
Pergamon
Information S~srems Vol. 23, No. I, pp. 39-64, 1998

fi 1998 Published by Elsevier Science Ltd. All rights reserved

PII: SO306-4379(98)00002-7
Printed in Great Britain

0306-4379198 $19.00 + 0.00

CONCURRENT RULE EXECUTION IN ACTIVE DATABASESt

Y~~CEL SAYGIN~, OZG~~R ULUSOY~ and SHARMA CHAKRAVARTHY~

1 Department of Computer Engineering and Information Science, Bilkent University, Turkey

2Department of Computer and Information Science and Engineering, University of Florida, US

(Received 22 April 1997; in final revised form 3 February 1998)

Abstract - An active DBMS is expected to support concurrent as well as sequential rule execution
in an efficient manner. Nested transaction model is a suitable tool to implement rule execution as it can
handle nested rule firing and concurrent rule execution well. In this paper, we describe a concurrent
rule execution model based on parallel nested transactions. We discuss implementation details of how
the flat transaction model of OpenOODB has been extended by using Solaris threads in order to
SUppOrt COnCUrrent eXeCUtiOU of rUkS. Copyright % 1998 Published by Elsevier Science Ltd. All rights reserved

Key words: Active Databases, Nested Transactions, Rule Execution.

1. INTRODUCTION

Conventional, passive databases execute queries or transactions only when explicitly requested
to do so by a user or an application program. In contrast, an active database management system
(ADBMS) allows users to specify actions to be executed when specific events are signaled [13]. The
concept of active databases has been originated from the production rule paradigm of Artificial
Intelligence (AI). The AI production rule concept has been modified for the active database context
so that rules can respond to the state changes caused by the database operations [21]. An active
database implements reactive behavior since it is able to detect situations, which may occur in
and out of the database, and to perform necessary actions which were previously specified by the
user. In the absence of such an active mechanism, either the database should be polled or situation
monitoring should be embedded in the application code. Neither of these approaches is completely
satisfactory. F’requent polling degrades performance of the system and infrequent polling may
deteriorate the timeliness of system responses. Embedding situation monitoring in the application
code is error prone and reduces the modularity of the application [13].

Applications supported by ADBMSs cover a wide range of areas like authorization, access log-
ging, integrity constraint maintenance, alerting, network management, air traffic control, computer
integrated manufacturing, engineering design, plant and reactor control, tracking, monitoring of
toxic emissions, and any other application where large volumes of data must be analyzed to detect
relevant situations [5, 131. Active DBMSs are proposed for system level applications as well, like
supporting different transaction models [8].

In a typical ADBMS, system responses are declaratively expressed using Event-Condition-
Action (ECA) rules [13]. An ECA rule is composed of an event that triggers the rule, a condition
describing a given situation, and an action to be performed if the condition is satisfied. Coupling
modes between event and condition, and between condition and action determine when the con-
dition should be executed relative to the occurrence of the event, and when the action should be
executed relative to the satisfaction of the condition, respectively.

An ADBMS should support both concurrent and sequential rule execution. Sequential rule
execution is necessary when a certain execution order is enforced by priorities or when the rules
have a predefined sequence of execution. Sequential execution may also be supported in levels;
i.e., a certain number of groups of rules can be executed sequentially while the rules in each
group are executed concurrently. Concurrent rule execution, on the other hand, is very important
from the performance perspective of the system. Nested transaction model [27] is considered as

tR.ecommended by Nicole Bidoit

39

40 Y~EL SAYGIN et al.

a suitable tool to implement rule execution since it provides us with a good model for concurrent
rule execution and it can handle nested rule firing together with multiple triggering of rules well.
Nested rule firing occurs when the condition evaluation or action execution of a rule causes some
other rules to be fired which may go on recursively and multiple firing of rules occurs when an
event causes more then one rule to be fired.

In this paper, we describe a rule execution model for ADBMSs based on parallel nested trans-
actions. Our execution model supports concurrent rule execution through nested transactions, and
sequential rule execution through user defined priorities. Rules with the same priority are executed
concurrently which allows us to have sequential execution among rules with different priority levels
and concurrent execution for the rules with the same priority. We also discuss the implementa-
tion details of concurrent rule execution using parallel nested transactions. The locking protocol
described in [23] has been implemented which allows us to control the concurrency among all the
transactions in a transaction hierarchy running in parallel. Implementation has been performed by
extending the flat transaction semantics of OpenOODB using Solaris threads. OpenOODB is an
open (i.e., extendible) object oriented database management system developed by Texas Instru-
ments [37]. In our implementation, all the transactions in a transaction hierarchy are allowed to
run in parallel, therefore achieving the highest level of concurrency. Solaris threads are used for
running the subtransactions in parallel which provides us with efficient handling of transactions
executing concurrently [36]. 0 ur implementation of concurrent rule execution is currently being
integrated into Sentinel [9] which is an ADBMS developed at the University of Florida.

In summary, the primary contributions of our work are:

l to describe a rule execution model that supports sequential as well as concurrent rule execu-
tion (in terms of both inter and intra-rule concurrency),

l to use nested transactions as the tool for modeling concurrent and nested rule execution,

l to implement the proposed nested transaction model for concurrent rule execution using
threads.

A detailed discussion of the issues introduced in this section is provided in the following sections.
In Section 2 we provide a detailed description of rule execution in ADBMSs. Our execution model
for ADBMSs is described in Section 3 together with its formal specification. Section 4 describes the
implementation details of parallel nested transactions on OpenOODB using Solaris threads, and
discusses the integration of our implementation into Sentinel. A brief discussion on the execution
overhead of parallel nested transactions is provided in Section 5. We conclude the paper by
outlining future directions of this work.

2. RULE EXECUTION IN ADBMSS

Rule execution has a key role in determining the performance of an ADBMS. Nested and
multiple rule firing cause a large set of rules to be fired for execution. Multiple rule firing occurs
when an event causes more then one rule to be fired as illustrated in Figure l(a) and nested rule
firing occurs when the execution of a rule causes other rules to be fired recursively as illustrated
in Figure l(b). Depending on the level of concurrency allowed, a hierarchy of rules fired by the
same event (i.e., multiple firing of rules) or rules fired recursively (i.e., nested rule firing) execute
in the system. Management of nested and multiple firing of rules is a major scheduling issue in
ADBMSs.

Rules can be executed sequentially or concurrently. Sequential rule execution is necessary when
a certain execution order is enforced by priorities or when the rules have a predefined sequence of
execution. Concurrent rule execution, on the other hand, is very important from the performance
perspective of the system. Concurrency in rule execution can be achieved through either:

Concurrent Rule Execution in Active Databases 41

0 inter-rule concurrency, or

0 intra-rule concurrency, or

l both inter and intra-rule concurrency.

In the first case, rules are executed concurrently as if they are atomic transactions. In the second
case, rules are divided into subcomponents and those subcomponents are executed concurrently.
As another alternative, we may have both types of concurrency together, which is the most flexible
concurrent rule execution model.

(8 (b)

Fig. 1: (a) Multiple Rule Firing, (b) Nested Rule Firing.

Nested transactions are accepted as a suitable tool for implementing concurrent rule execution in
ADBMSs which can handle multiple and nested rule firing well [6, 14, 241. In the nested transaction
model, some transactions can be started inside some other transactions forming a transaction
hierarchy. The transaction at the top of the hierarchy is called a top-level transaction, and the
other transactions are called subtransactions. Subtransactions can be executed concurrently which
is a desirable situation if subtransactions are performing tasks that can be overlapped. Concurrency
control of nested transactions is discussed in [23]. Multiple rule firing can be handled by executing
the rules fired by the same event as subtransactions of the transaction causing the event.

A rule in an ADBMS consists of an event, a condition and an action. If the event is missing,
then the rule is a condition-action (CA) rule or a production rule; if no condition is specified, then
the resulting rule is an event-action (EA) rule or simply a trigger [30]. When an event is detected,
the system searches for the corresponding rules. The condition part of the rule triggered by that
event is evaluated and the action is taken if the condition is satisfied.

The action part of a rule may be executed in one transaction immediately as a linear extension
of the triggering transaction. This is called coupled execution [24]. In coupled execution, we do
not have intra-rule concurrency. We can give Starburst as an example of coupled execution of
rules [38, 11. In Starburst, rules are baaed on the notion of transitions. A transition is a change in
database state resulting from the execution of a sequence of data manipulation operations. Rules
are activated at assertion points. There is an assertion point at the end of each transaction and
users may specify other assertion points within a transaction. The state change resulting from
the database operations issued by the user since the last assertion point creates the first relevant
transition which triggers a set of rules. A rule r is chosen from the set of triggered rules such that
no other triggered rule has precedence over it. Condition of r (if it has any) is evaluated. Action
part of r is executed provided that its condition evaluates to true; otherwise another rule is chosen.
After the execution of r’s action, rules that are not considered up until now are triggered only if
their transition predicates hold with respect to the predicate created by the composition of the

42 Yikm SAYGIN et al.

initial transition and the execution of r’s action. Rule processing terminates after all triggered rules
are executed. Ariel is another ADBMS which uses coupled rule execution [20]. Rule instantiations
in Ariel are set oriented and execution of rules is performed by recognize-act cycle as in production
rules.

Although coupled execution is useful in some cases, it degrades the performance of the system
by increasing the response time of transactions. If we allow actions to be executed in separate
transactions, then the triggering transaction can finish more quickly and release resources earlier,
and this way transaction response times can be improved. We may also want the condition part
of the rule to be executed as a separate transaction since conditions which are queries on the
database can be long and time consuming. Allowing conditions and actions to be executed in
separate transactions is called decoupled execution [15,24]. Decoupled execution is useful especially
when the fate of the condition or action is independent of the commit or abort of the originating
transaction [15]. With decoupled execution we may have intra-rule concurrency.

Begin Transaction Event E End Transaction Commit Transaction

I I

I I
I I
I I

[Condition] [Condition]
(IMMEDIATE) (DEFERRED)

1 [Conditig]

(DETACHED)

Fig. 2: Basic Coupling Modes between Event and Condition.

It is also important to specify when the condition will be evaluated relative to the triggering
event and when the action will be executed relative to the condition evaluation. This is achieved
by defining coupling modes for conditions and actions which are stated to be a functionality that an
active database should provide [7]. There are three basic coupling modes: immediate, deferred, and
detached (or decoupled) [13]. Basic coupling modes between event and condition are illustrated in
Figure 2. If the condition is specified to be evaluated in immediate mode, then it is executed right
after the triggering operation that caused the event to be raised. If the action part is specified
to be executed in immediate mode then it is executed immediately after the evaluation of the
condition. In case the condition is specified to be in deferred mode, its evaluation is delayed
until the commit point of the transaction, and similarly if the action is in deferred mode relative
to the condition, again it is executed right before the transaction commits. Finally, in detached

mode, condition is evaluated or action is executed in a separate transaction. Detached mode
can further be classified into four subcategories: detached coupling, detached c4usally dependent

coupling, sequential causally dependent coupling, and exclusive caus4lly dependent coupling [4]. In
detached coupling there is no dependency between the triggering and triggered transactions. In
det4ched c4usally dependent coupling, the triggered transaction can commit only if the triggering
transaction commits. In sequential causally dependent coupling, the triggered transaction can
start executing only if the triggering transaction commits. Finally, in exclusive causally dependent

coupling, triggered transaction commits only if the triggering transaction fails.
A deferred execution method proposed in [24] and mentioned in [15] involves the execution

of transactions in cycles. In cycle-O, deferred transactions that have been fired up to that point
are executed. Transactions spawned during cycle-0 in immediate mode are executed as a linear
extension of their parents as usual. Execution of the deferred transactions that are fired during
cycle-0 by another deferred transaction is postponed to the next cycle, which is cycle-l. Again
deferred transactions that are fired in cycle-l are postponed to the next cycle, which is cycle-2,

Concurrent Rule Execution in Active Databases 43

and so on. This process continues until there are no deferred transactions left.

Intra-rule concurrency is achieved by dividing a rule into a condition and an action, and exe-

cuting them concurrently. In our execution model, intra-rule concurrency is in the condition-action
level, i.e. there are no subcomponents of conditions or actions executing concurrently. This can
be extended to finer granularity intra-rule parallelism by using nested transactions. Inter-rule con-
currency can be achieved by executing the rules concurrently. In the following subsection, nested
transactions are explained as a concurrent rule execution model for ADBMSs with a discussion of
different kinds of parallelisms supported.

3. RULE EXECUTION MODEL

Our rule execution model is based on parallel nested transactions which can support concurrent
rule execution while managing multiple and nested firing of rules. Nested transactions are proposed
as a means to control the activities in various areas ranging from long-running activities [16] to
resource management systems [31]. Parallel nested transactions are accepted to be a suitable tool
for concurrent rule execution in ADBMSs as well [6, 14, 241. In what follows, we will discuss nested
transactions together with the concurrency control, deadlock detection, and recovery issues.

3.1. Basic Concurrency Control, Deadlock Detection and Recovery Issues in Nested Transactions

Traditional (i.e., flat) transactions have only one branch of execution. In the nested transaction
model, transactions can have multiple branches of execution. A nested transaction forms a hier-
archy which C~ZI be represented as a tree structure, and standard tree notions like parent, child,
ancestor, descendant, superior, and inferior also apply to it. The root of the tree is called a root or
a top-level transaction. The root may have one or more children, and similarly children of the root
may also have their own children. By dividing transactions into smaller granules, we localize the
failures into subtransactions. Subtransactions can abort independently without causing the abor-
tion of the whole transaction hierarchy. When a transaction aborts, all of its descendants are also
aborted, but other transactions are not affected. Nested transactions are also very useful in terms
of system modularity. If we consider a transaction hierarchy as a big module, its subtransactions
may be designed and implemented independently as submodules, also providing encapsulation and

security [23].
Using nested transactions, we can exploit the parallelism among subtransactions since sub-

transactions can be executed in parallel. There can be four different kinds of parallelism:

1. only sibling,

2. only parent-child,

3. parent-child and sibling,

4. no parallelism (i.e., sequential execution).

In the first case, where only sibling parallelism is allowed, parent stops its execution while

its children are running concurrently. In the second case, only parent-child parallelism is allowed
where the parent and a child run concurrently while the other children wait. In the third case, all

transactions in the hierarchy can run in parallel. In the fourth case, we have no parallelism at all

(i.e., transactions in the hierarchy are executed sequentially) [23]. In our model, we will assume
parent-child and sibling parallelism since it provides us with the most flexible model of parallelism.

When transactions are executed concurrently, serializability is used as the correctness criterion,
and it is ensured by using a concurrency control protocol. A child transaction can potentially
access any object in the database. When a subtransaction commits, the objects modified by it
are delegated to its parent transaction. In our execution model, we used a locking protocol for
concurrency control in nested transaction execution. The protocol is described in the next section.

In nested transactions, ACID properties (i.e., atomicity, consistency, isolation, and durability)
are valid for top-level transactions, but only a subset of them holds for subtransactions [23]. A

44 Y~EL S.~YGIN et al.

subtransaction may commit or abort independent of other transactions. Aborting a subtransaction
does not affect other transactions outside of its hierarchy, hence they protect the outside world
from internal failures. If we had packed all subtransactions into one big flat transaction then we
would have to abort the whole transaction.

Fig. 3: Wait-For-Commit Relations.

Deadlock situation is a well known problem in the database field [3]. Well established deadlock
detection methods for centralized systems are applied to the distributed databases as well [25]. One
method of detecting the deadlock situation for flat transactions is to trace the wait-for graph main-
tained by the transaction manager of the system [3]. Wait-for graph for a group of transactions is
constructed by identifying the transactions waiting for each other. For nested transactions, iden-
tifying the deadlocks is more complicated than flat transactions since deadlocks may arise among
subtransactions in the same transaction hierarchy as well as subtransactions belonging to different
transaction hierarchies. Parent-child relationships introduce new possibilities of deadlocks as well.
Deadlock detection issues for nested transactions is briefly discussed in [23], and a deadlock detec-
tion method for distributed nested transactions is proposed in [33]. To the best of our knowledge,
there is no other work proposing a different method for detecting deadlocks in nested transactions.
In [33], Marta Rukoz considers deadlocks that may occur in a single transaction hierarchy. Since
the communication overhead is high in a distributed system, the proposed method compresses the
wait-for graph by only including the representative edges instead of including all kinds of wait-for
relationships. Deadlock detection is simplified to the expense of maintaining a compact wait-for
graph for a transaction hierarchy.

Deadlock detection for nested transactions is different from the one for flat transactions in
that, there are some other wait-for relations besides the wait-for-lock relation. One possible wait-
for relation associated with nested transactions is wait-for-commit; i.e., a parent transaction should
wait for all its children to finish their execution. A wait-for-commit graph is illustrated in Figure 3
for a transaction hierarchy where the top-level transaction spawns subtransactions Ti and Tj, Ti
spawns subtransactions Tk and Tl, and finally Tj spawns subtransaction T,,,.

Another possible wait-for relation for nested transactions is wait-for-lock relation. There are
two types of wait-for-lock relation; wait-for-retained-lock and wait-for-held-lock. In flat transaction
model, when a transaction commits, all the locks it holds are released, and transactions waiting for
one or more of those locks can be unblocked immediately provided that they are not waiting for
any other transaction. In nested transaction model, locks held by a subtransaction are not released
immediately after it commits, but they are inherited by the parent transaction and kept in retain
mode which causes wait-for-retained-lock relations to occur. Examples of wait-for-held-lock and
wait-for-retained-lock relations are illustrated in Figures 4(a) and 4(b).

In Figure 4(a) we see that transaction Tj is holding a write lock on object Obji at the time
when transaction Ti requests a write lock on the same object. The arc labeled as wait-for-held-lock
depicts this waiting situation. Following the commit of transaction Tj, all the locks that belong to
Tj are inherited by the parent transaction, namely Tk, in retain mode. Transaction Ti still have to

Concurrent Rule Execution in Active Databases 45

(a) (b)

Fig. 4: Wait-For-Lock Relations; (a) Before the Commit of Tj, (b) After the Commit of Tj.

wait until the commit of Tk. Ti should wait until the first common ancestor of Ti and Tj inherits
the lock on object Objl, which is the top-level transaction in this case.

Both wait-for-commit and wait-for-retained-lock relations should be taken into consideration in
addition to the classical wait-for relation, for deadlock detection in nested transactions.

Deadlocks that may occur among top-level transactions can be resolved as in flat transactions
which means aborting a top-level transaction, or finer granularity deadlock detection may be
utilized if top-level transactions can exchange information. In finer granularity deadlock detection,
subtransactions that cause the deadlock among top-level transactions may be identified and the
deadlock can be resolved by aborting only some of those sub-transactions instead of aborting
a whole top-level transaction. Finer granularity deadlock detection is difficult in heterogeneous
systems but can be achieved in centralized systems.

Recovery of nested transactions is similar to the recovery of flat transactions. Standard recov-
ery algorithms like versioning or log-based recovery can be used. Log-based recovery for nested
transactions is discussed in [28, 321. [32] introduces a model called ARIES/NT and this has sev-
eral advantages over the recovery model provided in [28] . The biggest drawback of the recovery
model of [28] is that it does not use Compensation Log Records (CLRs) which are necessary for
performance reasons. A detailed description of CLRs is provided in [32]. OpenOODB, on which
our execution model has been built, uses Exodus as storage manager whose recovery component
is implemented based on ARIES [26], and ARIES/NT is provided for nested transactions as an
extension to ARIES.

3.2. Nested l+ansactions for Concurrent Rule Execution

Since concurrency is a very important functionality that a database must provide, we provide an
evaluation of the previously proposed execution models in terms of inter and intra-rule concurrency.
The execution models proposed in [18,20,38] allow only sequential rule execution by user or system
defined priorities and therefore they have neither inter nor intra-rule concurrency. In [18], authors
discuss coupling modes to determine the transaction boundaries as well while supporting decoupled
rule execution, but rules are still executed sequentially. In [2, 6, 14, 15, 161, concurrent rule
execution and nested transaction paradigms are discussed. In [6], importance of nested transactions
for concurrent rule execution is stressed but not discussed in detail. In [2], a rule execution model
utilizing nested transactions is proposed but concurrency control is left as a future work and
different kinds of parallelisms between parent-child and siblings are not mentioned. Authors in [15]

46 Yiicm SAYGIN et al.

propose nested transactions as a rule execution model for active databases. Nested transactions are
extended with immediate, deferred, and decoupled coupling modes, where only sibling parallelism
is allowed. Coupling modes facilitate intra-rule concurrency and nested transactions provide a
control mechanism for inter-rule concurrency. Priorities are used to limit the concurrency among
rules. Our execution model utilizes extended parallel nested transactions together with different
coupling modes. Sequential causally dependent, and exclusive causally dependent coupling modes
are supported in addition to the causally dependent and detached coupling modes. Full inter-rule
and intra-rule concurrency is supported by including parent-child parallelism together with sibling
parallelism. Our execution model supports sequential rule execution by utilizing priorities.

Nested transactions are proposed as a rule execution model for various active database systems

(e.g., [2, 13, 151). In PI, authors assert that nested transactions are compatible with object
oriented systems in that, method invocations can be performed in a subtransaction in a natural
way. In [13, 15, 161, authors explain nested transactions with only sibling parallelism as a rule
execution model. In the execution model presented in our paper, nested transactions with both
parent-child and sibling parallelism are utilized.

The nested transaction model implicitly assumes that subtransactions are spawned in immedi-
ate mode. In our execution model, transactions may spawn subtransactions in any coupling mode
specified by the system. Each rule is encapsulated in a transaction. When a rule ~1 fires another
rule rs, then depending on the coupling mode, rz is encapsulated in another (sub)transaction and
executed in the specified coupling mode. If the coupling mode is immediate or deferred, then rz is
executed as a subtransaction of ~1. If the coupling mode is one of detached, sequential causally de-
pendent, detached causally dependent, or exclusive causally dependent modes, then rz is executed
as a top-level transaction. The overall structure of the currently executing rules in the system
forms a forest consisting of trees whose roots are the rules fired in one of the detached coupling
modes. As stated earlier, both parent-child and sibling parallelism are allowed which provides us
with the maximum concurrency among subtransactions. Top-level transactions are executed in
parallel. All nested transaction semantics applies among the individual rules in the nested trans-
action tree. Abort and commit dependencies among the top-level transactions are enforced by the
transaction manager.

In addition to the coupling mode and the tuple- or set-oriented semantics, priority information
also affects the order of rule execution. Typically, expert systems assumed a conflict resolution
strategy which produced a sequential order for executing eligible rules one at a time. In contrast,
DBMSs assume no priority among transactions/subtransactions and hence execute eligible trans-
actions in an interleaved order to maximize some metric (such as throughput). The correctness
criteria is the serialization of transactions. The serializability is provided through strict two-phase
locking protocol. For the immediate and deferred coupling modes, as well as the detached causally
dependent and detached sequentially dependent coupling modes, a subtransaction Sl which exe-
cutes the condition of a rule R does not release its locks until the subtransaction S2 executing the
action of the same rule commits. Therefore, a subtransaction S2’ executing the action of another
rule R’ is not allowed to modify the data locked by Sl until the commit of S2 (i.e, until rule R
terminates). So, it is not possible that an executing rule can be untriggered by another rule. Also,
we should note that, the rules that are allowed to run concurrently are the ones that have the same
priority. If there is any dependency between any two rules that requires a strict execution order
between the rules, such rules are assigned different priorities which determine the order of their
execution. We assume that such dependencies are identified through a static analysis of the rule set
prior to the execution of rules. Note that serial execution automatically satisfies the serializability
criteria.

In fact, a combination of the above two alternatives is likely to meet the requirements of ap-
plications. This entails that the system be capable of supporting both serial execution using a
conflict resolution strategy and concurrent execution based on the serialization criterion of correct-
ness. Rules, in our execution model, can be executed both sequentially and concurrently. Rules
are associated with priorities in order to be executed sequentially. Several rules can have the same
priority value. Rule scheduler uses the priority information to either schedule the fired rules se-
quentially by assigning different priorities to different rules, or concurrently by assigning the same

Concurrent Rule Execution in Active Databases 47

priority to multiple rules. Correctness of rules executing sequentially or concurrently is guaranteed
by the semantics of nested transactions. When a rule is triggered, the time to start the execution

of that rule is determined by the semantics of the coupling mode involved. When multiple rules are

fired together, the order of execution among those rules can be determined by assigning priorities.

3.3. Concurrency Control in Rule Execution

The concurrency control algorithm used in our execution model is based on the notion of
nested concurrency control. Harder and Rothermel [23] extended Moss’s nested transaction model
to contain downward as well as upward inheritance of locks. We have employed in our model the
locking protocol provided in [23]. The protocol is composed of the following locking rules:

Rule 1: Transaction T may acquire a lock in mode M or upgrade a lock it holds to mode M
if:

- no other transaction holds the lock in a mode that conflicts with M, and

- all transactions that retain the lock in a mode conflicting with M are ancestors of T.

A transaction holds a lock on an object if it has the right to access the locked object in the
requested mode. In contrast, a transactions retains a lock on an object to control the access
of the transactions outside the hierarchy of the retainer and the object cannot be accessed
by the transaction retaining the lock.

Rule 2: When subtransaction T commits, the parent of T inherits T’s locks (held and re-
tained). After that, the parent retains the locks in the same mode as T held or retained them
before.

Rule 3: When a top-level transaction commits, it releases all the locks it holds or retains.

Rule 4: When a transaction aborts, it releases all the locks it holds or retains. If any of its
superiors hold or retain any of these locks, they continue to do so.

Rule 5: Transaction T, holding a lock in mode M, can downgrade the lock to a less restrictive
mode, M’. After downgrading the lock, T retains it in mode M.

These locking rules can be used with different types of coupling modes. A transaction spawned
in detached causally dependent mode should be able to use the spawning transaction’s locks in
the same way as a subtransaction spawned in immediate or deferred mode. Since the transaction
spawned in detached causally dependent mode should abort if the spawning transaction aborts, it
can use its parent’s locks without causing any problem in the recovery. Concurrency among top-
level transactions can be increased if this information can be exchanged among tbose transactions.
This is not possible in our system since top-level transactions are independent and execution of
those transactions is controlled by OpenOODB. Both shared and exclusive lock modes are available

to transactions in our execution model as described in Section 4.2.1 .

3.4. A Formal Dismssion of Our Rule Execution Model

ACTA is a transaction framework that can be used to formally describe extended transaction
models [12]. Using ACTA, we can specify the interactions and dependencies between the transac-
tions in a model. ACTA characterizes the semantics of interactions (1) in terms of different types

of dependencies between transactions (e.g., commit dependency and abort dependency) and (2) in
terms of transactions effects on objects (their state and concurrency status, i.e., synchronization
state) (121. We are going to utilize two basic blocks of the ACTA framework which are history, and
dependencies between transactions. History, denoted by H, represents the concurrent execution
of a set of transactions and contains all the events invoked by those transactions, also indicating
the partial order in which these events occur. Invocation of an event c by a transaction t is denoted
by ct. There are three possibilities that can affect the occurrence of an event:

48 Y~~CEL SAYGIN et al.

1. an event E can occur only after the occurrence of another event E’ (denoted as e’ + e),

2. an event E can occur only if a condition c is true (denoted as c + E),

3. a condition c can require the occurrence of an event E (denoted as c + c).

Standard dependencies defined in ACTA [ll] which we have used for specifying our execution
model are:

l Commit Dependency (denoted as tj CD ti). If transactions ti and tj both commit then ti
should commit before tj. This can be shown axiomatically as:

Cornmitt, E H + (Cornmitt, E H + (Commi& + Committj)).

l Abort Dependency (denoted as tj AD ti). If ti aborts then tj should also abort:

Abortti E H =+ Abar&, E H

l Weak-Abort Dependency (denoted as tj WD ti). If ti aborts and tj has not yet committed,
then tj aborts:

Abortt, E H + (1(C omm&, + Aburtt,) + (Abartt, E H))

l Exclusion Dependency is denoted by tj ED ti, and ensures that if ti commits , then tj must
abort. We can state this formally as:
Cornmitt, E H + Abortt, E H.

These dependencies may be the result of the structural properties of transactions. For example,
in nested transactions child transactions are related to their parent by commit and weak-abort
dependencies.

All coupling modes except the deferred mode and sequential causally dependent mode can
be specified easily using the standard dependencies of ACTA (i.e., commit dependency, abort
dependency, weak abort dependency, and exclusion dependency described above). For the deferred
mode, we need to specify a cycling execution method, which can be stated as follows:

Deferred transactions are executed in cycles at the end, but just before the commit of the
transaction that spawned them. Cycling execution can start only in a top-level transaction or
a subtransaction spawned in immediate mode since deferred subtransactions spawned by another
deferred transaction are executed in the next cycle after the commitment of their parent. Subtrans-
actions spawned by a deferred transaction in immediate mode are executed immediately, which
deviates from the standard specification of the “deferred execution in cycles”.

The specification of all the coupling modes we considered, including the deferred mode and
sequential causally dependent mode is provided in the following.

Coupling Modes The coupling modes we considered in our execution model are listed below:

l immediate mode: It has the same semantics as the creation of a subtransaction in stan-
dard nested transaction model. Spawning of an immediate subtransaction is denoted by the
primitive SpawnJmm.

l detached mode: It has the same semantics as the creation of toplevel transactions in the
standard nested transaction model. There are no dependencies between the spawning and
spawned transaction. Spawning of a detached transaction is denoted by the primitive
SpawnDetached.

l detached causally dependent mode: In this mode, spawned transaction aborts if the parent
aborts, therefore there is an abort dependency between the spawning transaction and spawned
transaction. Spawning of a transaction in this mode is specified by the primitive Spawn-Gus.

Concurrent Rule Execution in Active Databases 49

sequential causally dependent mode: It specifies that a child transaction cannot start its
execution until its parent commits. This can be enforced by a SequentialDependency(SQD)
which is provided as an extension to the standard ACTA dependency set and can be stated
formally as:

tjSQDti * ((Beg&, E H) + (Cornmitt, + Begintj))

The primitive SpuwnSeq indicates that a subtransaction is spawned in this mode.

exclusive causally dependent mode: It is denoted by the primitive Spawn_Exc and it ensures
that the spawned transaction commits only if the spawning transaction aborts. This can
be enforced by using a standard ACTA dependency, namely the Exclusion Dependency
between the spawning and spawned transactions.

deferred mode: It is denoted by the primitive SpawnDef. Assume that to is a top-level
transaction, t, is a top-level or subtransaction, and t, is a child transaction spawned by t,
in deferred mode.

Case 1: t, is a top-level transaction or a subtransaction spawned in immediate
mode, i.e., t, is going to be executed in cycle-O. In this case, t, is executed just
before the commit of t, after all other operations of t, are completed; i.e., all
operations of t, precede all operations of t,.
Case 2: t, is a transaction spawned in deferred mode. This means that t, is
spawned during a cycle. Then, every operation performed by t, should succeed
all the operations of t, and the operations of siblings of t, that are spawned in
deferred mode (i.e., executed in the same cycle).

There is an ambiguity in the method described in [24] for the cycling execution of rules fired in
deferred coupling mode. If a rule is fired in deferred mode by a transaction during the execution
of a cycle, it is executed in the next cycle; but if a rule is fired in deferred mode by a transaction
which has been fired in immediate mode then the fate of this transaction, i.e., whether it will be
deferred to the next cycle or it will be executed in another execution cycle is left unspecified. We
chose to execute these kinds of rules in another cycle before the commit point of the immediate
rule.

(a) (b)

Fig. 5: Dependencies Induced by Different Coupling Modes

Dependencies induced by different coupling modes between event and condition are illustrated
in Figure 5. In Figure 5(a), transaction Ti causes an event to be raised that triggers ~1 in immediate
mode and ~2 in deferred mode. These rules are executed as subtransactions of Tl . Subtransactions

50 Y~~CEL SAYGIN et al.

executing rules ri and ~2, if not committed yet, should abort if Ti aborts (WD). Transaction Ti
should wait for the commit of ~1 and rs (CD). In Figure 5(b), transaction Ts causes an event
to be raised that triggers rules ~3, ~4, and ~5 in detached causally dependent, sequential causally
dependent and exclusive causally dependent modes respectively. These rules are executed as top-
level transactions. In this case T2 does not have any dependencies on any of rg, ~4, or 73 while rs
should abort if T2 aborts (AD), ~4 cannot start its execution before T2 commits (SQD), and r5
commits only if Ts aborts (ED).

Parallel nested transactions used in our rule execution model allows parent child concurrency.
Therefore rules can be executed concurrently with the transaction that spawned them depending
on the coupling mode between their event and condition. For example in Figure 5(a), rules ~1 and
73 can be executed concurrently with Tl . Parallel nested transactions support sibling concurrency
as well, allowing the rules triggered by the same transaction to execute concurrently among each
other depending again on the coupling mode between their event and condition. In Figure 5(b),
rule rs can be executed concurrently with rule ~5 while r4 has to wait for the commit of TQ since
there is a sequential causally dependent coupling mode between the event and condition of r4.
Executing rules concurrently with the spawning transaction or executing rules concurrently among
each other is called inter-rule concurrency. Intra-rule concurrency is achieved when components of
a rule are executed concurrently. In our executior model we support intra-rule concurrency in the
condition-action level, i.e., condition and action of a rule may execute concurrently when necessary.
In Figure 6, condition, Ci of a rule spawns the action A1 of the rule in detached causally dependent
mode, and Ci executes concurrently with Al. Figure 6 illustrates the nested and multiple firing
of rules as well. Rules rs and ~7 are fired as a result of the execution of A1 and executed as
subtransactions of Al, which is nested rule firing; and firing of rules rs and ~7 at the same time by
the same event is an example of multiple firing of rules.

In our execution model, we consider the coupling modes between the event and condition, and
also the condition and action. We can give the option of defining the coupling mode between the
condition and action to the user, where the user can select immediate or sequential causally de-
pendent coupling mode. Other coupling modes would not make sense due to the semantics of the
relation between the condition and action. In immediate mode, condition evaluation is followed
by execution of the action only if the condition evaluates to true. In sequential causally dependent
mode, action execution starts before condition evaluation is completed. This improves the con-
currency in a system in case there exist abundant resources in the system, which is a reasonable
assumption due to the continuous decrease in the prices of system resources. The transaction in
which the action is executed can commit only if the condition commits and returns true. The
performance impact of the sequential causally dependent coupling mode between condition and
action needs further investigation.

I Cl

: AD

Spawn_Caus(Al)

Fig. 6: Intra Rule Concurrency and Nested Firing of Rules

Concurrent Rule Execution in Active Databases 51

Fig. 7: Dependencies Induced by Priorities

Priorities

In order to provide priorities in ACTA primitives, we define priority(t) to specify the priority of
transaction t. Priorities are assumed to be assigned by the user. Our priority scheme assumes that
priorities are taken into consideration only for the transactions which do not have any dependencies
among each other since dependencies are considered as implicit priorities. As we stated earlier,
deferred transactions spawned by the same transaction are independent of each other. So we
can use priorities to schedule them by enforcing the operations of a deferred transaction with a
higher priority to precede the operations of a lower priority transaction spawned in deferred mode
by the same transaction. Similarly, we can use priorities in scheduling subtransactions spawned
in immediate mode by the same transaction by enforcing that the operations of a high priority
transaction are scheduled before the operations of a lower priority transaction. In order to enforce
that in the specification, we introduce Serial_Dependency(SRD) which can be stated formally as:

$SRDti M ((Begint, E H) + (Cornmitt, -+ Begint,) V (Abortti + Begintj))

Dependencies induced by assigned rule priorities are depicted in Figure 7 where multiple firing
of rules rs, rg, and ?-is occur due to an event raised by the execution of transaction T3. Serial
dependencies (SR D) are formed among the rules according to previously assigned priorities.

A full set of the axiomatic definitions of our rule execution model is provided in [34].

4. IMPLEMENTATION OF NESTED TRANSACTIONS FOR RULE EXECUTION

4.1. Previous Work

Although various implementations of the nested transaction model have been provided to date,
to the best of our knowledge, implementation of concurrent rule execution through nested trans-
actions has not been attempted for any ADBMS.

One implementation of nested transactions has been performed on the Eden Resource Manage-
ment System (ERMS) [31]. In ERMS, transaction managers are composed hierarchically; i.e., for
each subtransaction there is a corresponding transaction manager. For ensuring the serializability,
twophase locking is used, and a version-based recovery is used for the recovery of sub-transactions.
In [17], the implementation described focuses on nested transactions for client workstations of an
object oriented DBMS(OODBMS).

Nested transactions have also been implemented for supporting parallelism in engineering
databases [22]. That particular implementation supports both parent-child and sibling parallelism
as in our implementation. Nested transactions are proposed for transaction management in mul-
tidatabase systems and for managing method invocations in disconnected objects as well [lo, 19).

52 Y~~CEL SAYGIN et al.

4.2. Implementation

We implement nested transactions by extending the flat-transaction semantics of OpenOODB [37].
OpenOODB is an open object oriented DBMS that can be extended by special constructs called
sentries. In our implementation, a component architecture method is used instead of sentries; i.e.,
a new component is added without significantly modifying the existing ones. Our first task was to
construct the object relationships of OpenOODB by examining the class declarations. In Figure 8,
the whole OpenOODB object relationships diagram is given.

storageGrollpDifectoly

POBJl33

FOBJEXT

Fig. 8: OpenOODB Object Relationship Diagram.

TRANSACTION

Fig. 9: Related Object Relationships

Among the components illustrated in this diagram, the ones that need to be considered for
our implementation are isolated. These isolated components are shown in Figure 9. In this figure,
we see that the main OpenOODB object OODB has a pointer to each of four objects namely

Concurrent Rule Execution in Active Databases 53

PERSIST_MGR, TRANS-MGR, TRANSACTION, and ASM_CLIENT which means that
whenever an instance of an object of type OODB is created, its constructor creates instances of
PERSIST_MGR, TRANSiWGR, TRANSACTION, and ASM_CLIENT objects. Further-
more, the constructor of TRANS_MGR object creates an instance of TRANSACTION object
which is also used directly by OODB.

To give a flavor of how a transaction is started and objects are fetched from the database, we
give a sample application of OpenOODB in Figure 10.

OODB *p_oodb;
MyClass *my_obj = new My-Class;
MyClass *tmp_obj;
char *objname = “objl”;
main0

{
p_oodb +beginTransaction();
/* make the-object persist& and give a name to it */
my-obj +persist(objname);
p_oodb +commitTransaction();

p_oodb +beginTransaction();
/* fetch the object with the given name */
p_oodb +fetch(objname);
p_oodb +commitTransaction();

1

Fig. 10: A Simple OpenOODB Application.

As can be seen from the figure, an OpenOODB main object p_oodb is created which provides us
with an interface to OpenOODB. A transaction is started by usingpoodb + beginTransaction and
committed by p&b -+ commitTransaction. Abortion of a transaction is achieved by p_oodb -+
abortTransaction. Objects are made persistent by my_obj -+ persist0 and are fetched from the
database by the p_oodb + fetch(...). OpenOODB fetch operation does not give the flexibility of
specifying the lock mode but acquires a default READ lock from EXODUS storage manager. To
provide the application programmer with more flexibility, we decided to modify the fetch operator
of OpenOODB so that it takes the locking mode as a parameter. As a second stage, nested
transaction primitives:

l spawn_sub_transaction

l wmmit_sub_transactio

l abort-sub-transaction

are added to the transaction manager of OpenOODB (i.e., TRANS-MGR in Figure 9). Finally, a
Lock Manager is implemented to support the nested transaction primitives that are added to the
transaction manager. Among the nested transaction primitives, only the spawnsub-transaction
takes parameters. The first parameter of it is the name of the function where the subtransaction is
written in, the second one is the spawn-mode. Spawn-mode specifies the coupling mode between
the parent and child. For our nested transaction component, we implemented the immediate
and deferred coupling modes. Detached coupling modes are handled by the rule manager of the
ADBMS. Nested transaction primitives are used for the rule execution by starting the execution
of rules inside subtransactions. When a rule is fired, then a top-level transaction or a subtrans-
action is created depending on the coupling mode between the event and condition of the rule.

54 Yik~t SAYGIN et al

If the coupling mode is immediate or deferred then a subtransaction is created. The primitive
spawn_sub_transaction is used for creating a subtransaction. Parent of the spawned subtransaction
is the transaction that caused the rule to be fired. If the coupling mode is one of the detached
coupling modes, then a top-level OpenOODB transaction is created in a new process and the rule
is executed in that transaction. The primitives commit_sub_transaction and abort_sub_transaction
indicate the successful and unsuccessful termination of a rule executed in a subtransaction, re-
spectively. OpenOODB transaction commands commitl%ansaction and abortfiansaction indicate
the successful and unsuccessful termination of a rule executed in an OpenOODB top-level trans-
action, respectively. An executing rule may cause other rules to be fired which is called nested
rule firing. Nested rule firing is handled by the nested transactions in a natural way since an
arbitrary number of transactions may be initiated inside a transaction. As a result, rules fired by
the execution of another rule are started as subtransactions or top-level transactions depending on
the coupling mode between the event and condition. Firing of multiple rules is handled by spawn-
ing multiple subtransactions at the same time and executing them concurrently, or sequentially
by assigning priorities. Rules may access the objects residing in the database by the fetch-object
method. Concurrent execution of rules running as subtransactions is handled by the nested trans-
action component, while rules executing concurrently as top-level transactions are managed by
OpenOODB via Exodus.

Using Figure 9 we can describe where our lock manager fits in the object relationships diagram.
In that figure, the main object of OpenOODB (i.e., OODB), points to a TRANSiViGR object
which has a TRANSACTION object. And the TRANSACTION object has a
LOCK-MANAGER object; i.e., the constructor of the transaction object creates the
LOCK-MANAGER object which can be accessed by OODB. This way the constructs im-
plemented in LOCK-MANAGER and TRANS_MGR can be used by the application via the
OpenOODB interface object, OODB.

LOCK-MANAGER has two main data structures, namely the Lock-Table and the Transac-
tion-Table. Lock-Table is a hash table that is used to keep the lock information of objects that have
previously been fetched by a transaction in the transaction hierarchy. Lock-Table is hashed by the
object name, and given an object, we can reach all the transactions that have a lock on this object
with any mode. lYansaction_Table keeps the transaction hierarchy, wait-for graph and the lock
information of the subtransactions. The hash tables for the lock and transaction management are
interconnected, that is, we can reach the objects that are held by a transaction given its transaction
identifier. This provides us with efficient abort and commit of subtransactions. l+ansaction_Table
is hashed by transaction identifiers(M). Given the tid of a transaction+:

l We can reach all the objects held by that transaction in any hold and lock mode. The hold
mode of a lock can be either hold or retain, and the lock mode can be either READ or
WRITE.

l We can reach the transactions for which the transaction with tid is waiting.

l We can reach the transactions waiting for the transaction with tid.

l We can reach all the children and ancestors of the transaction with tid.

If we take a snapshot of the system, we see top-level transactions executing concurrently.
Each top-level transaction represents a nested transaction hierarchy. In Figure 11 we see the
tasks performed at the beginning and at the end of a top-level transaction and a subtransaction.
Each OpenOODB object has a transaction manager object associated with it. When a top-level
transaction is started, this transaction manager object creates an instance of the transaction object
which further creates the lock manager. Lock manager handles the concurrency control issues
and the maintenance of the transaction hierarchy via transaction and lock tables. Each nested
transaction hierarchy has a different transaction manager.

+In the remaining part of this section, we use the term transaction to denote both top-level transactions and
subtransactions.

Concurrent Rule Execution in Active Databases

too-level transaction onerations

55

beginTransactiw(toplevel)

t
Create an instance of
transaction object

i
Create an instance of

lock manager object

J

Create transaction

I I I
spawn a subtransaction (in immediate mode)

1
Create a thread

1
insertchetbreadid

to tbe transaction table

t
subtransaction operations

.-
~~~~ho~ 1 commit~b_transaction 

and lock tables 
1 

wait for tbe child 

transactions 

wait for the child 
transactions 

Delete tl& transaction 
object 

t 
Delete the lock 
manager object 

Delete transactioi~ 
and lock tables 

pass tbe locks to tbe parent 

t 
delete the thread id from 

tbe transaction table 

stop the execution of the thread 

Fig. 11: Dynamics of Top-Level and Subtransaction Creation 

For the parallel execution of subtransactions, Solaris threads are used [36]. Solaris is a fully 
functional distributed operating and windowing environment [35]. Thread is a sequence of instruc- 
tions executed within the context of a process. Traditional Unix process contains a single thread 
of control. Solaris provides us with Multi-threaded Programming. Multi-threading separates a 
process into many execution threads each of which runs independently. 

Advantages of Multi-threading can be listed as: 

l overlap in time, logically separating tasks that use different resources, 

l sharing the same address space, 

l providing cheap switching among threads. 

Primitive 1 Explanation 
thr_createfl 1 create a thread 
thr_seZf() ” return the thread identifier of the calling thread 
thraumendl~ block the execution of a thread 
thr_co&nue‘{) unblock a thread 
thr_kilZ() send a signal to a thread 
thr_ezit() terminate a thread 
thr_iuinO wait for the termination of a thread 

Table 1: Thread Primitives Used. 

Mutual exclusive locks are used to control the concurrent access of different threads to the 
shared data structures. 



56 Y~~CEL SAYGIN et al. 

Thread primitives used in our implementation are listed in Table 1. Using &-create0 we exe- 
cute a given function in a thread. In our implementation, subtransactions are defined as functions 

in a specified format and are executed concurrently using the spawn_sub_transaction primitive 
provided by our implementation of nested transactions. In Figure 12, the spawn_sub_transaction 
primitive executes the transaction, embedded inside a function, in a thread using thr_create(). 
Threads are created in suspended mode so that the necessary information is inserted into the 
Transaction-Table. Since the tids are unique within a Unix process, and top-level transaction 
boundaries do not exceed the process boundaries, it was very convenient for us to define the tids 
as the transaction identifiers. This way we do not need to pass the transaction identifier to the 
subtransaction as a parameter. Subtransactions can access their tids by calling the thread library 

function thr_self(). This function returns the thread identifier of the calling thread, i.e., the tid. 
When an OpenOODB top-level transaction is created, the tid is also inserted into the transaction 
table for the sake of completeness of the transaction hierarchy. 

// create an OpenOODB main object 
OODB *p_oodb; 
void *sub2(void *res) 

{ 
// lock the object with name obj3 in WRITE mode 
int rc = p_oodb +fetch_object( “obj3”,WRITE); 
// in case of an error, abort the subtransaction 
// otherwise, commit the subtransactions 
if ( rc == ERROR ) 

p_oodb + sub_abort(); 
else 

p_oodb +sub_commit(); 

1 

void *subl(void *res) 

{ 
// lock the object with name objl in READ mode 
p_oodb +fetch_object(“objl” ,READ); 
// create a subtransaction in IMMEDIATE mode 
p_oodb +spawnsub_tr(sub2,IMMEDIATE); 
// commit the subtransaction 

p_oodb +sub_commit(); 

1 

main0 

{ 
// start an OpenOODB transaction 
p’_oodb +beg&rTransaction(); 

// spawn a subtransaction in IMMEDIATE mode 
p_oodb -+spawnsub_tr(subl,IMMEDIATE); 
// commit the OpenOODB transaction 
p_oodb +commitTransaction(); 

1 

Fig. 12: Sample OpenOODB Application Using Nested Transactions. 



Concurrent Rule Execution in Active Databases 57 

Since all the subtransactions in the transaction hierarchy can access the data structures in 
the LOCK_MANAGER, we define a global mutex variable. This way, the critical sections of 
the methods modifying the Lock-Table and %nsaction_Table are wrapped by mutex_lock and 
mutex - unlock. 

When we look at the data structures, we observe that there are linked lists belonging to both 
tinsaction_Table and Lock-Table which means that deletions and insertions of new blocks to those 
lists take a long time. At this point, we made an optimization by implementing our own memory 
management via keeping lists of deleted blocks so that they can be used efficiently whenever they 
are needed. Another optimization was to extend our component with a sort of garbage collection; 
i.e., when we want to delete a block from the Lock-Table or %nsaction_Table, we do not delete it 
physically but mark it as deleted. This technique makes the usage of doubly linked lists unnecessary. 
Garbage collection is performed during the searches in the Lock-Table. 

4.2.1. Implementation of the Locking Protocol and Deadlock Detection for Nested lhnsactiom 

When a transaction requests a lock on an object it specifies the locking mode as well by 
providing the fetch-object method with the lock-type parameter. Allowed lock-modes are READ 
and WRITE. 

We implemented the locking protocol described in Section 3.3 considering both READ and 
WRITE locks (i.e., shared and exclusive locks respectively). 

As an example, consider the nested transaction structure in Figure 13(a). If Ti retains a WRITE 
lock on an object Oi and no other transaction inside the sphere .S’i (i.e., Tj, Tk, Tl and Tm) has 
any lock on Oi, then all the transactions inside .Si can acquire a READ or a WRITE lock on Oi. If 
Tj acquires a WRITE lock on Oi, then no other transaction (including the ones inside the sphere 
Sj in Figure 13(b)) can acquire a READ or a WRITE lock on Oi. 

(4 (b) 

Fig. 13: (a) Control Sphere of Ti, (b) Control Sphere of Tj. 

In handling an object access request, the fetch-object method first checks whether the requested 
object is in the Lock-Table. If not, it just requests the object from OpenOODB and returns a pointer 
to it. If the requested object is in the Lock-Table then the nested transaction concurrency control 
protocol is put into action. If the lock can be granted, then a pointer to the object is returned as in 
the previous case. If the lock cannot be granted with the requested lock-type, then for each trans- 
action that has a lock on the object that conflicts with the requested lock-type, a node is inserted 
to the wait-for-list of the lock requesting transaction and a corresponding node is also appended to 
the waited-by-list of the conflicting transaction. Additionally, the wait-for-count (i.e., the number 



58 Yticm SAYGIN et al. 

of transactions for which the transaction in concern is waiting for) is incremented for each node 
appended to the wait_for_list. Deadlock detection is performed each time a node is appended 
to wait-for_&&. If no deadlock is detected after appending all the nodes, then the transaction 
that requested the lock is suspended using thr_suspend(), otherwise it is aborted. Transactions 
are unblocked using the thr_continue() function provided by the thread library. Unblocking of a 
transaction may occur due to the commit or abort of another transaction. When a transaction is 
aborted, all its locks are released, and all the nodes in the waited_by_list of that transaction are 
deleted; while doing the deletions, wait_for_counk of the corresponding (blocked) transactions are 
decremented by one. Blocked transactions whose wait-for-counts become zero, are unblocked, and 
their lock requests are reconsidered. When a subtransaction commits, all the locks held or retained 
by that transaction are inherited by the parent transaction which may cause some transaction(s) 
to be unblocked. Those transactions are identified by checking the waited_by_list of the commit- 
ting transaction, and decrementing the wait_for_counts of the transactions which are descendants 
of the transaction inheriting the locks. The transactions whose wait_forxounfs become zero are 
unblocked and their lock requests are reconsidered as in the previous case. 

OpenOODB views a transaction hierarchy as one flat transaction; i.e., it is not aware of sub- 
transactions. Lock requests made by a subtransaction is treated by OpenOODB as if the top-level 
transaction made the request. If there exists a deadlock cycle involving subtransactions belonging 
to different transaction hierarchies, then, from the OpenOODB viewpoint, it means that there is 
a deadlock cycle involving the top-level transactions as well. Therefore, deadlocks that can occur 
among transactions belonging to different transaction hierarchies are resolved by OpenOODB via 
EXODUS storage manager. Deadlocks among the transactions belonging to the same transaction 
hierarchy are detected and resolved by the new component we added to OpenOODB for managing 
nested transactions. To detect deadlocks, we use the wait-for-graph data structure. Whenever a 
sub-transaction is spawned, a node is appended to the child-list of the parent transaction. The 
union of those linked lists is also used as the wait-for-commit graph. When a transaction is blocked 
on a lock request, all the transactions that cause this transaction to be blocked are kept as a linked 
list (wait-for list) to be used for unblocking the transaction later on. Those lists also represent 
the wait-for-retained-lock or wait-for-held-lock relationship as explained in Section 3.1. During the 
commit of a transaction, wait-for list of the committing transaction is inherited by its parent. 

Deadlock detection is performed before each insertion to a wait-for-graph and just before lock 
inheritance using the graph coloring technique. If a wait-for arc (Ti,Tj) is going to be inserted to 
the wait-for-graph or for any of the locks being inherited, if the inheriting transaction is not an 
ancestor of a transaction waiting for that lock, deadlock detection algorithm is started assuming 
that the new link or the inherited link is added. Initially all the nodes of the graph are colored 
BLACK. Deadlock detection algorithm colors Ti as WHITE, and marks all the nodes on its way 
recursively till there are no remaining nodes or a WHITE node is reached. Deadlock detection 
algorithm uses the child and wait-for lists of the transactions during its traversal. Since all the 
nodes are initially BLACK, a WHITE node reached means that there is a cycle in the graph, 
implying a deadlock situation. Deadlock algorithm recursively restores the colors of all the nodes 
it traversed back to BLACK. 

If the insertion of the arc ( Ti, Tj) to the wait-for-graph leads to a deadlock, we can abort either 
of Ti and Tj, or any other transaction in the deadlock cycle. Deciding which transaction to abort is 
not a trivial task. The simplest solution is to abort Ti (i.e., the transaction that requests the lock). 
Another possibility would be to abort the transaction that caused the lock-requesting transaction 
to block. Other possibilities for deciding which transaction to abort require the involvement of 
some information such as the arrival time or the number of subtransactions of the transactions 
in concern. We can choose the transaction that has the smallest transaction hierarchy, or we 
can choose the youngest transaction. As a future work, these alternative techniques could be 
implemented and their effects on the performance could be observed. We have chosen the simplest 
solution in our implementation, i.e., aborting the lock requesting transaction. 



Concurrent Rule Execution in Active Databases 59 

4.3. Integration of Our Implementation to Sentinel 

Our implementation of concurrent rule execution is currently being integrated into Sentinel [9] 
which is an ADBMS built on OpenOODB. OpenOODB uses the Exodus storage manager. Con- 
currency control and recovery is provided by Exodus as well. Following capabilities were added to 
OpenOODB to transform it into an ADBMS [29]: 

specification of ECA rules either as a part of the class definition or as part of an application 
which is further preprocessed into a code for event detection and rule execution, 

detection of primitive events by using the sentry mechanism of OpenOODB. Sentry mech- 
anism provides a wrapper method by which an event is notified to the composite event 
detector, 

composite event detection for each OpenOODB application. 

Each application has a local event detector which receives the primitive event signals. When 
a primitive event occurs, it is sent to the local event detector and the application waits until 
all immediate rules are signaled. The global event detector communicates with the local event 
detectors for locally detected events [29]. 

In Sentinel, rules are treated as objects which means that they can be created, modified, and 
deleted in the same way as other objects. Subscription mechanism is used to reduce the checking 
overhead of rules; i.e., when an object generates an event, during rule execution, the rules that are 
checked are the ones which have previously been subscribed to the object that has generated the 
event. 

class Rule:Notifiable // Rule class made notifiable 

{ 
char *name; // Rule name 
Event *event-id; // 
PMF *condition, *action; // PMF is a pointer 

// to a member function 
Coupling mode; // Coupling Mode 
int enabled; // Rule Enabled or not 

public: 
virtual int Enable(); 
virtual int Disable(); 
virtual Update(Event* eventid); 
virtual int Condition(); 
virtual int Action(); 
Rule(Event* eventid, PMF condition, PMF action, Coupling mode); 
-Rule(); 

Fig. 14: Rule Class of Sentinel. 

In Sentinel, there is a rule class and all the rules in the system are instances of that class. 
Rules are specified as condition and action functions whose pointers are stored in a rule object 
along with the event. Rule object is an instance of the rule class. Events, conditions, and actions 
can be reused in multiple rule definitions. The rule class, shown in Figure 14, is a subclass of the 
notifiable class which means that it can receive and record primitive events generated by reactive 
(i.e., event generating) objects. A notifiable rule object subscribes to a set of reactive objects and 
all the primitive events generated by those reactive objects are propagated to the rule object via 
the notification mechanism. The notifiable rule object records only the primitive events of interest 



60 Y~~CEL SAYGIN et al. 

and discards the rest. Each rule has a name, event-id, condition, action, mode and enabled. The 
event-id denotes the identity of the event object associated with the rule. Condition and action are 
pointers to the condition and action member functions, respectively. The attribute mode denotes 
the coupling mode, and enabled indicates whether the rule is enabled or disabled. 

Rule specification is done by the user at the beginning of the application. User specifies the 
event, condition, and action, priority and the coupling mode. The event detection is done after 
the application is written and rule definition is completed as part of the rule processing. The code 
written by the user is pre-processed so that the events are detected baaed on the method name given 
in the rule specification. After that, event specification is wrapped and the rule processor code 
is called upon the detection of the event. If the application reaches an event, the corresponding 
rule(s) is executed. Each rule is executed as a subtransaction in a separate thread. 

When an event is detected, all the rules with the same priority for that event are wrapped into 
subtransactions and executed inside threads or top-level OpenOODB transactions and executed 
inside another process depending on the coupling mode. 

In integrating our implementation to Sentinel, declaration of the condition and action functions 
are modified so that they can be executed in subtransactions. The modified function declarations 
look like the sample subtransactions provided in Figure 12. Furthermore, the rule execution com- 
ponent of Sentinel is modified so that conditions and actions of rules can be executed in parallel 
inside the subtransactions. 

5. EXECUTION OVERHEAD OF PARALLEL NESTED TRANSACTIONS 

To have an idea about how the performance of the system can be affected by the overhead of the 
implementation of parallel nested transactions, we simulated the fetch operation of OpenOODB 
using a dummy method in case the object is not in the Lock-Table. Once an object is inserted to 
the Lock_Table, fetch requests for that object is considered by the nested transaction component. 
Fanout (i.e., the maximum number of subtransactions that can be spawned by a transaction) and 
the total number of transactions in a transaction hierarchy are two important parameters that 
indicate the complexity of the transaction hierarchy. 

We conducted two experiments to evaluate the impact of the parameters fanout and the total 
number of transactions in a transactions hierarchy on the performance in terms of the total CPU 
time used by all the transactions in a transaction hierarchy. In both experiments, total number 
of objects accessed by all the transactions in the hierarchy was kept constant. Approximately 
20% of the fetch requests are done with a WRITE lock, and the rest are done with a READ 
lock. There are no hot spots in the object space. The number of objects that a transaction 
requests is calculated by the total number of objects divided by the total number of transactions 
in the hierarchy. Therefore as the total number of transactions increases, the number of objects 
accessed by a transaction becomes less but the total number of objects accessed by the hierarchy 
remains constant. The OpenOODB operations are not involved in the CPU time measurements 
as they are just simulated rather then being actually implemented. Therefore, the measured CPU 
times correspond to the execution overhead introduced by the implementation of parallel nested 
transactions. Transactions used in the experiments are actual transactions generated automatically 
by a transaction generator program. The total number of objects accessed by the whole transaction 
hierarchy is 100000 and the object size is 100 bytes. 

In the first experiment, the number of transactions was kept constant and the performance 
impact of increasing the fanout value was evaluated. Total number of the transactions in the 
hierarchy is 70 and the fanout value ranges between 1 and 5. As illustrated in Figure 15, the CPU 
time used by the overall transaction hierarchy increases slightly with increasing fanout. In the 
second experiment, we kept the fanout constant at, 3 and increased the number of transactions 
from 5 to 70. By keeping the fanout value constant, we eliminated the impact of fanout. The 
change’ in the CPU time as a result of increasing the number of transactions is negligible as in 
the previous case. The results of this experiment leading to that observation are illustrated in 
Figure 16. Both experiments that we have briefly discussed show that the overhead induced by 
the implementation of our parallel nested transaction model is not considerable. 



Concurrent Rule Execution in Active Databases 61 

Number of Objetcs = 100000. Number of Transactions = 70 

::: 11 

72.0 

.E 70.0 - 
CT 
2 
o 66.0 - 

66.0 

64.0 

62.0 

60.0 
1 2 3 4 5 

Fanout 

Fig. 15: Impact of Fanout on CPU-Time Used by a Transaction Hierarchy. 

Number of Objects =lOOOOO 

76.0 

76.0 
: 

64.0 - 

62.0 - 

60.0 1 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 

Number of Transactions 

Fig. 16: Impact of the Number of Transactions on CPU-Time Used by a Transaction Hierarchy. 

6. DISCUSSION AND FUTURE WORK 

In this paper, we described a rule execution model for active database management systems 
(ADBMSs). We used nested transactions for concurrent rule execution and covered some aspects 



62 Y~EL SAYGIN et al. 

of nested transactions like concurrency control and deadlock detection. Although we implemented 
nested transactions on OpenOODB, our rule execution module was designed in such a way that it 
can easily be ported to other systems as well. 

Some of the highlights of our implementation of rule execution can be listed as follows: 

l Previous implementations for rule execution assume only sibling parallelism. We implement, 
on the other hand, both sibling and parent-child parallelism which is the most flexible kind 
of parallelism. 

l We support deferred and detached modes of rule execution as well as immediate mode. 

l In previous implementations, triggered rules are executed in distinct processes. We execute 
triggered rules in threads which is more efficient than forking processes. 

It was shown through experiments that the execution overhead of nested transactions that 
were used in the implementation of concurrent rule execution is negligible and is not significantly 
affected by the number of transactions in the transaction hierarchy. 

Implementation of the recovery of nested transactions is left as a future work. A log based 
recovery method, ARIES/NT [32], was proposed for nested transaction recovery which is an exten- 
sion of the ARIES recovery method. Version based recovery techniques can also be applied which 
are easier to implement but have some major drawbacks against log-based recovery techniques [26]. 
Since our implementation was built on top of Exodus, implementation of recovery for nested trans- 
actions should involve some modifications to Exodus which is a difficult task. There is also no 
consensus on the abort semantics of rules. One way to think is that only the rule is aborted but 
not the triggering rule which is compatible with the nested transaction abort semantics. Another 
way is to abort the triggering rule as well in which case the nested transaction model should further 
be modified to support the abortion of the parent in case the child aborts. Same problems arise 
when a rule should be aborted as a result of a deadlock. 

Our implementation of concurrent rule execution through parallel nested transactions is cur- 
rently being integrated into Sentinel which is an ADBMS developed at the University of Florida. 
Following the completion of the integration, we are planning to investigate the impact of concurrent 
rule execution on the performance of Sentinel. 

Acknowledgements - The authors wish to thank Prof. Alejandro Buchmann and the database research group of 
the Technical University of Darmstadt for their help during the initial phases of our work. 

REFERENCES 

[l] A. Aiken, J. Widom, and J.M. Hellerstein. Behavior of database production rules: Termination, confluence, 
and observable determinism. In Proceedings of ACM SIGMOD International Conference on Management of 
Data, pp. 59-68, San Diego, California (1992). 

[2] C. Beeri and T. Milo. A model for active object oriented database. In Proceedings of the 17th International 
Conference on Very Large Data Bases, pp. 337-349, Barcelona, Spain (1991). 

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. 
Addison-Wesley (1987). 

[4] A. Buchmann. Active object systems. In Asuman Dogac, M. Tamer Ossu, Alex Biliris, and Timos Sellis, 
editors, Advances in Object-Oriented Database Systems, pp. 201-224, Springer-Verlag (1994). 

[5] A.P. Buchmann, A. Deutsch, and J. Zimmermann. The REACH Active OODBMS. Technical report, Technical 
University Darmstadt (1995). 

[6] A.P. Buchmann, J. Zimmermann, J.A. Blakeley, and D.L. Wells. Building an integrated active OODBMS: 
Requirements, architecture, and design decisions. In Proceedings of the 11th International Conference on Data 
Engineering, pp. 117-128, Taipei, Taiwan (1995). 

[7] A Joint Report by the ACT-NET Consortium. The active database management system manifesto: A rulebase 
of adbms features. ACM SIGMOD Record, 25(3):40-49 (1996). 

(81 A. Chakravarthy and E. Anwar. Exploiting Active Database Paradigm For Supporting Flexible Transaction 
Models. Technical Report UF-CIS-TR-95-026, University of Florida, Computer and Information Science and 
Engineering Department (1995). 



Concurrent Rule Execution in Active Databases 63 

[9] S. Chakravarthy, E. Anwar, and L. Maugis. Design and Implementation of Active Capability for an Object- 
Oriented Database. Technical Report UF-CIS-TR-93-001, University of Florida, Department of Computer and 
Information Sciences (1993). 

[lo] W.-S. Choe. Concurrency control for nested transactions in multidatabase systems. In Proceedings of Sev- 
enth International Conference of Computing and Information, pp. 649-668, Trent University, Peterborough, 
Ontario, Canda (1995). 

[ll] P.K. Chrysanthis and K. Ramamritham. A formalism for extended transaction models. In Proceedings of the 
17th International Conference on Very Large Databases, pp. 103-112, Barcelona, Spain (1991). 

[12] P.K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models using ACTA. ACM tins- 
actions on Database Systems, 19(3):450-491 (1994). 

[13] U. Dayal. Active database management systems. In Proceedings of the Third International Conference on 
Data and Knowledge Bases, pp. 150-169, Jerusalem (1988). 

[14] U. Dayal, M. Hsu, and R. Ladin. Organizing long-running activities with triggers and transactions. In Pro- 
ceedings of ACM SIGMOD International Conference on Management of Data, pp. 204-214, Atlantic City 

(1990). 

[15] U. Dayal, M. Hsu, and R. Ladin. A generalized transaction model for long-running activities and active 
databases. Data Engineering Bulletin, 14(1):4-S (1991). 

[16] U. Dayal, M. Hsu, and R. Ladin. A transactional model for long-running activities. In Proceedings of the 17th 
International Conference on Very Large Data Bases, pp. 113-122, Barcelona (1991). 

[17] L. Daynes, 0. Gruber, and P. Valduriez. Locking in OODBMS client supporting nested transactions. In 
Proceedings of the 11th International Conference on Data Engineering, pp. 316-322, Tai-pei, Taiwan (1995). 

[18] S. Gatziu, A. Geppert, and K.R. Dittrich. The samos active dbms prototype. Technical report, Institut fur 
Informatik, Univemitat Ziirich (1994). 

[19] P. Graham, K. Barker, and A. Reza-Hadaegh. Disconnected objects: Reconciliation in a nested object trans- 
action environment. In Proceedings of ECOOP’g6, Workshop on Mobility and Replication (1996). 

[20] E.N. Hanson. The design and implementation of the ariel active database rule system. IEEE tinsactions on 
Knowledge and Data Engineering, 8( 1):157-173 (1996). 

[21] E.N. Hanson and J. Widom. An Overview of Production Rules in Database Systems. Technical report, 
University of Florida, Department of Computer and Information Sciences (1992). 

[22] T. Harder, M. Profit, and H. Schonning. Supporting Parallelism in Engineering Databases by Nested Transac- 
tions. Technical Report 34/92, University of Kaiserslautern, Computer Science Department (1992). 

[23] T. Harder and K. Rothermel. Concurrency control issues in nested transactions. VLDB Journal, 2(1):39-74 
(1993). 

[24] M. Hsu, R. Ladin, and D.R. McCarthy. An execution model for active database management systems. In 
Proceedings of the Third International Conference on Data and Knowledge Bases, pp. 171-179, Jerusalem 
(1988). 

[25] E. Knapp. Deadlock detection in distributed databases. ACM Computing Surveys, 19(4):303-328 (1987). 

[26] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwartz. ARIES: A transaction recovery method 

supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM finsactions on 
Database Systems, 17(1):94-162 (1992). 

[27] E. Moss. Nested fiansactions. M.I.T. Press, Cambridge, Mass. (1985). 

[28] J. Eliot and B. Moss. Log-based recovery for nested transactions. In Proceedings of the 13th VLDB Conference, 
pp. 427-432, Brighton (1987). 

[29] S. Neelakantan. Scheduling rules in an active DBMS using nested transactions. Master’s Thesis in progress, 
Department of Computer and Information Science and Engineering, University of Florida, 1997. 

[30] N.W. Paton and 0. Diaz. Active Database Systems. Technical report, University of Manchester, Department 
of Computer Science (1995). 

[31] C. Pu and J.D. Noe. Design and implementation of nested transactions in eden. In Proceedings of Sizth 
International Symposium on Reliability in Distributed Software and Database Systems, pp. 126-136, Kingsmill- 
Williamsburg, VA (1987). 

[32] K. Rothermel and C. Mohan. ARIES/NT: A recovery method baaed on write-ahead logging for nested trans- 
actions. In Proceedings of the Fifteenth International Conference on Very Large Data Bases, pp. 337-346, 
Amsterdam (1989). 

[33] M. Rukoz. Hierarchical deadlock detection for nested transactions. Distributed Computing, 4:123-129 (1991). 

[34] Y. Saygin, 6. Ulusoy, and S. Chakravarthy. Concurrent rule execution in active databases. Technical Report 
BU-CEIS-9707, Department of Computer Engineering and Information Science, Bilkent University (1997). 

1351 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. Getting Started 
with Solaris (1992). 



64 Y~~CEL SAYGIN et al. 

[36] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. Multithreaded 
Programming Guide (1994). 

[37] D.L. Wells, J.A. Blakeley, and C.W. Thompson. Architecture of and open object-oriented database management 
system. IEEE COMPUTER, pp. 74-81 (1992). 

[38] J. Widom. The starburst active database rule system. IEEE finsactions on Knowledge and Data Engineering, 
8(4):583-595 (1996). 


