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Abstract. Text similarity join operator joins two relations if their join attributes are 
textually similar to each other, and it has a variety of application domains including 
integration and querying of data from heterogeneous resources; cleansing of data; 
and mining of data. Although, the text similarity join operator is widely used, its 
processing is expensive due to the huge number of similarity computations 
performed. In this paper, we incorporate some short cut evaluation techniques from 
the Information Retrieval domain, namely Harman, quit, continue, and maximal 
similarity filter heuristics, into the previously proposed text similarity join 
algorithms to reduce the amount of similarity computations needed during the join 
operation. We experimentally evaluate the original and the heuristic based similarity 
join algorithms using real data obtained from the DBLP Bibliography database, and 
observe performance improvements with continue and maximal similarity filter 
heuristics. 

1   Introduction 

The text similarity join operator, as its name implies, joins two relations if their join 
attributes, which consist of pure text, are highly similar to each other. The similarity 
between join attributes is determined by well-known techniques such as tf-idf weighting 
scheme [1] and cosine similarity measure from the Information Retrieval (IR) domain. 
The text similarity join operator has various application domains. Cohen [2], Gravano et 
al. [3], and Schallehn et al. [4] use this operator for the integration of data from 
distributed, heterogeneous databases that lack common formal object identifiers. For 
instance, in two Web databases listing research institutions, to determine whether the two 
names “AT&T Labs” and “AT&T Research Labs” denote the same institution or not, text 
similarity join operator may be employed.  

Meng et al. [5] use the text similarity join operator to query a multidatabase system that 
contains local systems managing both structured data (e.g., relational database) and 
unstructured data (e.g., text). As an example let’s assume that we have two global 
relations: applicants containing information about job applicants and their resumes, and 
positions including the description of each job; then the text similarity join operator is 
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used to answer queries like “for each position, find k  applicants whose resumes are most 
similar to the position’s description”. Jin et al. [6] employ similarity join operator for 
solving the problem of record-linkage in the context of data cleansing. In [7, 8], we 
describe similarity join operator to facilitate metadata based web querying [9]. 

We classify the text similarity join operators as top-k, threshold, and directional 
similarity join operators [8] such that the top-k similarity join takes two relations R and S, 
and an integer k as input, then joins tuple pairs from R and S according to the similarity of 
their textual join attributes, and returns k joined tuples having the highest similarity 
values. The threshold similarity join  also takes two relations R and S, and a real threshold 
value in the range [0..1] as input, and joins tuples from R and S if the similarity of their 
textual join attributes is greater than or equal to the threshold value. The last similarity 
join operator, called directional similarity join, joins each tuple from relation R with k  
most similar tuples from relation S, and returns at most |R|*k joined tuples where |R| is the 
number of tuples in relation R. In this study, we focus on the directional similarity join 
operator, and we try to reduce the amount of similarity comparisons executed by 
employing some early termination heuristics (e.g., Harman, quit, continue, and maximal 
similarity filter) from the IR domain. These heuristics improve the performance of the join 
operation by considering only the tuple pairs that have high similarity to each other and 
ignoring the ones having small or no similarity. We also show through experimental 
evaluation that early termination heuristics improve the performance of the similarity join 
operator considerably in terms of the number of disk accesses made and the amount of 
similarity computations performed.  

The rest of the paper is organized as follows. In the next section, we describe the 
related work. A brief summary of the previously proposed directional join algorithms and 
the early termination heuristics are presented in sections 3 and 4. In Section 5, we 
experimentally evaluate and compare all the algorithms in terms of the CPU time required 
for processing, the number of tuple comparisons and the number of disk accesses made. 
Finally, we conclude our discussion in Section 6.   

2   Related Work 

Recently, similarity join operator for both low and high dimensional data has become a 
popular research topic as it is used in variety of applications such as data integration, data 
cleansing, data mining, and querying. Different techniques have been used for the 
similarity join of low dimensional (e.g., text) and high dimensional data (e.g., multimedia, 
biological data). Among the text similarity join proposals, the works presented in [3, 4, 6] 
describe processing techniques for the threshold similarity join operator. In [2, 10, 11, 12, 
13, 14], algorithms for the top-k similarity join operator are described.  

Although numerous proposals exist for the threshold and the top-k similarity join 
operators, only Meng et al. [5] study the directional similarity join operator. They propose 
and experimentally evaluate three join algorithms namely, Horizontal-Horizontal Nested 
Loop (HHNL), Horizontal-Vertical Nested Loop (HVNL), and Vertical-Vertical Merge 
(VVM), which use the well-known similarity measure, tf-idf weighting scheme and cosine 
similarity measure for similarity comparisons. As the names of the algorithms imply, 
HHNL and HVNL algorithms are nested loops based join algorithms such that HHNL 
algorithm compares each document (tuple) pairs in the collections (relations), and HVNL 



algorithm, on the other hand, uses the documents in one collection and the inverted file for 
the other collection to compute the similarities. Algorithm VVM, which is not nested 
loops based, uses inverted files on both collections to compute the similarities. The details 
of these similarity join algorithms and the early termination heuristics applied to these 
algorithms are given in the subsequent sections. 

The similarity measure employed in [5] and also in this study is the cosine similarity 
measure with tf-idf weighting scheme [1] in which, each document (join attribute in the 
similarity join operator) is represented as a vector consisting of n components, n being the 
number of distinct terms (i.e., stemmed words) in the document collection, such that each 
component of a vector for a document gives the weight of the term i for that document. 
Weight of a term for a particular document is computed according to tf-idf value, where tf 
(term frequency) is  the number of occurrences of term i within the document; and idf 
(inverse document frequency) gives more weight to scarce terms in the collection. The 
similarity measure is the cosine of the angle between the two document vectors such that 
the larger the cosine, the greater the similarity. Other measures such as Hamming 
distance, and longest commo n subsequence (LCS) for determining the similarity between 
short strings have also been developed. In [2, 3, 5] tf-idf weighting scheme and cosine 
similarity measure are preferred as the vector space model gives quite good matches even 
for short strings. Also, the vector space model allows the use of inverted indices, which 
makes possible for us to integrate some early termination heuristics from the IR domain 
during the similarity comparisons of tuples.  

3   Directional Text Similarity Join Algorithms  

The only study that has appeared in the literature for the directional similarity join 
operator were developed by Meng et al. [5] who presented three algorithms namely 
HHNL, HVNL, and VVM for the join operator. The HHNL (Horizontal-Horizontal 
Nested Loops) algorithm is a blind nested loops join algorithm, in which each tuple r in 
relation R is compared with every tuple in relation S, and k  most similar tuples from S are 
joined with tuple r. In [5], the input relations R and S are read from disk. After reading X 
tuples from R into the main memory, the tuples in S are scanned; and while a tuple in S is 
in the memory, the similarity between this tuple and every tuple in R that is currently in 
the memory is computed. For each tuple r in R, the algorithm keeps track of only those 
tuples in S, which have been processed against r and have the k highest similarities with r. 
In the HHNL algorithm, and also in all other algorithms described in [5], a heap structure 
is used to find the smallest of the k-largest similarities.   

The HVNL (Horizontal-Vertical Nested Loops) [5] algorithm is an adaptation of the 
ranked query evaluation techniques in the IR domain to the join operation. In an IR 
system, the aim is to find the k  documents in the system which are most similar to the user 
query. For that purpose, most of the IR systems employ inverted files. In these systems, 
for each term t in the user query, the term is searched from the inverted index and the ids 
of documents containing term t are found. Then, the similarity calculations are performed 
only for those documents that have at least one common term with the user query. 
Algorithm HVNL is a straightforward extension of this method such that for each tuple r 
in R, the algorithm calculates the similarity of r to all tuples in S having at least one 
common term with r, and selects the k  most similar tuples from S. The advantage of 



HVNL algorithm is that, it does not perform similarity calculations for all tuples in S as in 
the case of the HHNL algorithm. In the HVNL algorithm, the inverted file consists of (i) 
an inverted index  which includes the index term (t), the number of tuples in S containing 
the index term (ft), and a pointer to its corresponding inverted list entry, and (ii) an 
inverted list  which stores tuple id having the index term t, and the frequency of the term in 
that tuple (fs,t). In the HVNL algorithm the inverted index is stored in the memory, the 
inverted list entries, and the relations R and S are read from disk.  

The algorithm VVM (Vertical-Vertical Merge) employs sorted inverted indices with 
respect to the index terms on both of the input relations R and S [5]. The VVM algorithm 
scans both inverted files on the input relations at the same time. During the scan of the 
inverted indices, if both index entries correspond to the same index term, then similarities 
are accumulated between all tuples in the inverted lists of the indices. The VVM 
algorithm assumes that, both inverted files as well as relations R and S are read from disk. 
In order to store intermediate similarities between every pair of tuples in the two relations, 
the algorithm needs |R|*|S| accumulators1 that are stored in main memory. The strength of 
the algorithm is that it scans the inverted files only once to compute similarities between 
every pair of tuples. However, the memory requirement for the accumulator is so large 
that it cannot be run for relations having large number of tuples. As an example, let’s 
assume that both relations R and S consist of 100,000 tuples, and each similarity value 
requires 4 bytes (size of float), so the memory allocated for the accumulator should be at 
least 100,000*100,000*4 bytes = 40Gb. In this study, we do not consider the algorithm 
VVM due to its huge memory requirement. 

4   Heuristic Based Directional Similarity Join Algorithms 

In the subsequent sections, we first describe early termination heuristics [15] from the IR 
domain that we use to improve the performance of directional similarity join operation, 
and then we briefly introduce directional similarity join algorithms employing these 
heuristics. 

4.1   Harman Heuristic 

Harman et al. [16] proposed a heuristic to decrease the number of similarity computations 
performed during the search of similar documents to a user query. We apply this heuristic 
to the HVNL algorithm as it employs an inverted index over the relation S. The HVNL 
algorithm extended with Harman heuristic is called HVNL-Harman in which, for each 
tuple r in relation R, weights of the terms in r are examined, and the inverted index is 
accessed only for these terms having a weight greater than the 1/3 of the highest weighted 
term in r. This heuristic is implemented by modifying the original HVNL algorithm as 
presented in Figure 1. The HVNL-Harman algorithm considers S tuples which have high 
weighted terms in tuple r, and does not perform similarity computations for other S tuples 
that do not contain high weighted terms.  

 
 
 

                                                                 
1 Accumulator is a set of real numbers (Ars) each stores an accumulated similarity between tuples r and s. 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1. HVNL algorithm with Harman heuristic (HVNL-Harman) 

4.2   Quit and Continue Heuristics 

Moffat et al. [17] also suggested to sort the terms in the user query with respect to their 
weights in descending order, and to access the inverted index with respect to this order. 
They place an a priori bound (i.e., accumulator bound) on the number of candidate 
documents that can be considered for the similarity calculation. New documents are 
compared until this bound is reached. The idea behind this heuristic is that, terms of high 
weight are permitted to contribute to the similarity computation, but terms of low weight 
are not. When the bound is reached; in the quit approach, the cosine contribution of all 
unprocessed terms are ignored, and the accumulator contains only partial similarity values 
for documents. In the continue strategy, documents that do not have an accumulator are 
ignored, but documents for which accumulators have already been created continue to 
have their cosine contributions accumulated. When the processing ends, the computation 
of full cosine values for a subset of the documents becomes completed.   

As the quit heuristic allows only the partial similarity computation, it is not suitable for 
the directional similarity join operator. To find top-k similar tuples for a given tuple r, we 
need to have full cosine values and thus, we use the continue heuristic with the HVNL 
algorithm (HVNL-Continue). In this variation of the HVNL algorithm, for each tuple r of 
R, only s tuples from S which have high weighted terms in r are considered for similarity 
computations until the accumulator bound on the number of tuples that can be considered 
for similarity computations is reached. When the accumulator bound is reached, the full 
cosine similarities between tuple r and s tuples become computed and the k-most similar 
tuples to r are selected. In the HVNL-Continue algorithm, we need document vectors 
(term weights) for tuples in relation S to compute the full cosine similarity values. Term 
weights for each s tuple can be computed prior to the join operation by just passing over 
the relation only once as a one time cost. For the implementation of the HVNL-Continue 
algorithm, we modify the 3rd line of the algorithm in Figure 1 as “for each term t in (sorted 
terms list of) r”. Also, in the 6th and 12th lines of the algorithm, for each tuple r in relation 
R, we increase the value of a counter variable by 1 each time a new s tuple is considered 

1.  for each tuple r in R 
2.     {compute weights (wt) of each term in r and sort the terms with  
          respect to wt in descending order; 
3.       for each term t in r having weight wt > (max{wt for all t in r}/3) 
4.          if t also appears in S 
5.              if the inverted file entry of t on S (I1

t) is in the memory 
6.                 accumulate similarities; 
7.              else (if the inverted file entry of t on S (I1

t) is not in the memory) 
8.                 if the available memory space can accommodate I1

t  
9.                    read in I1

t; 
10.               else  
11.                  find the inverted file entry in the memory with the lowest  
                       term frequency and replace it with I1

t ; 
12.               accumulate similarities;} 
13.  find the tuples in S which have the k  largest similarities with r; 



for similarity computation, and when the value of the counter becomes equal to the 
predetermined accumulator bound, the for loop in line 3 is exited, and the counter is reset.    

4.3   Maximal Similarity Filter Heuristic  

“Maximal similarity filter” [7] is another technique that may be used to reduce the number 
of tuple comparisons made during the directional text similarity join operation. Let us = 
<u1 u2 … un> be the term vector corresponding to the join attribute of tuple s of S, where 
ui represents the weight of the term i in the join attribute.  Assume that the filter vector fR 
= <w1 … wn> is created such that each value wi is the maximum weight of the 
corresponding term i among all vectors of R. Then, if cos_sim (us, fR) < Vt then s can not 
be similar to any tuple r in R with similarity above Vt. The value cos_sim (us, fR) is called 
the maximal similarity of a record s in S to any other record r in R.  

In the HVNL algorithm with maximal similarity filter (HVNL-Max-Filter), the inverted 
list entries are accessed with respect to descending order of maximal similarity values of s 
tuples. For each term t in tuple r of R, the inverted index is entered and the similarity 
comparisons are stopped at the point when the maximal similarity value (cos_sim (us, fR)) 
for the tuple s is less than the smallest of the k-largest similarities computed so far for 
tuple r, since it is not possible for s to be in the top-k similar tuples list. The maximum 
weight of a term for a given relation is determined while creating the vectors for the 
tuples, and the filter vector for each relation may be formed as a one-time cost. To apply 
this heuristic, we need to sort the inverted list entries with respect to maximal similarity 
values of tuples just once during the preprocessing step. The HVNL-Max-Filter algorithm 
is also very similar to the HVNL-Harman algorithm (Figure 1). One difference is, the 3rd 
line of HVNL-Harman is changed as “for each term t in r”. Also, in lines 6 and 12, 
similarity computations for s tuples having term t are performed if the maximal similarity 
value for the tuple s is greater than the smallest of the k-largest similarities computed so 
far for tuple r, otherwise the for loop in line 3 is exited. 

We also apply the maximal similarity filter heuristic to the HHNL algorithm (i.e., 
HHNL-Max-Filter), in which we sort the tuples in relation S in descending order of their 
maximal similarity filter values as a preprocessing step, and we terminate the inner loop 
when the maximal similarity filter for the s tuple that is being processed is less than the 
smallest of the k-largest similarities computed so far for the tuple r.   

5   Experimental Results 

We compared the performance of HHNL, HVNL, HVNL-Harman, HVNL-Continue, 
HVNL-Max-Filter, and HHNL-Max-Filter in terms of the number of tuple comparisons 
made, the number of disk accesses required, and the CPU time needed. For the 
experimentation, we implemented these algorithms in C programming language under MS 
WindowsXP operating system. We did not include VVM since it requires huge amount of 
memory to keep intermediate similarities between tuple pairs. In the implementation, the 
relations R and S are stored on disk and each block read from the relations contain 10000 
tuples. For the HVNL and its variations, the inverted index is in-memory, however the 
inverted list entries are stored on disk and up to 5000 inverted list entries are kept in the 
cache. An inverted list entry that is not in the cache is retrieved fro m disk by making 



random disk access, and when the cache is full, the entry for the term having the least 
term frequency is replaced with the new entry.  

In the experiments, we used a real dataset that consists of the bibliographic information 
of journal and conference papers obtained from the DBLP Bibliography database [18]. In 
the implementation of the directional text similarity join, the relations R and S do not 
contain any common tuple, and the relation R consists of bibliographic information of 
approximately 91,000 journal papers, and the relation S contains bibliographic 
information of 132,000 conference papers. The paper title attribute is chosen as the join 
attribute, and for each journal paper r in relation R, we try to find k  conference papers 
from relation S having the most similar titles to the title of r. We created the vectors and 
the maximal similarity filters for the join attribute of each tuple in the relations R and S, 
and the inverted index on relation S in advance as the preprocessing step. We assumed 
that we have enough main memory to store the inverted index and the accumulators used 
for similarity calculations. The experiments were performed on a PC having Pentium III 
450 MHz CPU and 320 MB of main memory.  

In Figure 2, the results in terms of the number of tuple comparisons (i.e., similarity 
computations) performed by the implemented algorithms for different k  values are 
presented. As displayed in the figure, the HHNL algorithm needs to make around 12 
billion comparisons for each different k values to join R and S, while all versions of the 
HVNL algorithm do less than 900 million tuple comparisons for the same join operation. 
HVNL, and all variations of the HVNL algorithm perform much better than the HHNL 
algorithm, because of the fact that these algorithms employ inverted index on the input 
relation S, and they compare similarity of tuples which are guaranteed to have a similarity 
value greater than 0. The HHNL algorithm, on the other hand, makes similarity 
computation for all tuple pairs regardless of whether the tuples contain any common term 
or not.  

 

 
Fig. 2. Number of tuple comparisons for all algorithms vs. k values 

The maximal similarity filter heuristic reduces the number of tuple comparison about 
25% for both the HHNL and the HVNL algorithms. We use continue and Harman 
heuristics with the HVNL algorithm only, as these heuristics are applicable when an 
inverted index is employed. The continue heuristic, in which accumulator bound is set to 
5000 tuples, provides more improvement on the performance of the HVNL algorithm by 
decreasing the number of tuple comparisons by 50%. The Harman heuristic, on the other 



hand, does not improve the performance of the HVNL algorithm, because term weights 
for our input data are quite close to each other. Changing the value of k  does not affect the 
number of tuple comparisons except for the maximal similarity filter heuristic. As the k 
value increases, maximum similarity filter heuristic needs to make more tuple 
comparisons to find top k  similar tuples. 

We also computed the number of disk accesses (Table 1) required by all algorithms 
when the relations R and S, and the inverted list entries on the join attribute of relation S 
are stored on disk. In the disk access computation, we ignored the number of disk accesses 
made for writing the joined tuples to the disk. According to Table 1, the number of disk 
accesses performed by the HHNL algorithms, which is approximately 150 disk accesses, 
is quite less than those obtained with the HVNL algorithms since for each term t  
considered during the similarity comparisons, the HVNL based algorithms read inverted 
list entries of term t (i.e., It) by making a disk access if it is not in the memory. According 
to the Table1, the continue heuristic reduces the number of dis k accesses of the HVNL 
algorithm by 50%. The Harman and maximal similarity filter heuristics, on the other hand, 
do not lead to any reduction on the number of disk accesses required. This result is due to 
the fact that, the term weights in our dataset are close to each other and the Harman 
heuristic considers almost all terms in a tuple r during the similarity computations. The 
maximal similarity filter heuristic on the other hand, needs to access all the inverted list 
entries for all terms in a tuple r to find the s tuples having high maximal similarity values. 
Therefore, the maximal similarity filter heuristic only reduces the number of tuple 
comparisons performed when the inverted list entries are sorted with respect to the 
maximal similarity value of tuples.    

Table 1. Number of disk accesses performed by all the algorithms for all k values 

k HHNL HHNL-
Max-Filter 

HVNL HVNL-
Harman 

HVNL-
Continue 

HVNL-
Max-Filter 

5-25 150 150 26282 26198 14176 26282 

 

 
Fig. 3. CPU time required by all algorithms for the directional similarity join 

Although the number of disk accesses performed by the HHNL based algorithms is 
quite less, the number of tuple comparisons is considerably higher than the HVNL based 
algorithms. To determine which group of algorithms is more efficient, we measured the 



CPU time required by all of the join algorithms for k=10 and reported the results in Figure 
3. As presented in Figure 3, the CPU time required to execute the join operation is 11725 
seconds for the HHNL algorithm, and 2810 seconds for the HVNL algorithm, which 
implies that similarity computations take much longer CPU time than making disk 
accesses for retrieving inverted list entries. The maximal similarity filter heuristic reduces 
the CPU time by 16% for the HHNL and 20% for the HVNL algorithms. The continue 
heuristic makes 35% reduction in the processing time when the accumulator bound is set 
to 5000 tuples. The Harman heuristic, on the other hand, does not provide any 
improvement since it also does not make any reduction in the number of tuple 
comparisons and disk accesses.   

For the continue heuristic, the accumulator bound is an important factor on the 
performance of the join algorithm. To show the effect of the accumulator bound on the 
join operation, we run the HVNL-Continue algorithm with different accumulator bounds 
and present the results in Table 2. We observed that, as the accumulator bound is 
decreased, the number of tuple comparisons falls, due to the fact that, the accumulator 
bound is an upper bound on the number of tuples that can be considered for similarity 
comparisons. The number of tuple comparisons made remain the same for different k 
values. 

 
Table 2. The effect of accumulator bound for the continue heuristic 

 

Accumulator  
     Bound 

# of Tuple  
Comparisons  

# of Disk 
 Accesses  

CPU  
Time (sec) 

Accuracy 

5,000 372,448,481 14,176 1854 65% 
10,000 604,454,778 20,001 2595 84% 
15,000 732,112,934 22,678 2801 91% 

 

We examined the accuracy of the output produced by the algorithms that employ early 
termination heuristics as follows: Accuracy= |B ∩ H| / |B|, where B denotes the actual 
output set generated by the HHNL or HVNL algorithm, H is the output  generated by the 
algorithm that employ any one of the early termination heuristics, and | . | denotes the set 
cardinality. We observed that the Harman heuristic generates exactly the same output as 
the HHNL, and HVNL algorithms; the continue heuristic, on the other hand, could 
achieve 65% accuracy when the accumulator bound is set to 5000 tuples, and the accuracy 
can be improved up to 91% when the accumulator bound is increased to 15000 tuples. As 
the accumulator bound is an upper bound on the number of tuples that can be considered 
for the similarity comparisons, it highly affects the accuracy of the continue heuristic. For 
the maximal similarity filter heuristic, we observed that the accuracy of this heuristic is 
100%, as it calculates the similarity for s tuples having maximal similarity value greater 
than or equal to the smallest of the k  largest similarities computed so far for tuple r. 
Therefore, the heuristic considers all s tuples that can be in the result set by eliminating 
the ones that are not possible to be in the result.  

6   Conclusion 

Similarity based text join is a very useful operator to be employed in a variety of 
applications. In this study, we incorporate some early termination heuristics from the 



Information Retrieval domain to achieve performance improvement for the text similarity 
join algorithms. We have demonstrated through experimental evaluation that nested loops 
based similarity join algorithm performs the best in terms of the number of disk accesses 
required; however, it compares every tuple pairs from the relations to be joined and leads 
to a huge amount of expensive similarity computations. Inverted index based join 
algorithm, on the other hand, achieves very small number of similarity computations 
while requiring large number of disk accesses. When we compare the processing time of 
the algorithms, we have demonstrated that the index based algorithm is superior to the 
nested loops based one, and we have observed further performance improvement by 
applying the maximal similarity filter and the continue heuristics to the index based join 
algorithm.     
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