
450 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Automated Construction of Fuzzy Event Sets and
Its Application to Active Databases

Yücel Saygin and Özgür Ulusoy

Abstract—Fuzzy sets and fuzzy logic research aims to bridge
the gap between the crisp world of math and the real world. Fuzzy
set theory was applied to many different areas, from control to
databases. Sometimes the number of events in an event-driven
system may become very high and unmanageable. Therefore,
it is very useful to organize the events into fuzzy event sets also
introducing the benefits of the fuzzy set theory. All the events that
have occurred in a system can be stored in event histories which
contain precious hidden information. In this paper, we propose
a method for automated construction of fuzzy event sets out of
event histories via data mining techniques. The useful information
hidden in the event history is extracted into a matrix called
sequential proximity matrix. This matrix shows the proximities
of events and it is used for fuzzy rule execution via similarity
based event detection and construction of fuzzy event sets. Our
application platform is active databases. We describe how fuzzy
event sets can be exploited for similarity based event detection and
fuzzy rule execution in active database systems.

Index Terms—Active databases, fuzzy event sets, fuzzy rule exe-
cution, fuzzy triggers, similarity based event detection.

I. INTRODUCTION

T HE fuzzy set theory introduced by Zadeh [1] has been
utilized in many areas of research, from control to

databases and expert systems [2]–[4]. Fuzzy rules in expert
systems and control that make use of the concepts in fuzzy sets
were proven to increase the flexibility and effectiveness of the
systems. Special inferencing mechanisms have been developed
for fuzzy control to be used to infer a fuzzy conclusion from a
set of fuzzy rules [2].

Modularization of rules is an important research issue in ac-
tive database management systems (ADMSs). In systems where
thousands of events may occur and thousands of rules may be
fired by these events, it is really very difficult to keep track
of the rules. Therefore, partitioning the whole event space into
smaller groups would be helpful in controlling the rules fired
by those events. Partitioning the event space enables the users
of the system to concentrate on a smaller group of related events,
increasing the efficiency and effectiveness of the system.

Consider the demand side management of an electricity pro-
ducing and selling company where the power consumption in-
formation of individual companies is stored in a history. Con-
sider also that there are hundreds of companies, which is usually
the case and each company has more than two power consump-

Manuscript received October 20, 2000; revised December 4, 2000. This work
was supported by the Research Council of Turkey (TÜBİTAK) under Grant
EEEAG-246.

The authors are with the Department of Computer Engineering, Bilkent
University, Ankara, 06533 Turkey (e-mail: saygin@cs.bilkent.edu.tr;
oulusoy@cs.bilkent.edu.tr).

Publisher Item Identifier S 1063-6706(01)02818-1.

tion events, like low, medium, high power consumption. The
number of events in the system can easily become unmanage-
able. If there were a way to divide the whole event space into
subsets and deal with each subset individually, the job of the
power dealers would be much easier.

Classification of rules by using semantic constraints in an ac-
tive database system is considered before by Baraliset al. in
[5]. This process is calledstratification. Event-based stratifica-
tion techniques aim to modularize the rules by classifying the
event space that is done by human interaction and cannot be used
when semantic knowledge of events is not available. The rule
modularization approach of Baraliset al. is based on semantic
techniques and it is not automated. However, it is always desir-
able to automate this process whenever possible. In this paper,
we deal with the problem of automated rule modularization by
partitioning the events that trigger the rules. Our model for mod-
ularizing rules is based on the analysis of past occurrences of
events which are stored in a time based event history. We pro-
pose an incremental method for event history analysis based on
a sliding window approach. With the sliding window approach,
the whole event history is traced and only the events in the cur-
rent window are considered for determining the proximity of
events. The window advances one event at each iteration. This
is where the name “sliding window” comes from. The informa-
tion in an event history is extracted into a matrix, called ase-
quential proximity matrix, which is an matrix, where is
the number of events in the system.

We use graph partitioning techniques for dividing the event
space using sequential proximity matrix into subsets. These sub-
sets are modeled as fuzzy sets, therefore, we call them fuzzy
event sets. Each event has a degree of membership to a fuzzy
event set. Similarity based event detection was proposed as a
useful method in an event-based system [6]. Fuzzy event sets
are considered to be the basis of similarity based event detec-
tion and fuzzy rule execution in active databases which is our
application platform. Similarity based event detection method
of [6] assumes that similarities of the events are available by do-
main knowledge of experts. In this paper, we propose a method
for extracting the similarities from event histories. This is a new
idea for enabling similarity based event detection. By utilizing
fuzzy event sets, we introduce the benefits of fuzzy set theory to
active database rule modularization and rule execution. We also
describe a new rule execution model based on fuzzy event sets
that gives more flexibility to rule execution.

Main contributions of our work can be summarized as:

1) automated construction of relationships among events via
a sliding window algorithm for mining event histories;

2) partitioning the event space into fuzzy event sets for rule
modularization, using graph partitioning techniques;

1063–6706/01$10.00 © 2001 IEEE

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 451

3) enabling a new event detection and rule execution model
utilizing the fuzzy event sets. The new model allows us to
perform:

a) similarity based event detection;
b) fuzzy rule execution and rule prioritization.

The rest of the paper is organized as follows. In Section II,
we provide the necessary background and related work on ac-
tive databases and data mining. We explain the concept of event
histories and introduce an algorithm for mining event histories
in Section III. In Section IV, we describe the construction of
fuzzy event sets using a graph partitioning algorithm for di-
viding the event space into fuzzy event sets. In Section V, we
describe similarity based event detection using sequential prox-
imity matrix. We also describe scenario-based rule execution in
active databases. We present how fuzzy event sets can be used
for fuzzy rule execution via rule scenarios. Finally, in Section VI
we summarize the results and discuss the future work.

II. BACKGROUND AND RELATED WORK

Before getting into the problem of fuzzy event set construc-
tion and its application to active databases, we should describe
active databases and explain how they differ from conventional
databases. Active databases, as our application platform, are dis-
cussed in Section II-A. As we use data mining techniques for
extracting fuzzy event sets, we also provide the necessary back-
ground on data mining in Section II-B.

A. Active Databases

ADBMSs can be considered as an extension of conventional
database management systems, in such a way that the data-
base system can respond to the state changes in database by
automatically executing some actions. The production rule con-
cept in artificial intelligence was modified for the active data-
base context so that rules can respond to state changes caused
by database operations [7]. Expert systems and ADBMSs are
very much related in that they are both based on the concept
of rules although their rule structures are different. Fuzzy con-
cepts were integrated into expert systems and database systems
[3], [8]–[11], and it was previously shown that incorporation of
fuzzy concepts into databases is desirable and does solve the
problems of uncertainty and inherent fuzziness of acquired data
[12], [13]. The use of fuzziness in active database context which
extends the standard databases by rules was also shown to be
useful [14], [15], [6]. In a typical ADBMS, system responses
are declaratively expressed using event-condition-action (ECA)
rules [16]. An ECA rule is composed of aneventthat triggers
the rule, aconditiondescribing a given situation, and anaction
to be performed if the condition is satisfied. Primitive events can
be combined to form composite events. Composition of prim-
itive events can be done with various event constructors, like
conjunction, disjunction, or closure. Coupling modes between
event and condition, and between condition and action deter-
mine when the condition should be evaluated relative to the oc-
currence of the event, and when the action should be executed
relative to the satisfaction of the condition, respectively. Rules
can be executed sequentially or concurrently depending on the

underlying application [17]. An abstract ECA rule for electricity
producing and selling company is given below:

Event: Power consumption of companyis high;
Condition: If the temperature and humidity ishigh and
is a major customer;
Action: Increase the production and the price of electricity.

In this example, we can see that the event itself is fuzzy.
Wolski and Bouaziz [14] adopted the fuzzy rules and fuzzy
inferencing techniques in fuzzy control theory to the rules in
ADBMSs and formalized the fuzzy events and fuzzy rule exe-
cution. In [18] and [6], we extended the formal description of
the fuzzy events provided by Wolski and Bouaziz, to composite
fuzzy events. We also studied fuzzy coupling modes and intro-
duced the concepts of similarity based event detection and fuzzy
rule execution via scenarios.

B. Data Mining

Mining of large volumes of data for useful information is cur-
rently a hot research topic. Data mining problems can be cate-
gorized as:

1) classificationswhere we try to partition the data into dis-
joint groups [19];

2) associationswhere some correlations among data items
are sought [20];

3) sequenceswhere we try to find sequences among data
items [21].

Discovery of event patterns from event histories (sequences)
is very similar to finding association rules among a set of items.
Informally, we have a set of items and a database consisting of
transactions where each transaction contains some items bought
by a customer at a time. The problem is to find rules like “if
somebody buys diapers then he/she buys a bottle of beer as
well,” using the database of customer transactions.

Discovery of event patterns from event sequences is presented
by Bettini et al. in [22] and Mannilaet al.in [23]. Mannilaet
al. propose efficient algorithms for finding event patterns (they
call it frequent episodes) by analyzing event sequences. The ap-
plication area used in their work is telecommunication alarm
management. They use a sliding window approach, where the
window size is specified by the user. Bettiniet al.give algo-
rithms based on Mannilaet al.’s sliding window approach for
discovering event patters. They tackle a more complex problem
of finding event patterns where events have multiple granulari-
ties.

Bettini et al.use a sliding window approach for the discovery
of event patterns from event histories [22]. In the sliding window
approach of Bettiniet al., each window can be viewed as a
customer transaction where transaction identifiers are just the
window numbers in the event history. The set of events recorded
in the history can be mapped to a set of items. The problem of
finding frequent episodes is the same as finding large item sets
with a given support (i.e., frequency) in the problem of finding
associations. The problem of finding large item sets is a sub-
problem of finding associations where an item set is large if its
support (i.e., the number of transactions that contain that item
set) is greater than or equal to minimum support value provided
by the user. However, the problem of finding frequent episodes

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

452 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Fig. 1. The process of event generation.

Fig. 2. Sample values for power consumption of residential and industrial customers in kilo watts.

becomes more complex when the user is allowed to specify
complex episode structures.

There are various algorithms for finding large item sets in a
given database of customer transactions. Two well-known algo-
rithms area priori anda prioriTID proposed in [24].A priori al-
gorithm starts with large item sets of size 1, generates candidate
item sets, and then tests whether they are large or not. In each
of the subsequent iterations, candidate item sets are generated
using the large item sets found in the previous step, recursively.
A prioriTID is similar toa priori with some optimizations. The
algorithms proposed in [22] for finding frequent episodes also
use the approach ofa priori; i.e., generate candidate episodes
starting with episodes of size 1. In latter iterations, the frequent
episodes found in the previous step are used for generating the
candidates.

III. A SLIDING WINDOW ALGORITHM FOR MINING EVENT

HISTORIES

In this section, we explain the concepts of events and event
histories, and propose a method for obtaining the relationships
among events.

A. Events and Event Histories

Events are state changes in a system. In a control system,
events can be defined using the measurements coming form the
sensors. In a database environment, events can be tuple inser-
tions, deletions and transactions operations. In an ADBMS, the
sequence of events fired over a long period of time is called the
event historyof the system. The events in the history are stored
in chronological order of event signaling.

Values that are coming from the sensors are stored in a
database together with their time of occurrence, and the sensor
values are then converted to events to be stored in the event
history. This process is shown in Fig. 1. The examples regarding
this process are given below.

Example III.1: Consider a power consumption history kept
by some power selling company. For simplicity, assume that
there exist only three customers, , and , where and corre-
spond to small scale industrial customers andcorresponds to a
typical residential customer. Sample power consumption values
for these three customers are provided in Fig. 2.

The crisp sensor values are converted to fuzzy events by using
the membership functions of the fuzzy events in the system.
Analyzing the event history is more effective than analyzing the
actual sensor values since events are at a more abstract level and
give us more compact information which is easier to interpret.

Fig. 3. Membership Functions for fuzzy setslow andhigh of residential and
industrial power consumption.

Example III.2: Assume that the power consumption
events for the power consumption of the customers given
in Example III.1 are , , , , , where low power
consumption is indicated by subscript, and high power
consumption is indicated by subscript. For example, event

denotes high power consumption event of company, and
denotes low power consumption event for company. The

fuzzy events corresponding to crisp sensor values are obtained
by choosing the event which gives the highest membership
value. Sample membership functions for the fuzzy sets high
and low are given in Fig. 3. A sample event history obtained
from the crisp values in Fig. 2 is shown in Fig. 4.

Assume that we have a set of events ,
and a set of time stamps .

Definition III.1: The event occurrence binds an event to a
timestamp. Event occurrence is denoted by a pair where

and denoting the time of the occurrence of.
Definition III.2: Two event occurrences, and

in an event history are said to be concurrent event
occurrences if ; i.e., they occur at the same time unit.

In Fig. 4, is an event occurrence, and
, and are concurrent event oc-

currences at time . The occurrences of events in a system are
recorded in an event history as defined below.

Definition III.3: Let be a set of events.
An event history, , is the set of past event occurrences. It is
formally defined as:

where , , is a timestamp and ,
. is called the size of the event history.

In Fig. 4, and , , , ,
, , , , , . If in an event history, there is at least one

event at each time unit, we call these types of historiescomplete
event histories. An event history constructed by using the sensor
values that are sent periodically to the database is an example of
a complete event history since there is a measurement value at
each point of time.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 453

Fig. 4. A sample event history of power consumption events.

Fig. 5. Sliding windows, illustrated on the history of power consumption events.

B. Mining the History

Assume that we have a set of events ,
and an event history where the events are stored in the form:

where , is the event parameter (i.e., the value
returned by the crisp event such as the power consumption), and

is the time-stamp of the event occurrence. Our problem is to
find similarities among the events in using event history .
There might be different approaches for obtaining the similari-
ties among events. Our approach uses the proximity of event oc-
currences in the event history. If two events are frequently being
fired together in a short period of time, then it is likely that these
events belong to the same context, therefore they aresimilar in
that sense. We use a sliding window approach to analyze the
event history and obtain the similarities among the events. In
what follows, we explain our approaches in more detail.

1) Preliminary Definitions: In this section we define the
terms used for event histories and the sliding window algorithm.

Definition III.4: A window, , of size is a collection of
consecutive time stamps and the events belonging to these

time stamps. denotes the events in theth timestamp of
, where .

Definition III.5: Pivot events are the events that belong to the
first time stamp of the current window, i.e., pivot events
[1].

Example III.3: In Fig. 5, is a window that covers times-
tamps, and . Pivot events of are and .

Definition III.6: Inverse distance between two event occur-
rences, and mimics the distance of occurrence
of and . Inverse distance is a value in the range (0, 1] and it
is calculated by the formula .

Example III.4: In Fig. 5, the inverse distance between
and is . The inverse

distance between two concurrent event occurrences
and is .

The inverse distance of concurrent event occurrences is 1,
which is the maximum possible value and the inverse distance
value between and goes to 0 as goes to
infinity.

Definition III.7: Sequential proximity matrix is an
matrix where is the number of possible events that may occur

in the system. Each element of the matrix is the cumula-
tive inverse distance of the occurrence of eventafter the oc-
currence of event observed in the history.

We also take into account the order of event occurrences; i.e.,
the proximity of event occurrences in the order (i.e.,

) may be different from that of the same events in the order
(i.e.,). In that sense our notion of distance has a

direction.
2) Sliding Window Algorithm:In order to construct the se-

quential proximity matrix, we use a sliding window approach
similar to the one described by Mannilaet al., in [23]. The dif-
ference of our approach from that of Mannilaet al.is that, we
do not find event patterns, but try to find pairwise correlations
among events in terms of proximity of event occurrences. We
store the results of pairwise correlations in a matrix and use this
intermediate structure to construct fuzzy event sets.

Our sliding window algorithm for mining event histories is
presented in Fig. 6. The algorithm traces the whole event history
in sequence and considers the events in a window of size. In
Fig. 5, we have set the window size to 2. The first window
is shown with a rectangle drawn using straight lines. It covers
the events at the first two time stampsand . The window
slides one time unit at each iteration. The second window,,
is shown in Fig. 5 with a rectangle drawn with dashed lines.
The second window covers the events with time stampsand

. At each iteration, proximity of the pivot events to the rest of
the elements in the window is updated one by one in the matrix.
After this process, window slides one event to the right and pivot
events are updated again. This process continues until the end of
the history is reached, i.e., time stamp of the pivot events is the
last time stamp in the event history. The output of the algorithm
is the sequential proximity matrix obtained by tracing all the
event history.

The sequential proximity matrix keeps the proximity of
events incrementally. Its elements are initially set to zero.1 We
would like to give an example to facilitate understanding of
the sliding window algorithm. Assume that we have an event
set . The sequential proximity

1In case of incremental runs of the algorithm, the contents of the previous
matrix are used as initial values.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

454 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Fig. 6. Sliding window algorithm.

matrix, say , would be a square matrix. A sample event
history for the given event set is provided in Fig. 5 with the first
and second event windows, and , each of size 2 shown.
Initially, all the entries in the sequential proximity matrix are
0. During the first iteration, the pivot events are , and

. As the first step, proximity values of the pivot events are
updated in the matrix. As a second step, proximity values of
the pivot events to the rest of the events in the current window
are incremented in matrix . After the first pass, the matrix
is updated as shown in Fig. 7.

In the second pass, the window is moved one position right,
as shown in Fig. 5, and the new pivot events are set to and

. The same process is repeated for the new pivot events. After
the second pass, entries of the matrix are as shown in Fig. 8. The
final proximity values of the events are given in Fig. 9.

Giving more weight (increased proximity) to the events oc-
curring very close to the pivot event in the window improves the
accuracy of the sliding window algorithm.

A nice property of the sliding window algorithm is that, it is
incremental. Assume that the time-stamp of the last event pro-
cessed by the previous run of the algorithm is. As the event
history grows with time, the algorithm can be reapplied to the
event history starting from and the matrix values are updated
according to the new event patterns. For some applications, like
stock exchange, very old portions of the event history may be
obsolete and misleading. Therefore, after a reasonable time it

Fig. 7. Sample sequential proximity matrix after processing the first window.

Fig. 8. Sample sequential proximity matrix after processing the second
window.

Fig. 9. Sample sequential proximity matrix after processing the whole event
history.

may be necessary to discard the old proximity values and pro-
duce them from scratch starting from some point in the history.

The similarity matrix that is constructed by mining the event
history is used for fuzzy rule execution in ADBMSs. Fuzzy rule
execution is performed by similarity based event detection and
construction of rule scenarios, which are explained in Section V.

3) Time Complexity of the Algorithm:Time complexity of
the algorithm is determined by the size of the event history, size
of the window and the maximum possible number of concurrent
events.

Lemma III.1: Time complexity of the sliding window algo-
rithm is , where is the event history size, is
the window size and is the maximum number of concurrently
occurring events in the event history.

Proof: This result is due to the fact that the whole event
history is traced for once and at each slide of the windowcom-
parisons are made. The window is initialized to firsttimes-
tamps, and then the window slides times. Therefore, the
total number of iterations at the repeat-until loop is. At each
iteration of the loop, first the pivot events are initialized and for
each pair of events in the pivot events, the matrix entries are up-
dated. Updating an entry in the matrix takes constant time, and
the number of pairs in the pivot events is

where is the maximum number of concurrent events at a time.
After that, for each event in the pivot events, we update the prox-
imity of that event with the rest of the events in the window.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 455

Since there are time points in the rest of the window (ex-
cluding the time point of pivot events), this operation is done at
most times. Therefore, the maximum possible
number of operations is

which equals to

Since we have calculated the maximum possible number of op-
erations with respect to the maximum number of concurrent
events, the time complexity of the sliding window algorithm is

.
The only parameter that we can control in the time complexity

formula is the window size. As the window size increases the
precision of the result of the mining increases, however the time
complexity also increases. There is a tradeoff between the time
complexity and precision. The selection of window size should
consider this tradeoff.

IV. CONSTRUCTION OFFUZZY EVENT SETS

The theory of fuzzy sets was introduced by Zadeh [1]. A fuzzy
set is characterized by its membership function which gives us
the degree of membership of each element in the universal set
to the fuzzy set. Membership function of a fuzzy seton the
universal set is generally denoted by and maps each el-
ement to a real number in the range [0, 1]; i.e., :

.
Fuzzy event sets are fuzzy sets where the elements are events,

and each event has a degree of membership to the fuzzy event
set fuzzy event set, , over a universal event setis a tuple
of the form where and is the membership
function that describes the degree of membership of the events
in to . In Section IV-A, we explain how the sequential
proximity matrix is used for constructing fuzzy event sets and
their membership function.

A. Partitioning the Event Space Using Sequential
Proximity Matrix

The fuzzy event set construction is done by partitioning the
event space using the sequential proximity matrix. The events
in each partition have a degree of membership greater than 0,
and the rest of the events have 0 as their degree of membership
to the fuzzy event set. The exact membership degree functions
are provided later on. The problem here is to partition the set of
events into subsets such that the resulting subsets are balanced,
the total proximities of the events in all subsets are maximized,
and the total similarities among the events belonging to different
subsets are minimized. This problem is similar to thegraph par-
titioning problemwhich was introduced by Kernighan and Lin
in [25]: Given a graph with costs on its edges, partition the
nodes of into subsets no larger than agiven maximum size, so
as to minimize the total cost of the edges cut. Following is the
formal definition of the graph partitioning problem [25].

Definition IV.1: Let be a graph of nodes, of size
(weights) , . Let be a positive number,

such that for all . Let , be
a weighted connectivity matrix describing the edges of.

Let be a positive integer. A-way partitionof is a set of
nonempty, pairwise disjoint subsets of, such that

. A partition is admissible if for all , where
stands for the size of the set and equals to the sum of the

sizes of all the elements of.
It has been shown in [25] that it is not feasible to find an exact

solution to this problem. Therefore Kernighan and Lin proposed
heuristics for solving the graph partitioning problem.

We simplify the graph partitioning problem defined above so
that the weights of the nodes are all equal to 1. We also set

to the constant value for a balanced partition. Balanced
partitioning is important to avoid trivial partitions. If we do not
assume a balanced partitioning then the partition that minimizes
the sum of the weights of the edges among the partitions will
produce a single partition that has no outgoing edges which has
no use. The number of partitions, i.e., the number of fuzzy event
sets is application dependent. The weighted connectivity matrix
is the sequential proximity matrix described in Section III.

The algorithms provided by Kernighan and Lin assume undi-
rected graphs. In our case the proximity of eventto event

may be different from the proximity of to . We may
consider our sequential proximity matrix as a directed complete
graph where the events correspond to nodes and weights of di-
rected edges of the form correspond to the matrix entry

. In order to map our problem to the graph partitioning
problem of Kernighan and Lin, we convert our directed graph
to a single undirected graph by replacing the directed edges

and with an undirected edge . Weight
of the edge is the sum of the weights of and

. Collapsing the directed edges connecting the same
nodes to an undirected edge does not affect the outcome of the
partition since either both of the edges or none of them are in
the cutset.

METIS Software package can be used for graph partitioning
[26]. The event graph that resulted from the sequential prox-
imity matrix given in Fig. 9 is provided in Fig. 10. The nodes of
the graph represent the events and the edges between the nodes
represent the similarities between the corresponding events. The
undirected edges of the graph are obtained by summing the
weights of the edges with the same end points. Two event sets re-
sulting from the partitioning step are shown in Fig. 10 by ellipses
with dashed lines. The first set, consists of the events ,
and while the second set, consists of . Similar to
Example III.1, and here correspond to the power consump-
tion of industry and corresponds to a residential customer. This
grouping may show us that in the snapshot of the power con-
sumption event history, high power consumption of a residential
customer corresponds to low consumption of industry. This situ-
ation may occur in summer where lots of ACs are operated in the
houses and the electricity price goes up forcing the large scale
companies to lower their production resulting in lower power
consumption in the industry.

B. Computation of Membership Functions

One method of obtaining the membership functions for fuzzy
event sets is to rely on the experts of the particular application

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

456 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Fig. 10. A sample event graph.

which is usually the case in fuzzy control. Since we have the se-
quential proximity matrix ready at hand, we can utilize it to con-
struct fuzzy event sets. As we have explained in Section IV-A,
fuzzy event sets are constructed using a graph partitioning al-
gorithm. Graph partitioning is used to cluster strongly related
events. We can deduce theaveragecoherenceamong the events
in a fuzzy event set by taking the average proximity of all event
pairs. The proximity between the event pair is denoted
by proximity and it is the value stored in theth row and
th column in the sequential proximity matrix. The average co-

herence is further used for determining the membership function
of a fuzzy event set.

Definition IV.2: Coherence of an event in a fuzzy event set
is denoted by , and defined as the average proximity

of event to the rest of events in. Coherence is calculated as
follows:

proximity

where is the cardinality of the fuzzy event set and
proximity is the proximity of to . We exclude the
coherence of an event to itself in coherence calculation.

Coherence of an event, in a fuzzy event set specifies how
closely is related to .

Definition IV.3: Average coherence for a fuzzy event setis
denoted by and calculated as follows:

Definition IV.4: Coherence deviation of an event, in a
fuzzy event set is denoted by and calculated as:

Maximum absolute coherence deviation for a fuzzy event
set , denoted by , is the maximum of abso-
lute coherence deviations in that fuzzy event set, i.e.,

.

Coherence deviation is a measure of how far is the coherence
of an event from the average coherence.

Definition IV.5: Mean absolute deviation of a fuzzy event set
is denoted by MAD and calculated as:

MAD

MAD is an approximate measure of how close are the dif-
ferent pairwise similarity values in a fuzzy event set.

Lemma IV.1: The formula

MAD

produces a number in the range when .
Proof: For any event , is in the range

, while and MAD are both in the range
. By definition, , and also

MAD . Therefore, we have

and
MAD

Since , both of the fractions are defined.

and
MAD

together imply that

MAD

This leads to

MAD

When we add 0.5 to the inequality, we get

MAD

Thus,

MAD

is in the range [0, 1].
The membership function of a fuzzy event setis denoted

by and calculated as follows:

if

MAD
if

if

(1)
An example for the membership calculation for the graph in

Fig. 10 is given below:
Example IV.1: There are two fuzzy event sets, and , in

Fig. 10. We calculate the membership function foras follows:

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 457

1) First we need to calculate the coherence for each event
and find the average coherence.

• The coherence of event is

similarity similarity

which equals to

•
similarity similarity

which is

•
similarity similarity

which is

2) Average coherence for is calculated as:

3) Coherence deviation for each event is calculated to find
the maximum coherence deviation.

•

•

•
• Maximum absolute coherence deviation is,

4) MAD is calculated as:

MAD

After obtaining all the intermediate values needed, we can
calculate the membership values of the individual events as:

•
MAD

which is

• which is also 0.35.

• Finally the membership value of is

V. APPLICATION OFSEQUENTIAL PROXIMITY MATRIX AND

FUZZY EVENT SETS TOACTIVE DATABASES

Fuzzy rules have been involved in many areas from control
to expert systems. The application of fuzzy concepts into
ADBMSs has attracted the attention of some researchers;
however, we cannot say that a considerable amount of research
has been conducted addressing this issue. This section is
devoted to the description of fuzzy rule execution in ADBMSs.
In the following subsections we describe how fuzzy event sets
are used for fuzzy rule execution and how sequential proximity
matrix is used for similarity based event detection in ADBMSs.

A. Fuzzy Rules in ADMSs

Although incorporation of fuzziness to active databases in-
troduces much flexibility, not much attention has been paid so
far to this issue. To the best of our knowledge, only a research
group in VTT (Finland) has worked on fuzzy triggers [27], [15],
[28], [14]. In [28], acondition-action(CA) fuzzy trigger was
proposed which means that fuzziness was introduced to the CA
part of anevent-condition-action(ECA) rule. In a later work
[15], the concept of CA trigger was extended to a fuzzy ECA
rule by introducing the notion of fuzzy events. A CA fuzzy
trigger consists of a fuzzy predicate (i.e., a predicate that has
linguistic terms) on the database as its condition, and a fuzzy
action which is an overall conclusion obtained after evaluating
fuzzy conditions. Wolski and Bouaziz compiled their previous
work on fuzzy ECA rules and based their contributions on a
sound theoretical background in [14]. A rule with a fuzzy con-
dition and a crisp action is called aC-fuzzy trigger. TheC-fuzzy
trigger model is based on linguistic terms. The max–min infer-
ence method is applied to the rule set to determine the truth value
of the fuzzy predicates. In fuzzy ECA rules, an event may fire a
set of rules. Fuzzy events are defined as fuzzy sets and use lin-
guistic terms likehigh, low,andstrong[15]. Formally a prim-
itive fuzzy event is represented as a tuple where is
a crisp event, and is a fuzzy event predicate. When a crisp
event is signaled (such as a database update), the current value

produced upon the operation causing the crisp event is fed into
the membership function of . The output of the membership
function is called theevent match factor, and the fuzzy event is
signaled only if the event match factor is greater than zero [15].
Upon the occurrence of the fuzzy event, the corresponding rules
are fired and their conditions (which are fuzzy predicates on the
database) are checked. The action of a rule may be started to
execute depending on the result of condition evaluation. In a
nuclear power plant control system, we may define rules such
as

Event: On asignificanttemperature change;
Condition: Check whether the water level of the river is
low;
Action: Decrease the capacity tomediumand issue a
warning signal;

where the linguistic terms likesignificant, low, andmediumin-
crease the understandability of the rule. It is very difficult to give
exact numbers for the temperature change and water level. In-
stead, predefined linguistic terms, which are in fact fuzzy sets,

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

458 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Fig. 11. Event detection and rule execution model.

can be used without difficulty by the people who define the
rules.

In the above rule, the event “significanttemperature change”
is actually a fuzzy event. When a temperature change event is
signaled, which is a crisp event, its current value, say 2000C,
is fed into the membership function of the corresponding fuzzy
event (i.e., “significanttemperature change”). Assuming that the
membership function of the fuzzy event is , then the value

is called the event match factor.

Another possible application area is the stock exchange
market. Price changes of certain stocks can mimic the price
changes of some other related stocks, and dealers can take
actions accordingly. A rule for a stock exchange market control
system can be defined as

Event: On aconsiderableprice reduction in stockA;
Condition: TRUE;
Action: Sell aconsiderableamount of stockA and stock
B.

In the above rule, the event,considerableprice reduction in
stockA, is a fuzzy event. When a price reduction event is sig-
naled, its value, say 12% is fed into the membership function
of the corresponding fuzzy event and the result is used in fuzzy
rule execution. Such a rule is very useful since it automatically
issues an action upon the occurrence of an event, therefore re-
ducing the time required to take an action.

The rule execution model provided in [29] is modified and
depicted in Fig. 11. Events are detected by the event detector
using the sensor values that are continuously stored in the data-
base. Rules corresponding to the detected events are obtained
from the rule base and their conditions are evaluated. Those
rules whose conditions are satisfied are scheduled for execu-
tion by the scheduler. As an extension to this model, we add the
component in the rectangle with dashed lines. In this modified
model, detected events are stored in the event history and they
are fed to the mining process periodically. The mining process
together with the partitioning, produces the fuzzy event sets
which are further used by the event detector. Utilization of the

fuzzy event sets and sequential proximity matrix is explained in
the following subsections.

B. Fuzzy Rule Execution and Fuzzy Event Sets

In the previous sections, we have shown how we can partition
the whole event spaceinto fuzzy event sets. Scenarios in the
active database context are the aggregation of fuzzy event sets
and rules. The idea of scenarios comes from the need to group
rules into sets corresponding to different situations such as a
“high power consumption scenario” in the summer. Dividing
the rule space into scenarios has many advantages. First of all,
dealing with a group of related rules is much easier than dealing
with all the rules. Also, the number of rules triggered can be
tuned by pruning the triggered rules using the membership func-
tion of the scenario as will be explained later on. This combined
effect of decreased number of events and rules in consideration
will improve the efficiency and effectiveness of the system.

Assume that we have a set of fuzzy event sets , ,
, where . Assume also that the set of

rules in the system is where each rule is a triple of the form
, being the event, being the condition, and being

the action. Let be the
events of the rule set . We partition the set of rules , into
subsets, such that for
some fuzzy event set and

and for , . The
scenario corresponding to , and , , is a triple

.
Example V.1:Assume that we have the set of rules

and the two fuzzy event sets

and

We first partition into

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 459

and

The corresponding scenarios are

and

Event signaling is done by considering the membership de-
gree of the event parameter in the fuzzy event. We use the fuzzy
event structure described in [15] where a primitive event is a
tuple, , consisting of a crisp part which is the crisp
parameter coming from the system and a fuzzy partwhich
denotes the fuzzy event.

Definition V.1: The strength of an event for the
rule in scenario is defined as:

strength value

where value is the value of the crisp event detected, and
is the membership function of the fuzzy event. The value of
an event can be itself in case is coming from a sensor. Or
the value can be a parameter to the crisp event such as a database
update event and the updated value.

Each rule has a firing threshold which is used to decide if
a rule will be fired or not. In order to decide whether a rule
will be fired in response to the signaling of a fuzzy event,
the strength of event for rule is calculated and the result
is compared to the threshold value for rule. If the result is
greater than or equal to the threshold value, then the rule is fired.
Threshold values of rules can be changed dynamically to tune
to particular scenarios.

Prioritization of rules in an ADBMS is very important. Some
rules may be more urgent than the others. The priority of rules
can be set by the people who defined the rules. Another method
is to use the events of the rules to set the priorities. Consider two
rules whose events are “significant temperature change” and
“significant pressure change.” If the membership value of the
significant temperature change is much higher than the mem-
bership value for the pressure change, the rule with event “sig-
nificant temperature change” should be given higher priority of
execution since late execution of that rule may be hazardous.
Strength of the rules is a good indicator of rule priorities and
they can be used to order the rules during rule execution. Pri-
oritization based on the strength of the rules will give higher
priority of execution to the rules with higher strength values.

C. Similarity Based Event Detection

Detection of similar events upon an event occurrence is some-
thing very useful when the cost of missing events is very high
in supported applications, like a nuclear reactor control system.
Assume that an event such as “update in temperature level” is
detected. Events with a high similarity degree, like “update in
pressure level” should also be signaled automatically. This way,
the system can predict that an event which escaped the event de-
tection process has occurred. In a power producing and selling
company, occurrence of some events can imply the occurrence
of some other events. Advantage of similarity based event de-
tection in such a system is that, the dealers may assume that the
events similar to the signaled events will occur and can take the
necessary actions in advance.

In similarity based event detection, when an event is signaled,
other events which are similar to it should also be fired. Simi-
larity based event detection considers only primitive events. In
order to facilitate similarity based event detection, the sequen-
tial proximity matrix explained in Section III is utilized. We also
need similarity thresholds in order to avoid the system to con-
tinuously detect irrelevant events via similarity based event de-
tection.

Definition V.2: Similarity threshold for an event in a sce-
nario is the minimum similarity requirement for the events in

to be detected automatically byvia similarity based event
detection.

Similarity threshold for an event in a scenario can be
set to be the coherence ofin which is explained in Sec-
tion IV-B. Upon the detection of an event,, all the events in
the same scenarios aswhose similarity to is grater than the
similarity threshold will be detected automatically. Similarities
of the events in a scenario are the proximity values in the se-
quential proximity matrix. An example would be helpful in ex-
plaining similarity based event detection.

Example V.2:Consider the events and the sequential prox-
imity matrix in Fig. 9 and the fuzzy event sets in Fig. 10. As-
sume that the current scenario is and is detected. Co-
herence of in was calculated in Example IV.1 as .
Among the rest of the events in which are and , only

will be detected by similarity based event detection since
proximity , but will not be detected
since proximity .

Conventional event detection in active databases is a special
case of similarity based event detection where the similarity re-
lation among the events is an identity relation and similarity
thresholds are equal to infinity.

VI. CONCLUSION

In this paper, we have proposed some methods for automated
construction of fuzzy event sets which are sets of events where
each event has a degree of membership to a set. Fuzzy event sets
are constructed by analyzing event histories. We have shown
how an event history can be mined to produce the sequential
proximity matrix which stores similarities among events in
terms of the proximity of event occurrence. We have proposed
a sliding window algorithm for mining event histories and
proposed an automated rule modularization method that does
not rely on semantic knowledge. As an application platform,
we have chosen active databases. The sequential proximity
matrix produced by the sliding window algorithm is used for
similarity based event detection in active databases. Fuzzy
event sets are also constructed by the sequential proximity
matrix. Construction of fuzzy event sets is mapped to the well
known graph partitioning problem, and fuzzy event sets are
constructed using graph partitioning algorithms.

Incorporation of fuzziness to rule execution in ADMSs is still
an open and important research area. Fuzzy ECA rules are ob-
viously more flexible compared to standard ECA rules. With
fuzzy events, we can involve a priority assignment mechanism
based on membership functions of fuzzy events. Organization of

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

460 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

rules into scenarios, which are mapped to fuzzy event sets, in-
creases the efficiency and modularity of rule execution. In sum-
mary, the main contribution of our work is to propose the idea of
fuzzy rule execution via scenarios and to describe how it could
be realized using fuzzy event sets. As a future work, we are plan-
ning to define new similarity metrics other than the proximity of
event occurrences and construct the similarity matrix according
to these new metrics.

ACKNOWLEDGMENT

The authors wish to thank Dr. A. Yazici for his help in estab-
lishing the fuzzy concept background and Dr. E. Bas¸çi for his
comments in the mathematical formulations of this work.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,”Inform. Contr., vol. 8, pp. 338–353, 1965.
[2] W. Pedrycz,Fuzzy Control and Fuzzy Systems: Research Studies, 1993.
[3] B. Buckles and F. Petry, “A fuzzy model for relational databases,”Int.

J. Fuzzy Sets Syst., vol. 7, pp. 213–226, 1982.
[4] K. S. Leung and W. Lam, “Fuzzy concepts in expert systems,”IEEE

Computer, Sept. 1998.
[5] E. Baralis, S. Ceri, and S. Paraboschi, “Modularization techniques for

active rules design,”ACM Trans. Database Syst., vol. 21, no. 1, 1996.
[6] Y. Saygin, O. Ulusoy, and A. Yazici, “Dealing with fuzziness in active

mobile databases,”Inform. Sci., vol. 120, no. 1–4, 1999.
[7] E. N. Hanson and J. Widom, “An overview of production rules in data-

base systems,” Tech. Rep., Univ. Florida, Dept. Computer and Inform.
Sci., Oct. 1992.

[8] R. George, R. Srikanth, F. E. Petry, and B. P. Buckles, “Uncertainty man-
agement issues in object-oriented database systems,”IEEE Trans. Fuzzy
Syst., vol. 4, pp. 179–192, May 1996.

[9] B. P. Buckles and F. E. Petry, “Information-theoretic characterization
of fuzzy relational databases,”IEEE Trans. Syst., Man, Cybern., vol.
SMC-13, pp. 74–77, Feb. 1983.

[10] A. Yazici, B. P. Buckles, and F. E. Petry, “Handling complex and un-
certain information in the ExIFO andNF data models,”IEEE Trans.
Fuzzy Syst., vol. 7, pp. 659–676, 1999.

[11] A. Yazici, A. Soysal, B. P. Buckles, and F. E. Petry, “Uncertainty in a
nested relational database model,”Data Knowledge Eng., vol. 30, no. 3,
pp. 275–301, 1999.

[12] A. Yazici and R. George,Fuzzy Database Modeling. Heidelberg, Ger-
many: Springer-Verlag, 1999.

[13] F. E. Petry,Fuzzy Databases: Principles and Applications. Norwell,
MA: Kluwer, 1996.

[14] A. Wolski and T. Bouaziz, “Fuzzy triggers: Incorporating imprecise
reasoning into active databases,” inProc. 14th Int. Conf. Data Eng.
(ICDE’98), Orlando, FL, Feb. 1998.

[15] T. Bouaziz and A. Wolski, “Applying fuzzy events to approximate rea-
soning in active databases,” inProc. 6th IEEE Int. Conf. Fuzzy Syst.
(FUZZ-IEEE’97), Barcelona, Spain, July 1997.

[16] U. Dayal, “Active database management systems,” inProc. 3rd
Int. Conf. Data Knowledge Bases, Jerusalem, Isreal, June 1988, pp.
150–169.

[17] Y. Saygin, O. Ulusoy, and S. Chakravarthy, “Concurrent rule execution
in active databases,”Inform. Syst., vol. 23, no. 1, 1998.

[18] Y. Saygin and O. Ulusoy, “Involving fuzzy concepts in active mobile
databases,” inProc. 9th Int. Conf. Workshop on Database and Expert
Systems Applications (DEXA’98), 1998. Lecture Notes in Computer Sci-
ence.

[19] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, “An interval
classifier for database mining applications,” inProc. 18th Int. Conf. Very
Large Databases, Vancouver, Canada, Aug. 1992, pp. 560–573.

[20] R. Agrawal and R. Srikant, “Mining generalized association rules,” in
Proc. 21st Int. Conf. Very Large Databases, Zurich, Switzerland, Sept.
1995.

[21] , “Mining sequential patterns,” inProc. 11th Int. Conf. Data Eng.
(ICDE’95), Taipei, Taiwan, Mar. 1995.

[22] C. Bettini, X. S. Wang, S. Jajodia, and J. Lin, “Discovering frequent
event patterns with multiple granularities in time sequences,”IEEE
Trans. Knowledge Data Eng., vol. 10, no. 2, 1998.

[23] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent
episodes in event sequences,” inProc. 1st Int. Conf. Knowledge Dis-
covery and Datamining, Montreal, Canada, Aug. 1995.

[24] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proc. 20th Int. Conf. Very Large Databases, Santiago, Chile,
Sept. 1994.

[25] B. W. Kerninghan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs,”Bell Syst. Tech. J., vol. 49, no. 2, 1970.

[26] G. Karypis and V. Kumar, “METIS software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices, version 4.0,” Univ. Minnesota, Dept.
Comput. Sci./Army HPC Research Center, Minneapolis, MN.

[27] T. Bouaziz and A. Wolski, “Incorporating fuzzy inference into database
triggers,” Tech. Rep., VTT Inform. Technol., Nov. 1996.

[28] T. Bouaziz, J. Karvonen, A. Pesonen, and A. Wolski, “Design and imple-
mentation of tempo fuzzy triggers,” inLecture Notes in Computer Sci-
ence. Toulouse, France: Springer, Sept. 1997, vol. 1308, pp. 91–100.

[29] N. W. Paton and O. Diaz, “Active database systems,”ACM Computing
Surveys, vol. 31, no. 1, pp. 1–29, 1999.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.

