
Adaptive Time-to-Live Strategies

for Query Result Caching in Web Search Engines

Sadiye Alici1, Ismail Sengor Altingovde2, Rifat Ozcan1,
B. Barla Cambazoglu3, and Özgür Ulusoy1

1 Computer Engineering Department, Bilkent University, Ankara, Turkey
{sadiye,rozcan,oulusoy}@cs.bilkent.edu.tr

2 L3S Research Center, Hanover, Germany
altingovde@l3s.de

3 Yahoo! Research, Barcelona, Spain
barla@yahoo-inc.com

Abstract. An important research problem that has recently started to
receive attention is the freshness issue in search engine result caches. In
the current techniques in literature, the cached search result pages are
associated with a fixed time-to-live (TTL) value in order to bound the
staleness of search results presented to the users, potentially as part of a
more complex cache refresh or invalidation mechanism. In this paper, we
propose techniques where the TTL values are set in an adaptive manner,
on a per-query basis. Our results show that the proposed techniques
reduce the fraction of stale results served by the cache and also decrease
the fraction of redundant query evaluations on the search engine backend
compared to a strategy using a fixed TTL value for all queries.

Keywords: Search engines, result cache, freshness, time-to-live.

1 Introduction

Search engines cache the results of frequently and/or recently issued queries to
cope with large user query traffic volumes and to meet demanding query re-
sponse time constraints [2]. Due to the strong power-law distribution in query
streams, using a result cache significantly decreases the query volume hitting
the backend index servers, leading to considerable resource savings. In practice,
a typical entry in a result cache contains a query string, some data (e.g., URLs,
snippets) about the top k search results of the query, and potentially some aux-
iliary data (e.g., timestamps). In the context of search systems using caches with
limited capacity, the research issues involve cache admission [3], eviction [9], and
prefetching [12], all of which are rather well explored in the literature. The avail-
ability of cheap on-disk storage devices, however, allows large-scale web search
engines to cache practically all previous query results [7]. This renders the pre-
viously mentioned research problems relatively less interesting while creating a
new challenge: maintaining the freshness of cached query results without incur-
ring too much redundant computation overhead on the backend search system.

R. Baeza-Yates et al. (Eds.): ECIR 2012, LNCS 7224, pp. 401–412, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

402 S. Alici et al.

The main reason behind the result cache freshness problem in search engines
is the fact that the documents in the index of the search engine are continuously
modified due to new document additions, deletions, and content updates [4].
Hence, certain entries in the result cache face the risk of becoming stale as
the time passes, i.e., some cached results no longer reflect the up-to-date top k
results that would be returned by the backend search system. Serving stale search
results may have a negative impact on the user satisfaction. On the other hand,
bypassing the cache and evaluating the queries on the backend, thus guaranteeing
the freshness of query results, increases the computational costs. Consequently,
the research problem is to come up with techniques that can accurately identify
stale cache entries without incurring much redundant query processing overhead.

In literature, there are two lines of techniques for maintaining the freshness
of a result cache. In the first line of techniques, cache entries are invalidated,
i.e., they are treated as stale, based on some feedback obtained from the in-
dexer [1,4,5]. The indexer can generate this feedback based on some update
statistics associated with terms and documents. Although such techniques are
effective in improving the freshness, their implementation is non-trivial and they
incur additional computational costs. In the second line of techniques, cache en-
tries are proactively refreshed depending on features such as query frequency
and result age [7]. Those techniques are easy to implement, but relatively less
effective.

All solutions proposed so far are coupled with a time-to-live (TTL) mecha-
nism, where each result entry is associated with a TTL value that indicates the
time point after which the result entry will be considered stale. In practice, the
TTL value has to be carefully set. While a too large value may cause serving stale
results to the users, using a too small value may diminish the efficiency gains
of having a result cache. To the best of our knowledge, the potential benefits of
assigning adaptive TTL values tailored according to the features of queries and
their results are left unexplored. Given the large space of user intents and web
results, however, it is reasonable to assume that the results of different queries
will remain fresh for different time periods. For instance, while the result of the
query “stem cell research” can remain fresh for a couple of days, the results of a
news-related query (e.g., “Libya war”) may change within a couple of hours or
even minutes. Moreover, the freshness of queries may show temporal variation.
For example, while the results of the query “champions league” usually change
on a daily basis, the changes may be every minute during the matches.

In this paper, we investigate adaptive TTL strategies that aim to assign a sep-
arate TTL value to each query. We evaluate a number of parameterized functions
and also build a machine learning model to assign the TTL values to queries.
Our machine learning model exploits a number of query- and result-specific fea-
tures that help predicting the best TTL values. The experimental results show
that the adaptive TTL strategies outperform the fixed TTL strategy in terms
of both result freshness and redundant query processing cost metrics.

Adaptive Time-to-Live Strategies for Query Result Caching 403

Query is evaluated for the
first time and its results
are cached

Cached query results
became stale due to
updates on the index

The same query is issued
for the second time

TTL of the query expired

Case III: True negative
– Results are served by the cache
– Fresh results
– No redundant computation

Case I: True positive
– Results are served by the backend
– Fresh results
– No redundant computation

Case II: False positive
– Results are served by the backend
– Fresh results
– Redundant computation

Case IV: False negative
– Results are served by the cache
– Stale results
– No redundant computation

Fig. 1. Potential cases when performing a result cache lookup for a query

2 Fixed TTL Strategy

The standard technique in previous works is to associate each cache entry with
a fixed TTL value [1,4,5,7]. These works assume a caching system such that the
results of a query q are cached when the query is first seen at time t(q) and its
expiration time is set to t(q)+T , where T is a TTL value that is identical for all
queries. If the query is re-issued before its expiration time t(q)+T , the results
are readily served by the cache. Otherwise, the cached results are considered to
be stale and the query is re-evaluated at the backend. In general, depending on
whether the query results are really stale or not and whether the query evaluation
is redundant or not, there are four possible outcomes of this decision (Fig. 1):

– Case I: The query is received after its TTL value has expired and while
the cached results are stale. Since the TTL value is expired, the results are
served by the backend. The backend computation is not redundant because
the newly computed results are more fresh than those in the cache.

– Case II: The query is received after its TTL value has expired and while the
cached results are not stale. Since the TTL value is expired, the results are
served by the backend. The backend computation is redundant because the
newly computed results are identical to those in the cache.

– Case III: The query is received before its TTL value has expired and while
the cached results are not stale. The fresh results in the cache are served to
the user without creating any query processing overhead on the backend.

– Case IV: The query is received before its TTL value has expired and while
the cached results are stale. The stale results in the cache are served to the
user, potentially degrading the user satisfaction.

3 Adaptive TTL Strategies

The TTL mechanism leads to an interesting trade-off between the stale query
traffic ratio and the redundant query evaluation cost. In general, large TTL val-
ues lead to more stale results while small TTL values lead to higher processing

404 S. Alici et al.

Table 1. Increment functions and parameters (T ′ is the current TTL, c is a parameter)

Type F (.) Parameter values

Linear c× T ′ 1/10, 1/5, 1/2
Polynomial (T ′)c −3, −2, −1, −1/2, 1/2

Exponential cT
′

1/2, 1, 2

overhead. The techniques we will discuss in this section aim to select the TTL
value, adaptively, on a per query basis, trying to increase the freshness of served
results and reduce the query processing overhead. We investigate three alterna-
tive strategies: average TTL, incremental TTL, and machine-learned TTL.

3.1 Average TTL

This is a simple approach that observes the past update frequency f(q) for the
top k result set of a query over a time interval of I units of time and sets the TTL
value of q to I/f(q). For instance, if the top k result set of a query is updated
3 times within a time interval of 30 days, the TTL of the query is set to 10.
Since this strategy simply computes an average without taking into account the
distribution of result updates in time, it fails to capture bursty update periods.

3.2 Incremental TTL

A simple yet effective way of assigning adaptive TTL values to queries is to
adjust the TTL value based on the current TTL value. That is, each time a
result entry having an expired TTL value is requested, we compare the newly
computed results with those in the cache to decide whether the query results
are stale or not. In this work, we adopt a conservative approach and declare
the results of a query stale unless all URLs in the cached results and the newly
computed results as well as their ranks are the same.

Given the dynamic and rapidly growing nature of the Web, it is reasonable
to assume that the query results will be frequently updated. Moreover, in many
cases, bursty updates are likely due to spontaneous events. Taking these obser-
vations into account, we assign the TTL value of a query as follows:

i) If the cached results are decided to be stale, we immediately set the new
TTL value of the query to the lowest possible TTL value Tmin. The rationale
behind decreasing the TTL value is to avoid missing a bursty update period.

ii) If the cached results are decided to be fresh, we use this as an evidence
to increase the TTL value of the query according to the output of some
increment function F (.).1 The function F (.) takes as input the current TTL
value T ′ of the query and outputs an increment value F (T ′) to be added
to the current TTL value, i.e., the new TTL value T is computed by the

1 In this study, we evaluate a wide range of increment functions (see Table 1).

Adaptive Time-to-Live Strategies for Query Result Caching 405

Table 2. Features used by the machine learning model

Feature Description

QueryTermCount Number of terms in the query
QueryFreqeuency Number of times query appears in the log
ResultCount Number of query results
ReplacedDocsInResult Number of new query results
RerankedDocsInResult Number of query results whose ranks have changed
Web2ResultCount Number of query results from Web 2.0 sites
NewsResultCount Number of query results from news sites

formula T =T ′+F (T ′). The TTL value of a query can be increased until a
maximum allowed TTL value Tmax is reached. This threshold serves as an
upper bound to avoid assigning very high TTL values to queries.

3.3 Machine-Learned TTL

When assigning a new TTL value to a query, the strategy of the previous section
makes use of only the current TTL value of the query. To make the same decision,
we also build a machine learning model using several features extracted from a
training query log. Some of our features aim to capture basic query characteris-
tics such as query length and frequency. Some other features try to capture the
tendency of the query results to change. For example, we compare the newly
computed top k results of a query with the cached results and determine the
number of new documents in the current results or the number of documents
whose ranks have changed. The expectation is that the amount of change in the
results will provide clues about the freshness period of the query results. We also
use features reflecting the type of query results (e.g., news or social media pages).
We envision that the number of results from Web 2.0 or news domains may also
serve as a feature since queries whose results contain such pages are more likely
to become stale. The features we use in the model are given in Table 2.

To train the machine learning model, we observe the updates on the result
sets of some training queries over a time interval [t1, . . . , tK], where ti represents
a discrete time point. At each update of the result set of a query q, we create a
training instance with the features given in Table 2. The target TTL value we
learn is the time interval during which the query results remain fresh starting
from the current update time. As an example, suppose that the results of a query
are updated twice, at time points ti and tj during the training period. For this
query, we compute a feature vector at time ti and set the target TTL value as
tj−ti. For the update at time tj , we again compute features, but this time we set
the target TTL value to tK−tj, i.e., we assume an implicit update at the end of
the training period. The feature vectors for test instances are created in a similar
fashion, every time a cache entry with an expired TTL value is requested.

406 S. Alici et al.

0 10 20 30 40 50 60 70 80 90 100110120
0

20

40

60

80

100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

Update count

1 2 10
0

5

10

15

20

25

30

35

40

A
v
g
.
re

s
u
lt
 e

x
p
ir
a
ti
o
n
 t
im

e
 (

in
 d

a
y
s
)

Top k results

 Informational

 Navigational

Fig. 2. Distribution of result updates during the evaluation period of 120 days (left)
and the average freshness period (in days) for the top k results of informational and
navigational queries (right)

4 Characterization of Result Updates

To characterize the behavior of result updates, we use a randomly selected subset
of 4,500 queries from the AOL query log [15]. For all queries, we obtain the top
10 results from the Yahoo! public search API for 120 days, from November 2010
to April 2011. As we mentioned before, we assume a strict definition for a result
update: if any of the results or their order in the top k set changes with respect
to the results of the previous day, we consider the results updated. In Section 5,
we also investigate a case where this assumption is relaxed.

Our query log exhibits properties similar to earlier findings in terms of query
length and frequency. The majority of queries have length between 1 and 4. The
average query length is 2.9. Query frequencies follow a power-law distribution as
shown in previous studies. To save space, we do not provide the related plots.

Figure 2 (left) shows the distribution of result updates. In our data, we observe
that the query results become stale around 2.5 days, on average. This finding
conforms with the finding in [11]. That study argues that the high rate of changes
in query results might be due to the instability of indexing and/or ranking
mechanisms used by the search engine. Nevertheless, it is not possible to know
whether a change in the result set of a query is an artifact of the search system
or due to updates in the underlying data used for ranking (e.g., IDF values of
terms, web graph). Therefore, for our purposes, whenever the top k result set
of a query differs from the result set of the previous day, we consider this as
a proper update of the results that should be detected by an ideal invalidation
mechanism (assuming that the same query is issued in both days).

A useful feature that can be determined from the query and its result set
is the query intent (e.g., informational, navigational, or transactional [6]). In
particular, while assigning adaptive TTL values, it seems quite promising to
exploit navigational queries, which aim to find a certain page on the Web, as

Adaptive Time-to-Live Strategies for Query Result Caching 407

0 20 40 60 80 100 120
0

20

40

60

80

100

120

N
u
m

b
e
r

o
f
u
p
d
a
te

s

Query frequency

0 2 4 6 8 10
0

20

40

60

80

100

120

N
u
m

b
e
r

o
f
u
p
d
a
te

s

Query length

Fig. 3. Number of result updates versus query frequency (left) and the average number
of result updates versus query length (right) during the evaluation period of 120 days

the URLs of frequently accessed web sites are more likely to be stable over
time. To this end, we obtain a sample of 400 navigational and 400 informational
queries from our query set. These queries are first filtered using the automated
techniques in [14] and are further verified in a post-processing step by human
judges. Figure 2 (right) shows that when we apply our conservative definition
of result update, it turns out that the top 10 results of a navigational query
change as frequently as the results of an informational query. This finding is
different from what is reported in [11], where the stability is defined based on
the result relevance. On the other hand, we also find that the top 1 or top
2 results of navigational queries have a freshness period that is almost twice
longer than those of informational queries. This is important since earlier works
report that answers of the navigational queries are usually returned at the highest
ranks [13]. Therefore, the technique discussed in Section 3.3 can be applied using
the update history of only the top-ranked results for navigational queries, which
can be effectively identified by the search engines. We consider this as an obvious
extension of our methods and do not make use of query intent in this paper.

Next, we investigate the relationship of certain features extracted from query
results with the update frequency of results. According to Fig. 3 (left), the
results of queries with higher frequencies are also updated more frequently, but
the relative difference with respect to less frequent queries is rather low. A similar
observation can also be made in Fig. 3 (right), according to which there seems to
be no correlation between the update frequency and query length (especially for
queries up to seven terms). This might be due to the observation that both head
(shorter) and tail (longer) queries involve popular terms [16], whose posting
lists may change more often. Subsequently, the query results can also change
frequently, regardless of the query frequency or length.

An analysis similar to ours is provided in [11], which investigates the stability
of query results with respect to the query frequency and length. Interestingly,
the findings of that work (see Fig. 8 in [11]) are contradictory to ours in that
they find less frequent and longer queries to be more unstable. However, their
measure of instability is based on the variance of the human-judged quality of

408 S. Alici et al.

results (measured by NDCG) computed among the top-5 results over the entire
evaluation period. In contrast, herein, we consider whether the top 10 results of
a query change between any two consecutive days disregarding the relevance of
results, which is unknown when assigning a TTL value to a query.

5 Experiments

5.1 Setup

We follow the simulation setup described in [1,4]. We assume that all 4,500
queries in our query set are submitted to the search engine every day throughout
120 days. We further assume an infinitely large cache [7] so that the performance
does not depend on the cache size or eviction algorithms. On the first day of
the 120-day simulation period, all query results are stored in the cache. For
the following days, we either execute the query and replace the result in the
cache (with the ground truth result of that particular day as obtained from the
Yahoo! API) or return the cached results to the user. At the end of each day,
we compute two metrics: the stale traffic (ST) ratio and the false positive (FP)
ratio [4]. The ST ratio is the fraction of stale query results served by the system
and the FP ratio is the fraction of redundant query evaluations. For a given day,
we compare the returned result to the ground truth to see whether a stale result
is returned or a redundant evaluation is done, and update the respective metrics.
The reported values are over 120 days and all queries. Unless stated otherwise,
query results that differ from the ground truth in terms of URLs or their ranks
are considered to be stale, i.e., we impose a strict result equivalence requirement.
For the machine-learned TTL strategy, we build a linear regression model using
Weka [10].2 To determine the number of results from the news and social Web
2.0 sites, we manually compile lists from various Web resources (6,349 and 477
web sites, respectively). For the incremental TTL strategy, after some tuning,
we set Tmin to 1 (i.e., no caching) and Tmax to 5.

5.2 Results

In Fig. 4, we plot the ST ratio versus the FP ratio for fixed TTL values between 1
and 5 days, where a TTL value of 1 means that each query is executed everyday,
i.e., no caching. The plot also includes the performance of the incremental TTL
strategy described in Section 3.2. The results show that the incremental TTL
strategy achieves lower ST and FP ratios. For instance, for the FP ratios between
0.2 and 0.3, the incremental TTL strategy achieves almost half of the ST ratio
that could be obtained using a fixed TTL strategy. Note that, in an additional
experiment, we randomly set the TTL value to one or two, each time the TTL
of a query expires. We found that this strategy yields a point that is on the line
that connects the TTL values one and two in Fig. 4. Therefore, the performance
gains of the incremental TTL strategy shown in Fig. 4 are realistic.

2 The generated regression model assigns a non-zero weight to all features in Table 2.

Adaptive Time-to-Live Strategies for Query Result Caching 409

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RandomTTL

 {1,2}

TTL=1

TTL=2

TTL=3

TTL=4

TTL=5

S
ta

le
 t

ra
ff

ic
 r

a
ti
o

False positive ratio

 Fixed TTL

 Linear, c=1/2

 Linear, c=1/5

 Linear, c=1/10

 Pol., c=1/2

 Pol., c=-1/2

 Pol., c=-1

 Pol., c=-2

 Pol., c=-3

 Exp., c=1

 Exp., c=1/2

 Exp., c=2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.02

0.04

0.06

0.08

0.10

0.12

TTL=1

TTL=2

TTL=3

TTL=4
TTL=5 Fixed TTL

 Linear, c=1/2

 Linear, c=1/5

 Linear, c=1/10

 Pol., c=1/2

 Pol., c=-1/2

 Pol., c=-1

 Pol., c=-2

 Pol., c=-3

 Exp., c=1

 Exp., c=1/2

 Exp., c=2

S
ta

le
 t

ra
ff

ic
 r

a
ti
o

False positive ratio

Fig. 4. Stale traffic ratio versus false positive ratio for incremental TTL strategies with
strict result equivalence check (left) and Jaccard-based equivalence check (right)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TTL=5

TTL=4

TTL=3

TTL=2

TTL=1

 Fixed TTL

 Linear, c=1/2

 Linear, c=1/5

 Linear, c=1/10

 Pol., c=1/2

 Pol., c=-1/2

 Pol., c=-1

 Pol., c=-2

 Pol., c=-3

 Exp., c=1

 Exp., c=1/2

 Exp., c=2

S
ta

le
 t

ra
ff

ic
 r

a
ti
o

False positive ratio

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
TTL=5

TTL=4

TTL=3

TTL=2

TTL=1

 Fixed TTL

 Linear, c=1/2

 Linear, c=1/5

 Linear, c=1/10

 Pol., c=1/2

 Pol., c=-1/2

 Pol., c=-1

 Pol., c=-2

 Pol., c=-3

 Exp., c=1

 Exp., c=1/2

 Exp., c=2

S
ta

le
 t

ra
ff

ic
 r

a
ti
o

False positive ratio

Fig. 5. Stale traffic ratio versus false positive ratio for queries whose results are infre-
quently (left) or frequently (right) updated

Figure 4 (left) also shows that the actual ST ratios are rather high, in com-
parison to previous works [1,4]. This is due to the high update frequency of web
search results as shown in the previous section. On the other hand, it is possible
to obtain lower ST ratios by relaxing our strict equivalence requirement while
comparing cached results with the ground truth. In Fig. 4 (right), we report
the ST ratio based on the Jaccard similarity metric, i.e., if the cached results
are not exactly the same as the ground truth, we compute the staleness of the
served result by obtaining the Jaccard similarity of these two result sets and
subtracting this latter value from one. The resulting staleness value is then used
to compute the ST ratio. Figure 4 (right) shows that our adaptive strategies
perform better also in this case while all absolute ST ratios drop. This latter
observation implies that most of the changes in the query results may be minor,
e.g., two documents may swap places in the top 10 result list. In Figs. 5 (left)
and 5 (right), we show the performance for queries that are updated less often
or more often than the average update frequency, respectively. The increment
functions are useful in both cases, but the gains are larger in the latter scenario.

410 S. Alici et al.

0,0 0,1 0,2 0,3 0,4 0,5
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

TTL=1

TTL=2

TTL=3

TTL=4

TTL=5

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

 Fixed TTL

 Average TTL

 Machine-learned TTL

0,0 0,1 0,2 0,3 0,4 0,5
0,00

0,02

0,04

0,06

0,08

0,10

0,12

TTL=1

TTL=2

TTL=3

TTL=4

TTL=5

S
ta

le
 t
ra

ff
ic

 r
a
ti
o

False positive ratio

 Fixed TTL

 Average TTL

 Machine-learned TTL

Fig. 6. Stale traffic ratio versus false positive ratio for the average TTL and machine-
learned TTL strategies with strict (left) and Jaccard-based (right) equivalence check

In Fig. 6 (left), we report the performance of the adaptive TTL strategies
based on simple averaging and machine learning (ML). The average TTL values
are computed over the first 60 days and evaluated over the second 60 days
of the evaluation period, for all queries. For the ML-based TTL strategy, we
used five-fold cross validation. In each fold, 80% of the queries are used as the
training set and only the first 60 days of these queries are used for training.
The remaining 20% of queries are evaluated for the second 60 days. Therefore,
we guarantee that queries in the training and test sets are content-wise and
temporally distinct. Figure 6 (right) reports similar results, using the Jaccard
similarity of the returned results and ground truth while computing the ST ratio.
Although the results in Fig. 6 indicate that both the average TTL and ML-based
TTL strategies can improve the performance of the fixed TTL strategy, the gains,
however, are very close to the gains attained by the incremental TTL strategy.
Hence, in practice, the incremental TTL strategy may be preferable since it does
not require a training phase.

6 Related Work

The main reason that leads to updates in query results is the changes in the web
content. A large-scale study of web change is conducted by Fetterly et al. [8],
where the authors monitor the weekly change of around 150 M web pages for a
period of 11 weeks. It is observed that almost 3% of all web documents change
weekly and the pages from the .com domain change more frequently than the
pages in the .edu or .gov domains.

Previous works that aim to maintain the freshness of a result cache adopt the
practice of associating fixed TTL values with query results. In [7], TTL is used
as the primary mechanism to prevent stale results. The TTL scheme is further
augmented with an intelligent refresh strategy which uses the idle cycles of the
backend to precompute the expired query results. More recently, other solutions
that assume an incremental index update policy are proposed in [4]. In this

Adaptive Time-to-Live Strategies for Query Result Caching 411

case, each time the index is modified, the documents that are updated are also
compared to the cached queries and the results that can potentially change are
marked as invalid. Again, the query results are associated with TTL values to
prevent having too stale results in the cache. Finally, in [1], a timestamp-based
invalidation framework is proposed on top of an incrementally updated index.

In the literature, the idea of using an adaptive TTL is explored in the context
of maintaining the coherency of virtual data warehouses that consume data from
different web pages [17]. In that work, static, semi-static, dynamic, and adaptive
TTL mechanisms are proposed. The static approach uses a fixed TTL value as
in our baseline. The semi-static TTL approach sets the TTL value based on a
previously observed maximum update rate. The dynamic TTL approach relies
on the most recent changes. The adaptive TTL approach is a combination of
the semi-static and dynamic approaches using min() and max() functions. It
is shown that the adaptive TTL approach outperforms the other approaches
for this problem domain. In a recent work [5], the cache invalidation predictor
module proposed in [4] is augmented with a TTL-like approach, called virtual
clock. This approach invalidates query results based on some events such as the
number of times the result is served from the cache and the number of times
new documents match the query but does not alter the top-k result set. Even
though this approach is different from the fixed TTL approach, it is not adaptive
because it sets a fixed virtual clock value independent of the query.

Kim and Carvalho [11] analyze the updates in web search results from an
instability perspective. They monitor the results of 1,000 queries in three major
search engines and observe that the top-10 result sets change for almost 90%
of queries in ten days. They analyze the reasons for these changes and evaluate
the degree of instability using different measures, such as the overlap between
results and the change in the NDCG measure.

7 Conclusion

We proposed three types of adaptive TTL strategies to improve the performance
over a fixed TTL approach in terms of stale traffic and false positive ratios. The
experiments showed that the adaptive approaches achieve better results than
the baseline. The future work directions involve developing a formal model of
result updates over time and investigating more accurate adaptive TTL strate-
gies based on this model. Another promising direction is to combine the adaptive
TTL strategies with the relatively sophisticated approaches [1,4]. Yet another
direction is using the clicks on results as relevance judgments and deciding on
the staleness only when the clicked URLs change in a query result set.

Acknowledgments. This work is partially supported by The Scientific and
Technological Research Council of Turkey (TÜBİTAK) under grant no. 110E135,
EU FP7 projects LivingKnowledge (contract no. 231126) and COAST (contract
no. 248036).

412 S. Alici et al.

References

1. Alici, S., Altingovde, I.S., Ozcan, R., Cambazoglu, B.B., Ulusoy, O.: Timestamp-
based result cache invalidation for web search engines. In: Proc. 34th Int’l ACM
SIGIR Conf. Research and Development in Information Retrieval, pp. 973–982
(2011)

2. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri,
F.: The impact of caching on search engines. In: Proc. 30th Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval, pp. 183–190 (2007)

3. Baeza-Yate, R., Junqueira, F.P., Plachouras, V., Witschel, H.F.: Admission Policies
for Caches of Search Engine Results. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE
2007. LNCS, vol. 4726, pp. 74–85. Springer, Heidelberg (2007)

4. Blanco, R., Bortnikov, E., Junqueira, F., Lempel, R., Telloli, L., Zaragoza, H.:
Caching search engine results over incremental indices. In: Proc. 33rd Int’l ACM
SIGIR Conf. Research and Development in Information Retrieval, pp. 82–89 (2010)

5. Bortnikov, E., Lempel, R., Vornovitsky, K.: Caching for Realtime Search. In:
Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch,
V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 104–116. Springer, Heidelberg (2011)

6. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
7. Cambazoglu, B.B., Junqueira, F.P., Plachouras, V., Banachowski, S., Cui, B., Lim,

S., Bridge, B.: A refreshing perspective of search engine caching. In: Proc. 19th Int’l
Conf. World Wide Web, pp. 181–190 (2010)

8. Fetterly, D., Manasse, M., Najork, M., Wiener, J.: A large-scale study of the evolu-
tion of web pages. In: Proc. 12th Int’l Conf. World Wide Web, pp. 669–678 (2003)

9. Gan, Q., Suel, T.: Improved techniques for result caching in web search engines.
In: Proc. 18th Int’l Conf. World Wide Web, pp. 431–440 (2009)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18
(2009)

11. Kim, J., Carvalho, V.R.: An Analysis of Time-Instability in Web Search Results.
In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch,
V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 466–478. Springer, Heidelberg (2011)

12. Lempel, R., Moran, S.: Predictive caching and prefetching of query results in search
engines. In: Proc. 12th Int’l Conf. World Wide Web, pp. 19–28 (2003)

13. Liu, Y., Zhang, M., Ru, L., Ma, S.: Automatic Query Type Identification Based on
Click Through Information. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.)
AIRS 2006. LNCS, vol. 4182, pp. 593–600. Springer, Heidelberg (2006)

14. Ozcan, R., Altingovde, I.S., Ulusoy, O.: Exploiting navigational queries for result
presentation and caching in web search engines. J. Am. Soc. Inf. Sci. Technol. 62(4),
714–726 (2011)

15. Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proc. 1st Int’l Conf.
Scalable Information Systems (2006)

16. Skobeltsyn, G., Junqueira, F., Plachouras, V., Baeza-Yates, R.: ResIn: a combina-
tion of results caching and index pruning for high-performance web search engines.
In: Proc. 31st Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval, pp. 131–138 (2008)

17. Srinivasan, R., Liang, C., Ramamritham, K.: Maintaining temporal coherency of
virtual data warehouses. In: Proc. IEEE Real-Time Systems Symposium, pp. 60–70
(1998)

	Adaptive Time-to-Live Strategies for Query Result Caching in Web Search Engines

	Introduction
	Fixed TTL Strategy
	Adaptive TTL Strategies
	Average TTL
	Incremental TTL
	Machine-Learned TTL

	Characterization of Result Updates
	Experiments
	Setup
	Results

	Related Work
	Conclusion
	References

