
A. Levi et al. (Eds.): ISCIS 2006, LNCS 4263, pp. 707 – 716, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Algorithms for Within-Cluster Searches
Using Inverted Files

Ismail Sengor Altingovde, Fazli Can, and Özgür Ulusoy

Department of Computer Engineering, Bilkent University
06800, Ankara, Turkey

{ismaila, canf, oulusoy}@cs.bilkent.edu.tr

Abstract. Information retrieval over clustered document collections has two
successive stages: first identifying the best-clusters and then the best-documents
in these clusters that are most similar to the user query. In this paper, we assume
that an inverted file over the entire document collection is used for the latter stage.
We propose and evaluate algorithms for within-cluster searches, i.e., to integrate
the best-clusters with the best-documents to obtain the final output including the
highest ranked documents only from the best-clusters. Our experiments on a
TREC collection including 210,158 documents with several query sets show that
an appropriately selected integration algorithm based on the query length and
system resources can significantly improve the query evaluation efficiency.

1 Introduction

Document clustering is one of the earliest approaches proposed for improving
effectiveness and efficiency of information retrieval (IR) systems [8, 9]. With the fast
growth of the Web, the amount of digital text data has also increased enormously in
the last decade. This has given rise to a new interest on document clustering, not only
due to the historically known promises of effectiveness and efficiency improvements,
but also for several other purposes and application areas such as data visualization or
preprocessing for several data mining applications. Moreover, the advent of the Web
also fueled creation of some of the largest document hierarchies of the digital age. As
an alternative to search engines that index all the terms on the Web pages and provide
keyword-based searches, Web directories (such as Yahoo! and DMOZ) exist and
attract attention of users. Such Web directories are formed by manually assigning
Web pages to the categories of a topic hierarchy by human experts.

A user accessing an IR system with document clusters has three possible methods
for satisfying his/her information needs: browsing, keyword-based (ad hoc) querying,
or browse-based querying (i.e., the user can first browse through the categories until
(s)he reaches to the cluster(s) (s)he is interested in and then pose a keyword-based
query to be evaluated under this particular cluster(s)). Notice that, for any given IR
system involving document clusters (or categories) -either created automatically or
manually, for legacy data or Web documents and in a flat or hierarchical structure- the
retrieval process involves two basic steps: finding the relevant clusters that best match
to the user query and identifying the most relevant documents within these clusters.
The first step, best(-matching) cluster selection, can be achieved either automatically

708 I.S. Altingovde, F. Can, and Ö. Ulusoy

by matching a user query to cluster representatives (centroids), or manually, as
provided by user browsing. The second step, best(-matching) document selection,
usually involves an inverted index structure of entire document collection, which is
employed during the query-document matching. Thus, the result of best-document
selection step is a ranked list of all documents in the collection according to their
relevance to the query. The best-clusters obtained in the first step is then used to filter
the best-documents in the second step, so that only those documents that have the
highest similarity to the query and come from the best-clusters remain in the final
output set. This integration step of best-clusters and best-documents can be postponed
to the point where both sets are separately identified, or can be somehow embedded to
best-document selection process. In this paper, we try to figure out how and when the
best-cluster set information should be integrated while selecting best-documents with
a traditional inverted index based query evaluation strategy. Interestingly, although
the history of document clustering spans a few decades, the above question at a detail
level of practical implementation has only attracted attention very recently and has
been discussed in a few research studies [1, 2, 3, 4, 5].

The main contribution of this paper is proposing and evaluating result integration
algorithms to identify a query’s best-matching documents that lie within a pre-
determined set of best-clusters. It is assumed that best-document selection process
involves an inverted index structure (IIS) over all documents, which is the case in
most practical systems, and thus such an integration step will be required. The
integration algorithm would be of critical value for improving query processing
efficiency for both traditional IR systems with automatically clustered document
collections and Web directories. Note that, the discussion is independent from the
manner in which best-clusters are determined, which might be automatic or manual,
and the clustering structure, i.e., partitioning or hierarchical. In the experiments, we
use multiple query sets and the Financial Times database of TREC containing
210,158 documents of size 564 MB to evaluate the proposed algorithms. Our findings
reveal that, selecting an appropriate integration algorithm based on the query size is
crucial for reducing the query evaluation time.

The rest of the paper is organized as follows. In Section 2, we review the state of
the art approaches for cluster searches (CS) using inverted index structures. In Section
3, we describe several query processing alternatives for result integration in cluster
searches. In Section 4, the experimental environment is described and the efficiency
figures of proposed strategies are extensively evaluated in Section 5. Finally, we
conclude in Section 6.

2 State of the Art Approaches for Cluster Search (CS)

As mentioned before, there are two stages of information retrieval for clustered
document collections [4, 5]: determining the best-matching clusters to a given query and
then computing the best-matching documents from these clusters. During the best-
document selection, a complementary step can also be required: integrating the best-
cluster set information to the process of best-document selection to obtain the final
query result. In Table 1, we list possible file structures to be used for best-document
selection stage. We assume that a set of best clusters within which the search will be
conducted is already obtained either automatically [4, 5] or manually, i.e., by browsing.

 Algorithms for Within-Cluster Searches Using Inverted Files 709

There are recent proposals that aim to eliminate the result integration step, either
totally or partially, by using a modified document inverted index file during the best-
document selection stage [1, 2, 3, 5]. In what follows, we first review the potential CS
implementations that are based on typical document IIS and require a result
integration step. After that, we discuss the implementations with modified inverted
files that do not require any integration.

Table 1. Typical file structures for best-document selection stage

Best-document selection
Initial best-document selection Result integration

Document Vectors (DV) Cluster-document (CD) IIS
Document IIS (IIS) Document-cluster (DC) IIS

2.1 Cluster Search Implementations with the Result Integration Step

The best-document selection stage can use two file structures: DV (document vectors)
and document IIS (inverted index of documents). In this paper, we assume that the
documents are represented by vectors, based on vector space model [9]. The DV file
includes the actual document vectors, whereas the IIS file stores an inverted index of
all documents. An inverted index has a header part, including list of terms
(vocabulary) encountered in the collection, and pointers to the posting lists for each
term. A posting list for a term consists of the document ids that include the term and
is usually ordered according to the document ids or some importance or relevance
function that can optimize query processing. Note that, in all practical systems, a
document IIS is used to compute query-document similarity, since the DV option is
extremely costly (see [4] for a performance evaluation).

Once the best-clusters and best-documents are obtained separately, there are two
ways to eliminate the best-documents that are not a member of the best-clusters [2, 3],
i.e., to integrate the results of best-cluster and document selection stages. We call
these alternatives “document-id intersection based integration” and “cluster-id
intersection based integration,” and describe in detail next.

• Document-id intersection based integration: This alternative uses an inverted
index such that for each cluster, the documents that fall into this particular cluster
are stored (i.e., cluster-document (CD)-IIS). In this case, by using this latter
(inverted) index, first the union of all documents that are within the best-clusters
are determined, and then the resulting document set is intersected with the best-
documents to obtain the final result. Note that, in an IR environment with
clustering, such an inverted index of documents per cluster (i.e., a member
document list for each cluster) is required in any case, to allow the browsing
functionality.

• Cluster-id intersection based integration: The second integration alternative is
just the reverse: for each document in the best-document set, the cluster(s) in
which this document lies is found by using an (inverted) index that stores the list
of clusters for each document (i.e., document-cluster (DC)-IIS). Then, the
obtained cluster id(s) are intersected with the best-clusters set and if the result is
not empty, the document is added to the final query output set.

710 I.S. Altingovde, F. Can, and Ö. Ulusoy

The first integration alternative would be efficient when the number of documents
per cluster is relatively small, whereas the second approach would be more efficient
when the best-document set to be processed is small. Also note that, the inverted index
required by the second alternative is redundant, as it is the transpose of the CD-IIS that
would be implemented in any case to support the browsing functionality. On the other
hand, as the integration process required by the first alternative requires first obtaining
a union of several document lists and then an intersection, it would be less efficient in
terms of query processing time, whereas storing an additional inverted index (DC-IIS)
is not a major concern given the storage capabilities of modern systems [2]. In this
paper, we focus on the algorithms for the second alternative, cluster-id intersection
based integration, which seems to be more practical for large-scale IR systems.

2.2 Cluster Search Implementations Without the Result Integration Step

To avoid the integration step mentioned above, modified document inverted index
files are proposed. In [2, 3], document identifiers are created as signatures, which
convey information about the hierarchy of clusters in which a document belongs to.
However, since the signatures can produce false drops, i.e. only provide an
approximate filtering of best-document set, there is still a need for the cluster-id based
integration approach to obtain the final query result. In [1, 5], we propose a skip-
based IIS that differs from a typical IIS since in posting lists it stores the documents
of each cluster in a group adjacent to each other. Remarkably, this skip-based
approach is the only one that is fully evaluated for environments with compression [1]
and doesn’t require any integration step.

Notice that, our work presented here aims to discuss the efficiency of integration
algorithms for systems using typical inverted index files. We believe that such large-
scale IR systems exist due to possible data and application-specific limitations and
reasons (e.g., a modified IIS may not be available if an off-the-shelf product is used to
create the inverted index). Thus, present work would be valuable for those IR systems
and Web directories employing typical inverted files.

3 Query Processing Algorithms for Cluster-Id Intersection Based
Result Integration in Cluster Search

In this paper, we propose algorithms for the cluster-id based result integration approach
for CS. It is assumed that the best-clusters set is already obtained automatically (i.e., by
query-cluster centroid matching) or manually (i.e., by browsing). Then, a typical
ranking query evaluation algorithm that can be employed during the best-document
selection would be as shown in Figure 1.

The typical query evaluation as shown in Figure 1 works as follows. For each
query term, corresponding posting list is retrieved, and for each document in the
posting list, its accumulator array entry is updated by using a similarity measure (such
as the cosine measure [10]). When all query terms are processed, a min-heap is used
to extract the top scoring documents from the accumulator array. The details of this
process can be found in [7, 10].

 Algorithms for Within-Cluster Searches Using Inverted Files 711

Input: Keyword-based query q
Output: Top-k best-matching documents
In-memory data structures: Document accumulator DAcc

(1) For each query term t
(2) Retrieve It, the posting list of term t from document IIS.
(3) For each <doc-id, tf> in It
(4) Update accumulator array entry DAcc [doc-id]
(5) Build a min-heap of size k for nonzero accumulator entries
(6) Extract the top-k best-matching documents from the heap

Fig. 1. Typical ranking query evaluation algorithm for keyword-based queries

To achieve within-cluster search, once the best-clusters are selected, the best-
document selection phase can be implemented in different ways to integrate the best-
cluster information. The alternatives differ in answering the following questions: (i)
At what point during best-document selection should the cluster-id(s) of a particular
document be intersected with the best-cluster ids, and (ii) What kind of data structure
should be used to keep best-cluster ids? During query evaluation shown in Figure 1,
the cluster ids can be intersected at three different points, yielding three
implementation alternatives: (i) before updating the accumulator array for a
document, (ii) before inserting a document to the min-heap, or (iii) after extracting the
top scoring documents from the min-heap. Two potential data structures to store best-
cluster ids are (i) a sorted array of best-clusters, or (ii) a 0/1 mark array in which
entries for best clusters are 1 and all others are 0. We discuss these alternatives and
their trade-offs in the following.

Intersect Before Update (IBU). In this approach (Figure 2), only those accumulator
entries that belong to documents from best-clusters are updated. To achieve this, after
a posting list is retrieved for a query term, the cluster to which each document in the
posting list belongs is determined and intersected with the best-cluster set. If the
document’s cluster is found in the best-cluster set, its accumulator entry is updated.

Note that, this alternative would increase the efficiency of the last two steps of the
algorithm (i.e., building and extracting from the heap as shown in lines 7-8), since all

Input: Keyword-based query q, best-clusters BestClus
In-memory data structures: Document accumulator DAcc, Document-category (DC) IIS

(1) For each query term t
(2) Retrieve It, the posting list of term t from document IIS.
(3) For each <doc-id, tf> in It
(4) Retrieve Idoc-id from DC-IIS and obtain Clus(doc-id)
(5) If Clus(doc-id)∩ BestClus ≠ Ø
(6) Update accumulator array entry DAcc [doc-id]
(7) Build a min-heap of size k for nonzero accumulator entries
(8) Extract the top-k best-matching documents from the heap

Fig. 2. The query processing algorithm for intersect before insert (IBU) approach

712 I.S. Altingovde, F. Can, and Ö. Ulusoy

the nonzero entries in the accumulator array are for the documents that are from best-
clusters. On the other hand, the performance of this approach crucially depends on the
cost of determining the clusters to which a document belongs (step 4) and cluster-id
intersection operation (step 5). For the former operation, the algorithm should access
document-cluster (DC) IIS for each element of the posting lists. However, if
document-cluster associations are kept in the main memory or cached efficiently, this
cost can be avoidable. This seems reasonable, since DC-IIS can be expected to be
relatively small in size and can be shared among several query processing threads. For
instance, assuming that documents are not repeated in more than one clusters, the
main memory requirement to cache the entire DC-IIS would be only O(D), i.e., in the
order of document accumulator array. In this paper, without loss of generality, we
assume that each document belongs to at most one cluster and the DC-IIS is stored in
the main memory.

The cost of cluster ids’ intersection is (assuming each document belongs to only
one cluster) O(log S), if a sorted array of size S is used to store best-cluster ids; and
O(1) if a 0/1 mark array is used for this purpose. Note that, the data structure for best-
clusters can be a sorted array if the memory reserved per query is scarce and/or total
number of clusters is quite large. In this case, the document’s cluster id can be
searched within best-clusters using binary search. A 0/1 mark array is obviously more
efficient but can only be preferred if the memory is not a concern and/or number of
clusters is relatively small.

Intersect Before Insert (IBI). In this approach, instead of checking the cluster id
intersection for each doc-id in each posting list, we do it once for each non-zero
accumulator entry while building the heap (Figure 3). This alternative is preferable if
the number of non-zero accumulator entries is expected to be low and/or the cost of
cluster id intersection is high.

Input: Keyword-based query q, best-clusters BestClus
In-memory data structures: Document accumulator DAcc, Document-category (DC) IIS

(1) For each query term t
(2) Retrieve It, the posting list of term t from document IIS.
(3) Update accumulator array entry DAcc [doc-id]
(4) For each DAcc[doc-id] ≠ 0
(5) Retrieve Idoc-id from DC-IIS and obtain Clus(doc-id)
(6) If Clus(doc-id)∩ BestClus ≠ Ø
(7) Insert into a min-heap of size k
(8) Extract the top-k best-matching documents from the heap

Fig. 3. The query processing algorithm for intersect before insert (IBI) approach

Intersect After Extract (IAE). In this third approach (Figure 4) the entire query
processing works as in Figure 1 and only at the end of the evaluation, the cluster-ids
of top-k documents are intersected with the best-clusters. Of course, if some of those k
documents are not from the best-clusters, then the build-heap step and extraction
should be repeated. To avoid such a repetition, the initial evaluation can be executed
for top-L documents, L > k. In this case, the cost of cluster-id intersection is

 Algorithms for Within-Cluster Searches Using Inverted Files 713

negligible as it is postponed at the end of processing and L << D. On the other hand,
it is important to choose L appropriately, if L is much larger than k (e.g., L = D the
extreme case), the gains in the intersection stage would be lost during the build-heap
and extraction. If L is too small (i.e., very close to k), we may need more than one
iteration to find k documents that are in the best-clusters. Thus, IAE alternative will
be useful if it can somehow be guaranteed that in a small number of highest scoring
documents, there will be at least k documents from the best clusters. More
specifically, this approach would be better than the previous alternative only if cluster
intersection is costly; and better than the IBU algorithm if both intersection test is
expensive and too many nonzero accumulator entries arise.

Input: Keyword-based query q, best-clusters BestClus
Output: Top-k best-matching documents Result
In-memory data structures: Document accumulator DAcc, Document-category (DC) IIS

(1) For each query term t
(2) Retrieve It, the posting list of term t from document IIS.
(3) For each <doc-id, tf> in It
(4) Update accumulator array entry DAcc [doc-id]
(5) Build a min-heap of size L (L>k) for nonzero accumulator entries
(6) Extract the top-L best-matching documents from the heap
(7) While size of Result < k
(8) For each doc-id ∈ top-L
(9) Retrieve Idoc-id from DC-IIS and obtain Clus(doc-id)
(10) If Clus(doc-id)∩ BestClus ≠ Ø
(11) Insert doc-id to the Result
(12) If size of Result < k
(13) Set L to M for some M > L, go to step (5)

Fig. 4. The query processing algorithm for intersect after extract (IAE) approach

4 Experimental Environment

Document Database and Clustering Structure. In the experiments, Financial Times
document collection (referred to as the FT database) of TREC Disk 4 is used. The
document database includes 210,158 newspaper articles published between 1991 and
1994. The indexing process with the elimination of English stop-words and numbers
yields a lexicon of 229,748 terms.

The database is clustered using C3M algorithm [6] in partitioning mode, which
yields 1640 clusters and 128 documents per clusters, on the average. An important
parameter is the number of best-matching clusters, and following the common
practice in earlier works [5] we use 10% of the total number of clusters (i.e., 164
clusters) as the number of best-clusters in the retrieval experiments. The clustering
structure and other parameters are validated for FT database in our previous study [5].
In this paper, we provide results for retrieving top-10 documents, i.e., k =10.

Queries, Query Matching & Centroid Weighting. We used the TREC-7 query
topics corresponding to the FT database of TREC Disk 4 collection (queries 351-400).

714 I.S. Altingovde, F. Can, and Ö. Ulusoy

In the experiments we use three different types of query sets: Qshort, Qmedium,
Qlong including 2.38, 8.16 and 190 terms on the average, respectively. The first two
of the query sets are created from the TREC queries, namely Qshort queries include
TREC query titles, and Qmedium queries include both titles and descriptions. The
third one, Qlong, is created from the top retrieved document of each Qmedium query.
The Qlong set, with extremely long queries, represents “find similar documents” type
queries supported by typical Web search engines.

In this study, the document term weights are assigned using the term frequency x
inverse document frequency (IDF) information and using a well-known term
weighting formula. During query processing, term weights are normalized by using
the document lengths. The term weights for query terms are calculated using the
augmented normalized frequency formula [5]. After obtaining weighted document (d)
and query (q) vectors in an n dimensional vector space the query-document matching
is performed using the well-known cosine formula [5, 10].

For the cluster centroids, we take a simplistic approach and use all cluster member
documents’ terms as centroid terms. The weight of a centroid term is also computed
by the formula term frequency x IDF. Please see [5] for further details.

5 Experimental Results

The experiments are conducted on a Pentium 4 2.54 GHz PC with 2GB memory and
Mandrake Linux operating system. All implementations use C programming
language. Unless otherwise stated, we assume that the posting list per query term is
read into main memory, processed and then discarded, i.e., more than one term’s
posting list is not available in memory simultaneously.

Along with the lines of Section 3, we discuss three query processing
implementations (IBU, IBI, IAE) and two versions for each such implementation –the
version that uses a sorted array (SA) to keep and look up best-clusters, and the
version that uses a 0/1 mark array (MA) for the same purpose. During query
evaluation, first the queries in the test sets are matched with the cluster centroids to
obtain the best-matching clusters (top 10% of clusters). Next, best-documents within
these best-clusters are computed using the three possible algorithms with two
different data structures (SA, MA) for best clusters. In Table 2, we report in-memory
processing time during best-document selection for each strategy, as well as the
average number of accumulator update operations, number of nonzero document
accumulator entries, number of cluster-id intersection operations and finally number
of heap insertion operations.

From Table 2, the following observations can be drawn. For the short and medium
length queries (i.e., as in the cases of Qshort and Qmedium sets) IAE approach is
inferior to other two algorithms due to very high costs of build-heap and extract
operations. As shown in Table 2, number of heap insertion operations is at least 10
times larger with respect to other algorithms. Note that, in these experiments, we
choose L (i.e., the min-heap size) as the total number of documents in the entire
collection, which is the extreme condition, to avoid repeating the heap build and
extraction steps as discussed in Section 3. If L is set to k (=10), the efficiency of this

 Algorithms for Within-Cluster Searches Using Inverted Files 715

Table 2. Efficiency comparison of the integration algorithms (IBU: Intersect Before Update,
IBI: Intersect Before Insert, IAE: Intersect After Extract, SA: Sorted Array, MA: Mark Array)

Time (sec) and operation
counts (all averages) IBU-SA IBU-MA IBI-SA IBI-MA IAE (SA

& MA)
Query evaluation time 0.007 0.005 0.007 0.006 0.012
No. of accumulator updates 908 908 9792 9792 9792
No. of nonzero accumulators 848 848 9462 9462 9462
No. of intersections 9792 9792 9462 9462 65 Q

sh
or
t

No. of heap insertion calls 848 848 848 848 9462
Query evaluation time 0.018 0.008 0.017 0.010 0.044
No. of accumulator updates 3786 3786 49416 49416 49416
No. of nonzero accumulators 2899 2899 39496 39496 39496
No. of intersections 49416 49416 39496 39496 51 Q

m
ed
iu
m

No. of heap insertion calls 2899 2899 2899 2899 39496
Query evaluation time 0.448 0.111 0.133 0.102 0.338
No. of accumulator updates 124115 124115 1.8 mil. 1.8 mil. 1.8 mil.
No. of nonzero accumulators 11718 11718 189510 189510 189510
No. of intersections 1.8 mil. 1.8 mil. 189510 189510 27 Q

lo
ng

No. of heap insertion calls 11718 11718 11718 11718 189510

approach also improves significantly (i.e. 0.006, 0.010 and 0.107 versus 0.012, 0.044
and 0.338 seconds for Qshort, Qmedium and Qlong, respectively); however there is
always the possibility that all of these top-k documents are not from best clusters;
which would require building and extracting from a larger min-heap. Also note that,
since IAE-SA and IAE-MA approaches do not differ significantly in terms of
performance, their efficiency figures are shown in the same column in Table 2.

On the other hand, assuming that DC-IIS is kept in the main memory, the
performance of IBU-SA and IBI-SA approaches seem to be very similar, the same is
true for the IBU-MA and IBI-MA approaches. Clearly, the versions that employ a 0/1
mark array to store best clusters are faster than their sorted array based counterparts.
If the memory is large enough to keep DC-IIS in memory, IBU-MA approach
performs better than IBI-MA and provides up to 15% and 20% reductions in query
processing times for QShort and Qmedium, respectively. If it is impossible to keep
DC-IIS in memory, the IAE method with the minimum number of cluster-id
intersection operations would be the method of choice, however we envision that this
case may not be highly probable given the modern systems’ memory capacities. For
instance, in our experimental setup, the size of DC-IIS is only around 1 MB.

For very long queries (as in the case of Qlong set), again IBU and IBI approaches
with MA seem to be the most reasonable implementation candidates given that DC-
IIS in in-memory. For this case, IBU-SA suffers from the excessive cost of cluster-id
intersection operations and performs even worse than IAE; so if IBU is the choice of
implementation, it should be coupled with MA data structure. Nevertheless, IBI-MA
approach outperforms IBU-MA in an 8% margin and seems to be the most efficient
approach. As before, IAE (with SA or MA) may only be chosen if DC-IIS can not be
stored or cached in the main memory.

Our findings show that, depending on the query set properties and main memory
availability to store the DC-IIS and best-clusters, the most appropriate query processing
approach for within-cluster search should be determined dynamically by the IR system.

716 I.S. Altingovde, F. Can, and Ö. Ulusoy

6 Conclusion

In this paper, we propose and evaluate within-cluster search algorithms to efficiently
integrate the best-clusters and best-documents for cluster-based IR systems using
inverted index structures. Our findings reveal that the efficiency of the integration
algorithm depends on the query length, and the appropriate algorithm should be
chosen dynamically by the IR system considering query properties and available
system resources.

Acknowledgments. This work is partially supported by The Scientific and Technical
Research Council of Turkey (TÜBİTAK) under the grant no 105E024.

References

1. Altingovde, I.S., Can, F., Demir, E., Ulusoy, O.: Incremental cluster-based retrieval with
embedded centroids using compressed cluster-skipping inverted files. Submitted for
publication.

2. Cacheda, F., Baeza-Yates, R.: An optimistic model for searching Web directories. In:
Proceedings of the 26th European Conf. on IR Research, Sunderland, UK. (2004) 364–377

3. Cacheda, F., Carneiro, V., Guerrero, C., Viña, Á.: Optimization of restricted searches in
Web directories using hybrid data structures. In: Proceedings of the 25th European
Conference on IR Research (ECIR), Pisa, Italy. (2003) 436–451

4. Can, F.: On the efficiency of best-match cluster searches. Information Processing and
Management 30 (3) (1994) 343–361

5. Can, F., Altingovde, I.S., Demir, E.: Efficiency and effectiveness of query processing in
cluster-based retrieval. Information Systems 29 (8) (2004) 697–717

6. Can, F., Ozkarahan E. A.: Concepts and effectiveness of the cover-coefficient-based
clustering methodology for text databases. ACM TODS 15 (4) (1990) 483–517

7. Cambazoglu, B.B., Aykanat, C.: Performance of query processing implementations in
ranking-based text retrieval systems using inverted indices. Information Processing and
Management 42 (4) (2006) 875–898

8. van Rijsbergen, C. J.: Information retrieval. 2nd ed. Butterworths, London (1979)
9. Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of

information by computer. Addison Wesley, Reading, MA (1989)
10. Witten, I. H., Moffat, A., Bell, T. C.: Managing gigabytes compressing and indexing

documents and images. Van Nostrand Reinhold, New York (1994)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

