
Exploiting Index Pruning Methods for Clustering XML
Collections

Ismail Sengor Altingovde, Duygu Atilgan and Özgür Ulusoy

Department of Computer Engineering, Bilkent University, Ankara, Turkey
{ismaila, atilgan, oulusoy}@cs.bilkent.edu.tr

Abstract. In this paper, we first employ the well known Cover-Coefficient
Based Clustering Methodology (C3M) for clustering XML documents. Next, we
apply index pruning techniques from the literature to reduce the size of the
document vectors. Our experiments show that for certain cases, it is possible to
prune up to 70% of the collection (or, more specifically, underlying document
vectors) and still generate a clustering structure that yields the same quality
with that of the original collection, in terms of a set of evaluation metrics.

Keywords: Cover-coefficient based clustering, index pruning, XML

1 Introduction

As the number and size of XML collections increase rapidly, there occurs the need to
manage these collections efficiently and effectively. While there is still an ongoing
research in this area, INEX XML Mining Track fulfills the need for an evaluation
platform to compare the performance of several clustering methods on the same set of
data. Within the Clustering task of XML Mining Track of INEX campaign, clustering
methods are evaluated according to cluster quality measures on a real-world
Wikipedia collection.

To this end, in the last few workshops, many different approaches are proposed
which use structural, content-based and link-based features of XML documents. In
INEX 2008, Kutty et al. [11] use both structure and content to cluster XML
documents. They reduce the dimensionality of the content features by using only the
content in frequent subtrees of an XML document. In another work, Zhang et al. [13]
make use of the hyperlink structure between XML documents through an extension of
a machine learning method based on the Self Organizing Maps for graphs. De Vries et
al. [9] use K-Trees to cluster XML documents so that they can obtain clusters in good
quality with a low complexity method. Lastly, Tran et al. [12] construct a latent
semantic kernel to measure the similarity between content of the XML documents.
However, before constructing the kernel, they apply a dimension reduction method
based on the common structural information of XML documents to make the
construction process less expensive. In all of these work mentioned above, not only
the quality of the clusters but the efficiency of the clustering process is also taken into
account.

In this paper, we propose an approach which reduces the dimension of the
underlying document vectors without change or with a slight change in the quality of
the output clustering structure. More specifically, we use a partitioning type clustering
algorithm, so-called Cover-Coefficient Based Clustering Methodology (C3M) [7],
along with some index pruning techniques for clustering XML documents.

2 Approach

2.1 Baseline Clustering with C3M Algorithm

In this work, we use the well-known Cover-Coefficient Based Clustering
Methodology (C3M) [7] to cluster the XML documents. C3M is a single-pass
partitioning type clustering algorithm which is shown to have good information
retrieval performance with flat documents (e.g., see [6]). The algorithm operates on
documents represented by vector space model. Using this model, a document
collection can be abstracted by a document-term matrix, D; of size m by n whose
individual entries, dij (1<i<m; 1<j<n), indicate the number of occurrences of term j (tj)
in document i (di). In C3M, the document-term matrix1 D is mapped into an m by m
cover-coefficient (C) matrix which captures the relationships among the documents of
a database. The diagonal entries of C are used to find the number of clusters, denoted
as nc; and to select the cluster seeds. During the construction of clusters, the
relationships between a nonseed document (di) and a seed document (dj) are
determined by calculating the cij entry of C; where cij indicates the extent to which di
is covered by dj.

A major strength of C3M is that for a given dataset, the algorithm itself can
determine the number of clusters, i.e., there is no need for specifying the number of
clusters, as in some other algorithms. However, for the purposes of this track, we
cluster the XML documents into a given number of clusters (for several values like
1000, 10000, etc.) using C3M method, as required. In this paper, we simply use the
content of XML documents for clustering. Our preliminary experiments that also take
the link structure into account did not yield better results than just using the content.
Nevertheless; our work in this direction is still under progress.

2.2 Employing Pruning Strategies for Clustering

From the previous works, it is known that static index pruning techniques can reduce
the size of an index (and the underlying collection) while providing comparative
effectiveness performance with that of the unpruned case [2, 3, 4, 5, 8]. In a more
recent study, we show that such pruning techniques can also be adapted for pruning
the element-index for an XML collection [1]. Here, with the aim of both improving
the quality of clusters and reducing the dataset dimensions for clustering, we apply

1 Note that, in practice, the document-term matrix only includes non-zero term occurrences for

each document.

static pruning techniques on XML documents. We adapt two well-known pruning
techniques, namely, term-centric [8] and document-centric pruning [5] from the
literature to obtain more compact representations of the documents. Then, we cluster
documents with these reduced representations for various pruning levels, again using
C3M algorithm. The pruning strategies we employ in this work can be summarized as
follows:

• Document-centric pruning (DCP): This technique is essentially intended to

reduce the size of an inverted index by discarding unimportant terms from
each document. In the original study, a term’s importance for a document is
determined by that term’s contribution to the document’s Kullback-Leibler
divergence (KLD) from the entire collection [5]. In a more recent work [2], we
show that using the contribution of a term to the retrieval score of a document
(by using a function like BM25) also performs quite well. In this paper, we
again follow this practice and for each term that appears in a given document,
we compute that term’s BM25 score for this document. Then, those terms that
have the lowest scores are pruned, according to the required pruning level.
Once the pruned documents are obtained at a given pruning level,
corresponding document vectors are generated to be fed to the C3M clustering
algorithm.

• Term-centric pruning (TCP): This method operates on an inverted index, so

we start with creating an index for our collection. Next, we apply term-centric
pruning at different pruning levels, and once the pruned index files are
obtained, we convert them to the document vectors to be given to the
clustering algorithm2. In a nutshell, the term-centric pruning strategy works as
follows [8]. For each term t, the postings in t’s posting list are sorted according
to their score with respect to a ranking function, which is BM25 in our case.
Next, the kth highest score in the list, zt, is determined and all postings that
have scores less than zt * ε are removed, where ε specifies the pruning level. In
this paper, we skip this last step, i.e. ε-based tuning, and simply remove the
lowest scoring postings of a list for a given pruning percentage.

3 Experiments

In this paper, we essentially use a subset of the INEX 2009 XML Wikipedia
collection provided by XML Mining Track. This subset, so-called small collection,
contains 54575 documents. On the other hand, the large collection contains around
2.7 million documents and takes 60 GB. It is used only in the baseline experiments for
various number of clusters.

2 It is possible to avoid converting the index to the document vectors by slightly modifying the

input requirements of the clustering algorithm. Anyway, we did not spend much effort in this
direction as this conversion stage, which is nothing but an inversion of the inverted index,
can also be realized in an efficient manner.

Table 1. Micro and macro purity values for the baseline C3M clustering for different number
of clusters using the small collection.

Table 2. Micro and macro purity values for the baseline C3M clustering for different number
of clusters using the large collection.

As the baseline, we form clusters by applying C3M algorithm to XML documents
represented with the bag of words representation of terms, as provided by the track
organizers. For several different number of output clusters, namely 100, 500, 1000,
2500, 5000 and 10000, we obtain the clusters and evaluate them at the online
evaluation website of this track. The website reports the standard evaluation criteria
for clustering such as micro purity, macro purity, micro entropy, macro entropy,
normalized mutual information (NMI), micro F1 score and macro F1 score for a given
clustering structure. However, only purity measures are used as the official evaluation
criteria for this task. In Tables 1 and 2, we report those results for clustering small and
large collection, respectively. For the latter case, due to time limitations, we
experimented with three different numbers of clusters such as 100, 1000 and 10000. A
quick comparison of the results in Tables 1 and 2 for corresponding cases imply that
purity scores are better for the smaller dataset than that of the larger dataset,
especially for large number of clusters. We anticipate that better purity scores for the
large collection can be obtained by using a higher number of clusters.

Next, we experiment with the clusters produced by the pruning-based approaches.
For each pruning technique, namely, TCP and DCP, we obtain the document vectors
at four different pruning levels, i.e., 30%, 50%, 70% and 90%. Note that, a document
vector includes term id and number of occurrences for each term in a document,
stored in the binary format (i.e., as a transpose of an inverted index). In Table 3, we
provide results for the small collection and 10000 clusters. Our findings reveal that up
to 70% pruning with DCP, quality of the clusters is still comparable to or even
superior than the corresponding baseline case, in terms of the evaluation measures.

Regarding the comparison of pruning strategies, clusters obtained with DCP yield
better results than those obtained with TCP up to 70% pruning for both micro and
macro purity measures. For the pruning levels higher than 70%, DCP and TCP give
better results interchangeably for these measures. In [1], we observed a similar
behavior regarding the retrieval effectiveness of indexes pruned with TCP and DCP.

No. of clusters Micro Purity Macro Purity
100 0.1152 0.1343
500 0.1528 0.1777

1000 0.1861 0.2147
2500 0.2487 0.3031
5000 0.3265 0.4160
10000 0.4004 0.5416

No. of clusters Micro Purity Macro Purity
100 0.1566 0.1234

1000 0.1617 0.1669
10000 0.1942 0.2408

Table 3. Comparison of the purity scores for clustering structures based on TCP and DCP at
various pruning levels using the small collection. Number of clusters is 10000. Prune (%) field

denotes the percentage of pruning. Best results for each measure are shown in bold.

Pruning Strategy Prune (%) Micro Purity Macro Purity
No Prune 0% 0.4004 0.5416

DCP 30% 0.4028 0.5400
TCP 30% 0.3914 0.5229
DCP 50% 0.4019 0.5375
TCP 50% 0.3870 0.5141
DCP 70% 0.4016 0.5302
TCP 70% 0.3776 0.5042
DCP 90% 0.3783 0.4768
TCP 90% 0.3639 0.5073

Table 4. Micro and macro purity values for DCP at 30% pruning for different number of
clusters.

From Table 3, we also deduce that DCP-based clustering at 30% pruning level

produce the best results for both of the evaluation measures in comparison to the other
pruning-based clusters. For this best-performing case, namely DCP at 30% pruning,
we also provide performance findings with varying number of clusters (see Table 4).

The comparison of the results in Tables 1 and 4 shows that the DCP-based clusters
are inferior to the corresponding baseline clustering up to 10000 clusters, but they
provide almost the same performance for the 10000 clusters case.

In this year’s clustering task, other than the standard evaluation criteria, the quality
of the clusters relative to the optimal collection selection goal is also investigated. To
this end, a set of queries with manual query assessments from the INEX Ad Hoc track
are used and each set of clusters obtained is scored according to the result set of each
query. According to the clustering hypothesis [10], the documents that cluster
together have similar relevance to a given query. Therefore, it is expected that the
relevant documents for ad-hoc queries will be in the same cluster in a good clustering
solution. In particular, mean Normalised Cluster Cumulative Gain (nCCG) score is
used to evaluate the clusters according to the given queries.

In Table 5, we provide the mean and the standard deviation of nCCG values for our
baseline C3M clustering on the small data collection. Regarding the pruning-based
approaches, the mean nCCG values obtained from the clusters produced by TCP and
DCP for various pruning levels are provided in Table 6. In parallel with the findings
obtained by the purity criteria, mean nCCG values of the clusters obtained by DCP

No. of clusters Micro Purity Macro Purity
100 0.1021 0.1265
500 0.1347 0.1539
1000 0.1641 0.1917
2500 0.2234 0.2737
5000 0.2986 0.3854

10000 0.4028 0.5400

Table 5. Mean and standard deviation of nCCG values for the baseline C3M clustering for
different number of clusters using the small collection.

Table 6. Comparison of the mean and standard deviation of nCCG values for clustering
structures based on TCP and DCP at various pruning levels using the small collection. Number

of clusters is 10000. Prune (%) field denotes the percentage of pruning. Best results for each
measure are shown in bold.

Pruning Strategy Prune (%) Mean nCCG Std. Dev. CCG
No Prune 0% 0.4799 0.2507

DCP 30% 0.4950 0.2549
TCP 30% 0.4940 0.2370
DCP 50% 0.4828 0.2467
TCP 50% 0.4618 0.2236
DCP 70% 0.4601 0.2207
TCP 70% 0.5075 0.2176
DCP 90% 0.4613 0.2343
TCP 90% 0.5132 0.2804

Table 7. Mean and standard deviation of nCCG values for DCP at 30% pruning for different
number of clusters.

are still better than or comparable to the ones obtained by the baseline approach up to
70% pruning level. On the other hand, TCP approach yields better mean nCCG values
even at 90% pruning level.

In Table 7, we provide the mean nCCG values obtained from different number of
clusters formed by the DCP approach at 30% pruning level. A quick comparison of
the results in Table 7 with those in Table 5 reveals that clusters obtained after DCP
pruning are more effective than the clusters obtained by the baseline strategy for
various number of clusters.

No. of clusters Mean nCCG Std. Dev. CCG
100 0.7344 0.2124
500 0.6258 0.2482

1000 0.5986 0.2790
2500 0.5786 0.2352
5000 0.5918 0.2395
10000 0.4799 0.2507

No. of clusters Mean nCCG Std. Dev. CCG
100 0.7426 0.1978
500 0.6424 0.2326
1000 0.5834 0.2804
2500 0.5965 0.2504
5000 0.5929 0.2468

10000 0.4950 0.2549

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 500 1000 2500 5000 10000
Number of clusters

m
ea
n
nC

CG Altingovde et al.

Mark

Kutty et al.

Stoppi

Fig. 1. Comparison of the highest scoring runs submitted to INEX for varying number of
clusters on the small collection.

Finally, in Figure 1 we compare the performance of the C3M clustering with the
other runs submitted to INEX 2009 in terms of the mean nCCG. For each case (i.e.,
number of clusters), we plot the highest scoring clustering approaches from each
group. Note that, for cluster numbers of 100, 500, 2500, and 5000, our strategy
(denoted as Altingovde et al.) corresponds to DCP based clustering at 30%; and for
the cluster number of 10000 we report the score of TCP based clustering at 90%. For
one last case where cluster number is set to 1000, we report the baseline C3M score,
which turns out to be the highest.

4 Conclusion

In this paper, we employ the well-known C3M algorithm for content based clustering
of XML documents. Furthermore, we use index pruning techniques from the literature
to reduce the size of the document vectors on which C3M operates. Our findings
reveal that, for a high number of clusters, the quality of the clusters produced by the
C3M algorithm does not degrade when up to 70% of the index (and, equivalently, the
document vectors) is pruned.

Our future work involves repeating our experiments with larger datasets and
additional evaluation metrics. Furthermore, we plan to extend the pruning strategies to
exploit the structure of the XML documents in addition to content.

Acknowledgments. This work is supported by TÜBİTAK under the grant number
108E008.

References

1. Altingovde, I. S., Atilgan, D., Ulusoy, Ö.: XML Retrieval using Pruned Element-Index
Files. In: Proc. of ECIR’10. (2010) 306-318

2. Altingovde, I. S., Ozcan, R., Ulusoy, Ö.: A practitioner’s guide for static index pruning.
In: Proc. of ECIR'09. (2009) 675-679

3. Altingovde, I. S., Ozcan, R., Ulusoy, Ö.: Exploiting query views for static index pruning
in web search engines. In: Proc. of CIKM’09. (2009) 1951-1954

4. Blanco, R., Barreiro, A.: Boosting static pruning of inverted files. In: Proc. of SIGIR’07,
The Netherlands. (2007) 777-778

5. Büttcher, S., Clarke, C. L.: A document-centric approach to static index pruning in text
retrieval systems. In: Proc. of CIKM’06. (2006) 182-189

6. Can, F., Altingövde, I. S., Demir, E.: Efficiency and effectiveness of query processing in
cluster-based retrieval. Information Systems 29(8) (2004) 697-717

7. Can, F., Ozkarahan E. A.: Concepts and effectiveness of the cover-coefficient-based
clustering methodology for text databases. ACM Transactions on Database Systems 15
(1990) 483–517.

8. Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y. S., Soffer, A.:
Static index pruning for information retrieval systems. In: Proc. of SIGIR’01. (2001) 43-
50

9. De Vries, C.M., Geva, S.: Document Clustering with K-tree In: Proc. of INEX 2008
Workshop. (2009) 420-431

10. Jardine, N., van Rijsbergen, C. J.: The Use of Hierarchic Clustering in Information
Retrieval. Information Storage and Retrieval 7(5) (1971) 217-240.

11. Kutty, S., Tran, T., Nayak, R., Li, Y.: Clustering XML documents using frequent subtrees
In: Proc. of INEX 2008 Workshop. (2009) 436-445

12. Tran, T., Kutty, S., Nayak, R.: Utilizing the Structure and Content Information for XML
Document Clustering In: Proc. of INEX 2008 Workshop. (2009) 460-468

13. Zhang, S., Hagenbuchner, M., Tsoi, A.C., Sperduti, A.: Self Organizing Maps for the
Clustering of Large Sets of Labeled Graphs In: Proc. of INEX 2008 Workshop. (2009)
469-481

