptive
versions [4]. In the DCP approach, only the most important terms are left in a docu-
ment, and the rest are discarded. The importance of a term for a document is deter-
mined by its contribution to the document’s Kullback-Leibler divergence (KLD) from
the entire collection. In a more recent study [1], a comparison of TCP and DCP for
pruning the entire index is provided in a uniform framework. It is reported that for
disjunctive query processing TCP essentially outperforms DCP for various parameter

310 I.S. Altingovde, D. Atilgan, and Ö. Ulusoy

selections. In this paper, we also use the DCP strategy to prune the full element-index,
and further discuss DCP in Section 3.

There are several other proposals for static index pruning in the literature. A local-
ity based approach is proposed in [6] for the purposes of supporting conjunctive and
phrase queries. In a number of other works, search engine query logs are exploited to
guide the static index pruning [2, 8, 17, 19].

3 Pruning the Element-Index for XML Retrieval

The size of the full element-index for an XML collection may be prohibitively large
due to the nested structure of the documents. A large index file does not only con-
sume storage space but also degrades the performance of the actual query processing
(as longer posting lists should be traversed). The large index size would also under-
mine the other optimization mechanisms, such as the list caching (as longer list
should be stored in the main memory).

Previous techniques in the literature attempt to reduce the size of a full element-
index by either totally discarding the overlapping content, or only indexing a subset of
the elements in a collection. In contrast, we envision that some of the terms that ap-
pear in an element’s descendants may be crucial for the retrieval performance and
should be repeated at the upper levels; whereas some other terms can be safely dis-
carded. Thus, instead of a crude mechanism, for each element, the decision for index-
ing the terms from the element’s descendants should be given adaptively, considering
the element’s textual content and search system’s ranking function. To this end, we
employ two major static index pruning techniques, namely term-centric pruning
(TCP) [5] and document-centric pruning (DCP) [4] for indexing the XML collections.
Below, we outline these strategies as used in our study.

• TCP(I, k, ε): As it is mentioned in the previous section, TCP, the adaptive version

of the top-k algorithm proposed in [5], is reported to be very successful in static
pruning. In this strategy, for each term t in the index I, first the postings in t’s
posting list are sorted by a scoring function (e.g, TF-IDF). Next, the kth highest
score, zt, is determined and all postings that have scores less than zt * ε are re-
moved, where ε is a user defined parameter to govern the pruning level. Follow-
ing the practice in [3], we disregard any theoretical guarantees and determine ε
values according to the desired pruning level.

A recent study shows that the performance of the TCP strategy can be further
boosted by carefully selecting and tuning the scoring function used in the pruning
stage [3]. Following the recommendations of that work, we employ BM25 as the
scoring function for TCP.

• DCP(D, λ): In this paper, we apply the DCP strategy for the entire index, which
is slightly different from pruning only the most frequent terms as originally pro-
posed by [4]. For each document d in the collection D, its terms are sorted by the
scoring function. Next, the top |d|*λ terms are kept in the document and the rest
are discarded, where λ specifies the pruning level. Then, the inverted index is
created over these pruned documents.

 XML Retrieval Using Pruned Element-Index Files 311

KLD has been employed as the scoring function in [4]. However, in a more re-
cent work [1], it is reported that BM25 performs better when it is used during
both pruning and retrieval. Thus, we also use BM25 with DCP algorithm.

In this paper, we compare the retrieval performance of four different XML indexing
approaches:

• Ifull: Full element-index (as described before)
• Idirect: An index created by using only the text directly under each element
• ITCP, ε: Index files created from Ifull by using TCP algorithm at a pruning level ε
• IDCP, λ: Index files created from Ifull by using DCP algorithm at a pruning level λ.

4 Experiments

4.1 Experimental Setup

Collection and queries. In this paper, we use English Wikipedia XML collection [7]
employed in INEX campaigns between 2006 and 2008. The dataset includes 659,388
articles obtained from Wikipedia. After conversion to XML, the collection includes
52 million elements. The textual content is 1.6 GB whereas the entire collection (i.e.,
with element tags) takes 4.5 GB.

Our main focus in this paper is content-only (CO) queries whereas content-and-
structure queries (CAS) are left as a future work. In the majority of the experiments
reported below, we use 70 query topics with relevance assessments provided for the
Wikipedia collection in INEX 2008 (see [15; p. 8] for the exact list of the queries).
The actual query set is obtained from the title field of these topics after eliminating
the negated terms and stopwords. No stemming is applied.

Indexing. As we essentially focus on CO queries, the index files are built upon only
using the textual content of the documents in the collection; i.e., tag names and/or
paths are not indexed. In the best performing system in all three tasks of INEX 2008
ad hoc retrieval track, only a subset of elements in the collection are used for scoring
[14]. Following the same practice, we only index the following elements: <p>, <sec-
tion>, <normallist>, <article>, <body>, <td>, <numberlist>, <tr>, <table>, <defini-
tionlist>, <th>, <blockquote>, <div>, , <u>. Each of these elements in an XML
document is treated as a separate document and assigned a unique global identifier.
Thus, the number of elements to be indexed is found to be 7.4 million out of 52 mil-
lion elements in Wikipedia collection.

During indexing, we use the open-source Zettair search engine [21] to parse the
documents in the collection and obtain a list of terms per element. Then, an element-
level index is constructed by using each of the strategies described in this paper. The
posting lists in the resulting index files include <element-id, frequency> pairs for each
term in the collection, as this is adequate to support the CO queries. Of course, the
index can be extended to include, say, term positions, if the system is asked to support
phrase or proximity queries, as well. Posting lists are typically stored in a binary file
format where each posting takes 8 bytes (i.e., a 4 byte integer is used per each field).

312 I.S. Altingovde, D. Atilgan, and Ö. Ulusoy

The resulting element-index takes 4 GB disk space. In the below discussions, all in-
dex sizes are considered in terms of their raw (uncompressed) sizes.

Retrieval tasks and evaluation. In this study, we concentrate on three ad-hoc re-
trieval tasks, namely, Focused, Relevant-in-Context (RiC) and Best-in-Context (BiC),
as described in recent INEX campaigns (e.g., see [13, 15]). In short, the Focused task
is designed to retrieve the most focused results for a query without returning overlap-
ping elements. The underlying motivation for this task is retrieving the relevant in-
formation at the correct granularity. Relevant-in-Context task requires returning a
ranked list of documents and a set of relevant (non-overlapping) elements listed for
each article. Finally, Best-in-Context task is designed to find the best-entry-point
(BEP) for starting to read the relevant articles. Thus, the retrieval system should re-
turn a ranked list of documents along with a BEP for each document.

We evaluate the performance of different XML indexing strategies for all these
three tasks along with the lines of INEX 2008 framework. That is, we use INEXeval
software provided in [13] which computes a number of measures for each task, which
is essentially based on the amount of retrieved text that overlaps with the relevant text
in assessments. In all experiments, we return up to 1500 highest scoring results.

4.2 Performance Comparison of Indexing Strategies: Focused Task

For the focused retrieval task, we return the highest scoring 1500 elements after
eliminating the overlaps. The overlap elimination is simply achieved by choosing the
highest scoring element on a path in the XML document.

In Figure 1a, we plot the performance of TCP and DCP based indexing strategies
with respect to the full element-index, Ifull. The evaluation measure is interpolated
precision at 1% recall level, iP[0.01], which happens to be the official measure of
INEX 2008. For this experiment, we use BM25 function as described in [4] to rank
the elements using each of the index files. For the pruned index files, the element
length, i.e., number of terms in an element, reduces after pruning. In earlier studies [1,
3], it is reported that using the updated element lengths results better in terms of effec-
tiveness. We observed the same situation also for XML retrieval case, and thus, use
the updated element lengths for each pruning level of TCP and DCP.

To start with, we emphasize that the system performance with Ifull is reasonable in
comparison to INEX 2008 results. That is, focused retrieval based on Ifull yields an iP
figure of 0.643 at 1% recall level. The best official result in INEX 2008 for this task is
0.689 and our result is within the top-10 results of this task (see Table 6 in [15]). This
is also the case for RiC and BiC results that will be discussed in the upcoming sec-
tions, proving that we have a reasonable baseline for drawing conclusions in our ex-
perimental framework.

Figure 1a reveals that DCP based indexing is as effective as Ifull up to 50% pruning
and indeed, at some pruning levels, it can even outperform Ifull. In other words, it is
possible to halve the index and still obtain the same or even better effectiveness than
the full index. TCP is also comparable to Ifull up to 40%. For this setup, DCP seems to
be better than TCP, an interesting finding given that just the reverse is observed for
typical document retrieval in previous works [1, 2]. However, the situation changes
for higher levels of recall (as shown in Table 1), and, say, for iP[.10], TCP performs
better than DCP up to 70% pruning.

 XML Retrieval Using Pruned Element-Index Files 313

 (a) (b)

Fig. 1. Effectiveness comparison of Ifull, ITCP and IDCP in terms of (a) iP[0.01], and (b) MAiP

In Table 1, we report the interpolated precision at different recall levels and mean
average interpolated precision (MAiP) computed for 101 recall levels (from 0.00 to
1.00). For these experiments, due to lack of space, we only show three pruning levels
(30%, 50% and 70%) for both TCP and DCP. The results reveal that, up to 70% prun-
ing, both indexing approaches lead higher MAiP figures than Ifull (also see Figure 1b).
The same trend also applies for iP at higher recall levels, namely, 5% and 10%.

In Table 1, we further compare the pruning based approaches to other retrieval
strategies using Idirect. Recall that, as discussed in Section 3, Idirect is constructed by
considering only the textual content immediately under each element, disregarding the
element’s descendants. For this collection, the size of the index turns out to be almost
35% of the Ifull, i.e., corresponding to 65% pruning level. In our first experiment, we
evaluate focused retrieval using Idirect and BM25 as in the above. In this case, Idirect also
performs well and yields 0.611 for iP[.01] measure, almost the same effectiveness for
slightly smaller indexes created by TCP and DCP (see the case for 70% pruning for
TCP and DCP in Table 1). However, in terms of iP at higher levels and MAiP, Idirect is
clearly inferior to the pruning based approaches, as shown in Table 1.

As another experiment, we decided to implement the propagation mechanism used
in the GPX system that participated in INEX between 2004 and 2006 [9, 10, 11]. In
these campaigns, GPX is shown to yield very competitive results and ranked among
the top systems for various retrieval tasks. Furthermore, GPX is designed to work
with an index as Idirect, i.e., without indexing the content of descendants for the ele-
ments. In this system, first, the score of every element is computed as in the typical
case. However, before obtaining the final query output, the scores of all elements in
an XML document are propagated upwards so that they can also contribute to their
ancestors’ scores.

In this paper, we implemented this propagation mechanism (denoted as PROP) of
GPX and used Equation 2 given in [11]. In accordance with the INEX official run setup
described in that work, we set the parameters N1=0.11 and N2=0.31 in our implementa-
tion. Their work also reports that another scoring function (denoted as SCORE here)
performs quite well (see Equation 1 in [11]) when coupled with the propagation. Thus,
we obtained results for the propagation mechanism using both scoring functions,

314 I.S. Altingovde, D. Atilgan, and Ö. Ulusoy

Table 1. Effectiveness comparison of indexing strategies for Focused task. Prune (%) field
denotes the percentage of pruning with respect to full element-index (Ifull). Shaded measures are
official evaluation measure of INEX 2008. Best results for each measure are shown in bold.

Indexing Strategy Prune (%) iP[.00] iP[.01] iP[.05] iP[.10] MAiP
Ifull 0% 0.725 0.643 0.507 0.446 0.167
ITCP, 0.3 30% 0.700 0.628 0.560 0.511 0.200
IDCP, 0.3 30% 0.750 0.672 0.529 0.469 0.174
ITCP, 0.5 50% 0.666 0.613 0.549 0.518 0.191
IDCP, 0.5 50% 0.708 0.641 0.518 0.473 0.177
ITCP, 0.7 70% 0.680 0.611 0.511 0.446 0.159
IDCP, 0.7 70% 0.681 0.614 0.534 0.477 0.175
Idirect 65% 0.731 0.611 0.448 0.362 0.126
Idirect+PROPSCORE 65% 0.519 0.473 0.341 0.302 0.110
Idirect+PROPBM25 65% 0.450 0.435 0.384 0.302 0.116

namely, BM25 and SCORE. In Table 1, corresponding experiments are denoted as
Idirect+PROPBM25 and Idirect+PROPSCORE, respectively. The results reveal that, SCORE
function performs better at early recall levels, but for both cases the effectiveness fig-
ures are considerably lower than the corresponding results (i.e., 70% pruning level)
based on TCP and DCP. We attribute the lower performance of PROP mechanism to
the following observation. For the Wikipedia dataset, 78% of the data assessed as
relevant resides in the leaf nodes. This means that, returning leafs in the result set
would improve effectiveness, and vice versa. In contrast, PROP propagates element
scores to the upper levels in the document, which may increase the number of interior
nodes in the final result and thus reduce the effectiveness.

Note that, we also attempted to verify the reliability of our implementation of
propagation mechanism by using INEX 2006 topics and evaluation software, and to
see how our results compare to the GPX results reported in [11]. We observed that the
results slightly differ at early ranks but then match for higher rank percentages.

We can summarize our findings as follows: In terms of the official INEX measure,
which considers the performance at the first results most, the index files constructed
by the static pruning techniques lead to comparable to or even superior results than
Ifull up to 70% pruning level. A direct element-index also takes almost 35% of the full
index. Its performance is as good as the pruned index files for iP[.01], but it falls rap-
idly at higher recall levels. Score propagating retrieval systems, similar to GPX, per-
form even worse with the Idirect and do not seem to be a strong competitor.

Finally, there is another indexing approach proposed in the XRANK system [12]
that can serve as a natural competitor of the strategies discussed here. In the
XRANK’s approach, as reviewed in Section 2, element ids are represented with
Dewey encoding. This representation can yield an index of size Idirect, while the exact
element scores that could be obtained from a full element-index can also be computed
(with some overhead during query processing). Furthermore, it can support structure
based constraints for CAS queries. However, this indexing technique may also cause
some problems. For instance, since element ids are Dewey encoded, it may be hard to
represent some elements in deeply nested XML documents. Another issue may be
updating the Dewey codes when an XML document is updated (see [20] for a general
discussion). Also, to our best knowledge, the performance of typical inverted index

 XML Retrieval Using Pruned Element-Index Files 315

Table 2. Effectiveness comparison of indexing strategies for RiC task

Indexing Strategy Prune (%) gP[5] gP[10] gP[25] gP[50] MAgP
Ifull 0% 0.364 0.321 0.246 0.198 0.190
ITCP, 0.3 30% 0.380 0.321 0.248 0.199 0.193
IDCP, 0.3 30% 0.381 0.321 0.256 0.202 0.196
ITCP, 0.5 50% 0.385 0.321 0.247 0.196 0.185
IDCP, 0.5 50% 0.366 0.321 0.252 0.196 0.185
ITCP, 0.7 70% 0.355 0.297 0.223 0.170 0.152
IDCP, 0.7 70% 0.352 0.305 0.232 0.172 0.157
Idirect 65% 0.312 0.281 0.210 0.168 0.140
Idirect+PROPSCORE 65% 0.275 0.242 0.201 0.158 0.142
Idirect+PROPBM25 65% 0.223 0.199 0.184 0.145 0.108

compression techniques for Dewey encoded index files is not evaluated yet. On the
other hand, the index files created by the static pruning techniques can be processed
by typical IR systems without requiring any modifications in the query processing,
indexing and compression modules. Additionally, as shown in above results, these
techniques may yield better effectiveness than a full index in several cases. Neverthe-
less, we leave comparison with the XRANK’s approach as a future work.

4.3 Performance Comparison of Indexing Strategies: Relevant-in-Context Task

For the Relevant-in-Context task, after scoring the elements, we again eliminate the
overlaps and determine the top-1500 results as in the Focused task. Then, those ele-
ments from the same document are grouped together. The result is a ranked list of
documents along with a set of elements. While ranking the documents, we use the
score of the highest scoring retrieved element per document as the score of this par-
ticular document. We also experimented with another technique in the literature; i.e.
using the average score of elements in a document for ranking the documents, which
performs worse than the former approach and is not investigated further.

In Table 2, we present the results in terms of the generalized precision (gP) metric
at early ranks and mean average generalized precision (MAgP), i.e., the official
measure of INEX 2008 for both RiC and BiC tasks. The results show that approaches
using Idirect are inferior to those using the pruned index files based on either TCP or
DCP at 70% pruning level; however with a relatively smaller margin with respect to
the previous task. In comparison of TCP and DCP based approaches to Ifull, we ob-
serve that the former cases still yield comparable or better performance, however up
to 50% pruning, again a more conservative result than that reported for the previous
task.

4.4 Performance Comparison of Indexing Strategies: Best-in-Context Task

For the Best-in-Context task, we obtain the relevant documents exactly in the same
way as in RiC. However, while ranking the documents, if the article node of the
document is within these retrieved elements, we use its score as the document score.
Otherwise, we use the score of the highest scoring retrieved element as the score of

316 I.S. Altingovde, D. Atilgan, and Ö. Ulusoy

Table 3. Effectiveness comparison of indexing strategies for BiC task

Indexing Strategy Prune (%) gP[0.05] gP[0.10] gP[0.25] gP[0.50] MAgP
Ifull 0% 0.367 0.314 0.237 0.186 0.178
ITCP, 0.3 30% 0.369 0.318 0.237 0.187 0.178
IDCP, 0.3 30% 0.388 0.332 0.246 0.187 0.184
ITCP, 0.5 50% 0.364 0.319 0.232 0.179 0.165
IDCP, 0.5 50% 0.363 0.310 0.234 0.178 0.166
ITCP, 0.7 70% 0.335 0.287 0.198 0.154 0.138
IDCP, 0.7 70% 0.340 0.280 0.214 0.157 0.143
Idirect 65% 0.215 0.183 0.141 0.116 0.087
Idirect+PROPSCORE 65% 0.127 0.132 0.120 0.100 0.086
Idirect+PROPBM25 65% 0.156 0.151 0.136 0.115 0.074

this particular document. Then, we identify a best-entry-point (BEP) per document. In
INEX 2008, a simple approach of setting the BEP as 1 is found to be very effective
and ranked second among all participants [15]. Note that, this suggests starting to read
each ranked document from the beginning. For our work, we also experimented with
providing the offset of the highest scoring element per document as BEP [15], which
yielded inferior results to the former approach. Thus, we only report the results where
BEP is set to 1.

In Table 3, we compare indexing strategies in terms of the same evaluation metrics
used in RiC task. As in RiC case, the performance obtained by using pruned index
files with TCP and DCP is comparable to that of using the full element-index up to
50% pruning. At the 70% pruning level, both pruning approaches have losses in effec-
tiveness with respect to Ifull, but they are still considerably better than using Idirect with
the (approximately) same index size. For instance, while MAgP for DCP is 0.143, the
retrieval strategies using Idirect (with BM25), Idirect+PROPSCORE and Idirect+PROPBM25
yield the MAgP figures of 0.087, 0.086 and 0.074, respectively. Again, basic retrieval
using Idirect outperforms propagation based approaches, especially at the earlier ranks
for generalized precision metric.

5 Conclusion

Previous experiences with XML collections suggest that element indexing is impor-
tant for high performance in ad hoc retrieval tasks. In this study, we propose to use
static index pruning techniques for reducing the size of a full element-index, which
would otherwise be very large due to the nested structure of XML documents. We
also compare the performance of term and document based pruning strategies to those
approaches that use a direct element index that avoids indexing nested content more
than once. Our experiments are conducted along the lines of previous INEX cam-
paigns. The results reveal that pruned index files are comparable or even superior to
the full element-index up to very high pruning levels for various ad hoc tasks (e.g., up
to 70% pruning for Focused task and 50% pruning for RiC and BiC tasks) in terms of
the retrieval effectiveness. Moreover, the performance of pruned index files is also
better than that of the approaches using the direct index file at the same index size.

 XML Retrieval Using Pruned Element-Index Files 317

Future work directions involve extending our framework with some other static in-
dex pruning techniques and investigating the performance for the other query types
(e.g., conjunctive and phrase queries, CAS queries, etc.).

Acknowledgments. This work is supported by The Scientific and Technological Re-
search Council of Turkey (TÜBİTAK) by the grant number 108E008.

References

1. Altingovde, I.S., Ozcan, R., Ulusoy, Ö.: A practitioner’s guide for static index pruning. In:
Proc. of ECIR 2009, pp. 675–679 (2009)

2. Altingovde, I.S., Ozcan, R., Ulusoy, Ö.: Exploiting Query Views for Static Index Pruning
in Web Search Engines. In: Proc. of CIKM 2009, pp. 1951–1954 (2009)

3. Blanco, R., Barreiro, A.: Boosting static pruning of inverted files. In: Proc. of SIGIR 2007,
pp. 777–778 (2007)

4. Büttcher, S., Clarke, C.L.: A document-centric approach to static index pruning in text re-
trieval systems. In: Proc. of CIKM 2006, pp. 182–189 (2006)

5. Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y.S., Soffer, A.:
Static index pruning for information retrieval systems. In: Proc of SIGIR 2001, pp. 43–50
(2001)

6. de Moura, E.S., Santos, C.F., Araujo, B.D., Silva, A.S., Calado, P., Nascimento, M.A.: Lo-
cality-Based pruning methods for web search. ACM TOIS 26(2), 1–28 (2008)

7. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40(1), 64–69
(2006)

8. Garcia, S.: Search Engine Optimization Using Past Queries. Doctoral Thesis, RMIT (2007)
9. Geva, S.: GPX – Gardens Point XML Information Retrieval at INEX 2004. In: Fuhr, N.,

Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 211–223.
Springer, Heidelberg (2005)

10. Geva, S.: GPX – Gardens Point XML IR at INEX 2005. In: Fuhr, N., Lalmas, M., Malik,
S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 240–253. Springer, Heidelberg
(2006)

11. Geva, S.: GPX – Gardens Point XML IR at INEX 2006. In: Proc. of INEX 2006 Work-
shop, pp. 137–150 (2006)

12. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search
Over XML Documents. In: Proc. of the ACM SIGMOD 2003, pp. 16–27 (2003)

13. Initiative for the Evaluation of XML Retrieval (2009),
http://www.inex.otago.ac.nz/

14. Itakura, K.Y., Clarke, C.L.A.: University of Waterloo at INEX 2008: Adhoc, Book, and
Link-the-Wiki Tracks. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS,
vol. 5631, pp. 132–139. Springer, Heidelberg (2009)

15. Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the 2008 Ad
Hoc Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp.
1–28. Springer, Heidelberg (2009)

16. Lalmas, M.: XML Retrieval. Morgan & Claypool, San Francisco (2009)
17. Ntoulas, A., Cho, J.: Pruning policies for two-tiered inverted index with correctness guar-

antee. In: Proc. of SIGIR 2007, pp. 191–198 (2007)

318 I.S. Altingovde, D. Atilgan, and Ö. Ulusoy

18. Sigurbjörnsson, B., Kamps, J.: The effect of structured queries and selective indexing on
XML retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 104–118. Springer, Heidelberg (2006)

19. Skobeltsyn, G., Junqueira, F., Plachouras, V., Baeza-Yates, R.: ResIn: a combination of re-
sults caching and index pruning for high-performance web search engines. In: Proc. of
SIGIR 2008, pp. 131–138 (2008)

20. Su-Cheng, H., Chien-Sing, L.: Node Labeling Schemes in XML Query Optimization: A
Survey and Trends. IETE Tech Rev 26, 88–100 (2009)

21. Zettair search engine (2009), http://www.seg.rmit.edu.au/zettair/
22. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Sur-

veys 38(2), 1–56 (2006)

	XML Retrieval Using Pruned Element-Index Files
	Introduction
	Related Work
	Indexing Techniques for XML Retrieval
	Static Pruning Strategies for Inverted Indexes

	Pruning the Element-Index for XML Retrieval
	Experiments
	Experimental Setup
	Performance Comparison of Indexing Strategies: Focused Task
	Performance Comparison of Indexing Strategies: Relevant-in-Context Task
	Performance Comparison of Indexing Strategies: Best-in-Context Task

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

