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Automated Construction of Fuzzy Event Sets and
Its Application to Active Databases

Yicel Saygin and Ozgiir Ulusoy

Abstract—Fuzzy sets and fuzzy logic research aims to bridge tion events, like low, medium, high power consumption. The
the gap between the.crlsp world of math and the real world. Fuzzy number of events in the system can easily become unmanage-
set theory was applied to many different areas, from control 10 ape if there were a way to divide the whole event space into

datab. .S ti th b f ts i t-dri . S ;
s?s?er%senfay %Zfom: Sver§ Rllgﬂ :rr]do ui\rlsgnilégaabr?e.ev-ﬁ:ere;g/reensubsets and deal with each subset individually, the job of the

it is very useful to organize the events into fuzzy event sets also power dealers would be much easier.
introducing the benefits of the fuzzy set theory. All the events that ~ Classification of rules by using semantic constraints in an ac-
have occurred in a system can be stored in event histories which tjye database system is considered before by Baeala. in

contain precious hidden information. In this paper, we propose 151 Thig process is callegtratification Event-based stratifica-
a method for automated construction of fuzzy event sets out of

event histories via data mining techniques. The useful information tion techniques aim to modularize the rules by classifying the
hidden in the event history is extracted into a matrix called eventspace thatis done by human interaction and cannot be used
sequential proximity matrix. This matrix shows the proximities ~when semantic knowledge of events is not available. The rule
of events and it is used for fuzzy rule execution via similarity modularization approach of Baraks al. is based on semantic

based event detection and construction of fuzzy event sets. Our - P - .
application platform is active databases. We describe how fuzzy techniques and it is not automated. However, it is always desir-

event sets can be exploited for similarity based event detection and @ble to automate this process whenever possible. In this paper,

fuzzy rule execution in active database systems. we deal with the problem of automated rule modularization by
Index Terms—Active databases, fuzzy event sets, fuzzy rule exe- partliti.oning the 'events thattrigger the rgles. Our model for mod-
Cution’ fuzzy triggerS, S|m||ar|ty based event detection. U|arIZIng rules IS based on the ana|ySIS Of paSt occurrences Of

events which are stored in a time based event history. We pro-
pose an incremental method for event history analysis based on
a sliding window approach. With the sliding window approach,
HE fuzzy set theory introduced by Zadeh [1] has bedhe whole event history is traced and only the events in the cur-
utilized in many areas of research, from control teent window are considered for determining the proximity of
databases and expert systems [2]-[4]. Fuzzy rules in expevents. The window advances one event at each iteration. This
systems and control that make use of the concepts in fuzzy detwhere the name “sliding window” comes from. The informa-
were proven to increase the flexibility and effectiveness of tii@n in an event history is extracted into a matrix, callesea
systems. Special inferencing mechanisms have been develogégntial proximity matrixwhich is ann. x » matrix, wheren is
for fuzzy control to be used to infer a fuzzy conclusion from the number of events in the system.
set of fuzzy rules [2]. We use graph partitioning techniques for dividing the event
Modularization of rules is an important research issue in agpace using sequential proximity matrix into subsets. These sub-
tive database management systems (ADMSSs). In systems wiggts are modeled as fuzzy sets, therefore, we call them fuzzy
thousands of events may occur and thousands of rules mayelent sets. Each event has a degree of membership to a fuzzy
fired by these events, it is really very difficult to keep traclevent set. Similarity based event detection was proposed as a
of the rules. Therefore, partitioning the whole event space inggeful method in an event-based system [6]. Fuzzy event sets
smaller groups would be helpful in controlling the rules fire@re considered to be the basis of similarity based event detec-
by those events. Partitioning the event space enables the uiersand fuzzy rule execution in active databases which is our
of the system to concentrate on a smaller group of related eveagplication platform. Similarity based event detection method
increasing the efficiency and effectiveness of the system.  of [6] assumes that similarities of the events are available by do-
Consider the demand side management of an electricity proain knowledge of experts. In this paper, we propose a method
ducing and selling company where the power consumption ii®r extracting the similarities from event histories. This is a new
formation of individual companies is stored in a history. Coridea for enabling similarity based event detection. By utilizing
sider also that there are hundreds of companies, which is usuéllgzy event sets, we introduce the benefits of fuzzy set theory to
the case and each company has more than two power consuagtive database rule modularization and rule execution. We also
describe a new rule execution model based on fuzzy event sets

that gives more flexibility to rule execution.
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3) enabling a new event detection and rule execution modeiderlying application [17]. An abstract ECA rule for electricity
utilizing the fuzzy event sets. The new model allows us faroducing and selling company is given below:

perforr_n:_ . . Event: Power consumption of companyis high;
a) similarity based event detection; Condition: If the temperature and humidity lEgh and A
b) fuZZy rule execution and rule prioritization. is a major Customer;
The rest of the paper is organized as follows. In Section Il, Action: Increase the production and the price of electricity.

we provide the necessary background and related work on acm this example, we can see that the event itself is fuzzy.
tive databases and data mining. We explain the concept of ev@iski and Bouaziz [14] adopted the fuzzy rules and fuzzy
histories and introduce an algorithm for mining event hiStOfiQﬁferencing techniques in fuzzy control theory to the rules in

in Section IlI. In Section IV, we describe the construction 0ADBMSs and formalized the fuzzy events and fuzzy rule exe-
fuzzy event sets using a graph partitioning algorithm for dgution. In [18] and [6], we extended the formal description of

viding the event space into fuzzy event sets. In Section V, Wee fuzzy events provided by Wolski and Bouaziz, to composite
describe similarity based event detection using sequential prmzzy events. We also studied fuzzy Coup"ng modes and intro-

imity matrix. We also describe scenario-based rule executiondiced the concepts of similarity based event detection and fuzzy
active databases. We present how fuzzy event sets can be ygedexecution via scenarios.

for fuzzy rule execution via rule scenarios. Finally, in Section VI
we summarize the results and discuss the future work. B. Data Mining

Mining of large volumes of data for useful information is cur-
[l. BACKGROUND AND RELATED WORK rently a hot research topic. Data mining problems can be cate-

L orized as:

Before getting into the problem of fuzzy event set construg— . . . .
tion and its application to active databases, we should describel) f:lgssmcatlonSNhere we try to partition the data into dis-
active databases and explain how they differ from conventional joint groups [19]; . .
databases. Active databases, as our application platform, are disz—) associationswhere some correlations among data items
cussed in Section II-A. As we use data mining techniques for

are sought [20];
extracting fuzzy event sets, we also provide the necessary back?’) sequencesvhere we try to find sequences among data
ground on data mining in Section II-B.

items [21].

Discovery of event patterns from event histories (sequences)
is very similar to finding association rules among a set of items.
Informally, we have a set of items and a database consisting of

ADBMSs can be considered as an extension of conventiotignsactions where each transaction contains some items bought
database management systems, in such a way that the dayaa customer at a time. The problem is to find rules like “if
base system can respond to the state changes in databasgobyebody buys diapers then he/she buys a bottle of beer as
automatically executing some actions. The production rule comell,” using the database of customer transactions.
cept in artificial intelligence was modified for the active data- Discovery of event patterns from event sequences is presented
base context so that rules can respond to state changes cabgdslettini et al. in [22] and Mannilaet alin [23]. Mannila et
by database operations [7]. Expert systems and ADBMSs alepropose efficient algorithms for finding event patterns (they
very much related in that they are both based on the conceptl it frequent episod@dy analyzing event sequences. The ap-
of rules although their rule structures are different. Fuzzy cophcation area used in their work is telecommunication alarm
cepts were integrated into expert systems and database systmsagement. They use a sliding window approach, where the
[3], [8]-[11], and it was previously shown that incorporation ofvindow size is specified by the user. Bettigii algive algo-
fuzzy concepts into databases is desirable and does solverttiens based on Mannilat al’s sliding window approach for
problems of uncertainty and inherent fuzziness of acquired daliscovering event patters. They tackle a more complex problem
[12], [13]. The use of fuzziness in active database context whiohfinding event patterns where events have multiple granulari-
extends the standard databases by rules was also shown ttidse
useful [14], [15], [6]. In a typical ADBMS, system responses Bettiniet al.use a sliding window approach for the discovery
are declaratively expressed using event-condition-action (ECéf)event patterns from event histories [22]. In the sliding window
rules [16]. An ECA rule is composed of aventthat triggers approach of Bettiniet al, each window can be viewed as a
the rule, aconditiondescribing a given situation, and aation customer transaction where transaction identifiers are just the
to be performed if the condition is satisfied. Primitive events camindow numbers in the event history. The set of events recorded
be combined to form composite events. Composition of prinm the history can be mapped to a set of items. The problem of
itive events can be done with various event constructors, likading frequent episodes is the same as finding large item sets
conjunction, disjunction, or closure. Coupling modes betwesavith a given support (i.e., frequency) in the problem of finding
event and condition, and between condition and action detassociations. The problem of finding large item sets is a sub-
mine when the condition should be evaluated relative to the qaroblem of finding associations where an item set is large if its
currence of the event, and when the action should be execusepport (i.e., the number of transactions that contain that item
relative to the satisfaction of the condition, respectively. Ruleet) is greater than or equal to minimum support value provided
can be executed sequentially or concurrently depending on thethe user. However, the problem of finding frequent episodes

A. Active Databases
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Sensor Values Sensor Values Events -
Sensors > Database »  Event Detector » Event History

Fig. 1. The process of event generation.

11 {2 ta ta is is i7 is tg 10
Industrial (a) 30 | 25 | 20 5 10 [ 10 [ 15 [ 20 | 25 | 30
Industrial (b) 25 20 16 8 12 10 10 25 30 30
Residential (¢) [ 0.5 | 06 | 08|12 [ 09]09]|07 |06 ] 06| 04

Fig. 2. Sample values for power consumption of residential and industrial customers in kilo watts.

becomes more complex when the user is allowed to specify 1"10 low_ high low _ _ high
complex episode structures. : : : :
There are various algorithms for finding large item sets in a
given database of customer transactions. Two well-known algo-
rithms area priori anda prioriTID proposed in [24]A priori al-
gorithm starts with large item sets of size 1, generates candidate
item sets, and then tests whether they are large or not. In e&igh3. Membership Functions for fuzzy sétsv andhigh of residential and
of the subsequent iterations, candidate item sets are generJf&{yal power consumption.
using the large item sets found in the previous step, recursively. )
A priori TID is similar toa priori with some optimizations. The  =xample 1Il.2: Assume that the power consumption
algorithms proposed in [22] for finding frequent episodes al$yeNts for the power consumption of the customers given
use the approach @ priori; i.e., generate candidate episodedl Example lll.1 areay, ai, by, bi, cn, ¢ where low power

starting with episodes of size 1. In latter iterations, the frequef@SUmMPption is indicated by subscript and high power

episodes found in the previous step are used for generating (Eﬂgsumption_is indicated by subs_crht For example, event
candidates. ay, denotes high power consumption event of compangnd

¢; denotes low power consumption event for companyhe
fuzzy events corresponding to crisp sensor values are obtained
by choosing the event which gives the highest membership
value. Sample membership functions for the fuzzy sets high

In this section, we explain the concepts of events and eveunid low are given in Fig. 3. A sample event history obtained
histories, and propose a method for obtaining the relationshipsm the crisp values in Fig. 2 is shown in Fig. 4.

1 T l
0.0 05 10 KiloWats o4 39 99 Kilo Watts

Residential (c) Industrial (a & b)

I1l. A SLIDING WINDOW ALGORITHM FOR MINING EVENT
HISTORIES

among events. Assume that we have a set of eveéits: {e1, ez, ..., e},
and a set of time stamps= {t1, t2, ..., t;m }.
A. Events and Event Histories Definition Ill.1: The event occurrence binds an event to a

Events are state changes in a system. In a control systdfestamp. Event occurrence is denoted by a fair) where
events can be defined using the measurements coming formrfe& @ndt € 7 denoting the time of the occurrencecof
sensors. In a database environment, events can be tuple inser€finition 11.2: Two event occurrences(c;,, t;,) and
tions, deletions and transactions operations. In an ADBMS, thd.» fi,) in @n event history are said to be concurrent event
sequence of events fired over a long period of time is called tRECUITences if;, = #;,;i.e., they occur at the same time unit.

event historyof the system. The events in the history are stored " Fig- 4, (an, 1) is an event occurrence, and
in chronological order of event signaling. (an, 1), (bn, 1), and (e, ¢1) are concurrent event oc-
Values that are coming from the sensors are stored irC4Tences at time,. The occurrences of events in a system are

database together with their time of occurrence, and the sen&rded in an event history as defined below.
., en} be asetof events.

values are then converted to events to be stored in the everPeﬁnitior,‘ II.3: Le_t£ = {e1, ea, .. .
history. This process is shown in Fig. 1. The examples regardift VNt history.d, is the set of past event occurrences. It is

this process are given below. formally defined as:

Example 11l.1: Consider a power consumption history kept H={(ci,, t:,) (i, 1) (ci, ti )}
. . .. - T1y Y1/ t27 Y2/ ’ tn? Yin
by some power selling company. For simplicity, assume that
there exist only three customersh, ande, wherea andb corre-  wheret;., j = 1,..., n, is a timestamp and;, € £, j =
spond to small scale industrial customers acdrrespondstoa 1, ..., n. n is called the size of the event history.
typical residential customer. Sample power consumption valuedn Fig. 4,¢ = {a., ai, by, bi, e, ¢} andr = {t1, t2, t3, t4,
for these three customers are provided in Fig. 2. ts, te, t7, ts, to, t10}. If in @n event history, there is at least one

The crisp sensor values are converted to fuzzy events by uséwgnt at each time unit, we call these types of histartgsplete
the membership functions of the fuzzy events in the systesuent historiesAn event history constructed by using the sensor
Analyzing the event history is more effective than analyzing thelues that are sent periodically to the database is an example of
actual sensor values since events are at a more abstract leveleaodmplete event history since there is a measurement value at
give us more compact information which is easier to interpretach point of time.
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Fig. 5. Sliding windows, illustrated on the history of power consumption events.
B. Mining the History in the system. Each element;, ; of the matrix is the cumula-

tive inverse distance of the occurrence of evgrafter the oc-

Assume that we have a set of evehts= {ey, ¢2, ..., en}, - )
urrence of evernt; observed in the history.

and an event histor#d where the events are stored in the form® ! )
(e, p, t) wheree € E, p is the event parameter (i.e., the value We also take into account the order of event occurrences; i.e.,

returned by the crisp event such as the power consumption), g Proximity of event occurrences in the ordere (i.e.,c; —

¢ is the time-stamp of the event occurrence. Our problem is o) My be different from that of the same events in the order
find similarities among the events i using event historyd. ¢+ ¢ (-€,,¢; — ¢;). In that sense our notion of distance has a
There might be different approaches for obtaining the similairection. _

ties among events. Our approach uses the proximity of event oc2) Sliding Window Algorithm:In order to construct the se-
currences in the event history. If two events are frequently beifl€ntial proximity matrix, we use a sliding window approach
fired together in a short period of time, then it s likely that thesgimilar to the one described by Manngaal, in [23]. The dif-
events belong to the same context, therefore thegiantarin  [€"€nce of our approach from that of Mannéaalis that, we
that sense. We use a sliding window approach to analyze ﬂlﬂenOt find event patterns, but try to find pairwise correlations

event history and obtain the similarities among the events. #'0Ng évents in terms of proximity of event occurrences. We
what follows, we explain our approaches in more detail. store the results of pairwise correlations in a matrix and use this

1) Preliminary Definitions: In this section we define the INtérmediate structure to construct fuzzy event sets.

terms used for event histories and the sliding window algorithm, ©Ur sliding window algorithm for mining event histories is
Definition I1l.4: A window, win, of sizem is a collection of PresentedinFig. 6. The algorithm traces the whole event history

m consecutive time stamps and the events belonging to thd§edquence and considers the events in a window ofrsie

time stampswinli] denotes the events in thith timestamp of F19: 5, we have set the window size to 2. The first window

win. wherel < i < m. is shown with a rectangle drawn using straight lines. It covers

Definition I1I.5: Pivot events are the events that belong to tH9€ €vents at the first two time stampsandt,. The window
first time stamp of the current window, i.e., pivot eventsyin ~ SIIJ€S One time unit at each iteration. The second windoyy,
[1]. is shown in Fig. 5 with a rectangle drawn with dashed lines.

Example 111.3: In Fig. 5, is a window that covers times- "€ Second window covers the events with time stafpsd
tamps;: andt,. Pivot events ofu; areay, by, ande;. ts. Ateach iteration, proximity of the pivot events to the rest qf

Definition 111.6: Inverse distance between two event occuf'® €lements in the window is updated one by one in the matrix.
rences(ec;, ;) and(c;, t,) mimics the distance of occurrencefter this process, window slides one event to the right and pivot
of ¢; ande; . Inverse distance is a value in the range (0, 1] and§¥ents are updated again. This process continues until the end of
is calculated by the formuld/([t, — t;| + 1). the history is reached, i.e., time stamp of the pivot events is the

Example 1Il.4: In Fig. 5, the inverse distance betweerﬁaSt time stamp in the event hlsto.ry. The.output of th(_a algorithm
(an, t1) and (by,, t2) is 1/(|2 — 1| + 1) = 0.5. The inverse 'S the sequential proximity matrix obtained by tracing all the

distance between two concurrent event occurrerfegst;) event history. . . ) .
and(er, t1)is1/(|1 — 1|+ 1) = 1 The sequential proximity matrix keeps the proximity of
, . _ ot
The inverse distance of concurrent event occurrences isSYeNts incrementally. Its elements are initially set to zevde

which is the maximum possible value and the inverse distan/@uld like to give an example to facilitate understanding of
value betweerfc;, #;) and(e;, #.) goes to 0 ag, — #; goes to the sliding window algorithm. Assume that we have an event
%9 7 bk :

infinity. setE = {ap, ai, by, by, cp, ¢1}. The sequential proximity

D(?f'n't'O” I.7: Sequential proximity matrix is atv x N 1in case of incremental runs of the algorithm, the contents of the previous
matrix whereN is the number of possible events that may occuatrix are used as initial values.
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ap aj b b; ch )

UT: wind : d th t history H ap ([ 00| 00|15 | 00|00 15
INP window size m, an e event history o000 00 000000

. L . b 1510000} 00]|00]| 15
OUTPUT: sequential proximity matrix, M, b:‘ 50 100 60 00 oo oo

showing the relationships among the events in H o 00 ]00]00]00]00]00
: cy 1.5 (00} 15| 00 00| 0.0

Begin
1. initialize matrix M to 0
2. Init1alize window to first m events
3. repeat

Fig. 7. Sample sequential proximity matrix after processing the first window.

ap ay bh bl Ch (%]
4. Initialize pivot_events to the events ap | 0.0 | 0.0 ) 307000525
in the first time unit of window g [ 00)0.0/00])0.0 00]00

. neem B, | 3.0 | 0.0 | 0.0 | 0.0 | 05 | 25
?. foreach pair of events ¢;, ¢; in pivot_events 5 1000060000000

¢, | 00001 00(0.0]0.0]00
7. increment Me;, e;] by one

6. increment M|e;, e;] by one e | 300030000500

8. foreach event ¢, in pivot_events Fig. 8. Sample sequential proximity matrix after processing the second

window.
9. foreach event e, in window and
not in pivot_events ap, | ap | by | b ch o
{ ap | 0.0 ) 0.5 80 | 05| 2.0 | 8.5
10. increment Mle,, e,] a; |05 | 0005|5540 |20
by inverse distance of e, to e, by | 80]05]00]05]|20]65
} b 0555|0500 40| 20
} ch 1050|1050 (00] 05
e | 75| 1.0 | 75| 1.0 ] 05 | 0.0
11. until the end of H is reached
End Fig. 9. Sample sequential proximity matrix after processing the whole event
history.

_ o _ may be necessary to discard the old proximity values and pro-
Fig. 6. Sliding window algorithm. duce them from scratch starting from some point in the history.
The similarity matrix that is constructed by mining the event
matrix, sayM, would be & x 6 square matrix. A sample eventhistory is used for fuzzy rule execution in ADBMSs. Fuzzy rule
history for the given event set is provided in Fig. 5 with the firstxecution is performed by similarity based event detection and
and second event windows; andws-, each of size 2 shown. construction of rule scenarios, which are explained in Section V.
Initially, all the entries in the sequential proximity matrix are 3) Time Complexity of the AlgorithmTime complexity of
0. During the first iteration, the pivot events aig, b;,, and the algorithm is determined by the size of the event history, size
;. As the first step, proximity values of the pivot events aref the window and the maximum possible number of concurrent
updated in the matrix. As a second step, proximity values efents.
the pivot events to the rest of the events in the current windowLemma l11.1: Time complexity of the sliding window algo-
are incremented in matri®Z. After the first pass, the matrix rithmis O(n x ¢? x m), wheren is the event history sizex is
is updated as shown in Fig. 7. the window size and is the maximum number of concurrently
In the second pass, the window is moved one position rigl¢curring events in the event history.
as shown in Fig. 5, and the new pivot events are set td;, and Proof: This result is due to the fact that the whole event
c.. The same process is repeated for the new pivot events. Afiéstory is traced for once and at each slide of the windozom-
the second pass, entries of the matrix are as shown in Fig. 8. Ti@éisons are made. The window is initialized to firsttimes-
final proximity values of the events are given in Fig. 9. tamps, and then the window slides— 1 times. Therefore, the
Giving more weight (increased proximity) to the events od0tal number of iterations at the repeat-until loomisAt each

curring very close to the pivot event in the window improves triteration of the loop, first the pivot events are initialized and for
accuracy of the sliding window algorithm. each pair of events in the pivot events, the matrix entries are up-

A nice property of the sliding window algorithm is that, it iSdated. Updating an entry in the matrix takes constant time, and

incremental. Assume that the time-stamp of the last event pm(—a number of pairs in the pivot events is
cessed by the previous run of the algorithni;isAs the event c
history grows with time, the algorithm can be reapplied to the <2>
event history starting frorty and the matrix values are updated

according to the new event patterns. For some applications, likberec is the maximum number of concurrent events at a time.
stock exchange, very old portions of the event history may Bdter that, for each event in the pivot events, we update the prox-
obsolete and misleading. Therefore, after a reasonable timenitty of that event with the rest of the events in the window.
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Since there are: — 1 time points in the rest of the window (ex-such thad < w; < pforalli. LetC =¢;;,¢, 5 =1, ..., nbe
cluding the time point of pivot events), this operation is done atweighted connectivity matrix describing the edgesof
mostc x ¢ x (m — 1) times. Therefore, the maximum possible Letk be a positive integer. A-way partitionof G is a set of

number of operations is nonempty, pairwise disjoint subsets@f vy, ..., v such that
uk_ v; = G. Apartition is admissible ifv;| < pforall i, where
n X <<c> + % (m — 1)) v; stands for the size of the slgt| and equals to the sum of the
2 sizes of all the elements of.
which equals to It has been shown in [25] that it is not feasible to find an exact
solution to this problem. Therefore Kernighan and Lin proposed
n X <M + A (m — 1)) . heuristics for solving the graph partitioning problem.

2 We simplify the graph partitioning problem defined above so

Since we have calculated the maximum possible number of dpat the weights of the nodes are all equal to 1. We also set
erations with respect to the maximum number of concurreht© the constant value/ for a balanced partition. Balanced
events, the time complexity of the sliding window algorithm i@artitioning is important to avoid trivial partitions. If we do not
O(n x & x m). m assume abalanced partitioning then the partition that minimizes

The only parameter that we can control in the time complexif)® Sum of the weights of the edges among the partitions will
formula is the window size. As the window size increases tHE°duce a single partition that has no outgoing edges which has
precision of the result of the mining increases, however the il YS€- Th? number of partitions, i.e., t.he number of fPZ.Zy event
complexity also increases. There is a tradeoff between the s 'S application dependent. The weighted connectivity matrix

complexity and precision. The selection of window size should the seque_ntlal prOX|m|ty matrix dgscrlbed In Sectlon Hil. i
consider this tradeoff. The algorithms provided by Kernighan and Lin assume undi-

rected graphs. In our case the proximity of evento event
¢; may be different from the proximity of; to ¢;. We may
consider our sequential proximity matrix as a directed complete
The theory of fuzzy sets was introduced by Zadeh [1]. A fuzzyraph where the events correspond to nodes and weights of di-
set is characterized by its membership function which gives tscted edges of the form — ¢; correspond to the matrix entry
the degree of membership of each element in the universal 8¢k, ;]. In order to map our problem to the graph partitioning
to the fuzzy set. Membership function of a fuzzy $&bn the problem of Kernighan and Lin, we convert our directed graph
universal set/ is generally denoted by » and maps each el- to a single undirected graph by replacing the directed edges
ementr € IJ to a real number in the range [0, 1]; i.e5(x): e; — ¢; ande; — e; with an undirected edgé;, ¢;). Weight
U — [0, 1]. of the edge(e;, ¢;) is the sum of the weights of, — ¢; and
Fuzzy event sets are fuzzy sets where the elements are events;> ¢;. Collapsing the directed edges connecting the same
and each event has a degree of membership to the fuzzy evigdes to an undirected edge does not affect the outcome of the
setA fuzzy event setEr, over a universal event s¢is a tuple partition since either both of the edges or none of them are in
of the form (E, 1) where E C ¢ and ;. is the membership the cutset.
function that describes the degree of membership of the event¥ETIS Software package can be used for graph partitioning
in E to Er. In Section IV-A, we explain how the sequential26]. The event graph that resulted from the sequential prox-
proximity matrix is used for constructing fuzzy event sets arlfinity matrix given in Fig. 9 is provided in Fig. 10. The nodes of

IV. CONSTRUCTION OFFUZzY EVENT SETS

their membership function. the graph represent the events and the edges between the nodes
represent the similarities between the corresponding events. The

A. Partitioning the Event Space Using Sequential undirected edges of the graph are obtained by summing the

Proximity Matrix weights of the edges with the same end points. Two event sets re-

The fuzzy event set construction is done by partitioning thé_”ting from the partition_ing stepare s_hown in Fig. 10 by ellipses
event space using the sequential proximity matrix. The evemgh dashed lines. The first seffy co_n5|st5 of the ever_ms_” bn,
in each partition have a degree of membership greater tharffd<: While the second sef; consists ofy, b, c,. Similar to
and the rest of the events have 0 as their degree of member mple lIl.1,a andb here correspond t(.) the.power consump-
to the fuzzy event set. The exact membership degree functidf® of_lndustry and correspondsto aresidential customer. This
are provided later on. The problem here is to partition the set@PUPING May Sh_OW us t_hat in the snapshot _Of the power con-
events intd: subsets such that the resulting subsets are balancaliPtion eventhistory, high power consumption of a residential
the total proximities of the events in all subsets are maximizegStomer corresponds to low consumption of industry. This situ-
and the total similarities among the events belonging to differed{O" May occurin summer where lots of ACs are operated in the
subsets are minimized. This problem is similar tograph par- houses gnd the eIectr|C|_ty price goes up fo_rcmg the large scale
titioning problemwhich was introduced by Kernighan and Lincompanies to_ Iower_ their production resulting in lower power
in [25]: Given a graph with costs on its edges, partition theconsumption in the industry.
nodes of7 into subsets no larger thargaven maximum sizeo
as to minimize the total cost of the edges cut. Following is the computation of Membership Functions
formal definition of the graph partitioning problem [25].

Definition IV.1: Let G be a graph ofn nodes, of size = One method of obtaining the membership functions for fuzzy
(weights)w; > 0,4 = 1, ..., n. Let p be a positive number, event sets is to rely on the experts of the particular application
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AN A Coherence deviation is a measure of how far is the coherence
/ : / Y of an event from the average coherence.
! k . \ Definition IV.5: Mean absolute deviation of a fuzzy event set

R SN ! LA ' S is denoted by MALR} and calculated as:
I’ 1 f \
'. ‘, 3! ‘. > 1CDs(e)]
! 16 e : icS
| | MADg = =2,
RN S by o | ° H
1 k 3 ! )
\ 14l 3 ". 9 . MAD is an approximate measure of how close are the dif-
\ 3 : ! ferent pairwise similarity values in a fuzzy event set.
\ " / Lemma IV.1: The formula

\\ Cl /I 1 ‘\ Ch /
\ / | / CDs(ei) xMADs .
\\ ’ \ / 3 + 0.0
S~ N 2 x MaxC Dz
S1 S2 produces a number in the ranfe 1] whenMaxCDg # 0.

Proof: For any evente;, CDg(e;) is in the range
(—o0, 00), while MaxC'Ds and MADg are both in the range

which is usually the case in fuzzy control. Since we have the g8: °¢)- By definition, CDs(e;) < MaxCDs, and also
quential proximity matrix ready at hand, we can utilize it to cof"/AD s < MaxCDs. Therefore, we have

struct fuzzy event sets. As we have explained in Section IV-A, CDs(e;) MAD g

fuzzy event sets are constructed using a graph partitioning al- -1= MaxCDs <1 and -1< MaxCDg —
gorithm. Graph partitioning is used to cluster strongly related ) ]

events. We can deduce taeeragecoherencamong the events SinceMaxCDs # 0, both of the fractions are defined.

in a fuzzy event set by taking the average proximity of all event CDs(e;) MAD ¢

pairs. The proximity between the event pgaif, ¢, ) is denoted -1< MoaxCD< <1 and -1%< MaxCDe = 1

by proximity(e;, ¢;) and it is the value stored in thigh row and ‘ s ‘ s

jth column in the sequential proximity matrix. The average céogether imply that

Fig. 10. A sample event graph.

herence is further used for determining the membership function CDs(e;) x MAD 5
of a fuzzy event set. 1< : < 1.

Definition IV.2: Coherence of an eventin a fuzzy event set MaxCDs x MaxCDs
S is denoted byCs(e;), and defined as the average proximitylhis leads to
of evente; to the rest of events if. Coherence is calculated as CDs(ei) x MAD 5
follows: -0.5< : <0.5.

- 2x (MaXCD5)2 -
eg;‘# , proximity(e;, ¢;) When we add 0.5 to the inequality, we get
e; 177
Cs(ei) = ST=1 CDs(ei) x MAD 5
< +05<1.
. . . 2 X (MaXCD5)2

where |S| is the cardinality of the fuzzy event s& and
proximity(e;, e;) is the proximity ofe; to ¢;. We exclude the Thus,
coherence of an event to itself in coherence calculation. ODs(e;) x MAD 5

Coherence of an eventin a fuzzy event sef specifies how - 5 +0.5
closelye is related tas. 2 x (MaxCDs)

Definition IV.3: Average coherence for afuzzy eventSe$ s in the range [0, 1]. [
denoted byACs and calculated as follows: The membership function of a fuzzy event sets denoted

by 115 and calculated as follows:
Y Cs(ei) :
eiCS 0 if c; ¢ S

ACs = 9€5
Cs 5] CDs(e;) x MAD g

5 % MaxC D2 +0.5 ife; €SA
initi : iati t i ) — < s
Definition IV.4: Coherence deviation of an eveat in a  us(e;) = MaxCDs # 0

fuzzy event sef is denoted byC Ds(e¢;) and calculated as:

1 if e; € SA
CDs(CZ‘) = Cs(ei) — ACS MaxCDs =0

Maximum absolute coherence deviation for a fuzzy eventAn example for the membership calculation for the graph in
set S, denoted byMaxCDg, is the maximum of abso- Fig. 10 is given below:

lute coherence deviations in that fuzzy event set, i.e.,Example IV.1: There are two fuzzy event set$, andSs, in
MaxCDgs = maxe,cs{|CDs(e;)|}. Fig. 10. We calculate the membership function§gas follows:
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1) First we need to calculate the coherence for each everi¥. APPLICATION OF SEQUENTIAL PROXIMITY MATRIX AND

and find the average coherence.
* The coherence of eveny, is

similarity(ay,, by) + similarity(ay,, ¢;)

Cs,(an) = 15— 1
which equals to
8.0+6.5
051 (ah) = T =7.25.
similarity(by,, az) + similarity(by,, ¢
o, (o) = ST ).+ sy )
which is
8.0+6.5
Cs,(bp) = 5 =725
similarity(c;, ap) + similarity(c;, by,
° CSl(cl) = ( |S)1|—1 ( )
which is
7.547.5
051 (Cl) = T =17.5.

2) Average coherence fdf is calculated as:

ACs. — Cs, (arn) + Cs, (br) + Cs, (c)
L |51]

7254725475
o 3

=7.33.

Fuzzy EVENT SETS TOACTIVE DATABASES

Fuzzy rules have been involved in many areas from control
to expert systems. The application of fuzzy concepts into
ADBMSs has attracted the attention of some researchers;
however, we cannot say that a considerable amount of research
has been conducted addressing this issue. This section is
devoted to the description of fuzzy rule execution in ADBMSs.

In the following subsections we describe how fuzzy event sets
are used for fuzzy rule execution and how sequential proximity
matrix is used for similarity based event detection in ADBMSs.

A. Fuzzy Rules in ADMSs

Although incorporation of fuzziness to active databases in-
troduces much flexibility, not much attention has been paid so
far to this issue. To the best of our knowledge, only a research
group in VTT (Finland) has worked on fuzzy triggers [27], [15],
[28], [14]. In [28], acondition-action(CA) fuzzy trigger was
proposed which means that fuzziness was introduced to the CA
part of anevent-condition-actiodECA) rule. In a later work
[15], the concept of CA trigger was extended to a fuzzy ECA
rule by introducing the notion of fuzzy events. A CA fuzzy
trigger consists of a fuzzy predicate (i.e., a predicate that has
linguistic terms) on the database as its condition, and a fuzzy
action which is an overall conclusion obtained after evaluating
fuzzy conditions. Wolski and Bouaziz compiled their previous
work on fuzzy ECA rules and based their contributions on a
sound theoretical background in [14]. A rule with a fuzzy con-
dition and a crisp action is called&fuzzy trigger. TheC-fuzzy

3) Coherence deviation for each event is calculated to f"?ﬁlgger model is based on linguistic terms. The max—min infer-

the maximum coherence deviation.

¢ CDSI (ah) = 051 (ah) - Acsl =725-733 =

—0.08

d C.Ds1 (bh) = CS1 (bh) — ACS1 =725-7.33 =

—-0.08

b CDSl (Cl) = 051 (Cl) —AOSl =7.5-7.33=0.17

« Maximum absolute coherence deviation
MaxCDg, = 0.17

4) MAD is calculated as:

—0.08 —0.08 0.17
MAD., — |Z0-081+ [=008] + [0.17] _

. 5 0.11.

After obtaining all the intermediate values needed, we c%ﬁ
calculate the membership values of the individual events as:

CDSl (ah) X MADS1

. ) = 0.5 which is
i) = T Naxopz, 05 whieh
—0.08 x 0.11
e e 1 0.5=0.35.
2x (017 o= 0
—0.08 x 0.11
. b,) = ——————— 4+ 0.5 which is also 0.35.
ns(bn) = 55T oamz 100

« Finally the membership value of is

0.17 % 0.11

m + 0.5 =0.82.

s, (a) =

is

ence method is applied to the rule setto determine the truth value
of the fuzzy predicates. In fuzzy ECA rules, an event may fire a
set of rules. Fuzzy events are defined as fuzzy sets and use lin-
guistic terms likehigh, low,andstrong[15]. Formally a prim-

itive fuzzy event is represented as a tuple, ¢;) wheree, is

a crisp event, andy is a fuzzy event predicate. When a crisp
event is signaled (such as a database update), the current value
v produced upon the operation causing the crisp eventis fed into
the membership function ef;. The output of the membership
function is called thevent match factgand the fuzzy event is
signaled only if the event match factor is greater than zero [15].
Upon the occurrence of the fuzzy event, the corresponding rules
e fired and their conditions (which are fuzzy predicates on the
atabase) are checked. The action of a rule may be started to
execute depending on the result of condition evaluation. In a
nuclear power plant control system, we may define rules such
as

Event: On asignificanttemperature change;

Condition: Check whether the water level of the river is

low;

Action: Decrease the capacity tmediumand issue a

warning signal;
where the linguistic terms liksignificant low, andmediumin-
crease the understandability of the rule. It is very difficult to give
exact numbers for the temperature change and water level. In-
stead, predefined linguistic terms, which are in fact fuzzy sets,

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on April 29,2010 at 10:59:31 UTC from IEEE Xplore. Restrictions apply.



458 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Rule Base

rules

detected triggered

events — - rules

Event Detector Condition Monitor Scheduler

A A . .
____________________ condition evaluation

;
;
Sensor :

values

action execution

Y
‘ Query Evaluator ‘

condition quer

Fig. 11. Event detection and rule execution model.

can be used without difficulty by the people who define thiizzy event sets and sequential proximity matrix is explained in
rules. the following subsections.

In the above rule, the evengignificanttemperature change”
is actually a fuzzy event. When a temperature change evenPis
signaled, which is a crisp event, its current value, say 2000  In the previous sections, we have shown how we can partition
is fed into the membership function of the corresponding fuzze whole event spacginto fuzzy event sets. Scenarios in the
event (i.e., significanttemperature change”). Assuming that th@ctive database context are the aggregation of fuzzy event sets
membership function of the fuzzy eventyig, then the value and rules. The idea of scenarios comes from the need to group
1 7(2000) is called the event match factor. rules into sets corresponding to different situations such as a

Another possible application area is the stock exchangd9h Power consumption scenario” in the summer. Dividing
market. Price changes of certain stocks can mimic the pri rule space into scenarios has many advantages. First of all,

changes of some other related stocks, and dealers can gl%ling with a group of related rules is much easier than dealing

actions accordingly. A rule for a stock exchange market contith all the rules. Also, the number of rules triggered can be
system can be defined as tuned by pruning the triggered rules using the membership func-

tion of the scenario as will be explained later on. This combined

Fuzzy Rule Execution and Fuzzy Event Sets

Event: On aconsiderableprice reduction in stock; effect of decreased number of events and rules in consideration
Condition: TRUE; will improve the efficiency and effectiveness of the system.
Action: Sell aconsiderableamount of stockA and stock  Assume that we have a set of fuzzy event ey, Er,,

B. ..., Ep, } whereEr, = (E;, 11;). Assume also that the set of

In the above rule, the everdpnsiderableprice reduction in rules in the system i& where each rule is a triple of the form
stockA, is a fuzzy event. When a price reduction event is sige, ¢, ), ¢ being the event; being the condition, and being
naled, its value, say 12% is fed into the membership functidhe action. Letevents(R;) = {e¢|r: (e, ¢, a) € R;} be the
of the corresponding fuzzy event and the result is used in fuzgyents of the rule sek;. We partition the set of ruleg, into

rule execution. Such a rule is very useful since it automaticapbsets{ R:, Ry, ..., Ry} such thatevents(R;) C E; for
issues an action upon the occurrence of an event, therefores@me fuzzy event sy, = (Ej, pjyandRiURyU-- - URy, =
ducing the time required to take an action. Randforl <i < j <k, cvents(R;) Nevents(R;) = 0. The

The rule execution model provided in [29] is modified angcenario corresponding #8;, andEr,, 1 < ¢, j < k, is atriple
depicted in Fig. 11. Events are detected by the event detectBs, F;, i)
using the sensor values that are continuously stored in the daté=xample V.1: Assume that we have the set of rules
base. Rules corresponding to the detected events are obtained
from the rule base and their conditions are evaluated. Those
rules whose conditions are satisfied are scheduled for execu- r3i{ar, ¢3, ag), ra: (b, c4; as)}
tion by the scheduler. As an extension to this model, we add thgq the two fuzzy event sets
component in the rectangle with dashed lines. In this modified
model, detected events are stored in the event history and th&y, = ({an, bw, i}, 1) and Er, = ({ar, b, e}, pi2).
are fed to the mining process periodically. The mining procegs,
together with the partitioning, produces the fuzzy event sets
which are further used by the event detector. Utilization of the Ry ={r1: {ap, cl, a1), ro: {bn, co2, az)}

R :{Tl: <a/h7 C1, CL1>, 72! <bh7 C2, CL2>,

first partition R into
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and In similarity based event detection, when an eventis signaled,
Ry ={rs: {as, c3, a3), r4: (by, ¢4, ag)}. other events which are similar to it should also be fired. Simi-
_ _ larity based event detection considers only primitive events. In
The corresponding scenarios are order to facilitate similarity based event detection, the sequen-
(Ry, Ev, i) and (Ra, Es, o). tial proximity matrix explained in Section Ill is utilized. We also

need similarity thresholds in order to avoid the system to con-
Event signaling is done by considering the membership d@iuously detect irrelevant events via similarity based event de-
gree of the event parameter in the fuzzy event. We use the fuzeygtion.
event structure described in [15] where a primitive event is aDefinition V.2: Similarity threshold for an eventin a sce-
tuple,e: {c., ¢y), consisting of a crisp paet. which is the crisp nario S is the minimum similarity requirement for the events in
parameter coming from the system and a fuzzy partvhich S to be detected automatically lyvia similarity based event
denotes the fuzzy event. detection.
Definition V.1: The strength of an event (c., ¢;) for the  Similarity threshold for an event in a scenarioS can be
ruler: (e, ¢, a) in scenarioRs,: (R;, E;, j1;) is defined as:  set to be the coherence efin S which is explained in Sec-
strengthie, ) = 1  jie , (valuelc,)) tion IV-B. Upon the detection of an event, all the events in
’ v ¢ the same scenarios asvhose similarity toe is grater than the
where valuée, ) is the value of the crisp event detected, apg  similarity threshold will be detected automatically. Similarities
is the membership function of the fuzzy event The value of of the events in a scenario are the proximity values in the se-
an event can be. itself in casez. is coming from a sensor. Or quential proximity matrix. An example would be helpful in ex-
the value can be a parameter to the crisp event such as a datapkseing similarity based event detection.
update event and the updated value. Example V.2: Consider the events and the sequential prox-
Each rule has a firing threshold which is used to decide iihity matrix in Fig. 9 and the fuzzy event sets in Fig. 10. As-
a rule will be fired or not. In order to decide whether a rule sume that the current scenario§s and a;, is detected. Co-
will be fired in response to the signaling of a fuzzy event herence ol in S; was calculated in Example V.1 &525.
the strength of event for rule » is calculated and the resultAmong the rest of the events i which areb;, and¢;, only
is compared to the threshold value for rulelf the result is b;, will be detected by similarity based event detection since
greater than or equal to the threshold value, then the rule is fir@doximity(a;,, b,) = 8.0 > 7.25, but¢; will not be detected
Threshold values of rules can be changed dynamically to tusiace proximityas,, ¢;) = 6.5 < 7.25.
to particular scenarios. Conventional event detection in active databases is a special
Prioritization of rules in an ADBMS is very important. Somecase of similarity based event detection where the similarity re-
rules may be more urgent than the others. The priority of rulkgion among the events is an identity relation and similarity
can be set by the people who defined the rules. Another mettbdesholds are equal to infinity.
is to use the events of the rules to set the priorities. Consider two
rules whose events are “significant temperature change” and
“significant pressure change.” If the membership value of the VI. CONCLUSION
significant temperature change is much higher than the mem-
bership value for the pressure change, the rule with event “sig-n this paper, we have proposed some methods for automated
nificant temperature change” should be given higher priority @bnstruction of fuzzy event sets which are sets of events where
execution since late execution of that rule may be hazardowgch event has a degree of membership to a set. Fuzzy event sets
Strength of the rules is a good indicator of rule priorities angre constructed by analyzing event histories. We have shown
they can be used to order the rules during rule execution. Ribw an event history can be mined to produce the sequential
oritization based on the strength of the rules will give highgsroximity matrix which stores similarites among events in
priority of execution to the rules with higher strength values. terms of the proximity of event occurrence. We have proposed
a sliding window algorithm for mining event histories and
proposed an automated rule modularization method that does
Detection of similar events upon an event occurrence is sormat rely on semantic knowledge. As an application platform,
thing very useful when the cost of missing events is very highe have chosen active databases. The sequential proximity
in supported applications, like a nuclear reactor control systematrix produced by the sliding window algorithm is used for
Assume that an event such as “update in temperature levelsimilarity based event detection in active databases. Fuzzy
detected. Events with a high similarity degree, like “update ievent sets are also constructed by the sequential proximity
pressure level” should also be signaled automatically. This wamatrix. Construction of fuzzy event sets is mapped to the well
the system can predict that an event which escaped the eventai®wn graph partitioning problem, and fuzzy event sets are
tection process has occurred. In a power producing and sellc@nstructed using graph partitioning algorithms.
company, occurrence of some events can imply the occurrencéncorporation of fuzziness to rule execution in ADMSs is still
of some other events. Advantage of similarity based event d8x open and important research area. Fuzzy ECA rules are ob-
tection in such a system is that, the dealers may assume thatioeisly more flexible compared to standard ECA rules. With
events similar to the signaled events will occur and can take thezy events, we can involve a priority assignment mechanism
necessary actions in advance. based on membership functions of fuzzy events. Organization of

C. Similarity Based Event Detection
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rules into scenarios, which are mapped to fuzzy event sets, i3]
creases the efficiency and modularity of rule execution. In sum-
. : . . . 14]
mary, the main contribution of our work is to propose the idea o{
fuzzy rule execution via scenarios and to describe how it could
be realized using fuzzy event sets. As a future work, we are plart®]
ning to define new similarity metrics other than the proximity of
event occurrences and construct the similarity matrix accordinge]
to these new metrics.
[17]
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