
Information Processing and Management 49 (2013) 688–697
Contents lists available at SciVerse ScienceDirect

Information Processing and Management

journal homepage: www.elsevier .com/ locate / infoproman
Cluster searching strategies for collaborative recommendation systems

Ismail Sengor Altingovde a,⇑,1, Özlem Nurcan Subakan b,1, Özgür Ulusoy c

a L3S Research Center, Hannover, Germany
b Department of Computer & Information Science & Engineering, University of Florida, USA
c Computer Engineering Department, Bilkent University, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 3 November 2012

Keywords:
Collaborative filtering
Clustering
Inverted index
0306-4573/$ - see front matter � 2012 Elsevier Ltd
http://dx.doi.org/10.1016/j.ipm.2012.07.008

⇑ Corresponding author.
E-mail address: ismaila@cs.bilkent.edu.tr (I.S. Alt

1 Work done while the author was at Bilkent Univ
In-memory nearest neighbor computation is a typical collaborative filtering approach for
high recommendation accuracy. However, this approach is not scalable given the huge
number of customers and items in typical commercial applications. Cluster-based collabo-
rative filtering techniques can be a remedy for the efficiency problem, but they usually pro-
vide relatively lower accuracy figures, since they may become over-generalized and
produce less-personalized recommendations. Our research explores an individualistic
strategy which initially clusters the users and then exploits the members within clusters,
but not just the cluster representatives, during the recommendation generation stage. We
provide an efficient implementation of this strategy by adapting a specifically tailored clus-
ter-skipping inverted index structure. Experimental results reveal that the individualistic
strategy with the cluster-skipping index is a good compromise that yields high accuracy
and reasonable scalability figures.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Collaborative filtering (CF) is one of the most widely encountered techniques in generating recommendations, which for-
malizes the notion of ‘‘word of mouth’’ in daily life. Ranging from non-profit Web sites to highly competitive e-commerce
giants, players of digital society investigate a lot on this technology, so that they can identify and present the most interest-
ing, relevant or enjoyable items, say a movie, album, book, news story, radio/television show, research paper or even friends
(in social networking applications), for their users.

In a nutshell, a CF system is based on determining and aggregating the ‘‘votes’’ of like-minded users for an ‘‘active user’’,
so that it can make useful recommendations to the active user (Adomavicius & Tuzhilin, 2005). It works over a database of
ratings for the items provided by users, either explicitly (e.g., by voting for a movie) or implicitly (e.g., by clicking on a par-
ticular hyperlink). The logic behind collaborative filtering systems is that each user belongs to a community of like-minded
people; hence the items favored by these users can be used to form predictions or suggestions. A prediction is the system’s
opinion for an item that is explicitly asked by the user (e.g., should I go to the movie ‘‘Harry Potter and the Deathly Hal-
lows’’?) and usually expressed in the form of a score in the same scale with the users’ ratings. A suggestion list is a ranked
list of items that the system believes the user may be interested in. Collaborative filtering has been successfully used in do-
mains such as recommending movies or songs, where the information content is not easily parse-able and traditional infor-
mation filtering techniques are difficult to apply (see Adomavicius & Tuzhilin, 2005 for an exhaustive survey).
. All rights reserved.

ingovde).
ersity.

http://dx.doi.org/10.1016/j.ipm.2012.07.008
mailto:ismaila@cs.bilkent.edu.tr
http://dx.doi.org/10.1016/j.ipm.2012.07.008
http://www.sciencedirect.com/science/journal/03064573
http://www.elsevier.com/locate/infoproman

I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697 689
In the literature, CF methods using clustering are well-understood to improve scalability, however the findings in terms of
the recommendation accuracy are somewhat inconclusive. In many works (e.g., Breese, Heckerman, & Kadie, 1998; Linden,
Smith, & York, 2003; Sarwar, Karypis, Konstan, & Riedl, 2002), once the clusters of users are formed, neighborhood compu-
tation stage compares the active user with each of the cluster representatives (i.e., a virtual user including aggregated votes
of all users in the cluster) to obtain the most similar clusters. In the next step, the entire clusters (or, equivalently the rep-
resentatives) are used to generate the recommendation. However, the results reported in some other (e.g., Xue et al., 2005)
studies reveal that, once most similar clusters are determined, it is better – in terms of accuracy – to ‘‘look into’’ these clus-
ters to retrieve the most similar users from the clusters. And then, the recommendations can be generated by aggregating the
votes of these ‘‘real’’ users but not the cluster representatives. In this paper, we call the former approach aggregating strategy
and the latter individualistic strategy, to denote how clusters are actually used for recommendation generation. Being a more
accurate approach, the individualistic strategy requires user-by-user comparisons for each similar cluster, which can hurt
the scalability improvements provided by clustering, if done in a straightforward manner. Note that, an alternative to clus-
tering users is constructing item clusters for the item-similarity based CF approach (Sarwar, Karypis, Konstan, & Riedl, 2001).
Methods described in our study are potentially applicable to this case, as well.

In this paper, we focus our attention on cluster-based CF. As a contribution; we present a specially tailored inverted index
structure originally proposed for information retrieval over clustered collections (Altingovde, Can, & Ulusoy, 2006;
Altingovde, Demir, Can, & Ulusoy, 2008; Can, Altingovde, & Demir, 2004) and adapt it into the CF framework. The, so-called,
cluster-skipping inverted index is intended to allow applying the individualistic strategy without too much degradation in the
efficiency. That is, the proposed index structure makes it possible to look into the user clusters during the neighborhood for-
mation stage so that the ‘‘actual users’’ can form the neighborhood and subsequently be used during recommendation gen-
eration, instead of the virtual ones, i.e., cluster representatives. We envision that this strategy would improve accuracy of
cluster-based CF methods, while retaining their advantages in terms of scalability. We further investigate the performance
of the proposed approach for cluster-based hybrid filtering (HF) systems, which makes use of content-based features, as well.
Our experiments based on a large publicly available dataset justify the use of cluster-skipping index for cluster-based CF
scenarios.

The rest of the paper is organized as follows: Section 2 presents related work on CF, with special emphasis on the works
about cluster-based CF. In Section 3, we describe a baseline CF system, which is based on the k-nearest-neighbor approach
and employs an inverted index for improving scalability (as proposed in Cöster and Svensson (2002)). We discuss our adap-
tation of a special inverted index structure for efficient and accurate cluster-based CF in Section 4. Next, in Section 5, we
present a cluster-based HF system, which combines content-based filtering with CF by a two-stage clustering, i.e., first clus-
tering the items and then imposing user clusters on top of the item clusters. Experimental results are presented in Section 6.
Section 7 concludes the paper and points future work directions.

2. Related work

Collaborative filtering (CF) and content-based recommendation are two important classes of recommender systems. In a
recommender system, a set of users are expected to rate a set of items (Su & Khoshgoftaar, 2009; Zhan et al., 2010). CF takes
the rating values into account to make recommendation, while content-based recommender systems use the features of
users and items (Li & Jin, 2003; Su & Khoshgoftaar, 2009). Hybrid approaches also exist combining the features of CF and
content-based recommendation (Burke, 2002; Choi, Jeong, & Jeong, 2010; de Campos, Fernández-Luna, Huete, & Rueda-
Morales, 2010; Li, Myaeng, & Kim, 2007). More recently, in addition to the users and items, external ratings (Umyarov &
Tuzhilin, 2011) (aggregated from the external sources) and contextual information (such as time and place) that can be
obtained either explicitly, implicitly or via data mining techniques are also incorporated into recommendation process
(Adomavicius, Mobasher, & Ricci, 2011; Palmisano, Tuzhilin, & Gorgoglione, 2008).

Traditional CF algorithms can be classified into memory-based and model-based algorithms (Breese et al., 1998). For
memory-based CF systems, generating a recommendation for an active user involves two stages. During neighborhood for-
mation stage, the system finds the other users (typically at most k of them) that are most similar to the active user with re-
spect to their votes on common items, i.e., similar likes and dislikes. During the actual recommendation stage, the system
aggregates the information from the user’s neighborhood and either provides a prediction score for some particular item
or outputs a recommendation (suggestion) list of promising unseen items for the active user. Subsequently, memory based
approaches can be equivalently called k-nearest-neighbor (k-NN) collaborative filters.

k-NN computation is dynamic and immediately reacts to changes in the user database. Every new rating added to the user
database is included in the neighborhood calculation, since similarities between users are calculated in memory when
needed. On the other hand, this dynamicity leads to an important drawback for these systems. The necessity of comparing
all users to an active user on the fly creates a significant efficiency bottleneck for large systems with hundreds of thousands
of users, tens of thousands of items and millions of rating scores. So, scalability is an important handicap of pure k-NN ap-
proaches. Several optimizations for improving k-NN performance were proposed, such as precomputing neighborhoods and
sampling (Adomavicius & Tuzhilin, 2005).

As an alternative approach to solve the scalability problem, model-based collaborative filtering algorithms develop an
internal model of the available user ratings database by using approaches that are widely employed in statistics and machine

690 I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697
learning, such as Bayesian networks, neural networks, probabilistic relevance, clustering and rule-based methods (e.g.,
Breese et al., 1998; Greinemr, Su, Shen, & Zhou, 2005; Wang, de Vries, & Reinders, 2008; Wang, Robertson, de Vries, &
Reinders, 2008). These systems use a probabilistic approach and compute the expected value of a user prediction, given
his/her ratings on other items. In terms of accuracy, model-based algorithms can perform as well as memory-based ones
(Breese et al., 1998). Model-based algorithms require more time to train, which is typically off-line, but do not suffer from
memory bottlenecks and can provide predictions in shorter time in comparison to memory-based algorithms. However, the
inherent static structure of these techniques makes it difficult to update the model without rebuilding it.

While some approaches as exemplified above attempt to improve the efficiency of k-NN based CF, an alternative line of
research is providing model-based algorithms that are both scalable and as accurate as k-NN. To this end, clustering users is a
widely employed approach, either directly or as a preprocessing stage (Adomavicius & Tuzhilin, 2005; Gong, 2010; Pham,
Cao, Klamma, & Jarke, 2011; Truong, Ishikawa, & Honiden, 2007; Zhang & Hurley, 2009).

In one of the earliest works, Ungar and Foster developed a statistical model for CF and employed clustering for estimating
model parameters (Ungar & Foster, 1998). Their findings using repeated clustering (i.e., based on both content-based features
and user ratings) are very promising. However, they also note that as clustering smears-out data, it may lead to overgener-
alization. Breese et al. also experiment with clustering algorithms and conclude that in many cases clustering methods lead
to inferior accuracy with respect to memory-based approaches (Breese et al., 1998). This is usually attributed to the obser-
vation that clustering techniques produce less-personal recommendations than other methods. A similar observation is also
stated by Sarwar et al. (2002). In that study, authors cluster the users of the CF system by applying the bisecting k-Means
algorithm. During recommendation generation, they select the most similar cluster as the ‘‘neighborhood’’ for an active user
and compute the recommendation as an aggregation of all members of that cluster. Finally, similar arguments appear in an
industrial report discussing the item-to-item CF system employed at Amazon.com (Linden et al., 2003). In particular, Linden
et al. compare their item-based algorithm with a CF approach utilizing user clusters. They conclude that using clustering for
CF improves scalability, but again generating recommendations based on all members of a cluster degrades accuracy.
Increasing the number of clusters, on the other hand, diminishes the gains in term of efficiency.

Remarkably, in all of these works, the recommendations are generated by using the entire cluster(s) as the neighborhood
or by using just the cluster representative, which is again nothing but an aggregation of the votes of all members in a cluster.
Clearly, using the entire cluster (or, equivalently, its representative) as the actual neighborhood significantly improves sca-
lability, as the comparisons are only between cluster representatives and the active user. The number of comparisons can be
even smaller in the order of a few magnitudes. But this is also the cause of less-personalized recommendations, as the entire
cluster is used to generate final recommendations. Recall that, in this paper, we call this approach the aggregating strategy,
implying that the clusters are used for neighborhood formation and recommendation generation in their entirety.

In a latter work, Xue et al. exploit user clusters in two ways (Xue et al., 2005). First, they use clusters for smoothing pur-
poses, i.e., to generate some ‘‘made-up’’ ratings for missing ones in the cluster members. Second, they identify most similar
clusters to an active user, to obtain a candidate neighborhood, and then individually compare all members of these clusters
to the active user to obtain the final neighborhood. In this paper, we call this approach the individualistic strategy, implying
that recommendations are based on the profiles of individual members of clusters. Experiments show that, if the selected
clusters cover around 40% of the whole database, it is possible to cover up to 95% of neighbors that would be obtained by
a straightforward k-NN algorithm (Xue et al., 2005). In this case, accuracy is almost the same as k-NN, whereas savings in
efficiency is non-trivial.

Investigating the earlier work reveals that using clustering in CF can yield in several advantages, such as

� improving efficiency with respect to memory-based approaches (Adomavicius & Tuzhilin, 2005; Sarwar et al., 2002; Xue
et al., 2005),
� allowing smoothing for handling the missing values and thus remedying data sparsity problem (Xue et al., 2005),
� providing stability and robustness against the profile injection attacks (Mobasher, Burke, & Sandvig, 2006), and
� providing almost the same accuracy figures as k-NN, if tuned appropriately (Xue et al., 2005).

The final benefit in the above list, comparable accuracy, is usually obtained when clusters are used to reduce the search
space for neighborhood but not to define the neighborhood itself. That is, the individualistic strategy should be applied.
However, given that the number of clusters is small with respect to users, which is typically the case, and a certain fraction
of data should be covered (e.g., up to 40% as discussed in an earlier study (Xue et al., 2005)) for comparable accuracy, a meth-
od is required for efficiently comparing the active user with the cluster members. This is where our solution fits. In particular,
we propose to use an inverted index for achieving user–user comparisons within each cluster instead of the entire data
space. Of course, it is infeasible to create a separate index for each cluster, and that is why we adapt an inverted index that
is specifically tailored for clustered document collections (Altingovde et al., 2006, 2008; Can et al., 2004).

Finally note that, our work belongs to the class of studies (such as Bellogín, Wang, & Castells, 2011; Cöster & Svensson,
2002; Wang, de Vries, et al., 2008) that propose to adapt solutions from information retrieval area, which is inherently re-
lated to collaborative filtering. Indeed, our baseline strategy described in the next section is based on the work of Cöster and
Svensson (2002), which adapts a typical inverted index structure to CF framework to improve the efficiency of the neighbor-
hood formation process.

I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697 691
3. Baseline collaborative filtering system

In the area of information retrieval (IR), the inverted index is known to be the most common and efficient data structure
to retrieve the documents that are most similar to a given user query. Noticeably, the problem of finding documents that are
similar to a given query has much in common with the problem we face in collaborative filtering: in both cases, the data
space is high dimensional (number of terms and users/items may be tens of millions, or even more) but the individual vec-
tors (representing documents and users) are quite sparse, and both applications require finding most similar vectors to a
given vector using some similarity metric. Thus, it seems reasonable to use an inverted index during the neighborhood com-
putation stage of collaborative filtering. Indeed, in a previous study, this approach was employed and found to be promising
(Cöster & Svensson, 2002). In that work, the inverted index is stored on the disk and nearest neighbors to an active user are
computed by using this index. While computing the similarity between an active user and all other users, several similarity
measures, such as Pearson Correlation Coefficient (PCC) and Default Voting, are experimented. These measures can be cou-
pled with inverse user frequency, another well-explored idea from information retrieval literature, which assigns higher
weights to items that are more rarely voted, and vice versa (Adomavicius & Tuzhilin, 2005). To compute these similarity
functions, there needs to be more than one accumulator structure in the main memory, each of which keeps some part of
the partial similarity of each user in the database to the active user. In this paper, we use PCC for computing the similarity
between any two users a and i, as shown in the Eq. (1) below (Breese et al., 1998).
wða; iÞ ¼
P

jðva;j � �vaÞðv i;j � �v iÞffiP
jðva;j � �vaÞ2

P
jðv i;j � �v iÞ2

q ð1Þ
where v i is the profile (i.e., all previous item ratings) of the user i, v i;j is the user i’s rating for item j, �v i is the mean value of the
all ratings of the user i, and j is the running index on the intersecting items rated by the users a and i.

Using an inverted index allows us having as many users and items as possible, without being bounded by memory size,
but also enables us to compute exactly the same neighborhood with the typical k-NN approach. Inverted index provides con-
siderable scalability while computing the neighborhood, but in turn it has an update cost, just like the other model-based
approaches. Nevertheless, there are several well researched update algorithms for inverted index files, which could be de-
vised in the CF framework, as well. As stated by Cöster and Svensson, the inverted index also allows several optimization
opportunities, such as the early pruning strategies like quit and continue to improve scalability, and index compression tech-
niques, to improve storage efficiency (Cöster & Svensson, 2002).
Fig. 1. A user-movie database and corresponding inverted index.

692 I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697
In Fig. 1, we illustrate an example ratings database of users and movies and its corresponding inverted index file, as
implemented in our framework. The header of the index, i.e., the list of movies and pointers to posting lists, is kept in the
main memory. For each movie, the corresponding posting list captures <user-id, rating> pairs for those users who have seen
and rated this movie. Typically, posting lists reside on the disk. During recommendation generation, say for an active user Ua

with the profile {hM2, 2i, hM4, 5i}, the posting lists of the inverted index are read into the memory for each of the items M2 and
M4. For each such list, partial similarity scores among the active user and users that appear in the posting lists are computed
by Pearson Correlation Coefficient shown in Eq. (1). That is, while processing the posting list of M2, the accumulator entries
for users U3, U4 and U5 capture the similarity score of Ua to these users. While processing the list of M5, accumulator of U5 is
updated once more. After all posting lists corresponding to the items rated by the active user are processed; the accumula-
tors store the actual similarity of the active user to those users who have rated at least one common movie with Ua. These
accumulators are sorted and top-k users are extracted, and thus the neighborhood is formed. Finally, the profiles of these
users are aggregated to obtain a prediction for a single given item or a suggestion list for the active user.

In this paper, we call the above described k-NN based approach with an inverted index as the baseline CF system. This
system is used for providing efficiency and accuracy comparisons with respect to the cluster-based filtering systems de-
scribed in the following.

4. Cluster-skipping inverted index for collaborative filtering

One main contribution in this paper is the adaptation of cluster-skipping inverted index structure for efficient and accu-
rate cluster-based collaborative filtering. This data structure is originally proposed for efficient cluster-based retrieval in the
field of information retrieval (Altingovde et al., 2006, 2008; Can et al., 2004).

In Fig. 2, we illustrate the cluster-skipping inverted index for the rating matrix provided in Fig. 1. As in a typical index,
each posting list header contains the associated movie, the number of posting list elements associated with that movie,
and the posting list pointer (disk address). However, the difference from a typical index is in the following. The posting lists
include two types of elements, namely <cluster-id, position of the next cluster> pairs in addition to the usual <user-id, rat-
ing> pairs. For instance, suppose that users of Fig. 1 are clustered as follows: C1 = {U1,U2}, C2 = {U3,U4}, and C3 = {U5}. In this
case, posting list of movie M2 would include three typical posting elements corresponding to the users U3, U4 and U5, as be-
fore. In our index structure, the users from the same clusters are grouped together in the posting list, and at the beginning of
each such group there is an additional element denoting the cluster of the succeeding users and a pointer to the next group.
For instance, the first element in the posting list of M2 is <C2, pointer> which means that all the users – until the element
pointed by the address – are from cluster C2, which happens to be users U3 and U4. The second additional element <C3,
nil> states that all succeeding users are from cluster C3 (e.g., only user U5) and there are no more clusters, i.e., the list ends.

Neighborhood formation for individualistic strategy using this index is achieved as follows. First, for an active user Ua,
most similar, say top-N, clusters are determined, typically by comparing cluster representatives to the profile of Ua. We call
C3

C
1

C
2

3U
2

U
4

2

C
1

C
3

2U
2

M
1

M
3

5M2

6

M
5

5M4

6

2 U
5

4

U
1

3

U
1

2

U
3

1

U
5

3

C1 = {U1, U2}

C2 = {U3, U4}

C3 = {U
5
}

C
1

C
3

1U
4

U
3

3 U
5

1

C1 C21U2 U4 1U1 1 U3 2

Fig. 2. A cluster-skipping inverted index for the sample user-movie database.

I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697 693
these clusters best-clusters. Next, for each item rated by Ua, the corresponding posting list is retrieved. However, we update
the partial similarities stored in the accumulators for only those users that are from the best-clusters. Thus, only those users
that are within the best-clusters are considered for neighborhood formation. When all the items rated by the active user are
processed, the users are sorted with respect to similarity scores and top-k of them are selected. Once the neighborhood is
formed, the recommendation generation stage is the same as in the usual k-NN approach. The pseudo-code for this proce-
dure is given in Fig. 3. Note that, for the aggregating strategy, neighborhood actually corresponds to the best-clusters, so
there is no need to use the inverted index, at all.

For instance, assume an active user Ua with the profile {hM2,2i, hM4,5i}. Also assume that we set the number of best-
clusters and the size of user neighborhood (k) to 1, i.e., we are to select the most similar cluster considering the represen-
tatives, and then to select the most similar user from this single best-cluster. Assume also that, the best cluster is found to be
C3. While processing the posting list of M2 we skip the portion corresponding to C1 (since it is not a best-cluster) and directly
jump to the C3 portion by following the address in the first element. Similarly, while processing the posting list of M4; we
again skip the unnecessary C1 portion of the posting list and only consider the part corresponding to C3. In other words,
by using the skip approach we only handle the users that are in the best clusters and really need to be compared to the active
user. At the end of the process, only the user U5 has a non-zero similarity score and will be considered for generating rec-
ommendation. Note that, in practice, there are more than one accumulator structures storing different components of the
PCC metric (Cöster & Svensson, 2002), but we prefer to mention only one accumulator (both in the discussion and in
Fig. 3) for the sake of simplicity.

Remarkably, the top-k users obtained at the end of the above procedure are different than those obtained by the baseline
system, since only the subset of users that are from the best-clusters are considered. Subsequently, the use of cluster-
skipping index is expected to improve the scalability for cluster-based CF, exactly in the same way a typical inverted index
improves scalability for k-NN based CF, i.e., our baseline in this paper.

One can argue that after the best-clusters are found, users from the best-clusters can be determined in a succeeding stage
by using a typical inverted index (i.e., by first identifying all users that have non-zero similarity to an active user and then
eliminating those that are not from the best-clusters). Although this is possible (Altingovde et al., 2006), using a specific clus-
ter-skipping IIS improves performance significantly (Can et al., 2004). Furthermore, the gain is expected to be much higher
than the information retrieval case, since typical query size in IR is only a few words whereas the profile of an active user can
include hundreds of items. Earlier works (e.g., Can et al., 2004) in IR field reveal that gain of skipping unused portions is high-
est for the queries with more than a hundred terms, which can be a typical profile size in CF framework. Furthermore, skip-
ping unnecessary segments of posting lists provides crucial savings when posting lists are stored in a compressed format and
should be decompressed during similarity comparisons (Altingovde et al., 2008).

5. Cluster-based hybrid filtering (HF)

Hybrid recommender systems combine two or more recommendation techniques to gain better performance with fewer
of the drawbacks of any individual recommender technique. Most commonly, collaborative filtering is combined with con-
tent based filtering in an attempt to remedy the associated problems of each approach.

Ungar and Foster used a cluster-based hybrid filtering approach in which they first cluster music compact discs (CD) with
respect to a content-based feature, e.g., the artist (Ungar & Foster, 1998). In the second pass, they cluster users on those CD
clusters. The final clusters are used to create a formal model for collaborative filtering and generate recommendations. We
Input: Active user profile Ua = {<I1, R1>, <I2, R2>…} where Ii is item i and Ri is the rating
for item i, best-clusters B= {C1, C2, …CN), where Ci is in the top-N most similar clusters to
Ua, header part of the cluster-skipping inverted index created on the user-item database

In-memory data structures: User-user similarity accumulator structure Acc
Disk-based data structures: Posting lists L of the cluster-skipping inverted index created
on the user-item database

For each item Ii in Ua

 Retrieve the posting list Li corresponding to the item Ii

 Access the first list element <cluster-id, pointer> from Li

If cluster-id is in B
Until the address given by pointer is reached

 Access the typical element <user-id Ui, rating URi>
 Compute partial similarity sim by using URi, Ri and a similarity metric (e.g., PCC)

Acc [Ui] ← Acc [Ui] + sim
Else

 Jump to the next cluster given by the pointer

Return top-k users that have the highest Acc scores

Fig. 3. Neighborhood formation procedure for individualistic strategy using cluster-skipping inverted index.

694 I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697
prefer to call this a hybrid filtering system, since it uses both content-based features and user rating data. The authors report
that the two-stage clustering as described above works very well.

As another contribution of this paper, we compare the cluster-based CF with cluster-based HF. We believe that it is
worthwhile to evaluate the performance of multi-stage clustering in our framework, which allows efficient computation
of individualistic strategy, as well as the generally used aggregating strategy.

Our multi-stage clustering approach first generates the clusters based on content information of items. For our prototype
system recommending movies, genre attribute is selected for this purpose. Thus, we obtain clusters such as say, Action, Dra-
ma and Romance. These clusters are overlapping, i.e., a movie may fall into several clusters, such as both Drama and Romance.
Then the users are also clustered according to genre of the movies they watched. These clusters are non-overlapping, since a
user falls into the cluster from which (s)he has watched the largest number of movies. Then, the users of each cluster ob-
tained in this stage are clustered for the last time, but according to their movie ratings, as before. For instance, the users
who have watched movies from Action cluster are clustered among themselves, and similarly the users who have watched
movies from Drama cluster are clustered among themselves. Once the final cluster structure is obtained, both aggregating
and individualistic strategies are applicable, as described before.

6. Evaluation

6.1. Data set

We use a large publicly available dataset, EachMovie, as the test-bed for our approaches, similar to some previous studies
(e.g., Cöster & Svensson, 2002; Xue et al., 2005). This dataset comprises a total of 2,811,983 ratings of 1628 movies by 60,087
users. Each rating is on a scale of 0–5. We also employ a Web crawler, WebSPHINX, (http://www.cs.cmu.edu/~rcm/web-
sphinx/) developed by Rob Miller at Carnegie Mellon University, in order to gather the content data of movies from The Inter-
net Movie Database (IMDb) (http://www.imdb.com/) for hybrid filtering approaches. Out of 1628 movies present in
EachMovie dataset, the content information – including synopsis, genre, key actors and actresses – of 1482 movies could
be downloaded. Out of these 1482 movies, 1224 movies have synopsis.

6.2. General parameters

We experiment with a training set size of 90% of all users, i.e., 55,000 users, following the practice in an earlier work for
comparison purposes (Cöster & Svensson, 2002). Neighborhood size k is set to 30. We set the number of best-clusters to 10%
of the total number of clusters. We employ AllBut1 protocol, meaning that for each user we held out a single vote that should
be predicted on the basis of all the other votes in the profile. For each test user, the evaluated CF system is required to return
a prediction score for five movies in that user’s profile. Experiments are repeated five times with randomly obtained train/
test splits.

6.3. Evaluation metrics

To evaluate accuracy and efficiency of competing approaches, we use mean absolute error (MAE) and the elapsed time for
neighborhood formations, respectively. MAE is a popular statistical accuracy metric and calculates the absolute difference
between the actual vote and the prediction, averaged over all predictions. For our data set, MAE is on a scale of 0–5. Obvi-
ously, smaller MAE values imply better accuracy. We measure the total elapsed time for neighborhood formations (NF) for
five predictions of all test users. The mean neighborhood formation time (referred to as Mean NF Time) is computed for gen-
erating a single prediction for a particular user.

6.4. Clustering parameters

In this paper, we employ two different clustering algorithms – namely, k-Means and C3M, to obtain user clusters for the
cluster-based CF systems and hybrid filtering systems. The well-known k-Means algorithm requires the number of clusters
to be provided as an input (e.g., see Manning, Raghavan, & Schütze, 2008). In contrast, C3M, as one of its most important fea-
tures, can determine the number of clusters automatically (Can & Ozkarahan, 1990). For both algorithms, off-line clustering
of the training dataset is achieved in the order of minutes using commodity hardware and general (un-optimized) imple-
mentations of the algorithms. Note that, while we prefer to employ C3M and k-Means clustering algorithms to be comparable
with some previous works (Altingovde et al., 2008; Can et al., 2004; Xue et al., 2005), our strategy can be coupled with any
other flat clustering algorithm with a reasonable output quality and algorithmic complexity.

We experiment with three different values for the number of produced clusters – namely, 24, 200, and 1300, for both C3M
and k-Means algorithms. The first value, 24 is the number of clusters that is determined by C3M automatically. We repeat our
experiments for k-Means with the same value, for comparison purposes. Recall that, in the hybrid filtering system, clustering
is multi-stage. The users are first clustered on movie genres, a process that does not require a clustering algorithm, and then
re-clustered according to their ratings’ similarities. 200 is the number of clusters obtained by C3M for this second clustering

http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.imdb.com/

I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697 695
stage. For the final setting, we manually fix the number of second-stage user clusters to be 100 per genre-cluster, and since
there are 13 of them (i.e., movies in our data set fall into 13 different genres, as we extracted from IMDB site), the total num-
ber of clusters is 1300.

6.5. Evaluated systems

We essentially compare the following three systems as described in this paper.

� Baseline CF system that is based on k-NN and employing a typical inverted index.
� Cluster-based CF system.
� Cluster-based HF system.

For the latter two cluster-based systems, we compare performances with aggregating strategy, which generates recom-
mendations from all members of best-clusters, and individualistic strategy, which generates recommendations by inspecting
the members of best-clusters individually and determining k-nearest neighbors among them. While computing the individ-
ualistic strategy, both systems employ a cluster-skipping inverted index. Aggregating strategy, obviously, does not need such
an index.

6.6. Experimental results and discussions

In Tables 1 and 2, we provide MAE and neighborhood formation times for the baseline CF system and the cluster-based CF
system, using individualistic and aggregating strategies, respectively. Verifying our initial hypothesis, the cluster-based CF
system using individualistic strategy performs almost as accurate as the baseline system, regardless of the clustering algo-
rithm and the number of clusters. For instance, baseline CF system achieves an MAE score of 0.91 (repeated in all tables for
the ease of comparison). Cluster-based CF system with individualist strategy also achieves MAE scores between 0.90 and
0.92, for varying clustering algorithms and parameters. On the other hand, cluster-based CF with aggregating strategy
reaches to an MAE score of 1.18 at the best case and can worsen up to 1.32. Thus, looking inside the best-clusters pays
off in terms of accuracy.

In terms of neighborhood formation (NF) time, cluster-based CF with aggregating strategy, which by definition does not
need the inverted index, can reduce the required time to only a few percent of the baseline system. However, this gain in
performance is obtained in return for a significant sacrifice in the prediction accuracy. As shown in Table 2, the MAE scores
for CF with aggregating strategy reflect an increment ranging from 32% up to 47% in comparison to the baseline MAE. On the
other hand, cluster-based CF with individualistic strategy can achieve the same accuracy figures with the baseline system,
and the overall time for NF is still less than the half of the time required by the baseline. Thus, the individualistic strategy
accompanied with cluster-skipping index is a compromise, which provides good accuracy and more than 50% savings in NF
Time.

In Tables 3 and 4, we provide MAE and neighborhood formation times for the baseline CF system and the cluster-based HF
system, using individualistic and aggregating strategies, respectively. The results clearly follow the same trends discussed in
the above. Interestingly, the use of content-based features and repeated clustering does not seem to improve accuracy fig-
ures over the simple user-clustering approaches discussed above.

We can draw the following conclusions from the experimental results:

� Our results reveal that, computing the neighborhoods by inspecting the actual users that fall into the best-clusters (i.e.,
the individualistic strategy) yields higher prediction accuracy in comparison to using the aggregations of these best-
clusters (i.e., their representatives) for neighborhood formation. This result also justifies the need for using cluster-
skipping inverted index for the cluster-based collaborative filtering task, as an efficient way of implementing above
strategy.
� In terms of neighborhood computation time, collaborative filtering with cluster-skipping inverted index takes far more

shorter time (in some cases, almost 40%) than collaborative filtering with a typical inverted index, since the number of
comparisons is significantly reduced by the use of cluster-skipping index structure.
Table 1
Comparison of baseline CF system vs. cluster-based CF with cluster-skipping inverted index and using individualistic strategy.

System Baseline CF Cluster-based CF with cluster-skipping inverted index

C3M k-Means

No. of clusters 24 200 1300 24 200 1300

Accuracy 0.91 0.92 0.91 0.90 0.92 0.91 0.90
NF Time (s) 1324.57 651.01 593.09 815.15 531.22 883.02 1027.05
Mean NF Time (ms) 49.86 24.15 22.00 30.24 19.71 32.76 41.52

Table 2
Comparison of baseline CF system vs. cluster-based CF using aggregating strategy.

System Baseline CF Cluster-based CF

C3M k-Means

No. of clusters 24 200 1300 24 200 1300

Accuracy 0.91 1.18 1.25 1.29 1.22 1.30 1.32
NF Time (s) 1324.57 81.27 72.06 111.74 70.68 73.79 84.78
Mean NF Time (ms) 49.86 3.02 2.67 4.15 2.62 2.74 2.92

Table 3
Comparison of baseline CF system vs. cluster-based HF with cluster-skipping inverted index and using individualistic strategy.

System Baseline CF Cluster-based HF with cluster-skipping inverted index

C3M k-Means

No. of clusters 184 1300 184 1300

Accuracy 0.91 0.90 0.90 0.94 0.94
NF Time (s) 1324.57 623.82 902.78 829.22 1747.47
Mean NF Time (ms) 49.86 23.33 33.53 30.80 64.90

Table 4
Comparison of baseline CF system vs. cluster-based HF using aggregating strategy.

System Baseline CF Cluster-based HF

C3M k-Means

No. of clusters 184 1300 184 1300

Accuracy 0.91 1.18 1.29 1.32 1.31
NF Time (s) 1324.57 73.13 74.58 73.81 84.52
Mean NF Time (ms) 49.86 2.74 2.77 2.74 2.91

696 I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697
� Interestingly, the cluster-based hybrid filtering approach does not improve the prediction accuracy as it might be
expected (i.e., a contradictory result to what is reported in, for instance, (Ungar & Foster, 1998). We attribute this to
the fact that in our experiments, the only content attribute used is the ‘‘genre’’ for the initial clustering stage. We antic-
ipate that employing other attributes such as plot and artists can further improve accuracy in this scenario. This remains
as a future work issue.

7. Conclusion

Collaborative filtering is one of most important techniques used in the recommendation systems, and continues to gain
significant attention from both academic and commercial parties. In this paper, we show that cluster-based collaborative
filtering techniques, an important class of CF algorithms, can be made both accurate and scalable, using an individualistic
search strategy within clusters and a specifically tailored cluster-skipping inverted index. The proposed strategy substan-
tially reduces the neighborhood formation time (i.e., up to 60%) in comparison to using a typical inverted index file without
any adverse effects on the recommendation quality. This means that our solution makes the promises of clustering (such as
improving scalability (Adomavicius & Tuzhilin, 2005; Sarwar et al., 2002; Xue et al., 2005) and remedying data sparsity (Xue
et al., 2005)) attainable for real-life and large-scale recommendation systems without requiring to sacrifice from the recom-
mendation accuracy.

As a future work, we plan to investigate the performance of discussed strategies under highly dynamic conditions and
for item based CF strategies. We also aim to incorporate further clues such as the contextual (Adomavicius et al., 2011;
Palmisano et al., 2008) and external information (Umyarov & Tuzhilin, 2011) into our cluster-based collaborative filtering
framework.

Acknowledgements

This work is supported by The Scientific and Technical Research Council of Turkey (TÜB_ITAK) under the Grant No.
105E024. We thank Tugrul Ince, Simal Ince and H. Hakan Ari for their contributions during the implementation.

References

Adomavicius, G., Mobasher, B., & Ricci, F. (2011). And Alexander Tuzhilin, context-aware recommender systems. AI Magazine, 32(3), 67–80.

I.S. Altingovde et al. / Information Processing and Management 49 (2013) 688–697 697
Adomavicius, G., & Tuzhilin, A. (2005). Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17(6), 734–749.

Altingovde, I. S., Demir, E., Can, F., & Ulusoy, Ö. (2008). Incremental cluster-based retrieval using compressed cluster-skipping inverted files. ACM
Transactions on Information Systems, 26(3).

Altingovde, I. S., Can, F., & Ulusoy, Ö. (2006). Algorithms for within-cluster searches using inverted files. In Proceedings of the international symposium on
computer and information sciences (pp. 707–716). Istanbul, Turkey.

Bellogín, A., Wang, J., & Castells, P. (2011). Text retrieval methods for item ranking in collaborative filtering. In Proceedings of the European conference on IR
research (pp. 301–306). Dublin, Ireland.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the conference on
uncertainty in artificial intelligence (pp. 43–52). Madison, Wisconsin, USA.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370.
Can, F., Altingovde, I. S., & Demir, E. (2004). Efficiency and effectiveness of query processing in cluster-based retrieval. Information Systems, 29(8), 697–717.
Can, F., & Ozkarahan, E. A. (1990). Concepts and effectiveness of the cover-coefficient-based clustering methodology for text databases. ACM Transactions on

Database Systems, 15(4), 483–517.
Choi, S. H., Jeong, Y. S., & Jeong, M. K. (2010). A hybrid recommendation method with reduced data for large-scale application. IEEE Transactions on Systems,

Man, and Cybernetics – Part C: Applications and Reviews, 40(5), 557–566.
Cöster, R., & Svensson, M. (2002). Inverted file search algorithms for collaborative filtering. In Proceedings of the annual international ACM SIGIR conference

(pp. 246–252). Tampere, Finland.
de Campos, L. M., Fernández-Luna, J. M., Huete, J. F., & Rueda-Morales, M. A. (2010). Combining content-based and collaborative recommendations: A hybrid

approach based on Bayesian networks. International Journal of Approximate Reasoning, 51(7), 785–799.
Gong, S. (2010). A collaborative filtering recommendation algorithm based on user clustering and item clustering. Journal of Software, 5(7), 745–752.
Greinemr, R., Su, X., Shen, B., & Zhou, W. (2005). Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers.

Machine Learning, 59(3), 297–322.
Li, S., & Jin, R. (2003). Flexible mixture model for collaborative filtering. In Proceedings of the international conference on machine learning (pp. 704–711).

Washington, DC, USA.
Li, Q., Myaeng, S. H., & Kim, B. M. (2007). A probabilistic music recommender considering user opinions and audio features. Information Processing &

Management, 43(2), 473–487.
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80.
Manning, C. D, Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge University Press.
Mobasher, B., Burke, R. D., & Sandvig, J. J. (2006). Model-based collaborative filtering as a defense against profile injection attacks. In Proceedings of the

national conference on artificial intelligence. Boston, Massachusetts, USA.
Palmisano, C., Tuzhilin, A., & Gorgoglione, M. (2008). Using context to improve predictive modeling of customers in personalization applications. IEEE

Transactions on Knowledge and Data Engineering, 20(11), 1535–1549.
Pham, M. C., Cao, Y., Klamma, R., & Jarke, M. (2011). A clustering approach for collaborative filtering recommendation using social network analysis. Journal

of Universal Computer Science, 17(4), 583–604.
Sarwar, B. M., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the international

WWW conference (pp. 285–295).
Sarwar, B. M., Karypis, G., Konstan, J., & Riedl, J. (2002). Recommender systems for large-scale e-commerce: Scalable neighborhood formation using

clustering. In Proceedings of the international conference on computer and information technology. Dhaka, Bangladesh.
Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009 (article id 421425).
Truong, K., Ishikawa, F., & Honiden, S. (2007). Improving accuracy of recommender system by item clustering. IEICE – Transactions on Information Systems,

E90-D(9), 1363–1373.
Umyarov, A., & Tuzhilin, A. (2011). Using external aggregate ratings for improving individual recommendations. ACM Transactions on the Web, 5(1), 3.
Ungar, L., & Foster, D. (1998). Clustering methods for collaborative filtering. In Proceedings of the workshop on recommendation systems. Menlo Park

California, USA.
Wang, J., Robertson, S., de Vries, A. P., & Reinders, M. J. T. (2008). Probabilistic relevance ranking for collaborative filtering. Information Retrieval, 11(6),

477–497.
Wang, J., de Vries, A. P., & Reinders, M. J. T. (2008). Unified relevance models for rating prediction in collaborative filtering. ACM Transactions on Information

Systems, 26(3), 1–42.
Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., et al. (2005). Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the annual

international ACM SIGIR conference (pp. 114–121). Salvador, Brazil.
Zhan, J., Hsieh, C. L., Wang, I. C., Hsu, T. S., Lian, C. J., & Wang, D. W. (2010). Privacy-preserving collaborative recommender systems. IEEE Transactions on

Systems, Man, and Cybernetics – Part C: Applications and Reviews, 40(4), 472–476.
Zhang, M., & Hurley, N. (2009). Novel item recommendation by user profile partitioning. In Proceedings of the IEEE/WIC/ACM international joint conference on

web intelligence and intelligent agent technology (pp. 508–515). Washington, DC, USA.

	Cluster searching strategies for collaborative recommendation systems
	1 Introduction
	2 Related work
	3 Baseline collaborative filtering system
	4 Cluster-skipping inverted index for collaborative filtering
	5 Cluster-based hybrid filtering (HF)
	6 Evaluation
	6.1 Data set
	6.2 General parameters
	6.3 Evaluation metrics
	6.4 Clustering parameters
	6.5 Evaluated systems
	6.6 Experimental results and discussions

	7 Conclusion
	Acknowledgements
	References

