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Abstract. In this paper, we first employ the well known Cover-Coefficient 
Based Clustering Methodology (C3M) for clustering XML documents. Next, we 
apply index pruning techniques from the literature to reduce the size of the 
document vectors. Our experiments show that for certain cases, it is possible to 
prune up to 70% of the collection (or, more specifically, underlying document 
vectors) and still generate a clustering structure that yields the same quality 
with that of the original collection, in terms of a set of evaluation metrics. 
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1   Introduction 

As the number and size of XML collections increase rapidly, there occurs the need to 
manage these collections efficiently and effectively. While there is still an ongoing 
research in this area, INEX XML Mining Track fulfills the need for an evaluation 
platform to compare the performance of several clustering methods on the same set of 
data. Within the Clustering task of XML Mining Track of INEX campaign, clustering 
methods are evaluated according to cluster quality measures on a real-world 
Wikipedia collection. 

To this end, in the last few workshops, many different approaches are proposed 
which use structural, content-based and link-based features of XML documents. In 
INEX 2008, Kutty et al. [11] use both structure and content to cluster XML 
documents. They reduce the dimensionality of the content features by using only the 
content in frequent subtrees of an XML document. In another work, Zhang et al. [13] 
make use of the hyperlink structure between XML documents through an extension of 
a machine learning method based on the Self Organizing Maps for graphs. De Vries et 
al. [9] use K-Trees to cluster XML documents so that they can obtain clusters in good 
quality with a low complexity method. Lastly, Tran et al. [12] construct a latent 
semantic kernel to measure the similarity between content of the XML documents. 
However, before constructing the kernel, they apply a dimension reduction method 
based on the common structural information of XML documents to make the 
construction process less expensive. In all of these work mentioned above, not only 
the quality of the clusters but the efficiency of the clustering process is also taken into 
account.  



In this paper, we propose an approach which reduces the dimension of the 
underlying document vectors without change or with a slight change in the quality of 
the output clustering structure. More specifically, we use a partitioning type clustering 
algorithm, so-called Cover-Coefficient Based Clustering Methodology (C3M) [7], 
along with some index pruning techniques for clustering XML documents.  

2   Approach 

2.1 Baseline Clustering with C3M Algorithm 

In this work, we use the well-known Cover-Coefficient Based Clustering 
Methodology (C3M) [7] to cluster the XML documents. C3M is a single-pass 
partitioning type clustering algorithm which is shown to have good information 
retrieval performance with flat documents (e.g., see [6]). The algorithm operates on 
documents represented by vector space model. Using this model, a document 
collection can be abstracted by a document-term matrix, D; of size m by n whose 
individual entries, dij (1<i<m; 1<j<n), indicate the number of occurrences of term j (tj) 
in document i (di). In C3M, the document-term matrix1 D is mapped into an m by m 
cover-coefficient (C) matrix which captures the relationships among the documents of 
a database. The diagonal entries of C are used to find the number of clusters, denoted 
as nc; and to select the cluster seeds. During the construction of clusters, the 
relationships between a nonseed document (di) and a seed document (dj) are 
determined by calculating the cij entry of C; where cij indicates the extent to which di 
is covered by dj. 

A major strength of C3M is that for a given dataset, the algorithm itself can 
determine the number of clusters, i.e., there is no need for specifying the number of 
clusters, as in some other algorithms.  However, for the purposes of this track, we 
cluster the XML documents into a given number of clusters (for several values like 
1000, 10000, etc.) using C3M method, as required. In this paper, we simply use the 
content of XML documents for clustering. Our preliminary experiments that also take 
the link structure into account did not yield better results than just using the content. 
Nevertheless; our work in this direction is still under progress. 

2.2 Employing Pruning Strategies for Clustering 

From the previous works, it is known that static index pruning techniques can reduce 
the size of an index (and the underlying collection) while providing comparative 
effectiveness performance with that of the unpruned case [2, 3, 4, 5, 8].  In a more 
recent study, we show that such pruning techniques can also be adapted for pruning 
the element-index for an XML collection [1].  Here, with the aim of both improving 
the quality of clusters and reducing the dataset dimensions for clustering, we apply 

                                                           
1 Note that, in practice, the document-term matrix only includes non-zero term occurrences for 

each document. 



static pruning techniques on XML documents. We adapt two well-known pruning 
techniques, namely, term-centric [8] and document-centric pruning [5] from the 
literature to obtain more compact representations of the documents. Then, we cluster 
documents with these reduced representations for various pruning levels, again using 
C3M algorithm. The pruning strategies we employ in this work can be summarized as 
follows: 

 
• Document-centric pruning (DCP): This technique is essentially intended to 

reduce the size of an inverted index by discarding unimportant terms from 
each document. In the original study, a term’s importance for a document is 
determined by that term’s contribution to the document’s Kullback-Leibler 
divergence (KLD) from the entire collection [5]. In a more recent work [2], we 
show that using the contribution of a term to the retrieval score of a document 
(by using a function like BM25) also performs quite well. In this paper, we 
again follow this practice and for each term that appears in a given document, 
we compute that term’s BM25 score for this document. Then, those terms that 
have the lowest scores are pruned, according to the required pruning level. 
Once the pruned documents are obtained at a given pruning level, 
corresponding document vectors are generated to be fed to the C3M clustering 
algorithm. 

 
• Term-centric pruning (TCP): This method operates on an inverted index, so 

we start with creating an index for our collection. Next, we apply term-centric 
pruning at different pruning levels, and once the pruned index files are 
obtained, we convert them to the document vectors to be given to the 
clustering algorithm2. In a nutshell, the term-centric pruning strategy works as 
follows [8]. For each term t, the postings in t’s posting list are sorted according 
to their score with respect to a ranking function, which is BM25 in our case. 
Next, the kth highest score in the list, zt, is determined and all postings that 
have scores less than zt * ε are removed, where ε specifies the pruning level. In 
this paper, we skip this last step, i.e. ε-based tuning, and simply remove the 
lowest scoring postings of a list for a given pruning percentage.  

3   Experiments 

In this paper, we essentially use a subset of the INEX 2009 XML Wikipedia 
collection provided by XML Mining Track. This subset, so-called small collection, 
contains 54575 documents. On the other hand, the large collection contains around 
2.7 million documents and takes 60 GB. It is used only in the baseline experiments for 
various number of clusters. 

                                                           
2 It is possible to avoid converting the index to the document vectors by slightly modifying the 

input requirements of the clustering algorithm. Anyway, we did not spend much effort in this 
direction as this conversion stage, which is nothing but an inversion of the inverted index, 
can also be realized in an efficient manner.  



Table 1. Micro and macro purity values for the baseline C3M clustering for different number 
of clusters using the small collection.  

 
 
 
 
 

 

 

Table 2. Micro and macro purity values for the baseline C3M clustering for different number 
of clusters using the large collection. 

 

 

 
 

As the baseline, we form clusters by applying C3M algorithm to XML documents 
represented with the bag of words representation of terms, as provided by the track  
organizers. For several different number of output clusters, namely 100, 500, 1000, 
2500, 5000 and 10000, we obtain the clusters and evaluate them at the online 
evaluation website of this track. The website reports the standard evaluation criteria 
for clustering such as micro purity, macro purity, micro entropy, macro entropy, 
normalized mutual information (NMI), micro F1 score and macro F1 score for a given 
clustering structure. However, only purity measures are used as the official evaluation 
criteria for this task. In Tables 1 and 2, we report those results for clustering small and 
large collection, respectively. For the latter case, due to time limitations, we 
experimented with three different numbers of clusters such as 100, 1000 and 10000. A 
quick comparison of the results in Tables 1 and 2 for corresponding cases imply that 
purity scores are better for the smaller dataset than that of the larger dataset, 
especially for large number of clusters. We anticipate that better purity scores for the 
large collection can be obtained by using a higher number of clusters. 

Next, we experiment with the clusters produced by the pruning-based approaches. 
For each pruning technique, namely, TCP and DCP, we obtain the document vectors 
at four different pruning levels, i.e., 30%, 50%, 70% and 90%. Note that, a document 
vector includes term id and number of occurrences for each term in a document, 
stored in the binary format (i.e., as a transpose of an inverted index). In Table 3, we 
provide results for the small collection and 10000 clusters. Our findings reveal that up 
to 70% pruning with DCP, quality of the clusters is still comparable to or even 
superior than the corresponding baseline case, in terms of the evaluation measures. 

Regarding the comparison of pruning strategies, clusters obtained with DCP yield 
better results than those obtained with TCP up to 70% pruning for both micro and 
macro purity measures. For the pruning levels higher than 70%, DCP and TCP give 
better results interchangeably for these measures. In [1], we observed a similar 
behavior regarding the retrieval effectiveness of indexes pruned with TCP and DCP.  

No. of clusters        Micro Purity Macro Purity 
100 0.1152 0.1343 
500 0.1528 0.1777 

1000 0.1861 0.2147 
2500 0.2487 0.3031 
5000 0.3265 0.4160 
10000 0.4004 0.5416 

No. of clusters        Micro Purity Macro Purity 
100 0.1566 0.1234 

1000 0.1617 0.1669 
10000 0.1942 0.2408 



Table 3. Comparison of the purity scores for clustering structures based on TCP and DCP at 
various pruning levels using the small collection. Number of clusters is 10000. Prune (%) field 

denotes the percentage of pruning. Best results for each measure are shown in bold. 

Pruning Strategy Prune (%) Micro Purity Macro Purity 
No Prune 0% 0.4004 0.5416 

DCP 30% 0.4028 0.5400 
TCP 30% 0.3914 0.5229 
DCP 50% 0.4019 0.5375 
TCP 50% 0.3870 0.5141 
DCP 70% 0.4016 0.5302 
TCP 70% 0.3776 0.5042 
DCP 90% 0.3783 0.4768 
TCP 90% 0.3639 0.5073 

 

Table 4. Micro and macro purity values for DCP at 30% pruning for different number of 
clusters. 

 
 
 

 
 
 
 
 
From Table 3, we also deduce that DCP-based clustering at 30% pruning level 

produce the best results for both of the evaluation measures in comparison to the other 
pruning-based clusters. For this best-performing case, namely DCP at 30% pruning, 
we also provide performance findings with varying number of clusters (see Table 4).  

The comparison of the results in Tables 1 and 4 shows that the DCP-based clusters 
are inferior to the corresponding baseline clustering up to 10000 clusters, but they 
provide almost the same performance for the 10000 clusters case. 

In this year’s clustering task, other than the standard evaluation criteria, the quality 
of the clusters relative to the optimal collection selection goal is also investigated. To 
this end, a set of queries with manual query assessments from the INEX Ad Hoc track 
are used and each set of clusters obtained is scored according to the result set of each 
query. According to the clustering hypothesis [10], the documents that cluster 
together have similar relevance to a given query. Therefore, it is expected that the 
relevant documents for ad-hoc queries will be in the same cluster in a good clustering 
solution. In particular, mean Normalised Cluster Cumulative Gain (nCCG) score is 
used to evaluate the clusters according to the given queries.  

In Table 5, we provide the mean and the standard deviation of nCCG values for our 
baseline C3M clustering on the small data collection. Regarding the pruning-based 
approaches, the mean nCCG values obtained from the clusters produced by TCP and 
DCP for various pruning levels are provided in Table 6. In parallel with the findings 
obtained by the purity criteria, mean nCCG values of the clusters obtained by DCP  

No. of clusters     Micro Purity Macro Purity 
100 0.1021 0.1265 
500 0.1347 0.1539 
1000 0.1641 0.1917 
2500 0.2234 0.2737 
5000 0.2986 0.3854 

10000 0.4028 0.5400 



Table 5. Mean and standard deviation of nCCG values for the baseline C3M clustering for 
different number of clusters using the small collection.  

 

 

 

 

 

 

Table 6. Comparison of the mean and standard deviation of nCCG values for clustering 
structures based on TCP and DCP at various pruning levels using the small collection. Number 

of clusters is 10000. Prune (%) field denotes the percentage of pruning. Best results for each 
measure are shown in bold. 

Pruning Strategy Prune (%) Mean nCCG Std. Dev. CCG 
No Prune 0% 0.4799 0.2507 

DCP 30% 0.4950 0.2549 
TCP 30% 0.4940 0.2370 
DCP 50% 0.4828 0.2467 
TCP 50% 0.4618 0.2236 
DCP 70% 0.4601 0.2207 
TCP 70% 0.5075 0.2176 
DCP 90% 0.4613 0.2343 
TCP 90% 0.5132 0.2804 

 

Table 7. Mean and standard deviation of nCCG values for DCP at 30% pruning for different 
number of clusters. 

 
 
 
 
 
 
 
 

are still better than or comparable to the ones obtained by the baseline approach up to 
70% pruning level. On the other hand, TCP approach yields better mean nCCG values 
even at 90% pruning level. 

In Table 7, we provide the mean nCCG values obtained from different number of 
clusters formed by the DCP approach at 30% pruning level. A quick comparison of 
the results in Table 7 with those in Table 5 reveals that clusters obtained after DCP 
pruning are more effective than the clusters obtained by the baseline strategy for 
various number of clusters. 

No. of clusters        Mean nCCG Std. Dev. CCG 
100 0.7344 0.2124 
500 0.6258 0.2482 

1000 0.5986 0.2790 
2500 0.5786 0.2352 
5000 0.5918 0.2395 
10000 0.4799 0.2507 

No. of clusters     Mean nCCG Std. Dev. CCG 
100 0.7426 0.1978 
500 0.6424 0.2326 
1000 0.5834 0.2804 
2500 0.5965 0.2504 
5000 0.5929 0.2468 

10000 0.4950 0.2549 
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Fig. 1. Comparison of the highest scoring runs submitted to INEX for varying number of 
clusters on the small collection. 

Finally, in Figure 1 we compare the performance of the C3M clustering with the 
other runs submitted to INEX 2009 in terms of the mean nCCG. For each case (i.e., 
number of clusters), we plot the highest scoring clustering approaches from each 
group. Note that, for cluster numbers of 100, 500, 2500, and 5000, our strategy 
(denoted as Altingovde et al.) corresponds to DCP based clustering at 30%; and for 
the cluster number of 10000 we report the score of TCP based clustering at 90%. For 
one last case where cluster number is set to 1000, we report the baseline C3M score, 
which turns out to be the highest. 

4   Conclusion 

In this paper, we employ the well-known C3M algorithm for content based clustering 
of XML documents. Furthermore, we use index pruning techniques from the literature 
to reduce the size of the document vectors on which C3M operates. Our findings 
reveal that, for a high number of clusters, the quality of the clusters produced by the 
C3M algorithm does not degrade when up to 70% of the index (and, equivalently, the 
document vectors) is pruned.  

Our future work involves repeating our experiments with larger datasets and 
additional evaluation metrics. Furthermore, we plan to extend the pruning strategies to 
exploit the structure of the XML documents in addition to content.  
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