
ARTICLE IN PRESS

Journal of Network and Computer Applications 32 (2009) 550–567
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

$ Thi

Council
� Corr

E-m
journal homepage: www.elsevier.com/locate/jnca
Reducing query overhead through route learning in unstructured
peer-to-peer network$
Selim Ciraci, İbrahim Körpeoǧlu �, Özgür Ulusoy

Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
a r t i c l e i n f o

Article history:

Received 14 January 2008

Received in revised form

20 July 2008

Accepted 16 September 2008

Keywords:

P2P query routing

Parzen Windows estimation

Unstructured

P2P networks

Query caching
45/$ - see front matter & 2008 Elsevier Ltd. A

016/j.jnca.2008.09.001

s work is partially supported by The Scien

of Turkey (TUBITAK) through Grants 104E02

esponding author.

ail address: korpe@cs.bilkent.edu.tr (İ. Körpeo
a b s t r a c t

In unstructured peer-to-peer networks, such as Gnutella, peers propagate query messages towards the

resource holders by flooding them through the network. This is, however, a costly operation since it

consumes node and link resources excessively and often unnecessarily. There is no reason, for example,

for a peer to receive a query message if the peer has no matching resource or is not on the path to a peer

holding a matching resource. In this paper, we present a solution to this problem, which we call Route

Learning, aiming to reduce query traffic in unstructured peer-to-peer networks. In Route Learning, peers

try to identify the most likely neighbors through which replies can be obtained to submitted queries. In

this way, a query is forwarded only to a subset of the neighbors of a peer, or it is dropped if no neighbor,

likely to reply, is found. The scheme also has mechanisms to cope with variations in user submitted

queries, like changes in the keywords. The scheme can also evaluate the route for a query for which it is

not trained. We show through simulation results that when compared to a pure flooding based querying

approach, our scheme reduces bandwidth overhead significantly without sacrificing user satisfaction.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Querying in unstructured peer-to-peer (P2P) networks like
Gnutella is performed by flooding a query message through the
network (Androutsellis-Theotokis and Spinellis, 2002). In flooding,
each node receiving the query forwards the query to all of its
neighbors. Although it is simple and robust, this approach wastes
too much bandwidth, because sometimes most of the neighbors
who receive the query do not reply. Semantic routing (Joseph,
2002) is one of the many schemes developed to solve this
problem, which reduces querying overhead by trying to find the
nodes that might send an answer and forwarding the queries
towards those nodes. In this paper we provide a solution to this
problem by following a similar approach.

Our scheme, which we call Route Learning, exploits the
keyword repetitions in queries. We observed that in Gnutella
there is a high repetition rate for keywords seen in queries (Ciraci
et al., 2005; Karakaya et al., 2005) and this repetition follows
power-law distribution. To utilize the repetitions seen in queries,
the Route Learning scheme employs an adapted solution for the
classification problem. Using a solution based on the Parzen
Windows technique, the Route Learning scheme learns routes
ll rights reserved.

tific and Technical Research

8 and 105E065.

ǧlu).
with time, and makes routing decisions for query messages based
on this learning.

During the learning process (training phase of the scheme),
nodes store query messages they receive before forwarding them
to all their neighbors using the flooding approach. When these
nodes receive query hit messages, they find the matching query
messages that were stored earlier and record the number of
results returned to the queries. These recorded results are used in
the next phase of the scheme, the evaluation phase, to make
intelligent routing decisions. Intelligent routing allows a node to
forward a query to only a subset of neighbors. However, it is still
possible for a query to be forwarded to all the neighbors, or to be
dropped, depending on the probability (containing probability)
estimated for each neighbor. The containing probabilities are
estimated for each keyword seen in the query. Flooding the query
in the evaluation phase occurs only when the containing
probability is found to be not trained for each neighbor. Although
flooding is not desirable in the evaluation phase, it allows the
scheme to continue to learn routes. In this way, the scheme can
adapt itself to the dynamic nature of P2P networks, such as node
disconnections or new node arrivals.

Our experiments in real Gnutella network and our simulation
studies show that Route Learning significantly reduces the
bandwidth overhead necessary for querying compared to a pure
flooding based approach that uses no intelligent routing. It is
shown through experiments in Gnutella network that our scheme
consumes only about 28% of the bandwidth that would be

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2008.09.001
mailto:korpe@cs.bilkent.edu.tr


ARTICLE IN PRESS

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 551
consumed in a pure flooding based P2P network. Our simulation
results show that the decrease in the rate and quality of answers
in a P2P system using Route Learning is not much compared to the
rate and quality of answers in flooding based systems. We also
conducted experiments in the Gnutella network to compare Route
Learning to random walk (Lv et al., 2002) and query caching
(Kalogeraki et al., 2002; Yang and Garcia-Molina, 2002) schemes.
In query caching, the whole query text is cached with the
neighbor information that supplied the answer, and if the same
query text is seen again, the query is forwarded to this neighbor.
Our experiments show that the intelligent decisions that
Route Learning makes helps to reduce the querying overhead
significantly without reducing the answer rate much. Route
Learning, however, requires more memory space at a node, and
therefore it should be used in platforms where memory capacity is
not very low.

The rest of this paper is organized as follows. A brief
description of classification problems and Parzen Windows
estimation is provided in Section 2. Our scheme and the related
algorithms are described in Section 3. The experiments we
conducted to evaluate our routing scheme and the respective
results are presented in Section 4. In Section 5, recent research
related to our work is described. Finally, in Section 6 we
summarize our conclusions.
2. Background

Our semantic routing scheme is based on the solution of the
general classification problem. Therefore, in this section we briefly
describe what the classification problem is and give one popular
solution approach for it that is based on Parzen Windows
estimation.

A classification problem consists of a classifier and two or more
classes to be chosen. The classifier tries to classify a given object
according to its features; ideally the features that belong to a class
should be distinct from other classes (Witten et al., 2000). The
classifier has to be trained to get information about classes before
starting classifying. This information determines the location of
each class in the feature space. For example, assume that we are
classifying red objects. For this problem we have two classes, red
and non-red, and the features of each class are the red, green,
blue (RGB) values of the objects. Here we model a very simple
classifier that works according to the nearest-neighbor rule,
where an object is labeled with the class whose features are
nearest to the features of the object. In the learning phase, we
provide the classifier with some samples and specifically mark
which class each sample belongs to. Then, in the evaluation phase
we provide an object to the classifier, which labels it with the class
whose ‘‘color’’ is closest to that of the object.

The simple classifier we have used in the above problem gives
good results (twice the error rate of a Bayesian classifier, Witten et
al., 2000) with unlimited samples. However, in most cases we do
not have that many samples. Thus we have to use classifiers that
take a statistical approach. The primary statistical solution to the
classification problem lies in the Bayesian decision theory:

Pðoijx̄Þ ¼
Pðx̄joiÞPðoiÞR
i Pðx̄joiÞPðoiÞ

(1)

Here, oi represents class i, and x̄ represents the features of an
object for which we want to determine the class. The left-hand
side of the equation, Pðoijx̄Þ, is the probability that an object with
features x̄ is in class oi. The term Pðx̄joiÞ is called the likelihood or
the class conditional density. Estimation of this parameter is the
crucial part of the classification problem (Witten et al., 2000). If
the probability distribution of the likelihood is known, then we
could use some parameter estimation techniques to find the
parameters of the distribution. However, in many cases we do not
have this valuable information; thus we use some non-parametric
techniques like Parzen Windows to estimate the distribution.

Next, we provide a simple description of Parzen Windows
estimation and algorithms of a generic Parzen Windows classifier.
The theoretical background of this non-parametric techniques can
be found in Witten et al. (2000).

The probability density of vector x̄ that fall into a very small
region R in feature space is given in (Witten et al., 2000)

PðxÞ ffi
k=n

V
(2)

In this expression, k stands for the number of samples that fall in
volume (V) enclosed by R, and n stands for the total number of
samples in the set. Clearly, to estimate this probability we can
take two approaches. In the first approach, the one used in Parzen
Windows estimation, we can take a fixed volume and count the
number of samples in the volume. In the second approach, we can
select a constant number of samples each time, and then calculate
the volume that encloses each of these samples.

The training phase of a Parzen Windows classifier is very
simple. Samples are placed in the feature space of the class they
belong to, which is a d-dimensional array. In the evaluation phase,
the number of samples within the volume centered at the given
feature vector (of an object) is counted for each class. Then the
probabilities are estimated according to the formula given in
Eq. (1). Eventually the object with that feature vector is assigned
to the class that gives the maximum probability (Fig. 1).
3. Route Learning

Our scheme is designed for unstructured P2P networks like
Gnutella. These networks are characterized by their totally
decentralized nature where all nodes have equal responsibility,
flooding is used as the query dissemination mechanism, and a
query hit message is returned by a peer that has one or more
matching resources. A query includes a search string which may
consist of one or more keywords. Normally, without our scheme
applied, a peer forwards a query message to all its neighbors if the
time-to-live (TTL) value stored in the query is not zero.

In our Route Learning scheme, a peer tries to estimate the
neighbors that will most likely reply to queries. Peers calculate
this estimation based on knowledge that accumulates gradually
from query and query hit messages sent to and received from
neighbors.

Route Learning inherits its basic idea from the classification
problem where a peer having n neighbors has n classes to choose
from to forward a query. Each class corresponding to a neighbor i

can be used to find out the probability of having the resource
at or reachable by neighbor i. We call this probability the
containing probability of that class. Since we do not know the
probability distribution of user-submitted queries, we have
solved this classification problem by using an adapted version of
Parzen Windows density estimation technique (Witten et al.,
2000).

The scheme, which is to be executed by all peers, maps
(hashes) each keyword in a query to a point in a 1-D feature space
that is created for each neighbor the peer has. As depicted in Fig. 2,
each point k of the feature space has two numbers associated with
itself. The first number (answer-count) is the number of answers
returned through that neighbor for keywords mapping to point k,
and the second number (query-count) is the number of queries
made to point k. The system estimates the containing probability
by applying division on these two numbers.



ARTICLE IN PRESS

12

12

1

3

No. of Answers Returned

No. of Queries Made

Window with
Volume V

The cell keyword
 "Matrix" maps to

The cell keyword
 "Matris" maps to

The cell keyword
 "MatrixDVD" maps to

P (MatrixDVD) = (1/3+12/12)/n/V

Fig. 2. Example of a feature space maintained by the scheme for a neighbor. The calculation of the containing probability of the keyword ‘‘MatrixDVD’’ is also shown. The

window function only adds the containing probabilities that fall within the volume. n denotes the total number of containing probabilities in the feature space; the number

of samples.

Fig. 1. Functions of a Parzen Windows classifier with 1-D features: training and evaluation phases.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567552
The proposed scheme investigates the keywords in a query and
indexes (maps) them separately in order to cope with variety in
the queries submitted by users. For example, assume that a user
has submitted a query that is composed of keywords K1, K2, and
K3. If the system indexed these three keywords together (not
separately), it would estimate the containing probability for a
query with keywords K1 and K2 as zero. At the same time, the
scheme should also have a carefully designed mapping algorithm
that maps related keywords (e.g., two keywords where one is the
substring of the other) to points that are close to each other in the
feature space. In this way, the Parzen Windows’ window function
can include these keywords’ probabilities in estimating the
containing probabilities. For example, in the scenario depicted in
Fig. 2, the peer ‘‘knows’’ keywords ‘‘Matris’’, and ‘‘Matrix’’. That is
the peer has received earlier queries for these keywords, and
received related query hits from the neighbor for which the
feature space shown in the figure is maintained. Now, if the peer
receives a query ‘‘MatrixDvd’’ for the first time, it is not trained for
this keyword, but still it does not need to flood the query, since the
keywords ‘‘MatrixDvd’’ and ‘‘Matrix’’ can be placed in close
proximity and therefore the query can only be forwarded to the
neighbor that provided answer to the query ’’Matrix’’. When these
keywords can be mapped close to each other in the feature space,
the window function can include the containing probability of the
keyword ‘‘Matrix’’ and can send the query ‘‘MatrixDvd’’ only to the
neighbor that supplied the answer for ‘‘Matrix’’.

The Route Learning scheme consists of three phases: training,
evaluation, and network change adaptation. In the following
sections, we describe each of these phases.
3.1. Phase 1: training

Upon joining the P2P network, a peer has no knowledge about
its neighbors, therefore it is impossible for the peer to make
routing decisions. For this reason, the newly joined peer has to



ARTICLE IN PRESS

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 553
flood a few queries and record the responses returned from its
neighbors. In other words, Route Learning uses the ongoing query
traffic to learn what the neighbors are sharing; the scheme does
not make use of any previously assigned data set to train with or it
does not need to send ‘‘probe’’ messages to neighbors to learn
what the neighbors share. It is important to note here that when
the training phase ends, the training of the scheme does not end.
This is due to two reasons; the first one is that the peer may
encounter a keyword or keywords that it has no knowledge of.
The second reason is that in a P2P network peers frequently
connect and disconnect, so the knowledge kept by the scheme
should be updated and this is achieved by further training.
However, as we discuss in Section 3.3, this further training is not
done by flooding the query to all neighbors. So this initial training
phase is the only time the scheme just floods queries, and it is
executed only once.

To extract the keywords from a query, we split it to tokens with
the same character set used by many Gnutella clients. This
character set includes the characters ‘‘._*()",;:!?’’. Here,
deciding on the size of the feature space is an important issue,
since there is no limit on the length of the keywords submitted in
a query. Ideally, we should create an infinite feature space, but this
is not feasible to implement and we need to limit the feature
space size. A very small feature space will cause queries to be
forwarded to every neighbor (like flooding). This will cause a lot of
query overhead, which is contrary to the main purpose of our
scheme. However, a small feature space may have more success in
getting replies. On the other hand, a very large feature space will
cause queries to be forwarded in a more directed manner to
neighbors, thus decreasing the query overhead. But the chance of
Fig. 3. The training algorithm.
getting replies to queries may be less than that with a small
feature space.

The algorithm for the training phase is divided into two parts
(Fig. 3). The first part, the function ROUTELEARNTRAIN starts by
creating the feature spaces and closed bucket hash tables for each
neighbor the newly joined peer has. The hash tables are used to
store the keyword maps of each query that arrives during the
training session. It is important to note here that the CREATEFEATURE-

SPACE function, after allocating the memory for the feature space,
sets both query-count and answer-count values of each feature
space point to �1. This is used to indicate that the keywords are
not seen yet (unknown). In this way we can distinguish between
keywords that are unknown and keywords that are seen but did
not get any hits.

After creating the feature spaces, the training algorithm starts
listening to the query messages. Upon receiving a query message,
the algorithm calculates the points where each keyword in the
query maps to; and updates the respective entries in the queries-
hash-table and feature space. This is done for each neighbor. The
mapping is done by calling the MAP function, whose pseudo-code
is given in Fig. 4. This function first divides the query text into
keywords and then applies the mapping function to calculate the
points where each keywords maps to. Updating the feature spaces
for the keywords seen in a query is done by calling the INSERTQUERY

function, whose pseudo-code is shown in Fig. 4. For each keyword,
this function first checks the feature space point the keyword
maps to. If a point’s values (answer-count and query-count)
are found to be equal to �1, meaning that the scheme did not
receive earlier any keyword mapping to this point, the query-
count for that point is set to 1 and the answer-count is set to 0.
It has two main functions.



ARTICLE IN PRESS

Fig. 4. Map, Insert Query and Insert Answer functions. Note that NoOfClasses is equal to the number of neighbors a peer has.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567554
The answer-count is set to 0, because in a Gnutella type of
network, the peers do not send a reply message when they do not
have a resource that matches a query they receive. So until a reply
arrives, the scheme declares that the neighbors cannot supply a
resource that matches the query. If, on the other hand, the values
at the point are not equal to �1, which means the peer has
encountered the keyword earlier, the query-count value is
increased by one.

The second part of the algorithm for the training phase, the
function ROUTELEARNQUERYHIT in Fig. 3, is executed upon the arrival
of query hit messages. When a query hit message is received, the
mappings of the keywords seen earlier in the corresponding query
are extracted from the queries-hash-table by using the QUID field
value of the query hit message. Then, for each mapping, the
INSERTANSWER function, whose pseudo-code is shown in Fig. 4, is
executed to update the feature space. By this operation, the
answer-count in the respective point of the feature space is
increased by the number of answers (resource names) found in
the query hit message, and the query-count is increased by the
number of answers found �1. We subtract one since the first part
of the algorithm had increased the query-count by 1 already when
the query had been forwarded to neighbors. Here, we see another
difference between the Route Learning scheme and a generic
classifier. In a generic classifier, the sample set used for training is
already classified and these data are used to adjust parameters of
the classifier. In Route Learning, on the other hand, the peer only
uses ongoing query traffic, which does not provide which
neighbor has the answers to the given query. When a query is
received, the scheme puts each keyword of the query to the
‘‘class’’ for each neighbor, but marks the feature space cells as
zero-answers from each neighbor; this is done by setting the
answer-count variable of the appropriate cells of the feature space
to 0 in the INSERTQUERY function. Then, Route Learning floods the
query to actually find out which neighbor(s) can supply the
answer. If answers are supplied to the query, then the appropriate
cells in the feature space of the neighbors that have sent the
answers are updated. This increases the containing probability of
these neighbors above zero, which in turn indicates to Route
Learning that these neighbors may supply answers to these
keywords. Fig. 5 provides a simple example about how training is
done.

As mentioned earlier, we require the mapping algorithm to
map related keywords to close points in the feature space. To
support this, we used a Radix 32 based mapping function shown
in Eq. (3). In the equation, S denotes a keyword, and jSj denotes the
size of the keyword. With this function, if we would have known
the maximum number of characters contained in a query keyword
(this keyword would map to the last cell), then we could be able to
initialize the feature space so that it could accommodate all the
possible keywords in a separate cell. However, since we do not
know (or it is impossible to know) the length of the largest
keyword, we need to place a limit on the keyword length (the
number of characters that the scheme will operate with) and
create the feature space accordingly. For example, assume we



ARTICLE IN PRESS

Query "Matrix"

...... ......-1
-1

-1
-11

0

The Cell keyword "Matrix" maps to 

...... ......-1
-1

-1
-11

0

The Cell keyword "Matrix" maps to 

Peer
Query "Matrix"

Query "Matrix" Query Hit: 12

...... ......-1
-1

-1
-112

12

The Cell keyword "Matrix" maps to 

...... ......-1
-1

-1
-11

0

The Cell keyword "Matrix" maps to 

PeerQuery Hit: 12

No reply given

Fig. 5. Training algorithm execution. (a) The query ‘‘Matrix’’ arrives, the INSERTQUERY function is executed and then the query is flooded. (b) A query hit from a neighbor

arrives and the feature space of that neighbor is updated. Then the query hit message is routed back.

Query "MatrixDVD"

...... ......
-1

-1

-1

-112

12

The Cell keyword "MatrixDVD" maps to 

...... ......
-1

-1

-1

-11

0

The Cell keyword "MatrixDVD" maps to 

This Peer gets
the query because
it has the highest
"containing probability"

Query "MatrixDVD"
(12/12)/n/V

(0)/n/V

Evaluation Result: 1/n/V > 0

Window Function

Fig. 6. Example of how evaluation algorithm works when the query ‘‘MatrixDVD’’ is submitted. Keyword ‘‘MatrixDVD’’ is extracted and the point where it maps is

calculated. The window is centered at this point and the number of samples fall into the volume of the window is calculated for each neighbor. In this example, one peer has

1 ð12
12Þ sample and the other one has 0 sample. The query is forwarded to the peer with one sample.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 555
have set the limit to three characters, then the keyword a would
map to the first cell and zzz would map to the last cell of the
feature space. The keywords, aaa and aab would map to separate
cells while the keyword aaaa and aaab would map to the same
cell. Here, the keywords that map to the same cell may be very
closely related (e.g. Matrix and MatrixDVD). But it is also possible
that they may be very unrelated (e.g. Matrix and MatrixDVDRip-
per). Thus, the selection of the limit on the keyword length is a
very important parameter of the scheme as we discuss in Section
4.1. A benefit of imposing such a limit, on the other hand, is that it
reduces the memory requirement of the scheme, as we present in
Section 4.2:

FðSÞ ¼
XjSj
k¼0

ðSðkÞ � 96Þ � 32�k (3)

The Radix 32 function only gives a floating point number, but we
need a function that gives an integer number so that we can use
this integer number as an index to address the feature space
(which is an 1-D array). That is, we want the keyword a to map to
index zero while the keyword zzzzz. . . (i number of z’s) to map to
the last index of the array. To achieve this mapping, we modify the
Radix 32 function and use the function given in Eq. (4), which we
call Array Radix 32 function. This function limits the Radix 32
function to include only the first iþ 1 characters of a keyword.
With this function, for example, the keyword aaa maps to 33 and
the keyword aab maps to 34, assuming i is 2.

FðSÞ ¼
Xi

k¼0

ðSðkÞ � 96Þ � 32�k

 !
� 32i

� 32i (4)

3.2. Phase 2: evaluation

This phase of the scheme can be executed at a peer after
the training phase is finished. At that time, the peer becomes
ready to make intelligent decisions about which routes to forward
the queries through. Before describing the related algorithms,



ARTICLE IN PRESS

Fig. 7. Evaluation algorithm. Note that NoOfClasses is equal to the number of neighbors a peer has.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567556
however, we will give a simple example about how evaluation
works and routing is performed. Assume we have a peer having
the two feature spaces shown in Fig. 6 for two of its neighbors.
Assume the peer has finished the training phase. Now, when the
peer receives a query with one keyword, MatrixDVD, the keyword
is mapped to a 1-D point and the window is centered at that point
in both feature spaces. Here, the length of the windows is the
volume, in which the samples are searched. For both feature
spaces, the number of samples that fall into the window is
counted and containing probabilities are computed. In this
example, only one neighbor will have containing probability
greater than zero, and the query will be forwarded to that
neighbor. The cells with value �1 are not considered in computing
the containing probabilities. The �1 value indicates that the
keyword is not trained yet (is not seen earlier).

Fig. 7 shows the evaluation algorithm used in this phase, which
is an adaptation of the Parzen Windows evaluation algorithm. As
seen in the algorithm, Route Learning does not route a query to all
the neighbors, but rather to a subset of the neighbors. The size of
this subset is fixed and is expressed by the value of the toSendPeers

parameter. This is another difference between Route Learning
scheme and a generic classifier. In a generic classifier, a feature
vector is placed into one class; though in Route Learning a feature
vector is placed into toSendPeers classes. When a query arrives, the
algorithm first determines the mapping of each keyword in the
query. Then for each neighbor and keyword, the windows
are placed and the volume covered by the windows is searched
(the size of the windows is determined by the windowSize

parameter). For each cell that falls within the volume covered
by the window, the containing probability is computed; this is the
ratio of the answer-count to the query-count stored in the cell.
The containing probability of a keyword is then calculated by
adding these containing probabilities computed for the cells
falling within the volume.

To decide to which neighbors to forward the query, we use a
ranking mechanism that is similar to the one used in NeuroGrid
(Joseph, 2003). Our decision algorithm, however, completely
ignores neighbors whose containing probability for a query is
found to be zero to save further bandwidth. The decision function,
shown in Fig. 8, gives the highest rank to non-zero containing
probabilities of all keyword matches and the lowest rank to the
containing probabilities of one keyword matches. The containing
probability of a neighbor for a query is calculated by multiplying

the retrieved containing probabilities of each keyword (seen in
the query) from the feature space of that neighbor. Thus,
according to this formula, if one keyword’s containing probability
is found to be zero for a neighbor’s feature space, then the query’s
containing probability becomes zero, for which there is no need to
forward the query to. Here, we have used multiplication, since in
Gnutella queries, each keyword is implicitly connected to other
keywords with logical ‘‘and’’ operation. That is, a peer receiving a
query with keywords K1 and K2 can answer the query only if a
resource’s name contains both keywords K1 and K2. If, during
query evaluation, a keyword is found to be not known (never seen
before), i.e. for all cells that fall into the volume both answer-
count and query-count values are equal to �1, the neighbor is
given a lower rank. If the query is found to be not known for all
neighbors, then all neighbors will be added with rank 0 and a
containing probability equal to 1 ð�1=� 1Þ. While discussing the
training phase (Section 3.1), we said that the training of the Route
Learning scheme does not end. When a query is declared to be not
known, Route Learning has to learn which neighbors can supply
answers to this query. Thus, the keywords of the query are
inserted to the feature space of all neighbors using the INSERTQUERY



ARTICLE IN PRESS

Fig. 8. Rank decision algorithm. Note that NoOfClasses is equal to the number of neighbors a peer has.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 557
function (Fig. 4) and then the query is flooded. When a query hit
message arrives for this query, the ROUTELEARNQUERYHIT function is
executed and Route Learning learns the neighbors that can answer
the query with these keywords. In summary, Route Learning drops
the query (that is, the query is not forwarded to any neighbor) if it
decides that query cannot be answered (for all neighbors the
containing probability is 0), forwards the query to a selected
number of peers (the peers with the highest rank and containing
probabilities), or floods the query (that is the query is sent to all
neighbors) if it decides that it did not see the query before, i.e.
during training phase (this is found out if the containing
probabilities for all neighbors are found to be 1 at the lowest
rank). Thus, flooding a query only happens when all keywords in a
query are not seen before for all neighbors.

After ranking each neighbor, the evaluation algorithm con-
tinues by calculating the set of neighbors to which the query will
be forwarded. To achieve this, the algorithm invokes the FINDMAXS

function with the highest rank. This sorts the results obtained
from each neighbor’s feature space and returns the top toSend-

Peers number of neighbors for that rank. If the number of
neighbors at that rank is lower than toSendPeers, the evaluation
algorithm lowers the rank and re-executes the steps described
above.1 This process continues until toSendPeers number of
neighbors is added to the set of neighbors that will receive the
query. Then the queries are forwarded to these neighbors.
1 The highest rank is equal to the number of keywords in the query.
3.2.1. Improving decision making: Vote Route Learning

During the training phase, there may be cases where popular
keywords (keywords that can generate answer) may not generate
query hit messages. This may cause Route Learning to drop
queries containing these popular keywords. For example, assume
in the training phase the scheme has received the query ‘‘matrix
avi’’ and this query has not generated hit messages. The keyword
‘‘avi’’ here is a popular keyword and has a high probability of
being repeated. Now let us assume another query ‘‘eternal sun
shine of the spotless mind avi’’ is received. Since ‘‘avi’’ was seen
before and no answer has been received (i.e., the containing
probability is zero), the query will be dropped. This reduces the
number of answers generated for this query. To fix this, we add a
comparison mechanism to the decision making algorithm. This
mechanism counts the number of keywords that are unknown
(i.e., not seen before) and the number of keywords that have zero
containing probabilities for a query. If the number of unknown
keywords is greater than the number queries with zero containing
probabilities, the query is flooded. If, on the other hand, the
number of keywords with zero containing probabilities is greater,
then the query is dropped. We call this modified version of Route
Learning as Vote Route Learning.
3.3. Phase 3: network change adaptation

The knowledge a peer builds about its neighbors can be outdated
due to disconnections or connections of new neighbors. This phase



ARTICLE IN PRESS

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567558
of the algorithm allows a peer to probe for changes in the
neighboring peers and adapt its routing knowledge accordingly.
Direct neighbor changes (the disconnection and the connection of a
peer at one hop distance) can be detected easily by the peers
connection manager algorithm (usually Gnutella clients employ a
connection manager that waits for incoming connections and
manages failed connections). When a neighboring peer disconnects,
Route Learning removes the knowledge it builds up for the peer, so
queries are no longer forwarded to this peer. Upon the arrival of a
new neighbor, Route Learning initiates the training algorithm only
for the newly joined peer. Thus, the queries are always forwarded to
this neighbor until the training phase is over.

On the other hand, adapting to neighborhood changes at
distances TTL41 cannot be detected by the connection manager.
One method to cope with these changes is periodically running
the training algorithm for all neighbors. As another method, peers
can flood their feature spaces to keep the knowledge up to date
(this approach is used in literature by various schemes in which
the peers flood the knowledge they collect about their neighbor-
hood, Kalogeraki et al., 2002; Yang and Garcia-Molina, 2002).
However, running the training algorithm may not be very effective
and flooding the knowledge may require extra messages to be
employed by the Gnutella protocol. In Gnutella protocol, a peer
sends BYE messages to notify the neighboring peers that it is
disconnecting from the network. Thus, a better way is to detect
changes in the network by using BYE messages. When Route
Learning receives a certain amount of BYE messages from a
neighbor, it can run the training algorithm only for that neighbor.
This way, it can adapt itself to the changes in the network without
employing extra messages and flooding the queries.
4. Performance evaluation

In this section, we report our results regarding the perfor-
mance of the Route Learning scheme and its comparison against
flooding. Besides that, since evaluating the scheme requires
decision on the default values of some important parameters,
we also describe in detail how we have determined those values.

4.1. Keyword length

As presented in Section 3.1, in order to reduce the memory
requirements of the scheme, we need to limit the number of
1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Characters seen in a Keyword

P
ro

ba
bi

lit
y 

of
 s

ei
ng

 n
um

be
r o

f c
ha

ra
ct

er
s

Fig. 9. Distribution of number of characters found in a keyword. The data are

calculated over 100 000 queries collected from Gnutella network.
characters the scheme uses while calculating the array index.
Thus, the value of this parameter should be selected in a
way that the scheme should only need to truncate a small
number of keywords. Fig. 9 shows the distribution of the number
of characters contained in the keywords collected from the
Gnutella network. These data show that the number of keywords
that are longer than five characters is only about 35% of all the
keywords. Therefore we set the keyword length parameter
value to 5.
4.2. Feature space size

As shown above, if we limit the keyword size to 5, we would
only be truncating about 35% of the keywords. In this case, the
maximum index value required is 325 (the index the keyword
zzzzz maps to). Since in an array cell the scheme holds two short
values, the memory requirement for the feature space adds up to
about 128 MB per neighbor. However, not all of these cells will be
used. During the lifetime of a peer, it receives only a small
percentage from all the possible keywords due to short lifetimes
and high keyword repetitions. Saroiu et al. (2002) show that the
median duration of a peer in Gnutella network is 60 min (we
further comment on this in Section 4.5).

To see the effects of keyword repetitions, we conducted a
simple experiment in which we extracted 361889 keywords from
100 000 queries collected by our Gnutella crawler, and mapped
them to an array of size 325 using the Array Radix 32 mapping
function. In Fig. 10, the increase in the number of used cells is
shown. Initially the increase is linear; however, as more keywords
are inserted, the increase slows down. Overall, when 361889
keywords are inserted into the array, only 57 762 cells are used;
thus, due to high repetition rate the system wastes memory.

To reduce this memory waste, we used hash tables to store
feature space values. To evaluate the performance of this
implementation, we inserted 361889 keywords into hash tables
with sizes 322, 323, and 324, and recorded the number of
rehashes made, which doubles the size of the hash table, with
load factor set to 0.75. As can be seen from Table 1, the hash table
size of 324, which requires about 4 MB of memory, has led to 0
rehashes; thus for our experiments we used this initial size.
However, if memory size is a problem, a hash table of size 323 can
also be used.
0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

0

1

2

3

4

5

6
x 104

Keyword Inserted

N
um

be
r o

f C
el

ls
 U

se
d

Fig. 10. Feature space cells used when 361889 keywords are inserted into the

feature space. Overall for a feature space size with 325 only 0.18% of cells are used.



ARTICLE IN PRESS

Table 1
Number of hash table rehashes with different initial sizes when 361889 keywords

are inserted into the hash table

Hash table size Number of rehashes

826 7.0

26 458 2

846 682 0

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Number of Keywords

N
um

be
r o

f K
ey

w
or

ds
 L

ea
rn

ed

*102

Fig. 11. The plot shows that as queries arrive the number new keywords seen

drops rapidly. From the first 100 keywords, the scheme learns 98 of these,

however, from keywords 900 to 1000, the scheme learns 46 new keywords. The

line shows the smoothed data.

Root

Leaf Nodes

Query Generator
Network

Fig. 12. Simple P2P network model.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 559
4.3. Number of queries used in training phase

To find the number of queries needed for initial training, we
collected keyword sets, each containing 10 000 keywords, from
different peer sets (a peer set contains five different connections)
at Gnutella network. We inserted these 10 000 keywords to a
feature space of size 324, and for each keyword we logged
whether the keyword is seen before or not. Then, we counted how
many new keywords are seen at 100 keyword intervals. To
combine the results of the different keyword sets, we took the
average of the number of new keywords seen. In Fig. 11, we
see that in the beginning nearly all the keywords are new to the
scheme; for example in the first 100 keywords, 98 keywords
are new. As the scheme receives more keywords, however, the
number of new keywords seen starts dropping rapidly (e.g. for the
900th–1000th keywords only 46 are new). From the figure, it can
be clearly seen that after the 1000th keyword, the number of new
keywords seen stays at lower rates. From this, we can say that
training the system with 1000 keywords is sufficient. According to
the data collected, a peer has to receive about 300 queries to
receive 1000 keywords. Thus, we conclude that initial training
should be done with 300 queries.
4.4. Window size and its effect on prediction accuracy

To determine the default value for the window size parameter,
we have conducted experiments, in which we simulated a small
but representative part of a P2P network (Fig. 12). In this small
network, there is one Route Learning enabled root node with six
neighboring nodes, one of which is assumed to be connected to
the whole network and queries come from this node. The other
five nodes are leaf nodes that share resources. The following
experiments were conducted to determine the window size value:

Exact-match-error experiment: In this experiment we investi-
gated how the protocol performs for repeated queries, and we
tried to find an appropriate value for the window size parameter.
This is important because, if this parameter is set to a large
number, the protocol will estimate incorrect probabilities and will
forward queries to wrong peers in identical repeating queries.

The experiment works as follows. Each leaf node randomly
selects 20 queries from the query data collected by our Gnutella
crawler. The keywords of those 20 queries are seen as the
resources shared by that leaf node. In this way, the leaf node
should successfully answer the queries containing those key-
words.

In the training phase, the ‘‘network’’ queries each of these
resources. Then in the evaluation phase, these resources are re-
queried and the root node receiving a repeated query does not
immediately broadcast the query, but first tries to guess the
neighboring peer managing the resource. For this, it selects the
neighbor that has the highest rank and containing probability for
the set of keywords contained in the query string. There is of
course the possibility of making a wrong guess. If the prediction of
the root node about which neighboring peer owns the resource is
incorrect, or if the root declares that the resource is not contained
in the network, or if it broadcasts the query to all the neighbors,
the simulator considers this as a failure of the scheme and
increases the error count. The test continues until all the queries
in the collected data are used. We had a total of 6800 queries in
the test.

Fig. 13(a) shows the performance (in terms of errors) of the
scheme on exact-match queries. Although there is a sharp
increase in the number of errors with a window size of 32 768,
the absolute increase is small. Therefore, in a system using Array
Radix 32 based mapping function, we cannot immediately declare
that the window size of 32 768 is unsuitable for the parameters
we have used.

Modification-error experiment: In this experiment we investi-
gated how the protocol performs on close keywords and how the
rank decision algorithm improves the protocol’s decision making
process. The test environment is similar to the exact match
experiment, except that, in the evaluation phase the ‘‘network’’
modifies at least one keyword in the query by adding random
characters at the end of each keyword. We do not use random
locations while padding the random characters because this could
produce completely irrelevant keywords and broadcasting may
not become an error. The definition of the cases that are declared
errors is the same as in the previous test.

While discussing the Array Radix 32 based mapping function,
we mentioned that the sensitivity of the system to modified
queries greatly depends on the window size used. This prediction



ARTICLE IN PRESS

70

60

50

40

30

20

10

0

N
o.

 o
f E

rr
or

s

1 32 1024 32768
Window Size

4500
4000
3500
3000
2500
2000
1500
1000

500
0

N
o.

 o
f E

rr
or

s

1 1024 32768
Windows Size

Without Rank decision With Rank decision

Fig. 13. (a) Number of errors made by the Array Radix 32 based mapping function in exact match experiment conducted with 6800 queries. (b) Radix 32 based mapping

function modification behavior; experiment conducted with 6800 queries.

5000
4500
4000
3500
3000
2500
2000
1500
1000

500
0

1 2 3 4 5 6 7 8 9
Number of Keywords in Query

E
xe

cu
tio

n 
Ti

m
e 

(in
 m

ill
is

ec
on

d)

Evaluation Time

32
1024
32768

Fig. 14. Execution time of the evaluation phase with Radix 32 mapping function.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
100 200 300 400 500 1000

No. of Queries Used in Training

B
an

dw
id

th
 U

se
d

Bandwith Used In Evaluation
Bandwith Used In Training

Fig. 15. Bandwidth used in Gnutella experiment conducted with 6800 queries;

�80% reduction to flooding requirements.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567560
can easily be verified by the data shown in Fig. 13(b), since
increasing the window size significantly decreases the number of
errors. The high number of errors recorded when not using the
rank decision algorithm is caused by the keywords that are
shorter than the window’s coverage area. The system declares
the queries that include these keywords as ‘‘not trained’’; but this
is not the case. It is important to notice that the system has
correctly predicted the routes of 2493 out of 6800 queries,
although the window size was 1. This is because the keywords in
these queries had more than five characters, so the Array Radix 32
mapping function simply ignored the padding, and made the
correct decision. With the rank decision algorithm, we have even
better results. There is a slight increase in the number of errors
when a window size of 32 768 is used.

During the description of the evaluation algorithm, we stated
that the running time of this algorithm greatly depends on the
window size. To justify this, we measured the time it needs to
evaluate queries having different number of keywords. Fig. 14
shows these time measurements taken using a PC with Pentium 4
processor at 2.6 GHz and 1 GB of RAM. Since in this experiment we
measured the evaluation time of a query for a peer that has five
neighbors, the window size becomes the dominating factor that
determines the speed of the evaluation. With a window size of
32 768, the evaluation time increases rapidly, which causes
queries to be routed slowly. However, a window size of 1024
does not greatly increase query processing time, indicating
that it is suitable for the scheme. Thus, taking into account
execution times and errors, we decided that 1024 is a good value
for the window size. We use this value in the experiments we will
discuss next.

4.5. Bandwidth usage and the effects of increasing the number of

queries the system has trained with

The primary goal of the proposed scheme is to reduce the
unnecessary bandwidth usage during propagation of queries in
unstructured networks without sacrificing the query answer rate.
Therefore it is important to know how much we can improve
bandwidth efficiency and what its cost is.

Towards this goal, we first set a simulation experiment and
measured the bandwidth usage of the Routing Learning scheme
and compared it to pure broadcasting. The simulation model is
based on the P2P network model in Fig. 12 which was described
earlier. The ‘‘network’’ issues queries to the root peer in the order
they are received by the crawler. The root peer trains itself with
the first n queries it receives, and then starts the evaluation phase,
in which the toSendPeers parameter is set to 1 (i.e., a query is sent
to only one selected neighbor). We experimented with different
values of n to see how training size affects the bandwidth used.

Fig. 15 shows the results of this test conducted with the Array
Radix 32 based mapping function with a window size of 1024. If
broadcasting were used, the bandwidth required, in terms of
number of messages, would be 34 000 ð5� 6800Þ. With Route



ARTICLE IN PRESS

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 561
Learning scheme, however, only about 20% of this bandwidth is
used in the system. The improvement over broadcasting is clear.
As the system gets trained with more queries, the bandwidth
wasted in the evaluation phase is reduced because the system
declares fewer queries as ‘‘not trained’’. But the reduction
becomes insignificant after a certain point. Therefore, we can
conclude that training the system with large number of queries
does not improve the system’s overall performance enough to
justify the cost of training. From Fig. 15, it can be seen that training
the system even with 100 queries is adequate.
4.6. Experiments on Gnutella network

The simulation model on which we obtained the results is not
a very realistic model of the Gnutella network (i.e., the frequent
peer disconnections is not modeled) and we only used these
simulations to adjust certain parameters of the Route Learning
scheme. Simulating a P2P network is a stumbling block since
there are many parameters to consider; using unrealistic
approximations for one of these parameters may produce
unrealistic results.

For this reason, we downloaded the source code of the
Limewire program (version 4.12) and modified it to run Route
Learning scheme on top of the Gnutella protocol. This allowed us
to test the performance of the scheme on a real P2P network.

We present the architecture of the modified Limewire program
in Fig. 16. It is important to note that the figure does not include
the whole architecture of the Limewire program. We only depict
the parts that are important. In this figure, the boxes represent the
components (either software or entities that interact with the
software on Internet) and the arrows represent the interaction
between components. Just as the unmodified version, in our
modified version of Limewire, the Gnutella protocol layer initiates
connections and handles the routing of Gnutella messages. Unlike
the unmodified version, the Gnutella layer forwards the query
messages to the Route Learning layer. Both layers send their
actions to the logging layer; thus for each query two actions are
sent to the logging layer. Here an action can be to drop, broadcast,
or send to neighbor (for the Gnutella layer the action is always
broadcast). The logging layer writes to a database the time the
query message is received, the action, the global unique identifier
of the query message (GUID; in Gnutella a query hit message has
the same GUID as the query message it is replying to, this way the
reverse path of the query hit message can be found), the query
text message, the number of neighbors the query is forwarded to,
and the IP addresses of the neighbors the query is sent to. Then
the query is given back to the Gnutella layer which broadcasts the
query to the neighbors. For example, assume that the modified
program is connected to 20 neighbors and Route Learning
Limewire UI

Gnutella Layer
Route

Learning
Layer

Logging

Internet

Fig. 16. The architecture of the modified Limewire program. The boxes represent

the components and the arrows represent the interaction between components.
estimated that none of the neighbors can answer the query, so
it should be dropped. Then, for this query two actions are sent to
the logging layer, which are broadcast with 20 neighbors from the
Gnutella layer and drop with 0 neighbors from the Route Learning
layer; each action also contains the fields explained above. When
a query hit message is received, the Gnutella layer forwards the
query hit message to the logging layer and then routes the query
hit message back to its destination just as a normal Gnutella
client. For a query hit message, the logging layer finds the two
associated actions from the database (the database is queried with
GUID of the query hit message). The action logged from the
Gnutella layer is updated with the number of replies the query hit
message contains. However, for the action logged from the Route
Learning layer, the logging layer checks if the action can produce
the query hit (i.e., if the query hit message is received from a
neighbor that Route Learning forwarded the query to). If the
action is found to generate the query hit, then the action is
updated with the number of replies received from the query hit
message. The query text with the number of replies is then sent to
the Route Learning layer so that it can update the feature space
of the neighbor the query hit is received from. If, on the other
hand, the action cannot be generated by Route Learning, no
update is made. Returning back to our previous example, let us
now assume that a query hit message from 14th neighbor is
received, which contains three answers. The logging layer finds
the associated actions from the database using the GUID of the
query hit message; one for Gnutella and one for Route Learning.
The action for Gnutella is updated with three replies. However, the
action for Route Learning is not updated because Route Learning
decided to drop the query, and for a dropped query a query hit
message cannot be generated.

We also modified the Limewire program to operate in ultrapeer

mode. In leaf-node mode, the program uses the query routing
protocol in which a node sends a hash of its shares to the ultrapeer
it is connected to. Then, ultrapeers do not forward most of the
queries to the leafnodes, which reduces the number of queries and
query reply messages greatly.

From the logs of our modified Limewire program, we use three
metrics to compare Route Learning to Gnutella:
(1)
 Bandwidth used in terms of the number of neighbors a query
is sent to (this metric is measured for each query to sum up
the overall bandwidth usage).
(2)
 Answer rate which is calculated as

QRoute Learning
QGnutella

(5)

where QRoute Learning is the number of queries that got at least
one reply with Route Learning, and QGnutella is the number of
queries that got at least one reply with Gnutella.
(3)
 Answer quality calculated as

RRoute Learning

RGnutella
(6)

where RRoute Learning is the total number of resources (i.e.,
answers/results) received in the query hits messages with
Route Learning, RGnutella is the total number of resources
received in the query hits messages with Gnutella.
Here, we want to clarify the difference between the last two
metrics with an example. Assume that for a query, flooding
returned 10 query hits with a total of 30 resources included in
these 10 query hits and Route Learning returned 4 query hits with
a total of 15 resources included in these four query hits. Then, the
answer rate is 1 since we got at least one query hit for both



ARTICLE IN PRESS

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

Time (in minutes)

B
an

dw
id

th
 (i

n 
te

rm
s 

of
 #

 
of

 n
ei

gh
bo

rs
)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Time (in minutes)

B
an

dw
id

th
 (i

n 
te

rm
s 

of
 n

um
be

r 
of

 n
ei

gh
bo

rs
)

50 100 150 200 250 300
0

200
400
600
800

1000
1200
1400
1600
1800

Time (in minutes)

B
an

dw
id

th
 (i

n 
te

rm
 o

f n
um

be
r 

of
 n

ei
gh

bo
rs

)

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

Time (in minutes)

B
an

dw
id

th
 (i

n 
te

rm
s 

of
 n

um
be

r
of

 n
ei

gh
bo

rs
)

Gnutella
Route Learning

Gnutella
Route Learning

Gnutella
Route Learning

Gnutella
Route Learning

Fig. 17. The bandwidth used in terms of number of neighbors the query is sent to for 1000 queries collected from two different neighborhoods. The graphs on the left show

the bandwidth used by Gnutella and the right shows the bandwidth used by Route Learning. Overall, Route Learning used only 28% of the bandwidth used by Gnutella.

Table 2
The results obtained from modified Limewire client

Neighborhood No. of query messages No. of query hit messages Bandwidth used Answer rate Answer quality

1 7494 705 0.28 0.60 0.49

2 11850 997 0.28 0.53 0.43

3 10 231 591 0.32 0.60 0.40

4 7144 739 0.26 0.61 0.35

Route Learning uses �28% of the bandwidth used by Gnutella and is able to answer �60% of the queries that are answered by Gnutella.

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567562
schemes, but the answer quality is 0.5 since we got less resources
by using Route Learning.

We ran the modified program for 5 h with four different
distinct neighbor sets (neighborhoods). It is important to note
that, in Ultrapeer mode Limewire sets preferred number of
connections to 32 and reserves nine of these connections for
incoming connections. Therefore, the modified peer in the
experiment has 23 neighbors. In this experiment, we set Route
Learning to train with the first 100 queries and send the query to
five neighbors with the highest rank after training is over. That is,
if there are less than five neighbors at the highest rank, the query
is only forwarded to these neighbors. It is also important to note
that we have not modified the Gnutella messages; thus, the
maximum TTL values on the queries were 4 (this limit is set by
Gnutella peers; in our previous experiments with Gnutella
network we have seen that Gnutella peers lower the TTL value
to 4 when they receive a TTL larger than 4, Ciraci et al., 2005).

In Fig. 17, we show the bandwidth usage of Gnutella and Route
Learning. From the four different neighborhoods, it can be clearly
seen that Route Learning uses far less bandwidth than Gnutella.
The plots show that for the first queries Route Learning uses the
same bandwidth as Gnutella, which is because of the training
phase. However, as soon as the training phase is over, the
bandwidth usage of Route Learning drops below Gnutella. Overall,
Route Learning used only 28% of the bandwidth used by Gnutella.
The ratio of bandwidth used by Route Learning to that by Gnutella
for each neighborhood is presented in Table 2.

Due to dropping and forwarding the query to a subset of
neighbors, it is expected for Route Learning to reduce the number
of query hit messages, which in turn also reduces the number of
results (i.e., responses) returned to a query. With the answer-rate
metric, we evaluate the rate of the number of query hits returned
by Route Learning to the number of query hits by Gnutella. In
Table 2, we show the answer rate for each neighborhood. Most of
the time this rate is around 60%, which means that for the queries
that generate answers, Route Learning is able correctly route the
queries to the neighbors that contain the resources. For the 40%
incorrectly routed queries, �80% are caused due to dropping and
�20% are caused due to forwarding the query to neighbors. The
main reason for this �20% is the neighborhood changes that occur



ARTICLE IN PRESS

Table 4
The answer return rate, the answer quality, bandwidth usage, and storage

requirements of Route Learning, random walk and query caching

Protocol Answer rate (%) Bandwidth used (%) Storage used (MB)

Route Learning 64 �26 1

Random walk 43 60 0

Query caching 88 97 0.009

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 563
at hop distances greater than 1. When a neighbor that can supply
the answer leaves the network, Route Learning cannot update
itself until another query arrives and the scheme decides to
forward the query to that neighborhood. We found that the worst
neighbor estimation occurred for neighborhood 2; thus, we
concluded that the low answer rate for this neighborhood is
caused by frequently disconnecting peers (that have hop distances
greater than one hop). Besides the answer rate, we also compare
the quality of the answers in Table 2. Because of selective
forwarding, the answer quality of Route Learning scores between
35% and 50%. This answer quality is high enough to be acceptable,
since a P2P network user usually does not use all of the many
answers (i.e., responses) he receives to a query.
4.7. Effects of window size in Gnutella network

The window size experiment presented in Section 4.4
evaluated the impact of different window sizes on a fixed data
set that is collected from the Gnutella network. However, it is
important to evaluate the effects of this parameter with different
query sets. Therefore, we repeat the window size experiment
using the modified Gnutella client. For this experiment, we use
the answer rate and bandwidth used metrics presented in the
previous subsection. However, in this experiment the client
evaluated the metrics for 10 000 queries and then disconnected
from the network. We repeated this experiment for five different
neighborhoods.

We first ran the modified client with window sizes of 1, 32,
1024 and 32 768. However, query evaluation started to take very
long time with window size 32 768; therefore, we removed
window size 32 768 from our tests.

Table 3 presents the results of this experiment. It is interesting
to see that the scheme reaches the answer rate with window sizes
32 and 1024. With window size of 1024, however, the scheme
reaches the same answer rate by using less bandwidth.
4.8. Comparison with other P2P routing schemes

We have run the modified LimeWire client with Route
Learning, query caching (Yang and Garcia-Molina, 2002) and
random-walk based protocols. In query caching scheme, the peers
create caches containing (Query, Answer from neighbor) pairs
(i.e., the query is not broken down to its keywords) using the
query hit messages (Kalogeraki et al., 2002; Yang and Garcia-
Molina, 2002). Upon the arrival of a query, a peer checks to see if
the query can be answered from the cache. If so, the query
message is only forwarded to the neighbor that can supply the
answer; if not, the query is flooded. In the random-walk scheme,
the peers generate the paths the queries will travel in a random
manner (Lv et al., 2002). That is when a query is received, the peer
generates the next hop randomly. We choose to compare random
walk with Route Learning because we want to justify that the
calculations made by Route Learning are in fact helpful. If
random-walk scores better results, then there is no need to use
Route Learning. Our random-walk implementation selects k

distinct neighbors uniformly over the neighbors the peer has
Table 3
The answer return rate and bandwidth usage of schemes for various window sizes

Window size Answer rate (%) Bandwidth used (%)

1 50 24

32 54 21

1024 54 18
and we set k to be 60% of the neighbors. We have set the Route
Learning’s toSendPeers parameter to 1.

To compare the schemes, we take into account the same
metrics as the ones used in the previous subsection. However, this
time we also measure the storage (i.e., memory) used by the
schemes. For Route Learning, the storage used metric measures
the size of the feature space, and for query caching it measures the
size of the cache (which we implemented as a hashtable that
stores an integer hash key for the query and the next hop as
another integer). Since the random-walk based scheme does not
keep track of query and query hits, it does not need a storage and
thus, the storage used for this scheme is 0. We again used 10 000
queries and five different (distinct) neighborhoods for this
experiment. The modified LimeWire client collected on the
average 344 query hit messages using the Gnutella protocol.
Thus, we take this number as the total number of query hits that
can be returned to these queries and compare the schemes with
respect to Gnutella.

In Table 4, the bandwidth usage and the answer rate of each
protocol is shown. Route Learning was able to return 64% of the
answers returned by flooding. Route Learning attained this
answer rate by using only 26% of the bandwidth used by flooding
(i.e., normal Gnutella protocol). Random-walk based protocol
achieved the least answer rate: 43%. The query caching method
achieved a good answer rate, but its bandwidth usage is very high,
close to flooding.

The experiment shows that on the average Route Learning used
1 MB of memory, which is too high compared to the query caching
scheme. This is because the implementation of Route Learning
uses storage (which is a hashtable) for each neighbor and in this
hashtable each keyword in a query is indexed according to the
Radix 32 value. With this storage, however, Route Learning is able
to estimate the next hops of the queries (either dropping or
forwarding to a selected number of neighbors) resulting in much
less bandwidth usage compared the pure flooding (Gnutella).
Query caching, on the other hand, uses one hashtable to store the
queries as a whole (i.e. the query is not divided to its keywords).
However, storing the queries as a whole causes the query caching
scheme to flood the queries even in minor changes in the queries
(which causes too many cache misses) resulting in high
bandwidth usage.

The memory usage of Route Learning on a peer depends on the
number of neighbors the peer has, the size of the hashtable used
(as a feature space), and the keyword length limit. Our results on
the feature space size (Section 4.2) show that a hashtable of size
323 can be used, and when the table gets loaded, this size can be
increased to 324. A major factor that causes the tables to become
loaded is the keyword length limit. If this limit is set to a small
number, then more keywords would map to the same feature
space cell and less memory would be used. This, however, may
cause queries to be routed to the neighbors that cannot supply an
answer to the query.

The number of keywords that map to the same cell greatly
depends on the query profile of the neighborhood the peer is
connected to (e.g., query keywords can differ slightly). We can use
this to adjust the keyword limit parameter to reduce memory



ARTICLE IN PRESS

5

6

7

8

9

10 x 104

th
 U

se
d 

(in
 te

rm
s 

of
er

 o
f n

ei
gh

bo
rs

)

Flooding
Route Learning
Voute Route L.
Random Walk

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567564
usage. Assuming the keyword length limit is set to l, for a keyword
w from a query, the feature space lookup operation can calculate
the distance of the keyword and the cell as radix32ðw; lþ dÞ �

radix32ðw; lÞ (since the cell look up will use the formula
radix32ðw; lÞ). If this distance is greater than 32�d, the keywords
that differ in dþ 1 or more characters map to the same cell, and
therefore the keyword limit has to be increased. Here, the value of
d can be set to a lower value (that is greater than zero) for peers
with more memory (e.g., if d is set to 1, then the keywords with
two character differences may trigger an increase in l).
0 1 2
0

1

2

3

4

Hops

B
an

dw
id

nu
m

b

Fig. 18. The bandwidth used by peers at different hops values. Overall Route

Learning and Vote Route Learning used �40% of the bandwidth used by flooding.

Table 5
The percentage of query hit returned to the query hits returned when flooding is

used

Hops No. of peers No. of query hits RL QHR (%) VRL QHR (%) Rand QHR (%)

1 4 73 70 78 58

2 16 234 56 62 17

3 64 959 48 58 0.2

Route Learning and Vote Route Learning was able keep up with flooding as the

hops distance increases.

Table 6
The answer rate of the schemes

Scheme Answer rate (%) Answer quality (%)

Route Learning 54 49

Vote Route Learning 65 58

Rand walk 8 7

We see that Route Learning got a reply to 54% of the replies returned by flooding by

using 45% of the bandwidth.
4.9. Hops performance experiment

The experiments conducted so far does not give detailed
information on how Route Learning succeeds at finding resources
at hop distances greater than 1. To investigate this, we constructed
a simulation environment using tree topology; four children per
node with four levels that makes a total of 85 nodes (we used four
levels because in our previous study of the Gnutella network
(Ciraci et al., 2005), we found out that 91% of the queries
submitted to the network have a TTL value of 4). In this simulation
model, only the root of the tree is allowed to send queries. We
selected such a simulation topology to find more accurately the
query hit generation rate of Route Learning (that is the percentage
of query hits generated by Route Learning) on different hop
values. Besides the topology, we tried to keep everything as
similar to Gnutella network as possible. We used the query, query
hit, and pong messages collected by our crawler. Each peer in the
simulation acts as a peer collected in the pong messages; that is
they share the same number of resources as the peers discovered
by the pong messages in real Gnutella network. This scenario
resembles to real life in terms of the number of items the peers
share. For the names of resources, we use the replies given in
query hit messages, and for queries we use the collected query
messages. During the simulation, the root peer simply re-plays the
collected query messages.

We tested and compared four query routing techniques;
namely, flooding, random-walk (Rand), Route Learning (RL) and
Vote Route Learning (VRL). To induce comparable results between
Route Learning and random-walk based routing, we allowed both
schemes to send the query to only one neighbor (note that
broadcasting and dropping queries are still valid decisions for
Route Learning). We allowed RL and VRL to train with 100 queries.
The root node queries the network by randomly selecting 1000
queries from the set of queries collected from Gnutella network.
However, in order to better understand the query hit generation
and answer rate, we gave 75% chance of being sent to the queries
that have a matching query hit message. This causes the
simulation to generate more query hit messages than Gnutella
network. We programmed the simulation this way, because with
more query hit messages we can better see and compare the
bandwidth usage and answer rate of the schemes. We use
the flooding to determine the number of query hits generated
and the maximum bandwidth used by each hop.

In Fig. 18, we present the bandwidth used by peers at different
hop levels. For example, for the hop level 0, there is only the
root node, thus the plot shows the bandwidth used by this node.
We see that for each hop level, Route Learning and Vote
Route Learning bandwidth usage is always between flooding
and random walk. To be more precise, Route Learning used 52%,
44%, 42% of the bandwidth used by flooding and VRL used 68%,
55%, 52% for the respective hop values. We see that for this
experiment bandwidth usage of Route Learning scheme is
higher than the usage in Gnutella experiment. This high
bandwidth usage is also seen for flooding and random-walk
schemes and it is caused by the many query hit messages being
grouped at one node.

In Table 5, we present the percentage of query hit messages
returned by the schemes. As discussed before, in the tree topology
we first run the flooding scheme to count the number of query hit
messages it returns. Then, we run other schemes and count the
query hit messages they return. Finally, we find the Query Hit Rate
(QHR) by dividing the query hit messages returned by other
schemes to the ones returned by flooding and multiplying the
result by 100. From the table, we see that for the first hop the ratio
is greatest. This is because for that hop value there is less nodes, so
the probability of finding a query hit message is higher. However,
as the hops value increases this probability decreases rapidly. This
is clearly the cause of low rates for random-walk based schemes.
When we look at the QHR values of Route Learning and Vote Route
Learning, we see that there is a decrease in the ratio; however, not
as much as the decrease seen in the random-walk scheme. Thus,
we can clearly say that both schemes’ decisions help in finding the
neighbor that contains the resource that answers the query.



ARTICLE IN PRESS

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 565
Finally, in Table 6 we present the answer rate (Eq. (5)) and
answer quality (Eq. (6)) of the schemes. In this experiment, Route
Learning was able to find half of the answers found by flooding,
and Route Learning achieved this rate by using �45% of the
bandwidth. We see that Route Learning scored a less answer rate
than the experiments conducted in Gnutella network in this
experiment. This is because of the high matching rate of query
messages. Vote Route Learning, on the other hand, scored an
answer rate higher than Route Learning and achieved this rate by
using �10% more bandwidth than Route Learning.
5. Related work

There is a substantial body of work on reducing query traffic
overhead in unstructured P2P networks. In this section, we briefly
summarize some of these works, which are most relevant to our
study.

Queries in a Gnutella network exhibit a significant amount of
locality: queries with the same or similar search strings are
common (Markatos, 2002). Based on this observation, a caching
scheme is proposed in which every peer stores query strings, TTL
values, and the corresponding query hit messages while the peer
is relaying Gnutella queries and query hit messages. Then, upon
receiving a query message, a peer scans its own stored TTL and
query string pairs for a match to the query string, and the TTL
value stored in the received query. If such an entry is found, the
peer returns the corresponding query hit (i.e., the answer) as a
reply to the query. Our study is similar in that it also makes use of
the locality in queries. However, rather than indexing the
query string as a whole, we separately index each of the keywords
seen in a query. This helps us to cope with changes in user-
submitted query strings. Another difference between our work
and (Markatos, 2002) is that the peers in our scheme do not
answer queries on behalf of their neighbors or any other peer.
They estimate the neighbors most likely to reply and forward the
query messages only to them. In other words, we do not cache the
query hit messages at intermediate peers.

Yang and Garcia-Molina (2002) propose three techniques to
improve the search efficiency in their studies. In the ‘‘localized
indices’’ technique the peers maintain an index of the shares their
neighbors have; thus, when a peer receives a query it answers the
query from this index and does not forward the query to its
neighbors. Upon joining the network a peer sends the index of its
shares to its neighbors and the neighbors receiving this index
send their indices to the newly joined peer. This technique is
different than the Route Learning scheme, because in Route
Learning peers do not send an index of their shares; peers find out
the resources reachable through its neighbors by observing the
query and query hit messages. Another technique proposed in that
study is the ‘‘iterative deepening’’, where a query is first sent to
the network with TTL x. After a certain period of time, if the
initiator of the query is not satisfied with the results, it sends a
‘‘Resend’’ message with TTL yðy4x) and the receiving nodes at
TTL x resend the same query with TTL y� x, which starts a second
iteration for the query. There is no iterative deepening in Route
Learning; queries are processed by the receiving peers and when
the TTL of the query expires, the query is not forwarded anymore.
However, such an iterative deepening mechanism can easily be
incorporated to Route Learning to increase the answer rate and
querying time of the search. Lastly, authors of the study propose
‘‘directed breadth first search’’ technique which tries to forward
the queries to the neighbors that are highly likely to supply an
answer. This technique and Route Learning share the same aim;
however, the statistics collected by Route Learning is more
complex than the statistics proposed by those authors. Therefore,
Route Learning can be seen as an improvement over this
technique. The authors propose to send the query to the neighbors
that supplied the most query hits. Route Learning on the hand
keeps track of the query to query hit ratio for every keyword in the
queries a peer receives. Furthermore, this sophisticated statistics
collection allows Route Learning to drop a query to save further
bandwidth, in case none of the neighbors can answer the query.

Kalogeraki et al. (2002) propose a routing technique that also
tries to find the highly likely neighbors that can supply the
answer. In this scheme, peers hold a list of ðQ ;NÞ pairs, where N is
the node that supplied answers to query Q. Similar to Route
Learning, the nodes form this list by observing query and query hit
messages. In this scheme, the nodes also export this list to their
neighbors; in Route Learning, the peers do not distribute the
information they gathered about the network to save more
bandwidth. Upon arrival of a query message, a peer first calculates
the distance between the received query and the queries
maintained in the list, then forwards the query to the nodes that
supplied answers to the most similar queries. We can say that
Route Learning calculates the distance between a received query
and the queries it has observed with the rank decision algorithm.
However, Route Learning uses a mapping function that maps
similar keywords to close points in the feature space. This way,
Route Learning is able to cope with small differences in the
keywords themselves. Furthermore, it is able to drop a query
when it decides none of the neighbors can supply an answer.

Tsoumakos and Roussopoulos (2003) also propose to store
index values for each query message a peer requests or forwards.
An index holds the neighbor a query is forwarded to with the
relative probability of this neighbor to be chosen as a next hop for
the other queries. Initially, this probability is equal for all
neighbors, thus the neighbor selection is random. The query
initiator selects n of its neighbors and initiates the walkers. That
is, the query is forwarded to those neighbors. The neighbors
receiving the query forward the query to only one of their
neighbors if they do not find a matching resource at their shares. If
the walker is terminated (i.e., the TTL value expires) without a
query hit, then the peers where the walker is terminated send an
‘‘update’’ message with the reverse path of the query. The peers
receiving the update message lower the relative probabilities
stored at their index. This scheme also tries to find the neighbors
that are highly likely to answer a query as Route Learning does.
However, Route Learning approach allows a peer to cope with
minor differences in keywords of a query (e.g., ‘‘Matrix’’ and
‘‘MatrixDVD’’). Also, Route Learning uses random guess only to
find out if there has been a change in the network, and this guess
is only initiated at certain intervals. If Route Learning does not
know the query, it broadcasts the query to find out and learn
which neighbors can supply an answer.

Applying a distributed hash table (DHT) structure to P2P
networks is another approach that improves the scalability and
the exact-match hit rate (Stoica et al., 2001; Ratnasamy et al.,
2001). The problem with a hash table based structure is that it can
only support exact match queries. Some studies used DHT-like
schemes in Gnutella as well, where peers index their shares in a
binary hash table and send it to their neighbors at certain time
intervals (Rohrs,). An n-gram-based technique to allow fuzzy
queries is described in Witten et al. (1999). This idea is borrowed
by Harren et al. (2002) to bring DHTs to P2P systems with a
complex query structure. These approaches are significantly
different from ours in that we do not require peers to hash their
resources and distribute them to their neighbors, a process which
causes extra messaging overhead.

The routing method proposed in Menasce and Kanchanapalli
(2002) may seem related to Route Learning since both schemes
use a probabilistic approach. However, the protocol in Menasce



ARTICLE IN PRESS

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567566
and Kanchanapalli (2002) makes use of caches and it forwards
queries to neighbors based on ‘‘broadcast probability’’. Route
Learning, on the contrary, does not make use of caches and
forwards queries to neighbors based on the knowledge collected
about them.

Most of the learning based routing protocols focus on
clustering peers that have similar interests. In the scheme
proposed in Ng et al. (2003), peers associate to the network using
two connection methods. The first connection method, random

connection, is the method used by Gnutella. A peer chooses the
neighbors to connect to by availability, i.e. if a neighbor can accept
the newcomer, then the connection is established. In the second
connection method, attractive connection, the newcomer estab-
lishes a connection according to the answers it has received. If a
peer X has supplied most of the answers, then the newcomer
establishes a connection with the peer X. This way, most of the
queries submitted will be answered by one-hop neighbors. The
main difference between our work and the works presented in Ng
et al. (2003) is that, in our system peers do not change
connections. Changing neighboring connections is not a very
attractive solution since P2P networks are highly dynamic and
nodes frequently connect to or disconnect from the network.
Another difference is that, Route Learning has methods to cope
with changes in keywords; it does not rely only on keyword
repetitions but it also uses similarity between keywords to further
reduce the querying overhead. Finally, Route Learning can
dynamically adjust to the changes in topology of a P2P network
that arise from new connections or disconnections.

Joseph (2002) proposes a scheme, called ‘‘NeuroGrid’’, where
peers associate keywords with neighbors. Similar to Route
Learning, this association contains two numbers: (1) the number
of times the keyword is seen in queries; (2) the number of times
an answer is supplied to a query which results in a download. A
query is forwarded to a number of peers that have the highest
ratio between these two numbers. In NeuroGrid, peers can also
update connections according to the replies they receive so that
they can become neighbors with peers that answer their queries.
The second number used in estimating the next hop for a query
requires feedback messages to be given by peers in addition to
query and query hit messages (a feedback message is sent for
example when a peers starts downloading a resource), which in
turn requires new messages to be added to the Gnutella protocol.
Route Learning, on the other hand, does not require any
extensions to the Gnutella protocol. It builds the knowledge
based on only query and query hit messages. Besides this,
NeuroGrid does not have any mechanisms to cope with changes
in the keywords of the queries and Route Learning’s estimation
mechanism can cope with small differences in keywords.

The study presented in Handurukande et al. (2004) tries to
exploit semantic proximity betweenpeers. Semantic relationship
between peers is captured via one of two methods: LRU or History.
In LRU, an uploader peer is added to the top of the list of semantic
neighbors of a peer. In History method, a peer keeps track of the
uploaders and builds a list of semantic neighbors that contains the
best uploaders. The queries are then forwarded to semantics
neighbors where answers are highly likely to come. The difference
of this study from ours is that we try to capture the semantic
relationship by looking at the keywords contained in queries, and
we are not using flooding.

Some other schemes have been proposed to reduce the
querying overhead through clustering of peers. In those schemes,
a query is first routed directly to a related cluster and then to the
peers in that cluster. The schemes differ from each other in the
way they build the clusters. In Crespo et al. (2002), peers form
multiple overlay networks by classifying the content they share.
Peers with similar content are placed into the same cluster. In the
clustering scheme presented in Guo et al. (2005), a group of peers
that supply most of the answers to queries form a cluster. To
further improve the search performance, a newly joined peer
marks the source peers that send query hits. Then the new peer
asks source peers to send the index of all the files they share. This
allows the new peer to know about the files of peers with similar
interests which enable a query to be routed directly to those
peers. Another clustering method is described in Zhu et al. (2005).
The method is based on an information retrieval technique called
VSM (vector space model). Node vectors are derived for peers
depending on the files they share, and those vectors are used to
form groups of semantically related peers. A query is first routed
directly to a related group, and then flooded inside that group.
Datta et al. (2006) state the importance of using distributed data
mining in P2P networks. They investigate the use of exact and
approximate P2P algorithms for K-means clustering. The cluster-
ing schemes described here are all different from our work, since
the routing scheme we propose does not involve clustering of
peers.

In current P2P systems there is no strict stopping criteria for
queries. Some P2P systems start timer when a query is sent and
declare the query as finished when the timer expires. However,
after declaring a query as finished, some peers containing the
sources that can answer this query with better resources can join
the network. Tas and Tas (2006) address this problem by applying
the ‘‘Search Theory with Learning Approach’’ to P2P domain. In their
proposal, the searching peer calculates the download time and
sends the query. The query answers include the times the peers
can supply the resource. The query is declared to be finished when
at least one peer with supply time smaller than the download
time calculated by the searcher is found. Since the distribution of
download times for all resources over all peers cannot be found,
Tas et al. employ a Bayesian learning system, where the searching
peer learns the distribution of download times using the results of
the queries. This study is similar to our Route Learning scheme,
since we also employ a learning based algorithm. Though, our aim
in using the learning algorithm is to anticipate the peers that can
answer a given query.
6. Conclusion

In this paper, we present a new semantic routing scheme
which we call Route Learning for P2P networks. This scheme is an
adaptation of a classification problem to unstructured P2P
networks aiming to reduce query overhead. In Route Learning,
peers gradually build knowledge about their environment, so that
they can predict which neighbors can supply an answer. This
process reduces the amount of bandwidth required in querying.
The main difference between the scheme presented and a
classification problem is that our scheme tries continuously to
adapt its knowledge in order to cope with frequent changes in the
neighborhood.

Route Learning’s efficiency in predicting the routes greatly
depends on keyword repetition. It was already proven through the
analysis of P2P networks that keywords submitted to a P2P
network follow a Zipf distribution. Therefore, a high number of
repetitions of some keywords can be expected. Route Learning
also considers the similarity between keywords and tries to relate
the keywords, aiming to save bandwidth. We employ a very
simple similarity measure in our evaluation, the distance between
keywords when they are mapped to the feature space. The
experimental results show that Route Learning usually relates
close keywords with each other and forwards the query to only
one neighbor. The results also show that Route Learning can save
significant amount of bandwidth.



ARTICLE IN PRESS

S. Ciraci et al. / Journal of Network and Computer Applications 32 (2009) 550–567 567
References

Androutsellis-Theotokis S, Spinellis D. A survey of peer-to-peer file sharing
technologies. Electronic Trading Research Unit (ELTRUN), Athens University
of Economics and Business; 2002.

Ciraci S, Korpeoglu I, Ulusoy O. Characterizing Gnutella network properties for
peer-to-peer network simulation. In: Yolum P, Gungor T, Gurgen F, Ozturan C,
editors. Computer and information sciences—ISCIS 2005. Lecture notes in
computer science, vol. 3733. Berlin: Springer; 2005. p. 274–83.

Crespo A, Molina, HG. Semantic overlay networks for P2P systems. Technical
Report, Computer Science Department, Stanford University; 2002.

Datta S, Bhaduri K, Giannella C, Wolff R, Kargupta H. Distributed data mining in
peer-to-peer networks. IEEE Internet Comput 2006;10(4).

Gnutella protocol v0.6. URL: hhttp://rfc-gnutella.sourceforge.net/developer/test-
ing/index.htmli.

Guo L, Jiang S, Xiao L, Zhang X. Fast and low-cost search schemes by exploiting
localities in P2P networks. J Parallel Distributed Comput 2005;65(6).

Handurukande, SB, Kermarrec A-M, Le Fessant F, Massoulie L. Exploiting semantic
clustering in the eDonkey P2P network. In: EW11: proceedings of the 11th
workshop on ACM SIGOPS european workshop: beyond the PC, Leuven,
Belgium. ACM Press; 2004.

Harren M, Hellerstein JM, Huebsch R, Loo BT, Shenker S, Stoica I. Complex queries
in DHT-based peer-to-peer networks. In: Revised papers from the first
international workshop on peer-to-peer systems. London, UK: Springer;
2002. p. 242–59.

Joseph S. NeuroGrid: semantically routing queries in peer-to-peer networks. In:
Revised papers from the networking workshops on web engineering and peer-
to-peer computing. London, UK: Springer; 2002. p. 202–14.

Joseph S. P2P MetaData search layers. In: Second international workshop on agents
and peer-to-peer computing, 2003.

Kalogeraki V, Gunopulos D, Zeinalipour-Yazti D. A local search mechanism for peer-
to-peer networks. In: Proceedings of the eleventh international conference on
information and knowledge management. New York: ACM Press; 2002. p.
300–7.

Karakaya M, Korpeoglu I, Ulusoy O. GnuSim: a general purpose simulator for
Gnutella and unstructured P2P networks. Technical Report, Department of
Computer Engineering, Bilkent University; 2005.

LimeWire Gnutella client. URL: hhttp://www.limewire.com/i.
Lv Q, Cao P, Cohen E, Li K, Shenker S. Search and replication in unstructured peer-
to-peer networks. In: Proceedings of the 16th international conference on
supercomputing. New York: ACM; 2002.

Markatos EP. Tracing a large-scale peer to peer system: an hour in the life of
Gnutella. In: Proceedings of the 2nd IEEE/ACM international symposium on
cluster computing and the grid, Washington, DC, USA, 2002.

Menasce DA, Kanchanapalli L. Probabilistic scalable P2P resource location services.
In: SIGMETRICS performance evaluation review, vol. 30, no. 2. New York: ACM
Press; 2002. p. 48–58.

Ng CH, Sia KC, Chan C-H. Advanced peer clustering and firework query model in
the peer-to-peer networks. WWW 2003 (Posters); 2003.

Ratnasamy S, Francis P, Handley M, Karp R, Schenker S. A Scalable content
addressable network. In: Proceedings of the ACM SIGCOMM conference, 2001.
p. 161–72.

Rohrs C. Query routing for the Gnutella network. URL: hhttp://rfc-gnutella.
sourceforge.net/src/qrp.htmi.

Saroiu S, Gummadi, PK, Gribble SD. A measurement study of peer-to-peer file
sharing systems. In: Proceedings of multimedia computing and networking
(MMCN ’02), San Jose, CA, USA, January, 2002.

Stoica I, Morris R, Karger D, Kaashoek F, Balakrishnan H. Chord: a scalable peer-to-
peer lookup service for internet applications. In: Proceedings of the ACM
SIGCOMM conference, 2001. p. 149–60.

Tas NC, Tas BKO. A search theoretical approach to P2P networks: analysis of
learning. In: Proceedings of the advanced international conference on
telecommunications and international conference on internet and web
applications and services. IEEE Computer Society; 2006.

Tsoumakos D, Roussopoulos N. Adaptive probabilistic search for peer-to-peer
networks. In: Proceedings of the 3rd international conference on peer-to-peer
computing, 2003.

Witten IH, Moffat A, Bell TC. Managing gigabytes: compressing and indexing
documents and images. Los Altos, CA: Morgan Kaufmann; 1999.

Witten IH, Moffat A, Bell TC. Pattern classification. New York: Wiley Interscience;
2000.

Yang B, Garcia-Molina H. Improving search in peer-to-peer networks. In:
Proceedings of the 22nd international conference on distributed computing
systems (ICDCS’02), Washington, DC, USA, 2002.

Zhu Y, Yang X, Hu Y. Making search efficient on Gnutella-like P2P systems. In:
Proceedings of the 19th IEEE international parallel and distributed processing
symposium (IPDPS’05), 2005.

http://rfc-gnutella.sourceforge.net/developer/testing/index.html
http://rfc-gnutella.sourceforge.net/developer/testing/index.html
http://www.limewire.com/
http://rfc-gnutella.sourceforge.net/src/qrp.htm
http://rfc-gnutella.sourceforge.net/src/qrp.htm

	Reducing query overhead through route learning in unstructured peer-to-peer network
	Introduction
	Background
	Route Learning
	Phase 1: training
	Phase 2: evaluation
	Improving decision making: Vote Route Learning

	Phase 3: network change adaptation

	Performance evaluation
	Keyword length
	Feature space size
	Number of queries used in training phase
	Window size and its effect on prediction accuracy
	Bandwidth usage and the effects of increasing the number of queries the system has trained with
	Experiments on Gnutella network
	Effects of window size in Gnutella network
	Comparison with other P2P routing schemes
	Hops performance experiment

	Related work
	Conclusion
	References


