IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO.6, NOVEMBER/DECEMBER 2002 1

Exploiting Data Mining
Techniques For Broadcasting Data
in Mobile Computing Environments
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Abstract—Mobile computers can be equipped with wireless communication devices that enable users to access data services from
any location. In wireless communication, the server-to-client (downlink) communication bandwidth is much higher than the client-to-
server (uplink) communication bandwidth. This asymmetry makes the dissemination of data to client machines a desirable approach.
However, dissemination of data by broadcasting may induce high access latency in case the number of broadcast data items is large.
In this paper, we propose two methods aiming to reduce client access latency of broadcast data. Our methods are based on analyzing
the broadcast history (i.e., the chronological sequence of items that have been requested by clients) using data mining techniques.
With the first method, the data items in the broadcast disk are organized in such a way that the items requested subsequently are

placed close to each other. The second method focuses on improving the cache hit ratio to be able to decrease the access latency. It
enables clients to prefetch the data from the broadcast disk based on the rules extracted from previous data request patterns. The
proposed methods are implemented on a Web log to estimate their effectiveness. It is shown through performance experiments that
the proposed rule-based methods are effective in improving the system performance in terms of the average latency as well as the

cache hit ratio of mobile clients.

Index Terms—Broadcast disks, broadcast histories, mobile databases, data mining, prefetching, broadcast organization.

1 INTRODUCTION

ECENT advances in computer hardware technology have
made possible the production of small computers, like
notebooks and palmtops, which can be carried around by
users. These portable computers can also be equipped with
wireless communication devices that enable users to access
global data services from any location. A considerable
amount of research has recently been conducted in mobile
database systems areas with the aim of enabling mobile
(portable) computers to efficiently access a large number of
shared databases on stationary/mobile data servers [1].
The bandwidth limitation of the wireless communication
medium induces high communication cost for mobile
clients. However, it might be possible to reduce this cost
as servers can use a channel shared by mobile clients to
broadcast data. The cost of broadcasting data of common
interest is independent of the number of clients receiving it.
This fact made the dissemination of data by broadcasting
through wireless communication medium a cost efficient
approach. However, unlike on-demand data service, broad-
cast environments introduce high access latency for clients.
This is due to the fact that broadcast forms a unidirectional
stream of data in the air, like a tape, and clients need to wait
for the particular data of their interest to appear in the
broadcast. The aim of our work is to decrease this latency
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through intelligent organization of the broadcast data and
enabling the clients to perform predictive prefetching.
Intelligent broadcast organization is done at the server side
and the main idea is to place the data items frequently
requested together close to each other. This broadcast
organization method aims to decrease the access latency for
subsequently requested data items. At the client side,
predictive prefetching aims to improve the client cache hit
ratio by predicting the data items that might be requested in
the future. Predictive prefetching lowers the access latency
by increasing the cache hit ratio.

We claim that the sequence of data items requested over
time contains precious information about the temporal and
spatial patterns of requests and this information should be
exploited in broadcasting data. The broadcast requests
issued over time in a mobile database environment can be
stored in a broadcast history, where a lot of useful
information about the broadcast request patterns and their
relative issuing times is hidden. The broadcast history is the
chronological sequence of data items that have been
requested by clients. Our methods are based on analyzing
the broadcast history using data mining techniques. These
techniques are used for extracting useful information in
broadcast histories. Data mining research deals with finding
associations and sequences in individual data items by
analyzing a large collection of data. We are particularly
interested in the extraction of sequences, as well as
clustering the data items. The problem of finding sequential
patterns in a set of items has been studied before; however,
to the best of our knowledge, no research results have been
published so far on automated use of the resulting
sequential patterns in broadcast environments. In this
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paper, we discuss how we can exploit sequential rules for
organizing data broadcast for efficient data access by
mobile clients. Our methods are based on clustering the
data items that are frequently requested together. Hyper-
graph partitioning methods based on sequential patterns
are used for clustering data items. The sequential rules
obtained from sequential patterns are used for predictive
prefetching at the client side. The rules are made available
to mobile clients through broadcasting and they establish a
rule base for predictive prefetching. Some experiments are
performed to assess the effectiveness of the proposed
methods. The broadcast history is simulated through a
Web log and it is used for both extracting the sequential
patterns and evaluating the performance impact of the
resulting rules for predictive push, cache replacement, and
prefetching.

The outline of the paper is as follows: Section 2 provides
the background information and discusses the related work.
The motivation behind our work is described in more detail
in Section 3 through simple and concrete examples. Section 4
describes the process of dividing continuous client requests
into transactions to be used for mining sequential patterns.
Data organization in the broadcast disk through hyper-
graph partitioning methods is described in Section 5.
Utilization of sequential rules in prefetching, cache replace-
ment, and scheduling of broadcast data in mobile systems is
discussed in Section 6. Section 7 describes the experimental
set up and performance results for the proposed methods.
Finally, Section 8 concludes the paper and outlines future
research directions.

2 BACKGROUND AND RELATED WORK

A discussion of the state-of-the-art data broadcasting
research is provided in Section 2.1. The previous work
performed on mining associations and sequential patterns
is summarized in Section 2.2.

2.1 Data Broadcast

The continuous broadcast of data items from the server to a
number of clients can be considered as simulating a rotating
storage medium or a broadcast disk, as proposed in [2].
There are two main approaches for data dissemination
through broadcast [3]:

1. Push-based approach is where data is broadcast
according to predefined user profiles. This approach
does not consider the current client requests.

2. Pull-based approach is where data is broadcast
according to user requests. This approach is the
same as the client-server paradigm.

Each approach has its own benefits and drawbacks. In
the push-based approach, the server sends the data
regardless of the current user requests, where users may
end up receiving unrequired data. In the pull-based
approach, on the other hand, the server load is very high
since the server has to listen to client requests. To overcome
these drawbacks and make use of the benefits of both
approaches, a hybrid approach was developed by Acharya
et al. that combines the two approaches and is called
interleaved push and pull [3]. In this approach, there exist both

a broadcast channel and a backchannel for the user
requests. A hybrid data delivery model that combines push
and pull' was also proposed by Stathatos et al. [4].

In our work, we assume a hybrid broadcast scheme
where the user requests sent by the back channel are logged
in the broadcast history. User requests are processed as in
the hybrid scheme of [3], but the organization of the data to
be broadcast is determined by sequential patterns obtained
by mining the broadcast history.

In broadcast disks, the set of items that are broadcast is
called the broadcast set. The sending sequence of the items in
the broadcast set is called the broadcast schedule. Construc-
tion of the broadcast schedule is crucial for the performance
of the broadcast disk. The broadcast schedule affects the
waiting times of mobile clients for the item of their interest
to arrive. This problem is similar to the problem of
scheduling disk requests since we are dealing with a “disk
on air” in a sense [5]. The difference is that the disk on air is
unidirectional and single-dimensional since we cannot go
back and forth and do random access on it. Therefore, it is
more appropriate to call this new type of storage medium
“one-way tape on air.”

The problem of scheduling the broadcast requests is to
determine the sequence of items in the broadcast schedule.
We need to determine what should be put in the schedule
and in what sequence by taking into account the previous
request patterns of the clients (i.e., the broadcast history).
Organizing the data on air is similar in a sense to organizing
the items in a store since we can view the data on air as a
commodity waiting to be bought by the clients. In a store, it
is very logical to put the items often requested together
close to each other. Similarly, the broadcast items that are
requested together frequently should be broadcast close to
each other in time.

When we are dealing with broadcasting in mobile
environments, caching and prefetching of broadcast items
also turn out to be very important from the performance
viewpoint of the mobile system. The impact of caching in
terms of communication cost in mobile environments was
studied by Sistla and Wolfson [6]. It was shown that caching
is an important factor for minimizing the communication
cost, which is of great importance in mobile computing
environments due to bandwidth limitations. Caching in
mobile computing environments has different characteris-
tics than caching in a traditional client-server environment.
This is due to the fact that, in mobile computing environ-
ments, data items that are not cached are not equidistant to
the client since the broadcast disk is single dimensional.
Some caching strategies were proposed by Acharya et al.
considering this aspect of broadcast disks [7]. These
strategies take into account the access probabilities of the
cached items together with the frequency of broadcast. A
prefetching technique for broadcast disks was proposed by
Acharya et al. [8]. This technique uses a heuristic that
calculates a value for each data page by multiplying the
probability of access for that page by the time that will
elapse before that page appears next on the broadcast disk.
The decision about whether a data page on broadcast is
going to be replaced by one of the data pages in the mobile
client cache is based on the values calculated.

1. The authors call them broadcast and unicast, respectively.
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2.2 Data Mining

Advances in data storage and processing techniques have
made it possible to store and process huge amounts of data.
With POS (Point of Sale) machines, companies are able to
store the items sold in a per-transaction basis. This new,
valuable, and growing mass of data can be viewed as a gold
mine since it contains valuable information that can be
exploited to increase the profits of the companies. Data
mining research deals with finding relationships among
data items and grouping the related items together. The two
basic relationships that are of particular concern to us are:

e  Association, where the only knowledge we have is
that the data items are frequently occurring together
and, when one occurs, it is highly probable that the
other will also occur.

e  Sequence, where the data items are associated and, in
addition to that, we know the order of occurrence as
well.

Our main interest is finding the sequences among the
data items that occur frequently. As the concept of
sequences is based on associations, we first briefly intro-
duce the issue of finding associations. The formal definition
of the problem of finding association rules among items is
provided by Agrawal and Srikant [9] as follows: Let I =
i1,19,...,4, be a set of literals, called items, and D be a set of
transactions such that VT'e D,T C I. A transaction T
contains a set of items X if X C T. An association rule is
denoted by an implication of the form X = Y, where X C I,
YcI,and XNY =0. A rule X = Y is said to hold in the
transaction set D with confidence ¢ if ¢% of the transactions
in D that contain X also contain Y. The rule X = Y has
support s in the transaction set D if s% of transactions in D
contain X UY.

The problem of mining association rules is to find all
association rules that have support and confidence greater
than some thresholds specified by the user [9]. The
thresholds for confidence and support are called minconf
and minsup, respectively. Various algorithms have been
proposed so far for finding association rules. Some of these
algorithms include AIS [10], SETM [11], Apriori [9], and
AprioriTid [9].

The sequence problem aims to find the sequence
relationships among data items [12]. Clustering research
deals with grouping together similar data [13]. Clustering
assumes that the relationship among data items is pre-
viously known and this relationship is used to group the
data items that are strongly related to each other.

In our work, we deal with finding sequential patterns and
their use in data broadcast and prefetching. Discovery of
event patterns from event sequences was presented in [14]
and [15]. Mannila et al. proposed efficient algorithms for
finding event patterns by analyzing event sequences [15]. The
application area used in their work is telecommunication
alarm management. Bettini et al. presented algorithms based
on Mannila et al.’s approach for discovering event patters.
They tackled a more complex problem of finding event
patterns where events have multiple granularities [14].

One of the challenges of mining client access histories is
that such histories are continuous while mining algorithms

TABLE 1
Sample Database of User Requests
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assume transactional data. This causes a mismatch between
the data required by current algorithms and the broadcast
history we are considering. Therefore, we need to convert
continuous client requests into transactional form, where
client requests in a transaction correspond to a session. A
major application area that data mining researchers are
interested in is the Web, and the problem of converting
continuous Web access logs to transactional form also
appears in that domain. Data mining techniques are utilized
for the organization and efficient querying of the Web data.
Finding association rules in the context of Web was studied
before [16], [17]. However, to the best of our knowledge, the
automated use of association rules in scheduling broadcast
requests, prefetching, cache replacement, or in any other
similar application has not yet been researched. The data
mining research conducted in the context of the Web is
closer to our research of analyzing histories in terms of the
nature of the data being mined. The work on mining Web
logs is related to our work since Web requests can be
thought of as client requests on data items in a server. Web
logs contain various types of information, such as the IP
addresses, the time, the type of action, etc. Joshi et. al.
explained how Web logs can be organized and stored in a
data warehouse environment to be used for data mining
[17]. They also studied how the warehouse can be mined for
association rules and clusters. Their work also included the
development of a tool for querying the Web logs stored on
the warehouse. Joshi and Khrisnapuram presented methods
for efficiently organizing the sequential Web log into
transactional form suitable for mining [18]. They used the
temporal dimension of user access behavior and divided
the sequence of Web logs into chunks where each chunk can
be thought of a session encapsulating a user’s interest span.
Zaiane et. al. also worked on mining the Web [19]. They
mainly worked on filtering the Web logs and storing the
results in a data warehouse to be mined later on.

3 MOTIVATION

Suppose that we have a set of data items {a,b,c,d, e, f}. A
sample broadcast history over these items consisting of four
sessions is shown in Table 1. The sequences extracted from
this history with minimum support 50 percent are (e, b) and
(d,a). The rules obtained out of these sequences with
100 percent minimum confidence are e — b and d — a, as
shown in Table 2. Two broadcast data organizations are
depicted in Fig. 1. Fig. la shows a broadcast schedule
without any intelligent preprocessing and Fig. 1b shows a
schedule where related items are grouped together and
sorted with respect to the order of reference. Assume that
the disk is spinning counterclockwise and consider the
following client request pattern, e,b,d,a,c, f,e, b,d, e, also
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TABLE 2
Sample Rules
rule confidence | support
c—b | 100% 50%
d—a | 100% 50%

shown in Fig. 1. For this pattern, if we have the broadcast
schedule (a,b,c,d, e, f), which does not take into account
the rules, the total waiting time for the client will be 4 +
3+2+3+2+3+5+34+2+3=230 and the average la-
tency will be 30/10 = 3.0 broadcast units. However, if we
partition the items to be broadcast into two groups with
respect to the sequential patterns obtained after mining,
then we will have {a, ¢, d} and {b, e, f}. Note that data items
that appear in the same sequential pattern are placed in the
same group. When we sort the data items in the same group
with respect to the rules d — a and e — b, we will have the
sequences (d, a,c) and (e, b, f). If we organize the data items
to be broadcast with respect to these sorted groups of items,
we will have the broadcast schedule presented in Fig. 1b. In
this case, the total waiting time for the client for the same
request pattern will be 3+1+2+14+1+3+4+1+2+
1 =19 and the average latency will be 19/10 = 1.9, which is
much lower than 3.0.

Another example that demonstrates the benefits of rule
based prefetching is shown in Fig. 2. The first two requests
of the previous client request pattern are chosen as a
snapshot. The first request is for data item e. While the
client scans the broadcast disk, it checks whether the
currently broadcast item is going to be requested in the
future. This prediction is done by using the rules obtained
from the history of previous requests. The current request is
e and there is a rule stating that, if data item e is requested,
then data item b will also be requested in the near future.
Therefore, the prefetching decides to replace an item from
the cache with the currently broadcast data item b. This
way, the client sweeps the broadcast disk when searching
for an item, prefetching the items on the way, that may be
accessed in the future.

These simple examples show that, with some intelligent
grouping and reorganization of data items and with
predictive prefetching, average latency for clients can be
considerably improved. In the following sections, we
describe how we can extract the sequential patterns out of
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Fig. 1. Effect on broadcast data organization.

the client requests. We also explain how we group data
items with respect to the sequential patterns and how we
can sort the data items in the same group taking into
account the ordering imposed by sequential patterns. We
also discuss rule-based prefetching and cache replacement
strategies.

4 MINING BROADCAST HISTORIES

One of the major problems in data mining is to find patterns
among a set of data items. We extract the useful information
in the broadcast history in the form of sequential patterns.
In the rest of this section, we discuss the issues related to the
extraction of sequential patterns from broadcast histories
and management of the resulting patterns.

4.1 Data and Rule Models

In order to mine for sequential patterns, we assume that the
continuous client requests are organized into discrete
sessions. Sessions specify user interest periods and a session
consists of a sequence of client requests for data items
ordered with respect to the time of reference. The whole
database is considered as a set of sessions. Formally, we
have a set of items, I = iy, 49, .. .,4,, and a set of sessions, D,
such that VS € D, S C I. A session S supports a sequence of
items X if the items in X appear in S in the same order as
they appear in X.

A sequential pattern p of size k consists of ordered data
items, p1,p2, ..., pr, and is represented as

p=<pu,p2,..--,Pr > .

A sequential pattern p has support s if s% of sessions in D
supports p. A session supports a sequential pattern if that
pattern appears in the session.

e

cache requests
cache  requests cache  requests
‘c ‘ f ‘ ‘ eb.. ‘
47 ‘c‘f‘ ‘eb... ‘ ‘b‘f‘ ‘eb... ‘
i
a *+—b \ b <— ¢ +—f
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Fig. 2. Effect of prefetching.
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Sequential rules are obtained from sequential patterns.
For a sequential pattern p =< py,ps,...,pr >, the possible
sequential rules are:

<p1 >=<Dp2,p3,.--Pk >,

<p1,p2 >=<Ps3,P4,...Pk >,

<DP1,P2, s Pk-1 >=><Dpi > .

A sequential rule such as:

Pn =< DP1,D2;--3Pn >=< DPn+1,Pn+2;5 - -+ s Pk >

where 0 < n < k, has confidence c if ¢% of the sessions that
support < p1,p2,...,p, > also supports < pl,p2,...,p; >,

: : __ support(<pi,pa,...pi>)x 100
Le., confzdence(pn) T support(<pl,p2,...p,>)

For a sequential pattern p =< py, ps,...,p; >, among the
possible rules that can be derived from p, we are interested
in the rules with the smallest possible antecedent (i.e., the
first part of the rule). This is due to the fact that the rules are
used for inferencing and inferencing should start as early as
possible. The rest of the rules trivially meet the confidence
requirement. This follows from the formulation of
con fidence(p,) as specified above. Support of a sequential
pattern is less than the support of any of its subpattern.
Therefore, as the antecedent of the rule grows, the support
of the rule shrinks, making the confidence higher.

4.2 Finding Sequential Patterns in Data Broadcast
Histories

In this section, we discuss how broadcast histories can be

analyzed to come up with sequential rules describing the

sequential order and frequency of occurrence of requests for

data items in the data broadcast history.

The data mining problem in the context of broadcast
disks is to extract useful information hidden in the broad-
cast history in the form of sequential rules. Mining of
broadcast histories can be performed individually by each
data server in a distributed fashion in case the broadcast
history is distributed among the servers. Distributed rule
mining may result in global sequential rules, as discussed in
[20], or each server can maintain its own localized
sequential rule set independent of the other sites. The
choice of whether we should use a globalized or a localized
approach is system dependent. A globalized approach is
more beneficial in systems where the profiles of the data
items kept in each server are basically the same. However,
in case the data items stored in different servers are
completely unrelated, a localized approach is more useful.
Security issues also come into the picture when we deal
with the analysis of private user access histories. Autono-
mous systems may sometimes not be willing to distribute
user requests to the others. This situation can be handled by
assigning symbolic ids to users and distributing the local
broadcast results. However, some sites may not be willing
to share valuable information with the other sites. In such a
case, using a localized approach of obtaining sequential
rules is the only solution.

We use a user-based partitioning approach to divide the
broadcast history into subsets with respect to the user who
requested them, as shown in Table 3. Table 3 shows the

TABLE 3
User-Based Partitioning of the Broadcast History

usery | (wini,: Xz y;, wing,: 2y, ...; wing,: p q u)
uUSCTH (winz1: X p; Wing,: U W V; ...; wing: T s)
user, | (Wing,,: X y; wWing,: W v; ...; win, : Xy 7)

corresponding sessions of user requests for each user, such
as user;, who had k different request sessions. The analysis
is done for each subset of the broadcast history correspond-
ing to a user independent of the other subsets.

We divide the request set into sessions and find the
sequential rules using the data mining algorithms we have
discussed in the preceding section. In the user-based
partitioning approach, sessions are clusters of items
requested according to the times of requests, i.e., if a user
has requested some items consecutively with short periods
of time in between, then these items should be put in the
same session. We define a session as a group of requests
where the time delay between two consecutive requests is
less than a certain threshold. After requesting a set of items
consecutively, if the user waits for a long period of time
before starting another session, then the sequence of items
requested in the new session can be put into another
session. In Table 3, the requests of user;, for instance, are
divided into k sessions. The first session of user;, denoted
by win,,, has three requests, namely, the data items x, z, and
y. We need to set a threshold value for the time delay in
between two consecutive sessions. We may set this thresh-
old to infinity to put all the items requested by the same
user into the same session, which might be a reasonable
approach when there are a lot of users and each user
accesses a reasonable amount of (not too many) items.
When the number of users is small and each user accesses a
large amount of documents, then we need to set a
reasonable threshold value.

The focus of our research is not the development of
algorithms for finding the sequential patterns. Therefore, we
used a simple and efficient sequential pattern mining
algorithm on the set of sessions similar to the one described
in [15]. The algorithm is based on the famous a priori
principle described in Section 2.2 and it stores the candidate
patterns in a hash structure for efficient support counting.
The sequential patterns are then used to generate the
sequential rules satisfying a minimum confidence threshold.

4.3 Elimination of Obsolete Rules and Incremental
Mining
Rules that have been constructed through mining may
become obsolete after a certain period of time. The rule set
is dynamic in a sense. Therefore, we need to analyze the
whole history periodically, eliminate the obsolete rules, and
add new rules if necessary. Mining the broadcast history
very frequently is a waste of server resources; however,
using the same set of rules for a long time may affect the
system performance negatively since the current rule set
may no longer reflect the access patterns of the clients.
Therefore, determination of the frequency of mining the
broadcast requests is an important issue that needs to be



investigated. We may use feedback from the users to
determine when the rules become obsolete. If the number of
user requests is increasing, we can attribute this to obsolete
rules and, when the number of user requests becomes
significantly larger than the initial requests, we may decide
to perform the mining process again. We can determine a
threshold value for the time period to wait before restarting
the mining of the broadcast history and find new sequential
rules. For very huge histories, mining the whole history
periodically is a waste of resources; therefore, some
incremental methods can be applied to reduce the time
spent for remining. Efficient methods for incremental rule
maintenance are proposed in [21].

5 BROADCAST ORGANIZATION USING SEQUENTIAL
PATTERNS

Our main model for organizing the data items in a
broadcast disk is sequential patterns. Sequential patterns
are used to cluster the items that are accessed together
frequently and also to impose an ordering on the data items
inside a cluster.

5.1 Broadcast Organization By Clustering Data

Items

Clustering in the context of data mining deals with
grouping similar data items together such that the similarity
among different clusters is minimized [22]. An evaluation of
different clustering methods for grouping objects was
studied by Bouguettaya in [13]. In the context of broadcast
environments, clustering can be used to group data items
that are similar to each other. Similarity of data items is
defined by the client access patterns. Items that are
frequently accessed together are considered to be similar.
We cluster data items based on the sequential patterns
obtained after mining. In other words, we infer items that
are going to be accessed in the near future based on the
rules obtained from sequential patterns. Clustering based
on sequential patterns is therefore a natural method to use.
Han et al. described a clustering method in the context of
transactional data based on association rule hypergraph in
[22]. A hypergraph is an extension of the standard graph
model where a hyperedge connects two or more vertices,
whereas, in standard graphs, an edge connects exactly two
vertices. The hypergraph model perfectly fits to model
sequential patterns in that the items in sequential patterns
correspond to the vertices and the sequential patterns
themselves correspond to the hyperedges connecting those
vertices. The notion of similarity in [22] is defined by the
associations among data items. They use a hypergraph
model to cluster both the transactions and the data items.
However, their methods are generic and not intended for a
specific application like ours. Similar to the clustering
method of Han et al., our method for clustering employs a
hypergraph as the data model. However, due to the nature
of the broadcast disk environment where the sequence of
data items is important, we use sequential patterns to
describe similarities among data items rather than associa-
tions. We believe that, in the case of broadcast, sequential
patterns give more information than pure associations. The
strength of similarity is determined by the support of the
sequential pattern and confidence of the rules obtained by
the sequential pattern.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

TABLE 4
Sample Sequential Patterns

[ Sequence [ Sup(%) | Rules | Conf(%) | Weight |

< a, by > 2.0 <a>=>< be> 60 220
<a,b>=<c> 80

< b,c,a > 1.0 <b>=<c,a > 50 160
<ha>=<a> 60

< bye,d > 2.5 <b>=2<Led> 70 260
< bye>=2<d> 90

<ec,e, f> 2.0 <e»=<<e f> 80 210
<ce>=f> 70

<e R > 15 <e>=>< [h> 80 230
<& f>=2<h> 20

< fig,h > 1.0 < fo=<g.h> 60 170
< frg>=<h> 70

The problem we deal with is to partition the set of data
items at hand into k subsets such that the resulting subsets
are balanced, the total similarities of data items in each
subset are maximized, and the total similarities among the
data items belonging to different subsets are minimized.
This problem is similar to the graph partitioning problem,
which was introduced by Kernighan and Lin in [23]: Given
a graph G with costs on its edges, partition the nodes of G
into subsets no larger than a given maximum size so as to
minimize the total cost of the edges cut. It was shown in [23]
that it is not feasible to find an exact solution to this
problem. Therefore, Kernighan and Lin proposed heuristics
for solving the graph partitioning problem.

The relationships among the data items are defined by
the sequential patterns in our case, which may involve more
than two data items. If we try to represent the relationships
among the data items as a standard graph structure, then
we lose the relations involving more than two data items.
The hypergraph model is suitable for representing the
relationships among multiple data items. A hypergraph
H = (V,E) is defined as a set of vertices V and a set of
hyperedges E (also called nets). Every hyperedge h; is a
subset of vertices. In our model, the vertex set of the
hypergraph consists of the data items to be broadcast and
hyperedges correspond to sequential patterns. Determina-
tion of edge weights is a crucial point in clustering. We
define edge weights based on both the support of the
corresponding sequential pattern and the confidence of the
rules obtained from that sequential pattern. The confidence
of the rules is comparable to numeric value 100; however,
the supports are usually close to one. To ensure a balance
between the confidence and support in weight calculation,
we scale the support values to the range 0..100 by dividing
the support to the maximum support value of the sequences
and then multiplying the result by 100. Sample sequences
and the rules obtained out of those sequences are provided
in Table 4, together with the weights. For the sequential
pattern < b, ¢,d > in the table, the possible sequential rules
are < b>=<c¢,d> and <b,c >=< d > with confidence
70 and 90, respectively. Support of < b,c,d > is 2.5 percent.
Since the maximum support among the sequences is also
2.5 percent, the contribution of the support of < b,¢,d > in
the weight calculation of the hyperedge is 22 x 100 = 100.
The weight is calculated as 100+ 70 4+ 90 = 260. Each
hyperedge corresponds to one or more sequential patterns.



SAYGIN AND ULUSOY: EXPLOITING DATA MINING TECHNIQUES FOR BROADCASTING DATA IN MOBILE COMPUTING ENVIRONMENTS 7

Fig. 3. The hypergraph structure for sequential rules.

The weight of a hyperedge is the sum of the support of the
corresponding sequential patterns and the confidence of the
rules obtained by that sequential patterns. The weight for
this hyperedge is calculated by summing the weights of the
corresponding sequential patterns and it is 220 4+ 160 = 380.
The hypergraph corresponding to the sequential patterns
given in Table 4 is provided in Fig. 3. Hyperedge e;, which
connects three items, a, b, and ¢, corresponds to two
sequential patterns, i.e., < a,b,c> and < b,c,a > .
P={W,V,,...,Vkg}is a K-way partition of H = (V, E) if
and only if the following three conditions are satisfied:

o VicVandVi#0forl1<k<K,

e U, Vi=V,and

o VinNVi=0forl<k<I<K.
The partitioning is sometimes referred to as bisection in the
case of two-way partitioning. For K > 2, the partitioning is
called multiway or multiple-way partitioning by some
researchers. Partitioning is performed based on an objective
function. The objective function in our case is to minimize
the total weight of the hyperedges that span two or more
partitions while performing a balanced partitioning. Parti-
tioning is performed iteratively to obtain balanced parti-
tions that satisfy the objective function. Recursive bisection
is applied together with coarsening and uncoarsening steps
for fast and effective partitioning of hypergraphs. The
details of the state of the art hypergraph partitioning
method we used in our work can be found in [24].

5.2 Weighted Topological Sorting of Items Inside a
Cluster

As we have discussed above, clustering of data items based
on sequential patterns produces sets of data items that are
accessed together frequently. Besides the clustering, the
ordering of the data items inside a cluster is also important.
Therefore, we would like to order the data items inside a
cluster such that they conform to the order imposed by
sequential patterns.

In order to perform the ordering inside a cluster, we
consider the set of sequential patterns of size two which
form a directed graph structure. This graph may contain
cycles and need not to be connected. For a given set S of
sequential patterns over a set I of items, I constitutes the
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130 140
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Fig. 4. Weighted graph of binary sequential rules.

vertices of the graph. There is an edge ¢ — j if and only if
there is a sequence (3,j) € S.

The vertices of an acyclic directed graph G can be sorted
by labeling the vertices with the integers from the set
{1,2,3,...,n}, where n is the number of vertices in G. If
there is an edge from vertex ¢ to vertex j in G, then the label
assigned to 4 is smaller than that of j. Ordering the vertices
in this manner is called the topological sorting of G [25].

The graph of sequential patterns may contain cycles and,
in order to topologically sort the graph, we need to
eliminate these cycles. Cycle elimination should be done
in such a way that the edges removed have minimum
impact on the overall ordering of the items. Therefore, we
break a cycle by removing the edge with the minimum
weight in the cycle. As described before, weights of the
edges are determined by the support of the sequential
pattern, and the confidence of the rule obtained form that
pattern.

The graph structure for the sequential patterns given in
Table 4 is provided in Fig. 4. The cycle a = b —c—a is
broken by removing the minimum weight edge, which is
(c,a). The algorithm used for weighted topological sort is
presented in Fig. 5. Input of the algorithm is a weighted
directed graph G = (V, E), where V is the set of vertices
and F is the set of edges. The output of the algorithm is the
topologically sorted list S of vertices in V. After the removal
of the cycle, vertex a, which has zero indegree, is appended
to the list of topologically sorted vertices. Vertex a is
removed from the graph together with the edge (a,b).
Similarly, vertex b is chosen next for removal and then

Break the cycles in G using minimum weight heuristic
S — 0 /] S keeps the sorted list of vertices
Vui € Voweight(vi) = 32 evi(o; v eBrigj weight(ve, v;)
V' —V /] V' keeps track of the set of vertices to be removed
E' — E [/ E' keeps track of the set of edges to be removed
while V’ # () do
begin
Z — Z U{v;|v; € V! ANindegree(v;) = 0}
select v; € Z such that weight(v;) is maximum
append v; to S
V(v v5) € E remove (vg,v;) from E
remove (v;) from V'
remove (v;) from Z
end
Append rest of the vertices in Z to S in decrecasing order of weight

Fig. 5. Weighted topological sorting algorithm.
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vertex c. After the removal of vertex ¢, we have two vertices
which are candidates for removal: d and e. We choose
vertex d since the weight of edge (c, d) is higher than the
weight of edge (c, e). The result of the topological sort of the
graph is < a,b,c,d,e, f,g,h > .

6 UTILIZATION OF SEQUENTIAL RULES IN
PREFETCHING AND CACHE REPLACEMENT

A typical architecture for mobile computing systems
inspired from [26] is depicted in Fig. 6. In this architecture,
there is a fixed network of Mobile Support Stations (MSSs).
Mobile Hosts (MHs) are the computers which are portable
and capable of wireless communication. Each MH is
associated with an MSS and MHs are connected to MSSs
via wireless links. An MSS is generally fixed and it provides
MHs with a wireless interface inside a prespecified area,
called a cell.

Both prefetching and cache replacement strategies
exploit the sequential rules obtained by mining the broad-
cast history. The set of data items inferred by the sequential
rules (that we denote by inferred_items) is used as a base
for rule-based prefetching and caching strategies. The set
in ferred_items is constructed by using the algorithm given
in Fig. 7. The prefetching algorithm looks at the current
n requests to predict what will be requested next. The
predicted items are stored in the set of inferred_items. In
case the number of rules is large, we limit the number of
inferred items by sorting them in decreasing order of
priority and selecting the items with relatively high priority.
The priority of each inferred item is determined by the
confidence of the rule that has inferred it.

In order to perform rule-based prefetching and cache
replacement, the mobile clients should be aware of the
sequential rules in the current cell. This can be provided by
ensuring that the rules also appear in the broadcast set, i.e.,
they are broadcast periodically. The broadcasting of rules
together with the data items induces an overhead on the
broadcast disk since the size of the broadcast disk increases
with the addition of sequential rules. However, the number
of rules in the system is usually much smaller than the
number of broadcast items, therefore the induced overhead
turns out to be negligible. When a mobile client enters a cell,
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inferred_items = 0
for every sequential rule 57 = S; do
if there is a match for S7 in current n» requests then
inferred_atems = in ferred_items U Sy
endif
endfor

Fig. 7. Construction of the set in ferred_items.

it fetches the current rule set in its new cell at the time
sequential rules are broadcast. This also induces an over-
head on mobile clients, which may not be significant if the
client does not move from one cell to another frequently.
However, in case the cell sizes are small and the mobile
client changes its cell frequently, loading and setting up the
current rule set may take a considerable amount of time.
This problem can be overcome by examining the profiles
and mobility patterns of the users. The client on a mobile
computer decides to load the current rule set if the user of
the computer who enters a new cell will stay in this cell for
a sufficiently long period of time. This information can be
explicitly obtained from the user. A better approach could
be to use user profiles if they are available. User profiles can
contain information like [27]:

e probabilities of relocation between any two locations
within a location server base (MSS),

e average number of calls per unit time, and

e average number of moves per unit time.

The problem of prefetching broadcast items is discussed
in [8]. Prefetching is useful when the data items to be used
subsequently are already on the air, ready to be retrieved.
We suggest that sequential rules generated from broadcast
histories can also be used in prefetching broadcast items.

The rule set loaded by the clients is utilized for
prefetching data items in the broadcast set. Clients and
the server symmetrically and synchronously utilize the
sequential rules. The server uses the rules to organize the
broadcast requests and clients use the rules to do prefetch-
ing. Clients consider the current n requests they have issued
and do prefetching using the rules broadcast by the server.
Prefetching, used with a rule-based cache replacement
strategy, can decrease the waiting times of the mobile
clients for the arrival of required broadcast items when
those items are available on the broadcast channel. This is
very intuitive since fetching a data item beforehand, when it
is available, means that the client does not have to wait for
the data to appear on the broadcast when it is actually
required.

We have compared our approach with the prefetching
method, called PT, that takes the broadcast environment
into account. This method was proposed by Acharya et al.
[8]. PT considers both the access probabilities of a data page
and the time that the page will be broadcast again for
prefetching. Each page is associated with a value, called the
pt value, which is used for prefetching and cache replace-
ment decisions. PT computes the pt value of a page by
multiplying the probability of access (P) of the page with
the time (7) that will elapse for the page to reappear on the
broadcast. The probability of access of a data item is
calculated by using the overall access frequencies of the
individual data items. This is obtained after the first step of
the mining process, which calculates the frequencies of
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if bcast_stem is not in cache then
if becast_stem is In in ferred_items — cached_iterns then
pralue = rule_conf(bcast_item)
if minimum pvalue of cached_items > puvalue then
perform prefetching

endif

Fig. 8. Prefetching algorithm.

patterns of size 1 (i.e., individual data items). The broadcast
page is replaced with the page in the cache which has the
minimum pt value if the minimum pt¢ value is less than the
pt value of the broadcast page.

The algorithm we use for prefetching is presented in
Fig. 8. Similar to the PT method, a value is associated with
each data item to be used for prefetching, which is called
the pvalue of the item. Prefetching of a data item is
performed for data items that are not cache resident.
Prefetching is performed if the pvalue of the item on
broadcast is greater than the minimum pvalue of the cache
resident data items. The puvalue of a data item corresponds
to the confidence of the rule that inferred that item (denoted
by rule_conf(bcast_item)) if the item is in the list of
inferred_items. The pvalues are halved at each broadcast
tick to favor newly inferred items.

Cache replacement is also an important issue for mobile
clients considering the limitations on wireless bandwidth
and cache capacity of mobile computers. Clients can use the
sequential rules broadcast by the servers (or MSSs) in
determining which items should be replaced in their cache.
Clients consider a window of current n requests in order to
determine the next items that might be needed by the user
and do the cache replacement according to their rule-based
predictions. The rule-based cache replacement algorithm
we propose is provided in Fig. 9. The algorithm first
determines the data items that will probably be requested in
the near future by using both the sequential rules and the
last n requests issued by the client, as shown in Fig. 7. These
data items are accumulated in the set in ferred_items. Any
cache replacement strategy can be used on the set
cached_items — inferred_items, i.e., the difference between
the set of data items currently residing in the cache and the
data items inferred by the sequential rules. Another
possible approach is to use the set of inferred items for
determining the replacement probabilities of cached items,
instead of completely isolating them from the set of items to
be considered for cache replacement. Both of the ap-
proaches can be classified as hybrid since they are taking
advantage of both conventional and rule-based cache
replacement strategies.

There might be a special case where the size of the set of
items inferred by the rules as candidates to be requested in
the near future may exceed the cache size. There are two
possible approaches that might be adopted for cache
replacement to handle such a case:

e Consider the inferred items for replacement in the
order of timestamps of requests.

e Consider the inferred items for replacement in the
order of confidences of the rules that have inferred
them.

With the first approach, the temporal order of the

requests is considered and the items inferred as a result of

if cached_items — in ferred_items =  then
for each data item in
inferred_items M cached_item do
replace the data item supported by a rule
with the least confidence
else
replace a data item in cached_items — inferred_items
using their pvalues

endif

Fig. 9. Cache replacement algorithm.

requests which have been issued earlier are preferred to be
kept in the cache. The second approach prioritizes the rules
according to their confidences, i.e., among any two data
items, the one inferred by the rule with a higher confidence
has higher priority than the other item. The item with the
lowest priority is replaced first.

7 SIMULATION AND EXPERIMENTAL RESULTS

We implemented the data mining algorithms and the rule-
based scheduling and prefetching mechanisms to show the
effectiveness of the proposed methods. A Web log was
used for simulating the broadcast history. We think that
requests for Web pages are actually a good approximation
to the list of past requests by mobile clients. The simulation
model we used and the experimental results are provided
in Section 7.1 and Section 7.2, respectively.

7.1 Data and Simulation Model

We used the anonymous Web data from www.microsoft.com
created by Jack S. Breese, David Heckerman, and Carl M.
Kadie from Microsoft. Data was created by sampling and
processing the www.microsoft.com logs and donated to the
Machine Learning Data Repository stored at the University of
California atIrvine Web site [28]. The Web log data keeps track
of the use of the Microsoft Web site by 38,000 anonymous,
randomly selected users. For each user, the data recordslistall
the areas of the Web sites that the user visited in a one week
timeframe. The number of instances is 32,711 for training and

Back Channel

Server

-y
S

Broadcast Disk:
\ 4
Inference
I Cache
— -

Rule Base Client

Data Mining Program

Rule Extraction Region

Client Requests

0 ‘Web Access Log

Fig. 10. System architecture.
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TABLE 5
Main Parameters of Our System

Broadcast Size

Maximum size of the hroadcast disk

Cache Size

Maximum size of the client cache

Minimum Suppori

Minimum support value of the extracted rules

Minimum Confidence

Minimum confidence value of the extracted rules

Mazx Inferred

Maximum number of items that can be inferred by rules

Queune Size

Size of the queue that stores the inferred items

5,000 for testing. Each instance represents an anonymous,
randomly selected user of the Web site. The number of
attributes is 294, where each attribute is an area of the
www.microsoft.com Web site and it is considered as a data
item.

We selected the 50 most frequent data items for broad-
casting which have more than 1 percent support. This is a
reasonable method since, in broadcast environments, only
the frequently accessed items are broadcast, while the
others are requested through the back channel. However,
since the set of 50 data items is too small for a broadcast
disk, we replicated these 50 data items, together with the
requests and the rules corresponding to these items, to
construct a disk of 200 data items.

The whole system consists of three independent parts:

e rule extraction module,
e broadcast organization module, and
e broadcast simulation module.

The rule extraction module performs the task of
extracting sequential rules from the Web log. Rule sets
with different minimum confidence and support require-
ments can be constructed by the rule extraction module.
The resulting sequential rules are written to a file in a
specific format to be read later by the broadcast organiza-
tion and broadcast simulation modules. The broadcast
organization module performs clustering of data items
using hypergraph partitioning based on sequential patterns.
We used the PATOH hypergraph partitioning tool for our
experiments [24]. The broadcast organization module also
performs weighted topological sort of data items inside
clusters. Details of the clustering and topological sorting of
data items are provided in Section 5.

The architecture of our system is depicted in Fig. 10. In
this architecture, we use the Microsoft Web logs to simulate
the broadcast history. The sequence of Web logs that are
organized into sessions is fed into the data mining program
to be used for extracting sequential rules. The resulting rule
set is fed into the rule base, which is then used for broadcast
organization, cache replacement, and prefetching. The Web
log provided for testing is used for simulating the requests
of a client.

As we present in Fig. 10, our broadcast environment has
a server that sends data items in the broadcast disk and a
client that reads data items on the broadcast disk and sends
data item requests whenever necessary. The broadcast disk
is organized by the server using the sequential patterns.
Clients use the sequential rules for prefetching from the
broadcast disk.

We assume a simple broadcast structure as this would be
sufficient for constructing an execution environment that
would enable us to measure the effectiveness of extracted

rules over client requests.

7.2 Experimental Results

We implemented the rule mining algorithms on our Web
log. We extracted rules with different support values and
evaluated their effect on the performance. Our main
performance metric is the average latency. We also measured
the client cache hit ratio. A decrease in the average latency is
an indication of how useful the proposed methods are. The
average latency can decrease as a result of both increased
cache hit ratio via prefetching methods and better data
organization in the broadcast disk. An increase in the cache
hit ratio will also decrease the number of requests sent to
the server on the backlink channel and, thus, lead to both
saving of the scarce energy sources of the mobile computers
and reduction in the server load.

Data mining is performed in main memory. The running
time of the data mining algorithm does not exceed a few
minutes. Considering that the mining process is not done
very frequently, the running time is not significant. The
running time of the rule checking algorithm is not
significant either since the number of rules is not so large.
We observed in our experiments that the optimum number
of rules for the best cache hit ratio does not exceed a few
hundreds.

The basic parameters of our system are presented in
Table 5. As the broadcast size does not have a serious
impact on the cache hit ratio, we assumed a fixed broadcast
size of 200 data items in all our experiments.

We performed experiments under varying values of the
cluster size and the best results for the test data were
obtained with a cluster size of four. We set the minimum
support threshold to 1 percent and minimum confidence
threshold to 20 percent for the first part of the experiments
which aims to evaluate the impact of cache size. We varied
the cache size to observe how the average latency is
affected. The cache size is measured in terms of the number
of items, assuming that the items retrieved are html
documents, possibly with images. The average latency is
measured in terms of broadcast ticks.

We compared our rule-based prefetching method (RB)
with the state of the art prefetching algorithm® (PT) for
broadcast disks. We also evaluated the performance of a
base algorithm (BASE) which does not do prefetching and
only performs LRU-based cache replacement. PT is a very
good heuristic when the locations of the data items in the
disk and their relative access frequencies are known.
However, with extra knowledge which describes the
sequence of data item accesses by clients (i.e., by involving
RB), further improvement in the performance is possible, as

2. See Section 6.
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Fig. 11. Average latency as a function of the cache size.

can be seen in Fig. 11. The cache hit ratios obtained with the
methods RB, PT, and BASE are provided in Fig. 12. As can
be observed from both figures, all three methods react
similarly to the changes in the cache size. As expected,
increasing the cache size leads to an increase in cache hit
ratio and a decrease in average latency. For any cache size
value tested, the cache hit ratio values obtained with RB and
PT are much higher compared to that with BASE, which
leads to much better performance for RB and PT in terms of
the average latency. Comparing RB and PT, it can be
observed that, except for large cache sizes tested, the cache
hit ratio and the corresponding average latency values
obtained with RB are consistently better than those with PT.
Large cache size values (i.e., cache size > 30) lead to
comparable performance results for these two algorithms.
RB does not provide an improvement in the performance
for large cache size values because most of the data items
inferred by the rules are already stored in the cache. For
small cache sizes, the content of the cache is more dynamic
and RB is more effective in this case. Performance
improvement by RB is achieved via rule-based prefetching
and cache replacement. Prefetching and cache replacement

Broadcast Size = 200, Support = 1% Confidence = 20%
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Fig. 12. Cache hit ratio as a function of the cache size.
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Fig. 13. Average latency as a function of the minimum support threshold
(for small support values).

works hand in hand with RB as well as PT, i.e., these two
algorithms prioritize the cache items using the rule weights
and pt values, respectively.

In order to evaluate the impact of the minimum support
and confidence threshold on the performance of the rule-
based prefetching, we also conducted experiments by
varying these two parameters. The results obtained in these
experiments are provided in Figs. 13, 14, and 15. We
conducted two separate experiments in investigating the
performance impact of different support values; one for
small support values (in the range 0.1-1.0 in steps of 0.1)
and one for large support values (in the range 1.0-10.0, in
steps of 1.0). The performance results obtained for these two
sets of support values are provided in Figs. 13 and 14,
respectively. As support is increased for small support
values, the average latency decreases since the rules chosen
become more effective. The best results are obtained for the
minimum support values of 0.6 through 2.0. When support
is increased further, the average latency starts to increase
since the number of rules decreases. The performance
impact of the confidence was also examined by varying its
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Fig. 14. Average latency as a function of the minimum support threshold
(for large support values).
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value from 5 to 100 in steps of 5. The results are similar to
those obtained with the minimum support experiments, as
shown in Fig. 15. For small confidence values, it is possible
to improve the performance by increasing the confidence
threshold. However, after a certain confidence threshold
(i.e., 25 percent in this experiment), increasing confidence
leads to an increase in the average latency since a smaller
number of rules and, thus, a smaller number of inferred
items, are involved for large confidence values.

We also conducted experiments to investigate the
performance impact of the maximum number of items
inferred at each step (i.e., max inferred) and size of the queue
that stores the inferred items (i.e., queue size). The results of
these two experiments are displayed in Figs. 16 and 17,
respectively. As the maximum number of inferred items is
increased, the average latency decreases up to a certain
point (i.e., max inferred = 5 in this experiment). A further
increase in the maximum number of inferred items does not
improve the performance because the number of items
inferred cannot be increased any more. A similar perfor-
mance pattern is also observed by varying the size of the
queue that stores the inferred items (Fig. 17). Some of the
items stored in the queue may become obsolete after a while
and they are pushed out of the queue as new items are
inferred. For large queue sizes, increasing the queue size
does not lead to better performance because this would just
increase the fraction of obsolete items stored in the queue
and such items do not have any effect on the performance.

8 CoNcLusIioNS AND FUTURE WORK

In this paper, we have discussed some data mining
techniques to be used for broadcasting data in mobile
environments. We have proposed a new method of
organizing the data broadcast in mobile environments
using the sequential rules obtained by mining the broadcast
history. The sequential rules are used as a base for
clustering data items and, thus, for data organization in
the broadcast disk. Our expectation with this approach is to
decrease the delay experienced by the clients while waiting
for the required data items since the items that are likely to
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Fig. 16. Average latency as a function of the maximum number of items
that can be inferred by rules.

be requested in the near future will be placed close together
in the broadcast.

We have also aimed to show that sequential rules are
beneficial for prefetching of data items by mobile clients. A
cache replacement mechanism for mobile computers has
been proposed which utilizes the sequential rules to
determine the items to be replaced in the cache. In order
to exploit sequential rules for prefetching and cache
replacement, mobile clients need to have access to the
current sequential rules that exist in the system. Servers can
handle this problem by periodically broadcasting the
current sequential rule set.

The proposed methods have been evaluated through
performance experiments on a Web log. The rules resulting
from mining a Web log have been used to test the
effectiveness of the proposed methods. The performance
of our methods has been compared with a state of the art
prefetching technique, as well as a base algorithm. It has
been observed through performance experiments that a
considerable increase in the cache hit ratio can be obtained
when the rule-based broadcast organization, cache replace-
ment, and prefetching techniques are used together. The
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Fig. 17. Average latency as a function of the size of the queue that
stores the inferred items.
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increase in the cache hit ratio leads to lower average latency
for rule-based methods especially for small cache sizes,
which is typical for mobile devices.

In this work, we have not dealt with temporality issues.
However, temporal information can also be exploited for
scheduling broadcast requests. Temporal sequential rules
can be obtained by mining the broadcast history, consider-
ing the relative times of the broadcast requests as well. The
issue of mining temporal patterns is discussed in [14].
Temporal sequential rules can improve the effectiveness of
rule-based scheduling by considering the time of the
requests as well as the sequence of requests. The issue of
utilization of temporal sequential rules in broadcasting is
left as future work.
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