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Abstract

An important feature that is expected to be owned by today�s mobile computing systems is the ability of processing location-

dependent continuous queries on moving objects. The result of a location-dependent query depends on the current location of the
mobile client which has generated the query as well as the locations of the moving objects on which the query has been issued. When
a location-dependent query is specified to be continuous, the result of the query can continuously change. In order to provide accu-
rate and timely query results to a client, the location of the client as well as the locations of moving objects in the system has to be
closely monitored. Most of the location generation methods proposed in the literature aim to optimize utilization of the limited wire-
less bandwidth. The issues of correctness and timeliness of query results reported to clients have been largely ignored. In this paper,
we propose an adaptive monitoring method (AMM) and a deadline-driven method (DDM) for managing the locations of moving
objects. The aim of our methods is to generate location updates with the consideration of maintaining the correctness of query eval-
uation results without increasing location update workload. Extensive simulation experiments have been conducted to investigate
the performance of the proposed methods as compared to a well-known location update generation method, the plain dead-
reckoning (pdr).
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Recent advances in mobile communication and por-
table computer technologies have led to the emergence
of various innovative mobile computing applications
(Lee et al., 2002). Many of these new applications re-
quire the system to manage the locations of moving ob-
jects and to support the so-called location-dependent

queries (LDQs) on moving objects (Sistla et al., 1997;
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Wolfson et al., 1998; Dunham and Kumar, 1998; Ren
and Dunham, 2000; Seydim et al., 2001). The evaluation
result of a LDQ depends on the location of the mobile
client1 which has issued the query, as well as the loca-
tions of the queried moving objects (Trajcevski et al.,
2002; Zhang et al., 2003). For example, in a database
management system maintaining the location informa-
tion of ambulances, a typical LDQ that might be sub-
mitted to the system by the driver of an ambulance is:
‘‘identify all the other ambulances, which are within
5 km of my current position’’. The result of the query
depends on the current location of all the ambulances.
A LDQ may be submitted as a continuous query (CQ)
1 A mobile client is a moving object, which can generate queries.
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442 K.-Y. Lam, Ö. Ulusoy / The Journal of Systems and Software 79 (2006) 441–453
which is a kind of query that exists in the system for a
pre-defined period of time (Sistla et al., 1997; Sistla
et al., 1998; Gök and Ulusoy, 2000). Submitting a LQ
as a CQ could be an efficient way to monitor the status
of the interested objects such that once they meet the
condition of the query, the requesting client is informed
immediately.

Since the values of the data items which record the
locations of moving objects can be highly dynamic (Sis-
tla et al., 1997; Gök and Ulusoy, 2000; Wolfson et al.,
1998; Wolfson et al., 1997; Trajcevski et al., 2002; Zhang
et al., 2003), continuous updates refreshing the location
information have to be installed to ensure the correct-
ness2 of the results of location-dependent continuous
queries (LDCQs). However, this would impose a serious
performance and wireless bandwidth overhead.

A common approach used to reduce the number of
updates is indexing of the current and future positions
of moving objects. Tayeb et al. (1998) used PMR-Quad-
tree for indexing moving objects. Saltenis et al. (2000)
introduced the time parametrized R-Tree (TPR-tree)
which considers both the position and velocity of mov-
ing objects. Later, the same authors proposed an R*-tree
based access method that indexes the current and future
positions, assuming that the positions expire after spec-
ified time periods (Saltenis and Jensen, 2002). A B*-tree
based indexing method for moving objects was intro-
duced by Jensen et al. (2004). Based on this method,
the authors provided efficient algorithms for range and
nearest-neighbor queries, as well as for continuous que-
ries. Xia et al. (2005) proposed a Mean Variance Tree
index structure, which is built based on the mean and
variance of the data that are relatively constant features
compared to the actual data values, leading to reduced
index update cost.

The uncertainty of trajectory of a moving object in
query processing was studied by Trajcevski et al.
(2002). The authors used a cylindrical volume in 3D to
model the trajectory of a moving object. Cheng et al.
(2003) modeled a moving object�s location with a closed
region and a probability density function that describes
the distribution of the location of the object within the
region. Probabilistic queries were then defined, which
augment probabilistic guarantees to query answers.
Algorithms for evaluating probabilistic range queries
and nearest-neighbor queries were also studied in that
work.

In (Sistla et al., 1998; Trajcevski et al., 2002; Wolfson
et al., 1999; Wolfson et al., 1997), some efficient dead-
reckoning methods were proposed for generating loca-
tion updates with the objectives of better utilization of
2 Our definition of correctness is provided in Section 3.
the limited wireless bandwidth and bounding the degree
of uncertainty. The main problem with the plain dead-
reckoning (pdr) method is the difficulty in defining the
right update threshold value for each moving object.
In order to minimize the uncertainty of location-
dependent query results, the update threshold of a mov-
ing object may be set to a small value. However, this
may result in a heavy update workload. On the other
hand, if large values are used for update thresholds,
the uncertainty may be high and correct results may
not be reported in a timely fashion to the requesting cli-
ents. To resolve the problem, the adaptive dead-reckon-

ing (adr) was proposed as an extension to pdr (Sistla
et al., 1997, 1998). In adr, the threshold is not fixed
and a new threshold is provided with each update. The
new value is computed based on the uncertainty cost,
deviation cost, and update cost. The objective is to min-
imize the total information cost per time unit until the
next update. Although the methods aim to minimize
the ‘‘cost’’, the calculation of which is based on the
information cost and update cost, they ignore the con-
sideration of how this cost is ‘‘paid for’’ in case of pro-
viding incorrect query results to mobile clients. If a
moving object is not involved in any queries, no infor-
mation cost needs to be paid for since no one is inter-
ested in the location of the object. Therefore, it is not
necessary to bound the uncertainty for all the objects
as only some of them are involved in query results. An-
other problem is location update under disconnection.

Taking these considerations into account, we propose
two new methods for generation of location updates.
With the first method, which we call adaptive monitoring

method (AMM), locations of the moving objects which
already satisfy or will soon satisfy the condition of a
LDCQ are monitored more closely. Location uncer-
tainty of the other objects is allowed to be large. There-
fore, it becomes possible to provide timely and correct
results for LDCQs, while avoiding high update work-
load in the system. An important feature of AMM is
that the update period of a moving object is adaptive
to when the object will satisfy the condition of a LDCQ.
This is more cost effective than using a fixed period for
location update generation. The other method we intro-
duce with the same objectives as AMM, which is called
deadline-driven method (DDM), requires each moving
object to send a location update to the location server
whenever it is about to satisfy the condition of a LDCQ.
We also discuss how disconnections are handled with
AMM to minimize the probability of observing in-
correct query results, and what the impacts of network
disconnection on DDM are.

We have conducted extensive simulation experiments
to evaluate the performance of our location update gen-
eration methods (AMM and DDM) as compared to a
dead-reckoning method, and chosen incorrect informa-

tion rate (i.e., an indicator of the degree of correctness
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of the results provided from the LDCQ), as the primary
performance measure in our experiments. A related is-
sue in processing LDCQs is determination of the time
for transmitting query results to the originating clients
(Gök and Ulusoy, 2000). Another contribution of our
work is investigation of the performance relationship be-
tween the location update generation methods and the
approaches used for location-dependent query result
transmission, as these two issues are closely related to
each other. In Section 2, we define our system model
and specify the correctness requirements of the system.
We introduce our update generation methods in Section
3. Section 4 is devoted to the performance evaluation of
the proposed method. Finally, Section 5 concludes the
paper.
2. System model

2.1. Model components

Our system model consists of a database server and a
number of moving objects. The database server commu-
nicates with the moving objects using a low bandwidth
mobile network. The server maintains a database, which
contains data items for recording the locations of the
moving objects. Data items associated with the moving
objects are defined based on the moving object spatio-

temporal (MOST) data model (Sistla et al., 1997; Sistla
et al., 1998), in which the attributes of a moving data
item can be static or dynamic. A static attribute changes
only when an explicit update is applied. In contrast, a
dynamic attribute changes over time according to a cer-
tain function. For example, each of the x and y coordi-
nates of a moving object that specifies the position of the
object in a two dimensional space, is a dynamic attri-
bute. In the MOST data model, a dynamic attribute A

is represented by three sub-attributes: A.value, A.update-
time and A.function. A.function is a function time (t)
which has value 0 at t = 0. At time A.updatetime, the
value of A is A.value. Thus, until the next update time,
the value of A at time A.time + t0 is given by
A.value + A.function(t0). Under the MOST model, the
results of an evaluation of a query will be a set of tuples
with each tuple consisting of hobject, begin time, end

timei. The begin time and end time of a tuple indicate
the duration when the object satisfies the conditions of
the query. The tuples for a query are ordered by their
begin times and sent to the requesting mobile client,
before their begin time, i.e., before the time when the
values become true.

Moving objects generate updates to report their cur-
rent locations to the database server through a mobile
network. Each update is associated with a time-stamp,
which specifies the time at which the current value will
become valid. The time-stamp of an update is also re-
corded with the data value. Some moving objects (that
we call mobile clients) may generate location-dependent
queries on other objects in the system. Location-
dependent queries are submitted as continuous queries
each with a start time and an end time, such as
LDCQ(query_start_time, query_end_time). The query is
evaluated, and the results, in the form of a set of tuples
hobject, begin time, end timei, are collected and grouped
by their begin times, each indicating the beginning of the
time period for which the object specified in the tuple
satisfies the condition of the query. Once the results
are ready, the server sends the selected tuples to the
mobile client according to a query result transmission
approach adopted by the system (Gök and Ulusoy,
2000). The query is re-evaluated when there is any
change in the database state during the period of time
between query_start_time and query_end_time.

2.2. Correctness requirements

The previous work on location updates generation is
characterized by the objectives of bounding the location
uncertainty and minimizing the update overhead. How-
ever, the issues on ensuring the correctness and timeli-

ness of the results returned to the requesting clients
have been ignored. In our work, we aim to maximize
the correctness of the query results returned to mobile
clients as they may take incorrect actions based on the
incorrect results received. The correctness of a query re-
sult is affected by the uncertainty in locations of the ob-
jects selected as the result of the query. However, for
those objects, which do not satisfy any query, or satisfy
a query much ahead of the current time, the uncertainty
in objects� locations does not need to be bounded as it
will not affect the correctness of query results
significantly.

Remember that with the MOST data model we
adapted, the result of a LDCQ evaluation is specified
as a set of tuples hobject, begin time, end timei. Tuples
having an end time that is greater than the current time
are sent to the client which has issued the query. We de-
fine the correctness of a query result based on its begin

time. We also use the actual begin time of an object,
which is the time when the object starts to satisfy the
conditions of a query. Note that the actual begin time
of an object for a query may deviate from the begin time
produced for the corresponding result tuple of that
query, because the database may contain out-dated
information about the current location of the object.
A mobile client observes incorrect result if:

(1) The actual begin time of an object for a query is
earlier than the begin time of the result tuple pro-
duced for that object and current time is equal to
the actual begin time, (we call this problem missed

information); or



444 K.-Y. Lam, Ö. Ulusoy / The Journal of Systems and Software 79 (2006) 441–453
(2) The actual begin time of an object for a query is
later than the begin time of the result tuple pro-
duced for that object and the begin time is equal
to current time, (we call this problem false

information).

In the first case, a mobile client is not aware of the
fact that an object is satisfying the condition of its query.
For the second case, a mobile client is informed that an
object has met the condition of its query but actually it
does not. Due to the delay in data transmission and pro-
cessing, it is impossible to have an ‘‘instantaneous’’ loca-
tion of a moving object. The degree of incorrectness in
results is unknown to the server and the client since
the server does not know the exact locations of the mov-
ing objects. Our performance objective is to minimize
the difference between the actual and predicted actions.
In practical systems, it is usually accepted that the re-
corded location of a moving object is considered to be
the ‘‘same’’ as its current location if the deviation is very
small, i.e., smaller than a pre-defined bound. We call this
bound a similarity bound which is used to specify the
accuracy of a query result. In this paper, we assume that
each query is associated with a similarity bound. If the
difference between a result tuple�s begin time and the ac-
tual begin time is smaller than the similarity bound, the
result is considered to be correct.
3 This approach was first introduced in our earlier work (Lam et al.,
2001).
3. Location update generation methods

The biggest problem in location update for evalua-
tion of LDCQ is the difficulty in determining when an
object will satisfy the condition defined in the LDCQ.
The problem is complicated by the variability in move-
ment behavior of moving objects. An object may change
its movement direction and speed dynamically. In this
section, we present the adaptive monitor method
(AMM) and the deadline-driven method (DDM) pro-
posed for location update generation for moving objects
with different movement behavior. The design principle
of the method is based on the assumption that the next
movement speed and direction are related to the current
speed and direction. This principle is consistent with the
movement behavior of most objects in real life applica-
tion examples.

Both AMM and DDM are time based update
schemes. Based on the begin time and end time of an ob-
ject the server determines the next update time for the ob-
ject with the aims to provide correct and timely query
results to clients, and to minimize the location update
cost. However, these two methods have different assump-
tions and are suitable for moving objects with different
movement characteristics. AMM is a pessimistic ap-
proach. It adaptively monitors the progress of how the
begin time and end time of an object change and deter-
mines the next update time using a feedback control
scheme.3 Each next update time is a fraction of the begin

time of the object instead of the whole begin time as it as-
sumes that the movement of the object may not follow
exactly the prediction. On the other hand, the DDM is
an optimistic approach as it assumes that the movement
of the object will more or less follow the prediction. The
next update is then determined mainly from the predicted
begin time in the first estimation. These two methods are
suitable for moving objects with different movement
characteristics and they could impose very different up-
date overhead. In general, AMM has a higher update
cost but it can provide a closer monitor on movement
of moving objects required by a query. Thus, it can pro-
vide query results with a higher degree of correctness
while DDM has lower update cost but may provide a
lower degree of correctness in query results.

3.1. Adaptive monitor method (AMM)

AMM is an adaptive update generation method. Sim-
ilar to the dead-reckoning approaches, the generation of
updates for moving objects in AMM depends on the
deviation of object locations. An update threshold is de-
fined for the location of each moving object. If the devi-
ation between the actual and computed location values
is greater than the update threshold, a location update
is generated. As an improvement over defining a simple
fixed update threshold for all the objects, we define
threshold bounds, more specifically upper and lower
threshold bounds, from which the actual update thresh-
old of an object is evaluated based on some relevant
characteristics of the object. The determination of the
actual update threshold for an object is based on a map-
ping function, input of which is the begin time of the ob-
ject for a LDCQ. The upper threshold bound can be a
very loose (large) value and it is used for the objects
whose location uncertainty can be allowed to be large.
If the update generation follows the upper threshold
bound, the total update workload will be low and will
not significantly affect the system performance. The
lower threshold bound is a tight (small) value and it is
used for the objects which need close monitoring. If
the update generation follows the lower threshold
bound, every significant change in the location of mov-
ing objects is monitored so that the probability of losing
track of their locations will be low.

AMM consists of three phases of execution in evalu-
ating a LDCQ: (1) classification of moving objects into
‘‘selected’’ and ‘‘unselected’’ object sets on the basis of
whether they satisfy the condition of a query; (2) deter-
mination of the update generation threshold for selected
objects; (3) determination of the update generation
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threshold for the mobile client which has submitted the
query.

3.1.1. Construction of selected and unselected object sets

In AMM, the moving objects in the system are clas-
sified into two sets for each query. A moving object is
in the selected object set of a query if:

(1) It satisfies the condition of the query currently, or
(2) It will satisfy the condition in the future based on

the predicted paths of both itself and the request-
ing client. Both paths are determined by using
the A.functions (see Section 2).

Otherwise, an object is placed in the unselected object

set of the query. For each selected object, a tuple is gen-
erated to be placed in the answer set of the query. We do
not need to monitor the unselected objects closely and
we can simply make their update thresholds equal to
the upper threshold bound. For those objects in the se-
lected set, we need to assign smaller update threshold
values to monitor their locations closely. The smallest
possible value that can be assigned is the lower threshold
bound.

3.1.2. Update generation process of selected objects

Once we have determined the objects in the selected
object set for a LDCQ, we need to specify the update
thresholds of the objects in the selected object set. Each
member in the selected object set has a tuple following
the format of the MOST model, i.e., hobject, begin time,
end timei. In AMM, an adaptive update generation ap-
proach is used in which the location update threshold of
a moving object is set based on the begin time of its cor-
responding tuple for a query. The idea is that if the begin

time of the object is close to the current time, the update
threshold should be small. The aim is to monitor the
movement of the objects closely if they will soon satisfy
the conditions of the query. Otherwise, the probability
of having incorrect results, in the form of either false
information or missed information, will be high. For
the moving objects whose begin times are far in the fu-
ture, or are not even satisfying the condition of the
query, the update thresholds are set to be close to the
upper threshold bound with the aim of reducing the up-
date workload. Allowing a larger uncertainty on the
locations of these objects will not significantly increase
the probability of having incorrect results.

Based on the principles described above, we may de-
fine a function to map the begin time of an object to its
update threshold. Assuming an exponential distribution
for the mapping function:
<xi, 12, 20>

Current time (15) Begin Time

Fig. 1. Generation of update thresholds in AMM.
Update threshold of object xi

¼ H � ðH � LÞ � e�dt;where ð1Þ
H: Upper update threshold bound; L: Lower update
threshold bound; dt = begin time of object xi � current
time.

As an example, suppose that a mobile client has sub-
mitted a query, and in the first evaluation of the query at
current time 15, the following tuples are generated as the
result of the query:

hxi; 12; 20i
hxj; 20; 28i
hxk; 25; 35i

The update thresholds of objects, xi, xj and xk are
determined by using the update threshold formula (1)
as shown in Fig. 1. Since the begin time of xi is smaller
than the current time, its update threshold is set to be
the value of the lower threshold bound to monitor its
location closely. The update threshold of xj is smaller
than that of xk since the begin time of xj is closer to
the current time than that of xk. The computed update
thresholds are sent to the corresponding objects and
the generation of updates follows these threshold values.
Whenever the database server receives an update from
the moving object or the client which has generated
the LDCQ, the query is evaluated again and the new
7begin times and end times of the result tuples are rede-
fined. Then, the new update thresholds are calculated
and sent to the corresponding moving objects. When
an object receives a new update threshold, it compares
the new threshold with the amount of distance traveled
since the last location update. If this distance is greater
than the threshold value, the object generates a location
update.

The determination of the mapping function is appli-
cation dependent and is also affected by the movement
characteristics of the objects. Different mapping func-
tions can be adapted for generating the update thresh-
olds of different objects which are accessed by different
types of queries. The guideline for choosing the mapping
functions and setting the threshold bounds would be the
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consideration of the cost of missing the information to
the clients and the total update cost, as well as the accu-
racy of prediction in movement of objects. If the cost of
missing the information to the clients is low, a large
threshold bound may be used. On the other hand, if
the total update workload in the system is low, smaller
threshold bounds may be defined. If the movement of
objects follows closely the prediction, i.e., the begin time

does not change much after each location update, an
exponential mapping function with a small mean value
can be employed, so that a small update threshold is
used only for cases where the begin time is very close
to the current time.

A moving object might be in the answer set of more
than one LDCQ. In that case, the update threshold of
the moving object is set to be the minimum of all the
thresholds calculated from all those queries. If an ob-
ject�s begin time is earlier than the current time in the
first evaluation, its update threshold is set to be the
lower update threshold bound. When a location update
arrives, the set of related queries needs to be re-evalu-
ated. The update arrival rate could be high if the system
consists of a large number of moving objects selected by
the queries. Therefore, it is important to minimize the
computation cost for them. A simple way to reduce
the evaluation cost and the cost for calculating the next
update time is to use a linked list to connect the set of
objects accessed by a query. For example, assume that
the set of objects selected by queries Qx and Qy are
{Oi,Oj,Ok} and {Oi,Ol}, respectively. The object Oi is
selected by both Qx and Qy. When an update from Oi ar-
rives at the system, both Qx and Qy are evaluated fol-
lowing their links, and new begin time and end time for
Oi are computed. Other queries will be unaffected. A
query is removed from the system after its end time.

When a location update of a requesting client arrives
at the database server, the server may find out that the
actual location of the requesting client differs by dd from
the predicted value determined using its A.function. In
this case, all the begin times of the selected tuples need
to be adjusted by the difference, dd. Some of the already
selected objects may be excluded from the selected ob-
ject set, while some new objects may be included in the
set. In order to minimize the impact of the mobility on
the correctness of query results, active mobile clients
generate updates more frequently (i.e., the lower update
threshold bound is used), so that their locations can be
closely monitored and any change in the evaluation re-
sults can be identified earlier.

3.2. Deadline-driven method (DDM)

When a moving object sends a location update to the
central database server, the answer tuple of each LDCQ
referring to that object needs to be updated. The begin

and end times of each such tuple may change. The tuples
of LDCQs affected by a location update have to be
recomputed to prevent the supply of incorrect informa-
tion to the clients. The processing overhead in the sys-
tem depends on the number of location updates. If the
accuracy in prediction on movement of a moving object
is high, some location updates may be unnecessary.
Consider the example in Fig. 2. If the movement of
the objects and the clients which initiate the LDCQ fol-
lows prediction (i.e., its begin time remains the same),
the location update thresholds of that object will be get-
ting smaller and smaller as the begin time approaches.
The location updates which are far away from the begin

time will not affect the correctness of query results
(Fig. 2).

Taking this observation into account, we can say that
location update may not be necessary for an object if it
is not currently satisfying or about to satisfy any query
and its movement follows prediction most of the time.
Following this principle would also reduce the overhead
of location updates. Therefore, if the begin time of a
moving object in a result tuple is far from the current
time and its movement is quite regular most of the time,
we may set the next location update time ‘‘close’’ to the
begin time.

Since a moving object knows its deviation from its
last reported position and its previous movement pat-
tern, it can determine when it will satisfy the condition
of a LDCQ by assuming that the requesting client is sta-
tionary. Simply just before satisfying the query, the ob-
ject can generate an update to report its current location
to the database server, so that the server can find out
that it will soon meet the condition of the query. In
determining the update generation time, the offset of
time, tos, before the condition is met can be computed
by summing up the time for sending the update to the
server, the time for performing the update and the time
for evaluating the query. By using this offset, we can de-
fine a deadline for the next update generation time of a
moving object as shown in Fig. 3:
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Deadline ¼ f ðdt � tosÞ

where dt = begin time of the tuple � current time.
The moving object has to generate an update before

the deadline.
In the deadline formula given above, the movement

of the requesting client of the query is not considered
at all. Therefore, every time the requesting client sends
an update on its location to the central database server,
the server should re-calculate begin and end times for the
result tuples and forward the modified values to the
moving objects. A new deadline is then computed using
the modified begin time. If a moving object is involved in
more than one query, the deadline for its next update
generation is set to the closest deadline from all the
queries.

3.3. Impact of disconnection on AMM and DDM

An important characteristic of a mobile network is
frequent disconnection of mobile computers connected
to it. A disconnection might be either voluntary or
involuntary. A voluntary disconnection aims to save
the limited computer and network resources. Involun-
tary disconnection is mainly due to poor network ser-
vices. In the following, we discuss how the AMM
method deals with the involuntary disconnection
problem.

The major problem of network disconnection is that
the transmission of location updates from disconnected
moving objects to the database server would not be pos-
sible. Consequently, it would become more likely to
issue missed and/or false information to the clients.
Since it is impossible to prevent disconnection (which
is a communication issue), the main solution here is to
inform the requesting clients and the database server
that a moving object is disconnected and the deviation
from its actual location may be greater than its update
threshold bound. A query result involving the moving
object may not be reliable.

The most trivial way to detect disconnection is to
check regularly for disconnection by trying to communi-
cate with the moving objects. However, this method in-
creases the communication workload on the low
bandwidth wireless channel especially if the checking
period is set to be small. In AMM, communication be-
tween the central database server and the set of selected
moving objects already occurs for location update trans-
mission (from moving objects to the database server)
and update threshold transmission (from the database
server to moving objects). These messages can also be
used to avoid unnecessary communication simply for
checking of disconnection. If we assume that a moving
object is traveling with a constant speed, the duration
of time between the successive updates, called update
period, will be proportional to the value of the update
threshold. Therefore, the next location update of a
selected moving object is done, either:

(1) when the deviation in location is greater than its
update threshold, or

(2) when the current time becomes equal to the last
update time + the current update period;

whichever is earlier.
The value of the current (say, ith) update period Pi of

a moving object is determined by the following formula:
Pi = Pi�1 · Ui/Ui�1, where Ui is the ith update thresh-
old. The calculation of Pi is performed at the same time
as the calculation of the update threshold Ui; and Pi and
Ui are sent together to the moving object so that the ob-
ject will know when it should generate the next update.
If a server does not receive an update from a moving ob-
ject after the expiration of its update generation time,
this implies that the moving object is disconnected from
the network. Note that the server only needs to check
the update time of selected objects. For those objects
which are not selected by any queries, they are not re-
quired to update their locations and their disconnection
from the network will not affect the query results.

The problem of disconnection in DDM is more seri-
ous if a disconnection occurs when the deadline of a
moving object is approaching, i.e., when a moving ob-
ject decides to send its location update to the database
server. This can cause the deadline of the object be
missed. Thus, to overcome the disconnection problem
in DDM, the offset of time can be set to a more pessimis-
tic value such that it includes the re-transmission delay
in case of disconnection.
4. Performance evaluation

4.1. Simulation model

We have designed and implemented a detailed simu-
lation model to study the performance of the proposed
methods, AMM and DDM, as compared to plain
dead-reckoning (pdr) by employing different query result
transmission strategies. Our simulation model is based
on the performance models proposed in the previous re-
lated works such as (Gök and Ulusoy, 2000). These
models have been extended to support modeling of pro-
cessing LDCQs. As shown in Fig. 4, our simulation
model consists of three basic components: mobile client
model, communication network and server model.

Each mobile client in our model consists of three
modules: a resource manager, a continuous query gener-
ator and an update generator. The resource manager
models the CPU at the client machine for processing
query requests and handling the query results sent by
the server. It is assumed that there are TotalMO moving
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objects among which NumMH objects can generate
LDCQs. The continuous query generator generates
LDCQs which are sent to the server model through
the communication network. The results of a query eval-
uation are returned to the requesting mobile client from
the server also through the communication network.
The lifetime of a LDCQ is chosen randomly between
the values MinCQLife and MaxCQLife. A mobile client
generates a new LDCQ after a think time following the
completion of its previous LDCQ. The think time is
exponentially distributed with a mean of ThinkTime.
No I/O time is modeled in the resource manager module
since we assume that the buffer pools of mobile clients
are large enough to hold all the tuples received in
response to an issued LDCQ.

In the simulation model, each moving object is as-
signed a default speed, S. Every time unit, the distance
traveled by a moving object is calculated by using the
speed S ± SF where SF is a random variable uniformly
distributed within a bound called speed bound (SB).
Whenever the deviation of the location of an object be-
comes greater than the update threshold of the object,
the update generator generates a location update to
the database server. When the database server receives
a new location of a moving object, it re-calculates the
begin time of the query result tuples referring to the
object. We assume that the change in the begin time of
a tuple is inversely proportional to the distance traveled
by the corresponding object. For example, if the dis-
tance traveled by an object is more than expected, the
begin time will be updated to be earlier; and vice versa.
We further assume for simplicity that the change in
the begin time is proportional to the difference between
the actual and expected values of the distance traveled.

All the messages exchanged between mobile clients
and the server are carried by the communication net-
work. It takes TupleTime seconds to transmit each tuple
in the query result set and ControlMessageTime seconds
to transmit each control message. For the transmission
of the result tuples of a query, a control message is gen-
erated which contains the necessary information for
controlling the transfer, such as the identification of
the requesting client and the total number of tuples
being transmitted.

The server model consists of a query processor and a
database. The query processor processes LDCQs and
location updates received from mobile clients. The ser-
ver also controls the accesses to the server CPU and to
the central database. No I/O time is modeled with the
server as we assume that it contains a fast accessed sec-
ondary memory. Once the query processor receives a
LDCQ, it determines the size of the query result in
terms of the number of tuples in the answer set of the
query. The maximum size of a query result is specified
by the parameter CQSize. The result of a LDCQ is gen-
erated as a set of tuples hobject, begin time, end timei.
The tuples are sent to the requesting mobile client in
increasing order of their begin times. Both delayed
and periodic transmissions (Gök and Ulusoy, 2000) of
tuples are simulated in the model for transmitting tu-
ples to the clients. With the delayed transmission ap-

proach, a tuple hobject, begin time, end timei is
transmitted to the mobile client just before the begin

time (considering required communication and process-
ing delays). According to the periodic transmission ap-

proach, at each w time units, all the tuples hobject,
begin time, end timei satisfying the condition t 6 begin

time < t + w where t is the current time, are transmitted
to the mobile client which has issued the LDCQ. w is
called the window size.

4.2. Simulation model parameters and performance
metrics

Table 1 lists the simulation model parameters and
their baseline settings. The baseline parameter values
were chosen so as to be comparable to the previous re-
lated simulation studies, such as (Gök and Ulusoy,
2000; Bukhres and Jing, 1996; Leong and Si, 1997). In
order to study the comparative performance of the pro-
posed methods, we measure the incorrect information

rate (IIR) which is defined as the number occurrences
of false information and missed information (as defined
in Section 3) over the total number tuples generated. IIR
indicates the capability of the system in providing
correct information (data values) to the queries from
mobile clients. In addition to IIR, we also measure the
re-transmission rate, control message overhead and
update workload. As explained in Section 2, when a
window based method is used for transmitting the query
result tuples to its requesting client, some of the tuples
may need to be re-transmitted due to the changes in
the result. Re-transmission rate is defined as the total
number of tuple re-transmissions over the total number
of tuples transmitted. Control message overhead mea-
sures the total number of control messages per unit time.
It is used to evaluate the communication overhead for
location updates between mobile clients and the server.
Note that different methods for location updates trans-
mission, i.e., deferred and periodic, incur different con-
trol message overheads. Update workload measures the
proportion of CPU utilization for processing location
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Table 1
Simulation parameters and default values

Baseline value

Mobile client parameters

Total number of
moving objects (TotalMO)

300

Number of moving
objects which may generate
LDCQ (NumMH)

50

Number of objects
satisfying a LDCQ (CQsize)

10–20 objects

Minimum life of a
LDCQ (MinCQLife)

240 s

Maximum life of a
LDCQ (MaxCQLife)

360 s

Think time (ThinkTime) 1000 s
Speed bound (SB) 0–1 (for each time unit

in the simulation)

Communication network parameters

Time for sending a
tuple (TupleTime)

0.1–0.2 s
(normal distribution)

Time for sending a control
message (ControlMessageTime)

0.05–0.1 s
(normal distribution)

Server parameters

Time for processing a tuple
(ComputeTime)

0.05–0.1 s
(normal distribution)

Update threshold limits 5–30 s
Window size for transmitting

the query results
50 s

Similarity bound 10 s
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Fig. 6. The impact of lower threshold limit on update workload under
delayed transmit.
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updates of moving objects. It specifies the processing
load introduced by location updates.

4.3. Performance results

The simulation program was implemented in CSIM-
18, which is a simulation language based on the C pro-
gramming language. We have performed four sets of
experiments to compare the performance of AMM
and DDM with plain dead-reckoning (pdr). In the first
two sets of experiments, the upper update threshold
bound of AMM is fixed at 30 s, and the lower threshold
bound is varied from 2.5 to 30 s. The first set of experi-
ments compares the performance of AMM and DDM
with pdr under the delayed transmission method for
transmitting LDCQ results, while the second set of
experiments compares the performance of the three
methods using the periodic transmission method with
a window size of 50 s. Delayed and periodic transmis-
sion approaches are explained in Section 4.4. In the
third set of experiments, the upper and lower threshold
bounds are set to 10 and 30 s respectively for AMM and
the update threshold for pdr is set to 10 s. The perfor-
mance results of the three methods are compared under
varying numbers of mobile objects. In the last set of
experiments, the performance of AMM is investigated
under different upper threshold bounds.
Fig. 5 depicts the incorrect information rate (IIR) re-
sults when different values are used for the lower thresh-
old bound for AMM and the update threshold for pdr.
The delayed transmission method is used for transmit-
ting query results to mobile clients. It can be seen from
the figure that the performance of AMM is consistently
better than pdr, i.e., the IIR of AMM is considerably
smaller than that of pdr for different threshold values.
Consistent with our expectation, both curves are in V-
shape. The best performance is achieved when the
threshold value is around 12.5 s. The poor performance
with small threshold values is due to heavy update work-
load as can be observed in Fig. 6 in which the update
workload is close to 65% for AMM and 90% for pdr.
Thus, under such settings, most of the system resources
are devoted to process the location updates from the
mobile objects and the system will not be able to gener-
ate timely responses to the continuous queries from mo-
bile clients. When a large threshold is used, the degree of
uncertainty in the location of a moving object will be
high. Thus, the probability of providing incorrect infor-
mation to mobile clients will also be high although the
update workload is smaller.

The better performance of AMM is due to the better
monitoring scheme used in generating location updates
in AMM, i.e., a smaller update threshold is assigned
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to the moving object if it is currently satisfying or will
soon satisfy the condition of a query. Even though
determining the update thresholds in AMM requires
communication between moving objects and the server,
the total number of control messages required in AMM
is still smaller than that in pdr due to smaller number of
location updates. The lower levels of control message
overhead with AMM can be observed in Fig. 7.

As presented in Fig. 5, the performance of DDM is
better than AMM when the update threshold value is
very small or when this value is large. This is mainly
due to smaller update workload with DDM since it elim-
inates the location updates for those objects which are
far from satisfying the condition of a query. With
AMM, when the update threshold is very small, the up-
date workload will be heavy, while a large update
threshold will lead to a high level of uncertainty.

For the resulting tuples which were identified as
incorrect, we have also observed the distribution of the
difference between the begin time of a tuple generated
for an object and the actual time the object starts to
meet the condition of the query. Table 2 presents the er-
ror distribution results obtained with AMM when the
lower threshold limit is set to 15 s. Similar behavior
was observed with all the other settings of the threshold
limit, and the error distribution presented in the table
was chosen as representative. The results presented show
that the deviation between the predicted and actual val-
ues for the incorrect results is on the average 15.5 s, with
a maximum of 23 s. Remember that if the deviation is
within the similarity bound, which was set to 10 s in
our experiments, the query result is considered to be cor-
rect. Therefore, the average error observed in incorrect
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Fig. 7. The impact of lower threshold limit on control message
overhead under delayed transmit.

Table 2
Error distribution observed for incorrect result tuples with the lower thresho

Error (s) 11 12 13 14 15 16 1

% 9 11 10 13 13 10 7

The values presented in the first row correspond to the difference between th
object starts to meet the condition of the query. Each value in the second row
the error value specified above it.
result tuples is about 5.5 s. The error distribution can
be regarded as a normal distribution with about 3.1 s
standard deviation.

In the second set of experiments, periodic transmis-
sion of query results is employed with a window size
of 50 s (please see Section 4.4 for the description of this
method). The results obtained are shown in Figs. 8–11.
Consistent to the results obtained in the previous exper-
iments, the performance of AMM is consistently better
than that of pdr, and DDM is better than AMM when
the update threshold of AMM is very small or large.
Comparing the results displayed in Fig. 8 with those in
Fig. 5, we can see that the performance of all three meth-
ods is improved when the periodic transmission method
is used. Although under the periodic transmission, re-
transmissions are required once a tuple result changes
after it has been transmitted to the requesting client,
the total control message overhead is still smaller than
the case with delayed transmission. The lower control
message overhead can be observed by comparing the re-
sults shown in Fig. 11 with those in Fig. 7. As shown in
Figs. 9 and 10, the better performance of AMM as com-
pared to pdr is also due to the smaller update workload
and re-transmission rate experienced with AMM.

In the third set of experiments, the impact of the
number of moving objects on the performance of the
three methods is investigated. The lower and upper
threshold bounds for AMM are fixed at 10 s and 30 s,
respectively. The update threshold for pdr is set to
10 s. The results are displayed in Figs. 12–15. As ex-
pected, IIR increases with the increasing number of
moving objects due to heavier workload and control
message overhead as shown in Fig. 12. The performance
of both AMM and DMM is consistently better than that
of pdr, again due to much smaller update workload, re-
transmission rate and control message overhead as
shown in Figs. 13–15, respectively. As the number of
mobile objects increases, IIR also increases as shown
in Fig. 12. Although the update workload of AMM is
similar to that of pdr when the number of moving ob-
jects is large, i.e., the number of moving objects is close
to 500, the performance of AMM is still significantly
better than that of pdr. This result is due to the better
monitoring scheme used in AMM to generate location
updates.

In the last set of experiments, we investigate the per-
formance impact of the upper threshold bound of
ld limit of 15 s

7 18 19 20 21 22 23

8 5 6 5 2 1

e begin time of a tuple generated for an object and the actual time the
corresponds to the approximate percentage of the incorrect tuples with
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Fig. 9. The impact of lower threshold limit on update workload under
periodic transmit with window size of 50 s.
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Fig. 10. The impact of lower threshold limit on re-transmit rate of
LDCQ results under periodic transmit with window size of 50 s.
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Fig. 11. The impact of lower threshold limit on control message
overhead under periodic transmit with window size of 50 s.
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Fig. 12. The impact of number of mobile objects on incorrect
information rate under periodic transmit with window size of 50 s.
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Fig. 13. The impact of number of mobile objects on update workload
under periodic transmit with window size of 50 s.
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AMM. The results obtained are displayed in Figs. 16–
18. The curves labeled �AMM-20�, �AMM-30�, �AMM-
40�, �AMM-50� and �AMM-75� indicate the performance
when the upper update threshold is set to 20, 30, 40, 50
and 75, respectively. In all three figures, the results are
displayed as a function of the lower threshold bound
which is varied from 2.5 to 30 s. As shown in Fig. 16,
the best performance is achieved when a medium upper
threshold bound is chosen (i.e., with AMM-30 and
AMM-40). If a small upper threshold bound is used,
the update workload becomes heavy as shown in
Fig. 17. When a large upper threshold bound is used,
the uncertainty in the locations of the moving object be-
comes larger although the update overhead and the con-
trol message overhead becomes lower (see Figs. 17 and
18). The update thresholds of objects become tight when
a small upper bound (i.e., AMM-20) is used, and IIR
may become greater, even larger than that of pdr. It is
also observed that, the system performance with a large
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452 K.-Y. Lam, Ö. Ulusoy / The Journal of Systems and Software 79 (2006) 441–453
upper threshold bound is better at a small lower thresh-
old bound. This result can be explained by the fact that,
with a small lower threshold bound, the thresholds for
mobile objects are small enough to keep an effective up-
date frequency.

4.4. Discussion

Under the delayed transmission method for transmit-
ting LDCQ results, the incorrect information rate (IIR)
of AMM was observed to be consistently smaller than
that of pdr for different threshold values, due to the
effective monitoring scheme used in generating location
updates. DDM can outperform AMM only when the
update threshold value is very small or very large.
DDM eliminates the location updates for those objects
which are far from being a target of a query. With
AMM, when the update threshold is very small, the up-
date workload becomes heavy, while a large update
threshold leads to a high level of uncertainty.

All the methods evaluated (i.e., AMM, DDM and
pdr) perform better when the periodic method is used
for the transmission of query results. This result is due
to the lower level of control message overhead experi-
enced with this transmission method. When we evalu-
ated the performance impact of the number of moving
objects, we observed that the rate of incorrect query re-
sults increases with the increasing number of moving ob-
jects due to the heavier workload and control message
overhead involved. AMM still performs better than
the others, although its update workload becomes as
high as that of the other methods when the number of
moving objects is large.

It was also shown through the experiments that the
upper threshold bound used for location updates should
not be very small (as this leads to heavy update work-
load) or large (since this results in high levels of uncer-
tainty in location information).
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5. Conclusions

An important issue that needs to be considered in
designing a mobile computing system is to supply the
system with the capability of processing location-depen-
dent continuous queries. Data values used for main-
taining locations of moving objects are highly
dynamic and may possess real-time properties. Loca-
tion-dependent queries from mobile clients may also
be associated with some constraints on response time.
In this paper, we have analyzed the issues related to
the generation of location updates from moving objects
in a mobile computing environment. Two new meth-
ods, called adaptive monitor method (AMM) and dead-
line-driven method (DDM) have been proposed with
the aim of maintaining the correctness of query evalu-
ation results without increasing the location update
cost. With the AMM method, the objects which are
going to be included in a query result soon are moni-
tored more closely. Update thresholds used for generat-
ing updates for the location of moving objects are
computed based on how close the objects are to begin
satisfying the condition of a query. DMM is an exten-
sion of AMM proposed with the aim of further reduc-
ing the amount of location updates. With this method,
each moving object sends a location update only when
it is about to satisfy the condition of a query. In gen-
eral, it can reduce the location update overhead if the
movements of the objects follow the prediction most
of the time while AMM is suitable for the systems
where disconnection is frequent. Extensive simulation
experiments have been conducted to investigate the per-
formance of the proposed methods as compared to a
well-known location update generation method, the
plain dead-reckoning (pdr). The simulation results
show that the performance of AMM and DDM is sig-
nificantly better than that of pdr under different settings
of system parameters. The relative performance of
DDM and AMM is determined by the update thresh-
old values set with AMM.
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