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Exploiting Interclass
Rules for Focused
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C rawling the Web quickly and entirely is an expensive, unrealistic goal because of

the required hardware and network resources. A focused crawler is an agent that

targets a particular topic and visits and gathers only a relevant, narrow Web segment

while trying not to waste resources on irrelevant material. An underlying paradigm for 
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a focused crawler is implementing a best-first search
strategy rather than a breadth-first search, which gen-
eral-purpose crawlers typically employ.

Some focused crawlers, such as Ahoy homepage
finder (www.cs.washington.edu/research/projects/
WebWare1/www/ahoy), search for pages of a par-
ticular document type; others, such as a crawler for
quantum physics, search for pages on a specific
topic. Without losing generality, this article empha-
sizes the latter. Because a focused crawler searches
only for pages relevant to its targeted topic, two fun-
damental questions are how to decide whether a
downloaded page is on topic and how to choose the
next page to visit.1 Researchers have proposed sev-
eral ideas to answer these two questions, which the
“Related Work” sidebar discusses.

In our work, we started with a focused-crawling
approach designed by Soumen Chakrabarti, Martin
van den Berg, and Byron Dom, and we implemented
the underlying philosophy of their approach to derive
our baseline crawler.2 This crawler employs a canon-
ical topic taxonomy to train a naïve-Bayesian clas-
sifier, which then helps determine the relevancy of
crawled pages. The crawler also relies on the as-
sumption of topical locality to decide which URLs to
visit next. Building on this crawler, we developed a
rule-based crawler, which uses simple rules derived
from interclass (topic) linkage patterns to decide its
next move. This rule-based crawler also enhances
the baseline crawler by supporting tunneling. Initial
performance results show that the rule-based crawler
improves the baseline focused crawler’s harvest rate
and coverage.

A typical Web crawler
With the Web’s emergence in the early 1990s,

crawlers (also known as robots, spiders, or bots)
appeared on the market with the purpose of fetching
all pages on the Web to allow other useful tasks, such
as indexing. Typically, a crawler begins with a set of
given Web pages, called seeds, and follows all the
hyperlinks it encounters along the way, to eventually
traverse the entire Web.3 General-purpose crawlers
insert the URLs into a queue and visit them in a
breadth-first manner. Of course, the expectation of
fetching all pages is not realistic, given the Web’s
growth and refresh rates. A typical crawler runs end-
lessly in cycles to revisit the modified pages and access
unseen content.

Figure 1 illustrates the simplified crawler architec-
ture we implemented based on the architecture out-
lined in Chakrabarti’s book.3 This figure also reveals
various subtleties to consider in designing a crawler.
These include caching and prefetching of DNS
(Domain Name System) resolutions, multithreading,
link extraction and normalization, conforming to robot
exclusion protocols, eliminating seen URLs and con-
tent, and handling load balancing among servers (the
politeness policy). We ignored some other issues, such
as refresh rates, performance monitoring, and how to
handle hidden Web pages, because they’re not essen-
tial for our experimental setup.

Our crawler operates like a typical crawler. The
URL queue is initially filled with several seed URLs.
Each DNS thread removes a URL from the queue
and tries to match the host name with an Internet Pro-
tocol address. At first, a DNS thread consults the
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A focused crawler searches for the most relevant pages
on a particular topic. Two key questions are how to decide
whether a downloaded page is on topic and how to choose
the next page to visit. Researchers have proposed several
ideas to answer these two questions.

Early algorithms
The FISHSEARCH system is one of the earliest approaches to

ordering the crawl frontier (for example, through a priority
queue of URLs).1 The system is query driven. Starting from a set
of seed pages, it considers only those pages that have content
matching a given query (expressed as a keyword query or a
regular expression) and their neighborhoods (pages pointed
to by these matched pages).

The SHARKSEARCH system is an improvement over FISHSEARCH.2

It uses a weighting method of term frequency (TF) and in-
verse document frequency (IDF) along with the cosine mea-
sure to determine page relevance. SHARKSEARCH also some-
what smooths the depth cutoff method that its predecessor
used. Meanwhile, Junghoo Cho, Hector Garcia-Molina, and
Lawrence Page have proposed reordering the crawl frontier
according to page importance,3 which they can compute
using various heuristics—page rank, number of pages point-
ing to a page (in-links), and so on. These three algorithms
don’t employ a classifier, but rather rely on techniques based
on information retrieval (IR) to determine relevance.

Soft-focus crawling
Soumen Chakrabarti, Martin Van den Berg, and Byron Dom

were the first to propose a soft-focus crawler,4 which obtains a
given page’s relevance score (relevance to the target topic)
from a classifier and assigns this score to every URL extracted
from that page. We refer to this soft-focus crawler as the base-
line focused crawler.

Focused crawling with tunneling
An essential weakness of the baseline focused crawler is its

inability to model tunneling; that is, it can’t tunnel toward the
on-topic pages by following a path of off-topic pages.5 Two
remarkable projects, the context-graph-based crawler and
Cora’s focused crawler, achieve tunneling.

The context-graph-based crawler uses a best-search heuristic,
but the classifiers learn the layers representing a set of pages
that are at some distance to the pages in the target class (layer
0).6 The crawler simply uses these classifier results and inserts
URLs extracted from a layer-i page to the layer-i queue; that is,
it keeps a dedicated queue for each layer. While deciding the
next page to visit, the crawler prefers the pages nearest to the
target class—that is, the URLs popped from the queue that cor-
respond to the first nonempty layer with the smallest layer
label. This approach clearly solves the problem of tunneling,
but unfortunately requires constructing the context graph,
which in turn requires finding pages with links to a particular
page (back links). Our rule-based crawler, on the other hand,
uses forward links while generating the rules and transitively
combines these rules to effectively imitate tunneling behavior.

Cora is a domain-specific search engine on computer science
research papers that relies heavily on machine-learning tech-
niques.7 In particular, Andrew McCallum and his colleagues
have used reinforcement learning in Cora’s focused crawler.

Cora’s crawler basically searches for the expected future reward
by pursuing a path starting from a particular URL. Training clas-
sifiers involves learning the paths that could lead to on-topic
pages in some number of steps. In contrast, our rule-based
crawler doesn’t need to see a path of links during training, but
constructs the paths using the transitive combination and
chaining of simple rules (of length 1).

Other approaches
The Web Topic Management System focused crawler fetches

only pages that are close (parent, child, and sibling) to on-topic
pages.8 WTMS determines a page’s relevancy using IR-based
methods. Charu Aggarwal, Fatima Al-Garawi, and Philip Yu
attempt to learn the Web’s linkage structure to determine a
page’s likelihood of pointing to an on-topic page.9 However,
they don’t consider interclass relationships in the way we do.
Bingo! is a focused-crawling system for overcoming the limita-
tions of initial training by periodically retraining the classifier
with high-quality pages.10 Recently, Filippo Menczer, Gautam
Pant, and Padmini Srinivasan presented an evaluation frame-
work for focused crawlers and introduced an evolutionary
crawler.11 A. Abdollahzadeh Barfourosh and his colleagues’
survey provides a more comprehensive discussion.5
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DNS database to see whether the host name
has been resolved; if so, the thread retrieves
the IP from the database.

Otherwise, DNS threads learn the IP from
a DNS server. Next, a read thread receives the
resolved IP address, tries to open an HTTP
socket connection, and asks for the Web page.
After downloading the page, the crawler
checks the page content to avoid duplicates.
Next, it extracts and normalizes the URLs in
the fetched page, verifies whether robots can
crawl those URLs, and checks whether the
crawler has previously visited those extracted
URLs (so that the crawler isn’t trapped in a
cycle). The crawler hashes the URLs with 
the MD5 message-digest algorithm (www.
rsasecurity.com/rsalabs/node.asp?id=2253)
and store the hash values in the URL database
for this check. Finally, if this is the first time
the crawler has encountered the URL, it
inserts this URL into the URL queue—a first-
in, first-out (FIFO) data structure in a gen-
eral-purpose crawler. Of course, we don’t
want to annoy servers with thousands of
simultaneous requests, so the first time the
crawler accesses a server, it marks it as busy
and stores it with a time stamp. The crawler
accesses the other URLs from this server only
after this time stamp is old enough (typically
after 10 seconds, to be on the safe side). Dur-
ing this time, if a thread gets a URL referring
to such a busy server, the crawler places this
URL in the busy queue. The threads alternate
between accessing the URL queue and the

busy queue, to prevent starvation in one of the
queues. Our current crawler doesn’t use a ded-
icated queue per server, which could be a more
sophisticated way to enforce a politeness pol-
icy. (For more details, see Chakrabarti’s excel-
lent book.3)

Baseline focused crawler
Atop the basic crawler just described, we

implemented Chakrabarti, Van den Berg, and
Dom’s focused crawler as our baseline
crawler.2 We use this crawler to present our
rule-based crawling strategy and to evaluate
its performance. The baseline crawler uses a
best-first search heuristic during the crawl-
ing process. In particular, it uses both page
content and link structure information while
determining the promising URLs to visit.

The system includes a canonical topic
(class) taxonomy, a hierarchy of topics along
with a set of example documents. We can eas-
ily obtain such a taxonomy from the Open
Directory Project (www.dmoz.org) or Yahoo
(www.yahoo.com). Users determine the fo-
cus topics by browsing this taxonomy and
marking one or more topics as the targets.
Chakrabarti, Van den Berg, and Dom assume
that the taxonomy induces a hierarchical par-
titioning of Web pages (each page belongs to
only one topic), and we rely on this assumed
partitioning for this project.

An essential component of the focused
crawler is a document classifier. Chakrabarti,
Van den Berg, and Dom use an extended

naïve-Bayesian classifier called Rainbow to
determine the crawled document’s relevance
to the target topic.4 During the training phase,
we trained this classifier with the topic tax-
onomy’s example pages so that it learned to
recognize the taxonomy.

Once the classifier constructs its internal
model, it can determine a crawled page’s
topic—for example, as the topic in the tax-
onomy with the highest probability score.
Given a page, the classifier returns a sorted
list of all class names and the page’s rele-
vance score to each class. Thus, the classi-
fier is responsible for determining the on-
topic Web pages. Additionally, it determines
which URLs to follow next, assuming a
page’s relevance can be an indicator of its
neighbor’s relevance—that is, the radius-1
hypothesis. (The radius-1 hypothesis con-
tends that if page u is an on-topic example,
and u links to v, then the probability that v is
on topic is higher than the probability that a
randomly chosen Web page is on topic.3)

Clearly, this hypothesis is the basis of the
baseline focused crawler and can guide
crawling in differing strictness levels.2 In a
hard-focus crawling approach, if the classi-
fier identifies a downloaded page as off topic,
the crawler doesn’t visit the URLs found at
that page; in other words, it prunes the crawl at
this page. For example, if the highest-scoring
class returned by the classifier for a particu-
lar page doesn’t fall within the target topic, or
if the score is less than a threshold (say, 0.5),
the crawler concludes that this page is off
topic and stops following its links. This
approach is rather restrictive compared to its
alternative, soft-focus crawling. In that
approach, the crawler obtains from the clas-
sifier the given page’s relevance score (a
score on the page’s relevance to the target
topic) and assigns this score to every URL
extracted from this particular page. Then, the
crawler adds these URLs to the priority
queue on the basis of these relevance scores.
Clearly, the soft-focus crawler doesn’t elim-
inate any pages ahead of time. Another major
component of the baseline crawler is the dis-
tiller, which exploits the link structure to fur-
ther refine the URL frontier’s ordering. In
our research, we didn’t include the distiller
component in the baseline crawler imple-
mentation because we expect its effect to be
the same for the baseline crawler and our
rule-based crawler.

Thus, our baseline focused crawler in-
cludes a naïve-Bayesian classifier and de-
cides on the next URL to fetch according to
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Figure 1. Our implementation of a typical crawler.
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the soft-focus crawling strategy. This means
we simply add a step to classify the page and
return its relevance to the target topic imme-
diately before the URL extraction stage
shown in Figure 1. We also replace the FIFO
queues with priority queues.

Rule-based focused crawler
One problem with the baseline focused

crawler is its inability to support tunneling.
More specifically, the classifier doesn’t learn
that a path of off-topic pages can eventually
lead to high-quality, on-topic pages. For exam-
ple, if you’re looking for neural network arti-
cles, you might find them by following links
from a university’s homepage to the computer
science department’s homepage and then to
the researchers’ pages, which might point to
the actual articles (as Michelangelo Diligenti
and his colleagues also discuss5). Our base-
line focused crawler could possibly attach low
relevance scores to university homepages
(recall that naïve-Bayesian classifiers can be
biased to return either too high or too low rel-
evance scores for a particular class6) and thus
might miss future on-topic pages. The chance
of learning or exploring such paths would fur-
ther decrease as the lengths of the paths to be
traversed increased.

Chakrabarti, Van den Berg, and Dom re-
port that they’ve identified situations in
which pages of a certain class refer not only
to other pages of its own class (as envisioned
by the radius-1 hypothesis) but also to pages
from various other classes. For example, they
observed that pages for the topic “bicycle”
also refer to “red-cross” and “first-aid”
pages; and pages on “HIV/AIDS” usually
refer to “hospital” pages more frequently
than to other “HIV/AIDS” pages.2

To remedy these problems, we extract
rules that statistically capture linkage rela-
tionships among the classes (topics) and
guide our focused crawler by using these
rules. We based our heuristic on determining
relationships such as “pages in class A refer
to pages in class B with probability p.” Dur-
ing focused crawling, we ask the classifier to
classify a particular page that has already

been crawled. According to that page’s class,
we compute a score indicating the total prob-
ability of reaching the target topic from this
particular page. Then, the crawler inserts the
URLs extracted from this page into the pri-
ority queue with the computed score.

To achieve our goal, we first trained the
crawler’s classifier component with a class
taxonomy and a set of example documents
for each class (which you can find in a Web
directory such as DMOZ), and we call this
the train-0 set (see Figure 2a). Next, for each
class in the train-0 set, we gather all Web
pages that the example pages in the corre-
sponding class point to (through hyperlinks).
Once again, we have a collection of class
names (the train-1 set) and a set of fetched
pages for each class, but this time the class
name is the class of parent pages in the train-
0 set that point to these fetched documents.
We give the train-1 set to the classifier to find
each page’s actual class labels (see Figure
2b). Now, we know the class distribution of
pages to which the documents in each train-
0 set class point. So, for each class in the
train-0 set, we count the number of referred
classes in the corresponding train-1 page set
and generate rules of the form Ti → Tj (X),
meaning a page of class Ti can point to a page

of class Tj with probability X (see Figure 2c).
Probability score X is the ratio of train-1
pages in class Tj to all train-1 pages that the
Ti pages in the train-0 set refer to. Subse-
quently, a focused crawler seeking Web
pages of class Tj attaches priority score X to
the pages of class Ti that it encounters dur-
ing the crawling phase.

To demonstrate our approach, we present
an example. Our taxonomy includes four
classes:

• Department homepages (DH)
• Course homepages (CH)
• Personal homepages (PH)
• Sports pages (SP)

We can construct the train-0 set as just
described (for example, from an existing
Web directory). Next, for each class, we
retrieve the pages that this class’s example
pages refer to. Assume that we fetch 10 such
pages for each class in the train-0 set and that
the class distribution among these newly
fetched pages (that is, the train-1 set) is as
listed in Table 1. Then, we can obtain the
rules of Table 2 in a straightforward manner.

Now, we compare the behavior of the base-
line and rule-based crawlers to see how the

(a)

Train-0 set
(P classified with

respect to T)

T
Naïve-Bayesian

classifier  

(b)
P' Classifier  

with Model M

(c)
P and P'  

with class labels
Rule

generator

Internal model M

Train-I set
(P'   with class labels)

Ti → Tj (X)

Figure 2. Stages of a rule generation process: (a) train the crawler’s classifier with topic
taxonomy T and the train-0 set to form internal model M, which learns T; (b) use page
set P′, pointed to by P, to form the train-1 set; (c) generate rules of the form Ti → Tj (X),
where X is the probability score.

Table 1. Class distribution of pages fetched into the train-1 set for each class in the train-0 set.

Department homepages (DH) Course homepages (CH) Personal homepages (PH) Sports pages (SP)

8 URLs for CH 2 URLs for DH 3 URLs for DH 10 URLs for SP

1 URL for PH 4 URLs for CH 4 URLs for CH None

1 URL for SP 4 URLs for PH 3 URLs for PH None



rule-based crawler overcomes the aforemen-
tioned problems of the baseline crawler.
Assume we have the situation given in Fig-
ure 3. In this scenario, the seed page is of class
PH, which is also the target class; that is, our
crawler is looking for personal homepages.
The seed page has four hyperlinks, such that
links URL 1 through URL 4 refer to pages of
classes CH, DH, PH, and SP, respectively.
Furthermore, the CH page itself includes
another hyperlink (URL 5) to a PH page.

As Figure 3b shows, the baseline crawler
begins by fetching the seed page, extracting
all four hyperlinks, and inserting them into
the priority queue with the seed page’s rele-
vance score, which is 1.0 by definition (Step
1). Next, the crawler fetches URL 1 from the
queue, downloads the corresponding page,

and sends it to the classifier. With the soft-
focus strategy, the crawler uses the page’s
relevance score to the target topic according
to the classifier. Clearly, the CH page’s score
for target class PH is less than 1, so the
crawler adds URL 5, extracted from the CH
page, to the end of the priority queue (Step
2). Thus, at best, after downloading all three
pages with URLs 2 through 4, the crawler
downloads the page pointed to by URL 5,
which is indeed an on-topic page. If there are
other intervening links or if the classifier
score has been considerably low for URL 5,
it might be buried so deep in the priority
queue that it will never be recalled again.

In contrast, as Figure 3c shows, the rule-
based crawler discovers that the seed page
of class PH can point to another PH page

with probability 0.3 (due to the rules in
Table 2), so it inserts all four URLs to the
priority queue with score 0.3 (Step 1). Next,
the crawler downloads the page pointed to
by URL 1 and discovers that it’s a CH page.
By firing rule CH → PH (0.4), it inserts
URL 5 to the priority queue, which is now
at the head of the queue and will be down-
loaded next (Step 2), leading to an immedi-
ate reward—an on-topic page. Figure 3 cap-
tures the overall scenario.

The rule-based crawler can also support
tunneling for longer paths using a simple
application of transitivity among the rules.
For example, while evaluating URL 2 in the
previous scenario, the crawler learns that the
crawled page is of class DH. Then, the direct
rule to use is DH → PH (0.1). Besides, the
crawler can easily deduce that rules DH →
CH (0.8) and CH → PH (0.4) exist and then
combine them to obtain path DH → CH →
PH with a score of 0.8 × 0.4 = 0.32 (assum-
ing the independence of probabilities). In
effect, the rule-based crawler becomes aware
of path DH → CH → PH, even though the
crawler is trained only with paths of length 1.
Thus, the crawler assigns a score of, say, the
sum of the individual rule scores (0.42, for
this example) to the URLs extracted from
DH and inserts these URLs into the priority
queue accordingly.

Our rule-based scoring mechanism is
independent of a page’s similarity to the tar-
get page, but rather relies on the probability
that a given page’s class refers to the target
class. In contrast, the baseline classifier
would most probably score the similarity of
a DH page to target topic PH significantly
lower than 0.42 and might never reach a
rewarding on-topic page.

Computing the rule-based scores
There can be cases with no rules (for

example, the train-0 and train-1 sets might
not cover all possible situations). For such
cases, we decided to combine the soft-focus
and rule-based crawling approaches. Figure
4 shows our final scoring function.

Because the rules can chain in a recursive
manner, the MAX DEPTH value defines the max-
imum depth of allowed chaining. Typically,
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Figure 3. An example scenario: (a) seed page S of class PH; (b) steps of the baseline
crawler; (c) steps of the rule-based crawler. (Shading in (a) denotes pages from the 
target class; shading in (b) and (c) highlights where the two crawlers differ in Step 2.)

Table 2. Interclass rules for the distribution in Table 1. (The number following each rule is the probability score.)

Department homepages (DH) Course homepages (CH) Personal homepages (PH) Sports pages (SP)

DH → CH (0.8) CH → DH (0.2) PH → DH (0.3) SP → SP (1.0)

DH → PH (0.1) CH → CH (0.4) PH → CH (0.4) NA

DH → SP (0.1) CH → PH (0.4) PH → PH (0.3) NA



we allow rules to have a depth of at most 2 or
3. Also, when there’s more than one path from
an initial class to the target class, the crawler
must merge the paths accordingly. Two poten-
tial merging functions are maximum and sum;
we prefer to employ sum for the experiments
described in this article.

Finally, the crawler can compute all the
rules for a particular set of target topics from
the rule database before beginning the actual
crawling. It’s possible to represent the rule
database as a graph, as Figure 5a shows.
Then, for a given a target class, T, the crawler
can efficiently find all cycle-free paths that
lead to this class (except the loop T → T)—
by modifying the breadth-first-search algo-
rithm, for example.7 Figure 5b demonstrates
the rule-based score computation process for
a page of class DH, where the target class is
PH, and MAX DEPTH is 2.

Experimental setup
To evaluate our rule-based crawling strat-

egy, we created the experimental setup
described in earlier works.2,6 We created the
train-0 set using the DMOZ taxonomy and
data. In this taxonomy, we moved the URLs
found at a leaf node to its parent node only if
the number of URLs was less than a prede-
fined threshold (set to 150 for these experi-
ments), and then we removed the leaf. Next,
we used only the leaves for the canonical
class taxonomy; we discarded the tree’s
upper levels. This process generated 1,282
classes with approximately 150 URLs for
each class. When we attempted to download
all these URLs, we successfully fetched
119,000 pages (including 675,000 words),
which constituted our train-0 set.

Next, due to time and resource limitations,
we downloaded a limited number of referred
URLs (from the pages in 266 semantically
interrelated classes on science, computers,
and education) in the train-0 set. This
amounted to almost 40,000 pages, and it
forms our train-1 set. Because we also chose
our target topics from these 266 classes for
our evaluations, downloading the train-1 set
sufficed to capture most of the important rules
for these classes. Even if we missed a rule, its
score would be negligibly low (for example,
a rule from “Top.Arts.Music.Styles.Opera”
to “Top.Computer.OpenSource” might not
have a high score—if it even exists).

We employed the Bow library and the
Rainbow text classifier as the default naïve-
Bayesian classifier.4 We trained the classifier
and created the model statistics with the

train-0 data set in almost 15 minutes. Next,
we classified the train-1 data set using the
constructed model (which took about half an
hour). In the end, using the train sets, we
obtained 4,992 rules.

We downloaded all the data sets using a
modest crawler that we wrote in C. (Figure 1
shows the crawler’s architecture.) We used
Sleepycat Software’s (www.sleepycat.com)
Berkeley DB, an open-source developer
database, to implement the underlying data-
bases for storing DNS resolutions, URLs,
seen-page contents, hosts, extracted rules,
and the URL priority queues. During the data
set downloading process, the crawler exe-
cuted with 10 DNS and 50 read threads.

Performance of our rule-based
crawler

Here, we provide initial performance re-
sults for three focused crawling tasks using
the baseline crawler with the soft-focus
crawling strategy and our rule-based crawl-
ing strategy. The target topics were Top.
Science.Physics.QuantumMechanics,
Top.Computer.History, and Top.Computer.
OpenSource, for which there were 41, 148,
and 212 rules, respectively, in our rule data-

base. For each topic, we constructed two dis-
joint seed sets of 10 URLs each, from the
pages listed at corresponding entries of the
DMOZ and Yahoo directories.

We can evaluate a focused crawler’s per-
formance with the harvest ratio, a simple mea-
sure of the average relevance of all crawler-
acquired pages to the target topic.2,3 Clearly,
the best way to solicit such relevance scores
is to ask human experts. This is impractical
for crawls ranging from thousands to millions
of pages. So, following the approach of ear-
lier works,2 we again use our classifier to
determine the pages’ relevance scores. We
compute the harvest ratio as follows:

where Relevance(URLi, T) is the relevance
of the page (with URLi) to target topic T as
returned by the classifier, and N is the total
number of pages crawled.

Table 3 lists the harvest ratio of the baseline
and rule-based crawlers for the first few thou-
sands of pages for each target topic and seed
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Figure 4. Final scoring function for the rule-based crawler. In this formulation, T is the
target class, P is the page at hand, C is the highest scoring class for P, and u is a URL
extracted from P.

if (∃ rules such that paths of C → … → T in at most MAX DEPTH steps exist)
score(P, u) = rule-focus score (the sum of the product of individual rule probabilities in each such path)

else
score(P, u) = soft-focus score (the score of P for the class T computed by the classifier)
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Figure 5. Rule-based score computation. (a) graph representation of the rule database,
and (b) computation of rule paths and scores—for example, a DH page has the score
(0.8 × 0.4) + 0.1 = 0.42. (Once again, shading denotes pages from the target class.)
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set. The harvest ratios vary among the differ-
ent topics and seed sets, possibly because of
the linkage density of pages under a particu-
lar topic or the quality of seed sets. The results
show that our rule-based crawler outperforms
the baseline crawler by approximately 3 to 38
percent. Second, we provide the URL overlap
ratio between the two crawlers. Interestingly,
although both crawlers achieve comparable
harvest ratios, the URLs they fetched differed
significantly, implying that the coverage of
these crawlers also differs. For each crawler,
we extracted the pages exclusively crawled
by it and computed the harvest ratio. The last
row of Table 3 for each topic shows that the
harvest ratio for pages that the rule-based
crawler exclusively crawled is also higher
than the harvest ratio for pages that the base-
line crawler exclusively crawled.

In our second experiment, we wanted to

observe the effects of seed set size on crawler
performance. So, we searched Google with
the keywords “open” and “source” and used
the top 50 URLs to constitute a seed set. The
harvest ratios were similar to the corre-
sponding case for the first seed set in Table 3.

In this case, we also plotted the harvest
rate, which we obtained by computing the
harvest ratio as the number of downloaded
URLs increased. The graph in Figure 6 re-
veals that both crawlers successfully keep
retrieving relevant pages, but the rule-based
crawler does better than the baseline crawler
after the first few hundred pages.

In their recent article,6 Soumen Chakrabarti,
Kunal Punera, and Mallela Subramanyam

enhanced Chakrabarti, Van den Berg, and

Dom’s baseline crawler with an apprentice,
a secondary classifier that further refines URL
ordering in the priority queue. In one experi-
ment, they provided their secondary classi-
fier with the class name of a page from which
the URL was extracted, which resulted in a 1
to 2 percent increase in accuracy. They also
report that because of a crawler’s fluctuating
behavior, it’s difficult to measure the actual
benefit of such approaches. We experienced
the same problems, and we’re conducting fur-
ther experiments to provide more detailed
measurements.

Chakrabarti and his colleagues also investi-
gated the structure of broad topics on the Web.8

One result of their research was a so-called
topic-citation matrix, which closely resembles
our interclass rules. However, the former uses
sampling with random walk techniques to
determine the source and target pages while fill-
ing the matrix, whereas we begin with a class
taxonomy and simply follow the first-level links
to determine the rules. Their work also states
that the topic-citation matrix might enhance
focused crawling. It would be interesting and
useful to compare and perhaps combine their
approach with ours.

We can enhance our rule-based framework
in several ways. In particular, we plan to em-
ploy more sophisticated rule discovery tech-
niques (such as the topic citation matrix),
refine the rule database online, and consider
the entire topic taxonomy instead of solely
using the leafs. Our research has benefited
from earlier studies,2,3 but it has significant
differences in both the rule generation and
combination process as well as in the com-
putation of final rule scores. Nevertheless,
considering the diversity of the Web pages
and topics, it’s hard to imagine that a single
technique would be the most appropriate for
all focused-crawling tasks.
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Figure 6. Harvest rates of baseline and rule-based crawlers for the Top.Computer.
OpenSource, 50 seeds.

Table 3. Comparison of the baseline and rule-based crawlers.

Seed set 1 Seed set 2
Target topic Evaluation metrics Baseline Rule based Improvement (%) Baseline Rule based Improvement (%)

Quantum mechanics Harvest ratio 0.28 0.30 7.1 0.25 0.29 16

URL overlap 10% 10% NA 16% 16% NA

Exclusive HR 0.27 0.29 7.4 0.23 0.28 22

Computer history Harvest ratio 0.29 0.40 38.0 0.36 0.37 3

URL overlap 27% 27% NA 22% 22% NA

Exclusive HR 0.26 0.39 50.0 0.35 0.37 6

Open source Harvest ratio 0.52 0.56 9.0 0.48 0.61 27

URL overlap 10% 10% NA 8% 8% NA

Exclusive HR 0.51 0.54 6.0 0.47 0.61 30
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